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AbstractÐWe provide a flow-based coded caching framework
for information centric networks. We jointly optimize delivery
rates, cross coding, and cache contents allocation as a function of
demand and the network’s topology. Our model accounts for stor-
age and transmission costs, demand asymmetry, and arbitrary
multi-hop topologies, and relies on an ordered flow-based de-
coding schedule for the transmissions created by pairwise coded
flows. Through extensive experiments over multiple topologies,
we observe that our coded caching scheme reduces transmission
costs over competitors by several orders of magnitude.

Index TermsÐCoded caching, wireless, cross-coding, memory-
bandwidth tradeoff, demand asymmetry, unicast, multicast.

I. INTRODUCTION

Caching has been used extensively to alleviate backhaul

capacity bottlenecks by moving the content closer to the edge.

Determining the optimal placement of files for maximizing

the cache hit rate or caching gain is NP-hard [1], and ap-

proximation algorithms have been studied extensively in this

setting [1], [2]. Recently, joint optimization frameworks have

been proposed to understand the tradeoffs between caching

and routing [3], [4], computing [5], scheduling [6], and power

control [7]. In this work, we leverage coding to facilitate

file transmission in both wired and wireless caching net-

works. Exploiting coding relaxes the combinatorial structure

of existing NP-hard solutions, as it inherently converts the

integer optimization problems into continuous optimization

problems, simultaneously eliminating the need for rounding

techniques [8]. Moreover, via both caching and cross-coding,

users can obtain the required number of degrees of freedom

(DoF) to decode a file via fewer transmissions, providing

additional resource savings.

After the publication of the landmark paper by Maddah-Ali

and Niesen [9], various facets of coded caching have been in-

vestigated. These include benefits over uncoded caching [10],

memory-bandwidth tradeoffs [11], cache size versus the cat-

alog size [12], demand distribution, and multicasting and

unicasting opportunities [13], to name a few. We depart from

[9] and follow-up works by assuming asymmetric demand over

an arbitrary topology; as a result, our request schemes do not
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conform to a scenario that favors multicasting. This comes

at the cost of restricting our coding schedule to be ordered

over pairwise coded traffic. However, our coded cache scheme

exploits the utility of both unicast and multicast transmissions,

jointly optimizing caching, delivery rates, and cross-coding

across contents. Hence, our design lies somewhere between

the fully uncoded and fully coded frameworks.

More specifically, we consider a flow-based coded caching

network model that incorporates costs accrued by both delivery

and caching. Both coded as well as cross-coded content can

be stored at arbitrary nodes in the network, and subsequently

transmitted and routed to meet demand. The demand distribu-

tion is asymmetric, and our model thus requires a mixture of

unicast and multicast transmissions. In the phase of delivery,

each flow can be either self-coded or cross-coded across differ-

ent files using network coding techniques [14]. Our cost model

is general: it encompasses different cost functions for both

transmission and caching, enabling us to quantify the relative

cost of caching versus delivery. Our coded caching scheme

aims to serve demand by optimizing across the possible ways

of generating self-coded and cross-coded transmission flows,

leveraging the benefits of both uncoded and coded caching.

Our main contributions can be summarized as follows:

• We provide a flow-based coded caching framework over

arbitrary network topologies by incorporating transmis-

sion as well as storage costs.

• In the proposed framework, traffic flows are self-coded or

cross-coded in pairs, as shown in Fig. 1. Coding enables

the end user to extract the required number of degrees

of freedom with the help of caching at the local storage,

which naturally eliminates the redundancy in models that

rely on uncoded transmissions. Cross-coding increases

the delivery capacity of the system, while introducing

additional system optimization parameters (namely, the

rates of the delivered and stored cross-coded traffic).

• By restricting the cardinality of cross-coded traffic, and

imposing and exploiting an ordered decoded schedule,

our system design that amounts to a tractable, convex op-

timization problem. The latter jointly optimizes caching,

delivery, and cross-coding over the (arbitrary) network

topology, under heterogeneous demand.

• We extensively evaluate our proposed framework over

several synthetic and real-life topologies. Our framework

significantly outperforms competitors, reducing transmis-

sion costs by several orders of magnitude.
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Fig. 1: A general coded caching network with asymmetric demands.
Caches are indicated as tall boxes where each distinct file has a
different pattern and each cache can contain self-coded or cross-coded
files, i.e., bars with different patterns. Demand vectors are shown as
bar graphs. Flows are indicated by arrows. The parameter me(ze)
denotes the delivery cost of flow rate ze across edge e, and wv(xv)
represents the caching cost of storage load xv at node v.

The rest of the paper is organized as follows. In Section II

we provide a comprehensive review of the related literature. In

Section III we detail our cache network model. We propose

a coded caching scheme by jointly minimizing the costs of

delivery and caching in Section IV. In Section V, we run

extensive simulations and demonstrate the gains of the flow-

based coded caching framework versus the competitors over

various topologies.

II. RELATED WORK

Erasure coding has been extensively studied in the context

of storage systems. Examples include regenerating codes to

reduce repair bandwidth [14], storage-bandwidth trade offs

[11], erasure coded distributed system design and maximizing

the service rate region [15], and erasure coded atomic (strongly

consistent) distributed read and write storage service [16]. We

depart by using random linear network codes, that lead to

different feasibility regions than above works.

Network coding has been shown to achieve capacity in

multicast transmissions with polynomial encoding/decoding

complexity [17]. It is exploited for minimum cost multicasting

[18], and to minimize total cost of edge using flow splitting

[19]. Inter-session coding, i.e., coding of packets belonging to

different sessions, has been proposed for enhancing distributed

operation with simple scheduling and adaptability to unknown

topologies [20]. The tradeoff between delay versus coding

efficiency has been studied to minimize transmission cost and

packet delays via a control policy that relies on queue lengths

[21]. None of these works considers the impact of caching.

Physical layer caching with or without coding has been

widely studied to optimize wireless networks. The gain offered

by local caching and broadcasting is characterized in the

landmark paper by Maddah-Ali and Niesen (MAN) [9], where

a single multicast transmission suffices to meet the demand

which is assumed to be symmetric, and the placement cost is

not accounted for. Extensions of MAN include the analysis of

the scaling of the per-user throughput and collaboration dis-

tance [22], the determination of the wireless caching capacity

region [23], as well as single-hop and device-to-device delay

[9], [22], [24]. Coded caching has been leveraged for wireless

networks [25], and network coded storage has been devised

for scheduling [26]. We depart by studying complex network

topologies, in both the wired and wireless regimes, restricting

however our coding scheme to pair-wise cross-coding under a

pre-defined order.

Alternatively, there has been research focusing on jointly

optimizing the caching gain and resource usage. These ef-

forts include decentralized optimization via femtocaching to

minimize the download delay [1], distributed caching for

content distribution networks (CDNs) [27], and distributed

optimization of caching gain for given routing [2]. Throughput

and delay scaling in content-centric networking (CCN) has

been analyzed [28], and the cost of storing and accessing

objects has been minimized by building Steiner trees [29],

or mixing Steiner trees [30], where the throughput benefits

of network coding equal the integrality gap of the Steiner

tree formulation. Complementing the host-centric paradigms,

information-centric networking (ICN) architectures have been

explored to optimize both bandwidth and storage for efficient

content distribution [31], minimizing network latency [32].

Other works include jointly optimizing caching and routing

for latency guarantees [33], caching for minimizing delay in

the presence of congestion [34], and energy-efficient caching

with multipath routing to balance the cost of transmissions

and caching via the multicast and unicast delivery modes [13].

However, these works have not incorporated coding.

Several works extend the MAN single-file-retrieval problem

in [9]. The MAN scheme under the constraint of uncoded

cache placement to achieve the minimum worst-case load

among all possible demands has been studied in [12]. An

improved delivery scheme when files are demanded multiple

times to minimize the worst case load under uncoded place-

ment has been proposed in [35]. The memory and rate tradeoff

for coded caching has been characterized within a factor of 2
in [10]. Other extensions of [9] include its application to D2D

caching [36], private coded caching [37], coded distributed

computing [38], requesting multiple files [38], meeting lin-

ear and polynomial queries [39], retrieving general functions

and understanding how the optimal worst-case load increases

[40]. However, to the best of our knowledge, none of these

extensions considers jointly the effects of delivery, demand

asymmetry, mixing of self and cross-coded files, along with

exploiting the benefits of unicast and multicast transmissions.

III. PROBLEM FORMULATION

We consider a network of interconnected nodes forming

a caching network. Individual nodes retrieve files from a

finite catalog. All nodes in the network are capable of (a)

storing files, (b) receiving and forwarding encoded traffic, but

also (c) decoding and encoding traffic prior to forwarding. In

particular, with respect to (c), nodes are also able to cross-code

traffic across pairs of files, as shown in Fig. 1. Subject to costs
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Fig. 2: RLNC for self-coded and cross-coded flow types.

associated with transmitting traffic, as well as storing files, the

purpose of our system design is to jointly determine (a) how

to cross-code traffic, (b) traffic flows, and, most crucially (c)

where to store files, in order to meet demand. We elaborate

on each of these issues in detail below.

A. Cache Network and Demand

More formally, we represent a cache network as a directed

graph G(V,E), with nodes V and edges E ⊆ V × V .

Nodes in the network wish to retrieve files from a catalog

C. Every node in the network has storage capabilities, and

uses a random linear network code (RLNC) [41] to store

(parts of) files in the catalog: that is, we assume that every

file in C is partitioned sequentially into smaller stages; each

stage is further partitioned into (uncoded) packets or chunks,

and nodes can store random linear combinations of these

uncoded packets. These random linear combinations, i.e., the

coded packets, represent the DoF necessary to retrieve the

stage. We assume that files and stages are large enough that

a flow model, determined by mean transmission rates, is a

good approximation of the system dynamics.1 We illustrate

the coding and decoding principles of RLNC via a simple

example in Fig. 2, where coded packets in the storage of nodes

are represented by variables qk or rk.

We define a set of targets T ⊆ V that act as content

receivers (or traffic sinks). Every node t ∈ T is associated

with a demand vector:

λt = [λt,i]i∈C ,

where λt,i ∈ R
+ is the request rate, i.e., the intensity of the

request process for coded packets of type i ∈ C at t ∈ T .

Intuitively, if [0, T ] is the duration of the entire operation

period, then λt,i×T is the total number of coded packets/DoF

that t needs to acquire during this period. Hence, if t is

to acquire the entire file i, we can think of λt,i as being

proportional to the file size. Nevertheless, it is possible that

the rates are higher for certain targets, to capture stringent

delivery time requirements.

B. Caching Decisions and Storage Costs

As stated above, every node in the network can store and

transmit coded packets of files in C. Our use of an RLNC

1As is typical [17], we assume that random weights used in coded
packets are stored and transmitted along with coded packets, at a small
(polylogarithmic) overhead compared to the payload. These weights can be
used at a receiver to decode the packets.

allows us to abstract caching decisions as follows: for every

i ∈ C and v ∈ V , we denote by xv,i ∈ R
+ the caching rate,

i.e., the rate with which node v can be used to produce coded

packets of file i. The caching rates admit two possible physical

interpretations:

1) Assuming that caches are memory-bound, meaning that

storage is a limited resource, the caching rate xv,i can

be thought of as being proportional to the number of

coded packets (across stages) that node v stores. In other

words, if [0, T ] is the total operation period, then xv,i×T
is the total storage consumed at v to be able to produce

coded packets for file i at rate xv,i.

2) If caches are I/O-bound, xv,i can be thought of as

the rate with which coded packets can be read from

the storage device. As memory becomes increasingly

cheap, it may be possible to store the entire file at v
(i.e., v stores equal to or even more DoF than the ones

required to reconstruct every stage), and xv,i is simply

the throughput of the I/O connection to storage.

We stress here that, in either interpretation xv,i are rates, and

correspond to, e.g., coded packets per second.

Beyond coded packets for individual files, we also allow

storing cross-coded packets: these are random linear combi-

nations of chunks across a stage of file i and a corresponding

stage of file j. The total storage load of node v ∈ V is then:

xv =
∑

i∈C xv,i +
∑

i,j ̸=i,(i,j)∈C2 xv,(i,j). (1)

We assume that storing content incurs the aggregate cost:
∑

v∈V wv (xv) , (2)

where wv : R+ → R+ is a convex non-decreasing function

capturing storage costs.

Alternatively, we can introduce hard constraints. E.g., for

memory-bound caches, we can have constraints of the form

xv ≤ cv/T , where cv ∈ R+ is the storage capacity of v ∈ V .

Similarly, in I/O bound caches, we can have constraints of the

type xv ≤ µv , where µv is the capacity of the I/O link. Both

such hard constraints and soft-penalties of the form in Eq. (2)

are permissible in our model.2

C. Traffic Flow and Bandwidth Costs

Traffic carrying flow for file i can be potentially generated

at every node storing file i, traverse the network, and be

consumed by target nodes requesting i. We consider two types

of traffic. The first type corresponds to the coded traffic flow

associated with file i ∈ C. The second type of flow corresponds

to cross-coded traffic flow associated with files i, j ∈ C. In

this case, cross-coded traffic flow corresponds to a (linear)

combination of flows corresponding to files i and j ̸= i. The

amount of cross-coded traffic that can be generated at node v
is determined by the quantities of incoming cross-coded traffic

and coded traffic flows associated with single files.

We denote by ze,i the physical traffic rate on an edge e =
(u, v) ∈ E associated with (non-cross-coded) traffic for file

2Though hard constraints may make meeting demand infeasible.



i ∈ C. Similarly, we denote by ze,(i,j) the physical rate on an

edge e ∈ E associated with traffic resulting from cross-coding

between i and j. The total physical flow over e ∈ E is then

ze =
∑

i∈C ze,i +
∑

i,j ̸=i,(i,j)∈C2 ze,(i,j). (3)

Traffic flowing over an edge e ∈ E incurs a cost. The total

network cost due to delivery is given by:
∑

e∈E me(ze), where

me : R+ → R+ is a convex non-decreasing function that maps

the load at edge e ∈ E to the corresponding cost.

D. Problem Statement

Generally, we aim to solve the following problem:

Minimize:
ze, xv

∑

e∈E me(ze) +
∑

v∈V wv(xv) (4a)

subj. to: flow and demand constraints. (4b)

That is, we wish to minimize costs due to caching and

transmission across edges, while (a) respecting flow preser-

vation constraints across nodes, and (b) meeting demand, i.e.,

ensuring that coded packets arrive at the target nodes at the

desired rates. We will describe both types of constraints in

great detail. In doing so, we determine both (i) where self-

coded and cross-coded file contents are to be stored at/served

from, via the respective caching rate variables, (ii) how self-

coded and cross-coded traffic are to be routed along the

network, and, concurrently, (iii) what is the relative balance in

resource usage across self-coded and cross-coded traffic w.r.t.

both resources (caching and transmission).

Formally stating the constituent constraints (a)-(b), and ac-

complishing (i)-(iii), poses several challenges. First, allowing

for cross-coding across multiple files can potentially lead to

a combinatorial explosion of variables. Second, cross-coded

traffic can be utilized in a variety of ways: for example, cross-

coded packets of type (i, j) can be used along with (decoded)

self-coded packets of type i to produce decoded packets of

type j, or combined together to produce decoded packets of

both i and j. The RLNC solution, as shown in Fig. 2, captures

the cross-coding mechanism, through encoding different traffic

types and decoding these mixtures. However, packets/DoF that

were used for the former type of decoding cannot be used

for the latter type of decoding. This creates a complicated

set of flow preservation constraints, and a need for careful

management of flows at each node to determine the flow

preservation rules as well as how demand can be met.

We address the above issues in the following ways. First, the

combinatorial explosion of variables is addressed by restricting

cross-coding to pairs of files, as introduced so far. Second, the

management of cross-coded traffic is accomplished by impos-

ing and exploiting an ordering on how traffic for different files

is decoded. These assumptions yield a tractable formulation of

the optimization in Eq. (4), which we describe next.

IV. JOINT CACHING, CROSS-CODING,

AND FLOW OPTIMIZATION

A. Book-keeping and Meeting Demand

We first introduce additional variables to capture the amount

of physical flow that can be used to satisfy demand at targets.

We denote by ρte,i and ρt
e,(i,j) the portion of the self-coded and

cross-coded traffic on an edge e ∈ E that can be used to serve

demand at target t, respectively. Note that physical traffic can

be reused across targets. These variables should satisfy:

ρte,i ≤ ze,i, for all e ∈ E, i ∈ C, t ∈ T , (5)

ρte,(i,j) ≤ ze,(i,j), for all e ∈ E, (i, j) ∈ C2, i ̸= j, t ∈ T . (6)

Similarly, portions of the caching rates in nodes can be used

to serve demands at targets. We indicate this via variables:

ξtv,i ≤ xv,i, for all e ∈ E, i ∈ C, t ∈ T , (7)

ξtv,(i,j) ≤ xv,(i,j), for all e ∈ E, (i, j) ∈ C2, i ̸= j, t ∈ T . (8)

These portions characterize the (potential) amount of caching

rate traffic for file i, present at node v, which can be used in

service of target t. Intuitively, these ªbook-keepingº variables

will help ensure that the rates ze,· and xv,· are sufficient to

meet demand in every target.

Correspondingly, demand at a target node is met by decoded

traffic for requested files. We assume that every node, includ-

ing non-targets, decodes incoming traffic (to serve demand in

case of targets), but also to recode it and forward new random

linear combinations towards other nodes. Both incoming traffic

and stored content can be used to decode files at different

nodes. In particular, let µt
v,i be the rate with which node v

can decode content file i, that could subsequently be used

to serve t. Then, decoded content can be used to generate

outgoing traffic. In particular, outgoing traffic flow at every

node should satisfy: for all v ∈ V, i ∈ C, t ∈ T .

µt
v,i ≥

∑

u:(v,u)∈E ρt(v,u),i. (9)

Similarly, outgoing cross-coded traffic flow is governed by:

2min(µt
v,i, µ

t
v,j) ≥

∑

u:(v,u)∈E ρt(v,u),(i,j), (10)

for all v ∈ V, i, j ∈ C, t ∈ T . This is due to the fact that any

pair of decoded packets of i and j can be used to generate a

pair of cross-coded packets of flow (i, j).
Finally, demand should be met; to that end:

µt
t,i ≥ λt,i, for all t ∈ T , (11)

i.e., the decoding rate at each target should exceed the demand.

We next turn our attention to how incoming traffic and stored

content can be used to decode files.

B. Decoding Traffic

We assume that, the transmission of each stage is associated

with a timeslot, where the schedule of when and where each

packet is injected is given a priori [17]. Within each timeslot,

every node follows an ordered decoding scheme: if i < j,

then i is decoded before j. This leads to four different types

of decoding to serve t ∈ T with respect to file i ∈ C:
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(i) Type-A (decoding pure i). This flow type models the

uncoded or self-coded available traffic for i at node v:

TA
t
v,i =

∑

u:(u,v)∈E ρt(u,v),i + ξtv,i .

This comprises incoming traffic w.r.t. file i as well as DoF

stored at v.

(ii) Type-B (decoding i with previously decoded traffic

h < i). This flow type models the cross-coded traffic flow

(mixture) that exploits all previously decoded h < i, that are

presently available at node v:

TB
t
v,i =

∑

h<i min
(
∑

u:(u,v)∈E ρt(u,v),(h,i) + ξt
v,(h,i), µ

t
v,h

)

.

In this case, i is decoded using a mixture of i and h, where

h < i, and pure (i.e., already decoded) h which is available at

a rate µt
v,h. Hence, TBtv,i is the effective amount of traffic for

i extracted from the aggregate available mixture of all h < i.
(iii) Type-C (recoding to extract i without decoding pure

traffic j > i). This flow type models the traffic for file i to

be decoded by cross-coded traffic with files j > i, which has

arrived at node v but has not yet been decoded:

TC
t
v,i =

∑

j>i min
(
∑

u:(u,v)∈E ρt(u,v),(i,j) + ξt
v,(i,j),

∑

u:(u,v)∈E ρt(u,v),j + ξtv,j
)

.

In addition to pure j, node v has a mixture of files i and any j.

This, combined with the flexibility of recoding with no need

for intermediate decoding, ensures decoding of i. As in Type-

B, the effective amount of traffic node v can extract for file

i is the sum over all j > i of the minimum of the available

mixture of j with i and the incoming flow (as opposed to

existing decoded traffic). Meanwhile, pure j is available but

not decoded, which contributes to flow TA
t
v,j after i is decoded.

(iv) Type-D (recoding to extract i from the leftover cross-

coded traffic (i, j)). This type models the traffic for i to be

decoded using the mixture with j such that j > i. After

decoding Types B and C, the remaining cross-coded traffic

is used at node v to produce uncoded traffic for both i and j.

TD
t
v,i =

∑

j>i
1
2

[
∑

u:(u,v)∈E(ρ
t
(u,v),(i,j) + ξt

v,(i,j))

−(
∑

u:(u,v)∈E ρt(u,v),j + ξtv,j)
]+

,

where [x]+ is x if x > 0 and zero otherwise. The effective

DoF of this residual mixture to the traffic for i is half of the

original DoF since two DoFs in the mixture are required for

one DoF of i (while also giving one DoF for j). Note that

decoding of Type D also produces pure traffic of type j, i.e.,

TB
t
v,j . This is accounted for in µt

v,j as Type B traffic.

As a result of combining these processes (Types A-D), we

have that for all v ∈ V , t ∈ T , i ∈ C:

TA
t
v,i + TB

t
v,i + TC

t
v,i + TD

t
v,i ≥ µt

v,i . (12)

We illustrate the different types of decodings (Types A-D listed

in the order of decoding) in Fig. 3. We note that the asymmetry

between Types B and C, D implies that constraints depend on

the order of the files, as imposed by their indices i, j, . . . ∈
C. This is a design choice: the system is parameterized by

which files it decodes first. Moreover, this ordering need not

be global: every node could potentially have its own ordering,

leading to a different formulation of constraints (12). Finally,

the proposed scheme need not be constrained cross coding of

pairs; combinations could be extended to triplets, quadruplets,

etc., increasing the number of constraints from quadratic (in

the number of files) to cubic etc. We nevertheless restrict to

pairs for simplicity and for reducing problem complexity.

C. Optimization

Before we formally state the form optimization problem (4)

takes, we revisit in detail the decision parameters we have so

far. The unknowns are caching xv,i, xv,(i,j), transmission loads

ze,i, ze,(i,j), portions of caching for demands ξtv,i, ξt
v,(i,j),

portions of transmission loads for demands ρte,i, ρ
t
e,(i,j), which

are self-coded and cross-coded, respectively, and decoding

rate µt
v,i. From a flow-conservation perspective, we obtain the

following optimization problem that minimizes the aggregate

cost of delivery and caching:

Minimize:
ze, xv

∑

e∈E me(ze) +
∑

v∈V wv(xv) (13a)

subj. to: constraints (1), (3), and (5)±(12). (13b)

We note that, if weight functions are convex, the optimiza-

tion Prob. (13) is convex; the convexity of all constraints is



Graph |V | |E| |T | |C| Cost

synthetic topology

Erdős-RÂenyi (ER) 50 256 5 25 23
grid 64 224 5 25 34206

hypercube (HC) 64 384 5 25 40
expander 64 444 5 25 37

small-world (SW) [43] 64 306 5 25 52
BarabÂasi and Albert (BA) [44] 50 282 5 25 18

Watts-Strogatz (WS) [45] 50 100 5 25 2826

backbone network [46]

GEANT 22 66 5 20 17
Abilene 11 28 5 50 0.15

Deutsche Telekom (Dtelekom) 68 546 5 20 4186

hierarchy topology

Maddah-Ali and Niesen (MAN) 3 2 2 4 -
Tree 14 13 9 20 -

TABLE I: Graph Topologies and Experiment Parameters

easy to verify for all cases except (12). We next show that

(12) is also convex. We thus could solve the convex program

(13) through classic solvers [42].

Lemma 1. The set of constraints (12) is convex.

Proof. Type A decoding flow is an affine function. The min-

imum of affine functions is concave, hence Type B decoding

flow is also a concave function. Finally, the sum of Type C

and Type D is also a concave function due to:

min(a, b) + 1
2 [a− b]+ = 1

2 [a+min(a, b)],

which is concave since the min operator is concave.

V. PERFORMANCE EVALUATION

In this section, we provide a comprehensive evaluation of

the flow-based coded caching scheme to understand the utility,

capacity, and bandwidth tradeoffs for different topologies.

A. Experiment Setup

To evaluate our scheme, we perform simulations over gen-

eral topologies (synthetic topologies, and backbone network

topologies), and two hierarchy topologies. These topologies

and their parameters are summarized in Table I.

Settings for General Topologies. To simulate a distribution

network, we ªembedº a backbone/CDN-like topology in arbi-

trary topologies as follows. First, for every node v ∈ V we

compute the average distance to other nodes d(v) =
∑

u
d(v,u)
|V |−1

and the node centrality c(v) = 1/d(v). Then, we assign the

transmission cost function of edge (u, v) ∈ E as

me(z(u,v)) = z
α(d(u)+d(v))+β

(u,v) ,

where α = 10, and β = −20min d(v) + 1 are selected so as

to get a range of exponents larger than 1 (so that the function

is convex), and the cache capacity of node v ∈ V is given as

cv = α′c(v) + β′,

where α′ = 3 and β′ = −3min c(v) + 1 are selected again

to get a wide range of cache values larger than 1. Intuitively,

the more central a node is, the higher its storage capacity,

and the higher the throughput of closeby edges (as captured

by more lenient penalties). We uniformly at random (u.a.r.)
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Fig. 4: Topologies for two toy examples, where each solid line
represents a unicast transmission, the dotted lines denote hyperedges,
and green nodes/leaves denote targets.
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Fig. 5: Transmission costs of various caching algorithms (normalized
by CC costs, shown in column ªCostº of Table I) over different
topologies. Our proposed CC consistently outperforms competitors
by several orders of magnitude.

select target set T . For each target t ∈ T , its demand for item

i ∈ C follows a Zipf distribution with parameter 1.2.

Settings for Hierarchy Topologies. In order to provide some

visualization intuitions and compare to the most related work

from Maddah-Ali and Niesen [9], we show how schemes work

over these two simpler hierarchy topologies. As shown in

Fig. 4, green leaves represent targets T ⊆ V . Furthermore, we

capture the broadcasting nature in [9] via dotted hyperedges.

For the MAN, we refer the interested readers to [47]. For the

Tree topology, we set the cache size for each layer from

the server to the leaf to be cv = (20, 8, 4, 2). The edge

penalty vector between these ordered layers from the server

to the leaf nodes is me(ze) = (ze, z
2
e , z

4
e), respectively; note

that the cost functions of transmission from the same layer

is fixed and identical. This is natural: in wireless systems, the

server typically has a higher bandwidth or higher transmission

power than the leaves, thus penalty of transmission with higher

bandwidth/power is lower.

B. Joint Caching, Delivery, and Cross-coding Algorithms

We implement our framework and several competitors:

• Coded Caching (CC) is our proposed scheme, consisting

of both self-coded and cross-coded traffic management.

• Self-Coded Caching (SCC) consists of only self-coded

traffic. SCC optimizes Problem (13) by setting all cross

coded variables to 0.

• ‘Simulated’ Maddah-Ali and Niesen (SMAN) is a simu-

lated version of the scheme introduced by Maddah-Ali

and Niesen [9]. We first take the maximum rate of each

file across all targets as the demand rate, so that the

symmetry is guaranteed, as in [9]. Then, we optimize both

cache and transmission by solving a ªuniform demandº

version of Prob. (13). Note that the original scheme

from [9] is symmetrically designed so as to maximize



multicasting opportunities and does not optimize caching.

In contrast, we extend their scheme using an asymmetric

demand model under a flow-based coded caching scheme,

and optimize caches accordingly.

• Random Caching and Coded Transmission (RC-CT) con-

sists of two steps. First, we set cache rates proportional

to file populations. Second, given fixed cache rates, we

optimize Problem (13) only w.r.t. ze.

• Random Caching and SMAN Transmission (RC-SMANT)

also consists of two steps similar to RC-CT. The only

difference is: before the second step, RC-SMANT takes

the maximum rate of each file across all targets as the

demand rate, like SMAN.

We implement all these schemes using CVXPY. Our code is

publicly available.3

C. Results for General Topologies

We present normalized cost results in Fig. 5. The normalized

cost is the transmission cost normalized by the one yielded by

CC, shown in the last column of Table I. In all topologies, our

CC consistently outperforms all competitors by several orders

of magnitude. SCC always performs the worst, which verifies

the importance of cross coding. Also, schemes considering

asymmetric demands (CC and RC-CT) always have better

performance than ones only considering symmetric demands

(SMAN and RC-SMANT), correspondingly. This is expected,

as symmetric demands pessimistically assume they need to

uniformly serve the maximum of asymmetric demands.

D. Tree Topology

We next consider the Tree network topology with four

multi-hop layers, as shown in Fig. 4-(b). In the Tree topology,

solid lines between nodes represent unicast transmissions (e.g.,

from the server to the radio area network), and the dotted

lines represent the hyperedges from the radio area network

to the leaves (e.g., wireless on tablet, phone). The ordering

of layers is from root to leaf. The demand for the Tree

network is modeled by a Zipf distribution, where the catalog

size is |C| = 20 and the Zipf exponent is 1.2. Although the

demands from different targets all follow the same distribution,

they might take different values. We group files for easier

visualization and denote the collection of the 10 most popular

files by h (stands for High popular), and the least popular 10
files by l (stands for Low popular). There are 5 possible coded

combinations denoted by the set {l, h, (l, h), (l, l), (h, h)},

where l and h denote the self-coded files, (l, h) represents the

cross-coding across l and h files, and so forth.

Transmission and Cache Placement. In Fig. 6, we illustrate

the performance across layers. In this setting, we observe that

the combination of the edge caches and edge transmissions is

not sufficient to meet the demands, i.e., all intermediate caches

and transmissions help satisfy the demands. Our CC has the

least transmission costs. We list the total transmission costs

at the captions of the Figs. 6. Our CC scheme achieves more

3https://github.com/neu-spiral/CodedCaching
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Fig. 6: (a) Cache storage and (b) transmission load for different
algorithms with symmetric demands. The indices l and h represent
low and high popularity files. The total transmission cost of three
algorithms is 3.2× 104, 1.1× 105 and 8.7× 106.
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Fig. 7: Cost and transmission load with different cost functions,
where larger penalty multiplier indicates higher penalization for
transmission.

than 3× gains compared to SMAN, while achieving more than

250× gains compared to SCC.

Effect of Edge Load Penalties. In Fig. 7 we consider the

cost across each layer with varying edge penalty. This helps

illustrate how the relative cost of delivery versus caching

affects the behavior of the aggregate cost of the scheme.

The label penalty multiplier PenaltyMultiplier on the x-axis

is a coefficient in transmission cost function me(ze), where

edges in layer i have me(ze) = zPenaltyMultiplieri

e . With the

increment of penalty multiplier, the load of edge on layer

2 stays almost the same, while the load on the lower layer

edges increases. The increment rate of SCC approach grows

the fastest, then SMAN, and our CC scheme grows the slowest.

VI. CONCLUSIONS

We proposed a flow-based coded caching framework. To

the best of our knowledge, this is the first comprehensive



work that considers asymmetric demand models, a mixture

of unicast and multicast transmissions, self-coded and cross-

coded delivery, via minimizing the joint cost of delivery

and placement in general wireless network topologies. Our

numerical experiments show that, for various arbitrary topolo-

gies, our coding scheme outperforms the widely accepted

algorithms by several orders of magnitude. Moreover, under

cross-coding, we observe a 2× reduction in transmission

costs versus the self-coded model in Maddah-Ali and Niesen

topology. Furthermore, the reduction of delivery cost is even

more dramatic (up to more than 3× versus the Maddah-Ali

and Niesen scheme and up to more than 250× versus self-

coded) in hierarchical (tree) transmission models. Extensions

of this work include devising a general delivery scheme, where

the link costs are coupled, accounting for, e.g., interference,

and providing a constant factor approximation of the opti-

mal solution of the joint placement and delivery problem

without imposing a decoding schedule. Designing adaptive

and distributed techniques is critical, especially when the

demand is dynamic and unknown. Other extensions include

designing joint caching and routing schemes and scheduling

transmissions via incorporating congestion.
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