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Abstract

There is tremendous interest in precision medicine as a means to improve patient out-
comes by tailoring treatment to individual characteristics. An individualized treatment
rule formalizes precision medicine as a map from patient information to a recommended
treatment. A treatment rule is defined to be optimal if it maximizes the mean of a scalar
outcome in a population of interest, e.g., symptom reduction. However, clinical and in-
tervention scientists often seek to balance multiple and possibly competing outcomes, e.g.,
symptom reduction and the risk of an adverse event. One approach to precision medicine
in this setting is to elicit a composite outcome which balances all competing outcomes;
unfortunately, eliciting a composite outcome directly from patients is difficult without a
high-quality instrument, and an expert-derived composite outcome may not account for
heterogeneity in patient preferences. We propose a new paradigm for the study of preci-
sion medicine using observational data that relies solely on the assumption that clinicians
are approximately (i.e., imperfectly) making decisions to maximize individual patient util-
ity. Estimated composite outcomes are subsequently used to construct an estimator of an
individualized treatment rule which maximizes the mean of patient-specific composite out-
comes. The estimated composite outcomes and estimated optimal individualized treatment
rule provide new insights into patient preference heterogeneity, clinician behavior, and the
value of precision medicine in a given domain. We derive inference procedures for the pro-
posed estimators under mild conditions and demonstrate their finite sample performance
through a suite of simulation experiments and an illustrative application to data from a
study of bipolar depression.
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1. Introduction

Precision medicine is an approach to healthcare that involves tailoring treatment based on
individual patient characteristics (Hamburg and Collins, 2010; Collins and Varmus, 2015).
Accounting for heterogeneity by tailoring treatment has the potential to improve patient
outcomes in many therapeutic areas. An individualized treatment rule formalizes precision
medicine as a map from the space of patient covariates into the space of allowable treatments
(Murphy, 2003; Robins, 2004). Almost all methods for estimating individualized treatment
rules have been designed to optimize a scalar outcome (exceptions will be discussed shortly).
However, in practice, clinical decision making often requires balancing trade-offs between
multiple outcomes. For example, clinicians treating patients with bipolar disorder must
manage both depression and mania. Antidepressants may help correct depressive episodes
but may also induce manic episodes (Sachs et al., 2007; Ghaemi, 2008; Goldberg, 2008; Wu
et al., 2015). We propose a novel framework for using observational data to estimate a
composite outcome and the corresponding optimal individualized treatment rule.

The estimation of optimal individualized treatment rules has been studied extensively,
leading to a wide range of estimators designed to suit an array of data structures and
data-generating processes (Kosorok and Laber, 2019; Tsiatis et al., 2020). These estimators
include: regression-based methods like Q-learning (Murphy, 2005; Qian and Murphy, 2011;
Schulte et al., 2014; Laber et al., 2014a), A-learning (Murphy, 2003; Robins, 2004; Blatt
et al., 2004; Moodie et al., 2007; Wallace and Moodie, 2015), and regret regression (Hender-
son et al., 2010); direct-search methods (Rubin and van der Laan, 2012; Zhang et al., 2012b;
Zhao et al., 2012; Zhang et al., 2013; Zhou et al., 2017) based on inverse probability weight-
ing (Robins, 1999; Murphy et al., 2001; van der Laan and Petersen, 2007; Robins et al.,
2008); and hybrid methods (Taylor et al., 2015; Zhang et al., 2018). The preceding meth-
ods require specification of a single scalar outcome that will be used to define an optimal
regime; were individual patient utilities known, then they could be used as the outcome in
any of these methods. However, in general such utilities are not known though they can be
elicited provided a high-quality instrument is available (Butler et al., 2018); in the absence
of such an instrument, preference elicitation is difficult to apply. A method for constructing
a composite utility that is best predicted using a non-parametric machine learning model
is proposed by (Benkeser et al., 2020); howeer , they do not consider heterogeneous utilities
or the construction of precision medicine strategies.1

We propose a new paradigm for estimating optimal individualized treatment rules from
observational data without eliciting patient preferences. The key premise is that clinicians
are attempting to act optimally with respect to each patient’s utility and thus the observed
treatment decisions contain information about individual patient utilities. This idea is
similar to that introduced by Wallace et al. (2018) (see also Wallace et al., 2016); however,
we provide an estimator for the probability that a patient is treated optimally, rather than
assuming that all patients are treated optimally. We construct estimators of individual
patient utilities which do not require that clinicians are acting optimally, only that they
approximately follow an optimal policy. This approach allows us to describe the goals of the
decision maker and how these goals vary across patients, determine what makes a patient

1. Nevertheless, one could imagine how these flexible estimators could integrated into our framework to
reduce dependence on parametric models. See concluding remarks for additional discussion.
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more or less likely to be treated optimally under standard care, and estimate the decision
rule which optimizes patient-specific composite outcomes. We develop this approach in the
context of a single-stage, binary decision in the presence of two outcomes. An extension to
the setting with more than two outcomes is discussed in the Appendix.

Other methods for estimating optimal treatment rules in presence of multiple outcomes
include using an expert-derived composite outcome for all patients (Thall et al., 2002, 2007;
Murray et al., 2016; Moser et al., 2020). However, this does not account for differences
in the utility function across patients and in some cases it may not be possible to elicit a
high-quality composite outcome from an expert. Alternatively, multiple outcomes can be
incorporated using set-valued treatment regimes (Laber et al., 2014b; Lizotte and Laber,
2016; Wu, 2016), constrained optimization (Linn et al., 2015; Laber et al., 2018; Wang et al.,
2018), or inverse preference elicitation (Lizotte et al., 2012). Schnell et al. (2017) extend
methods for estimating the benefiting subgroup to the case of multiple outcomes using the
concept of admissibility (see also Schnell et al., 2016). However, none of these approaches
provide a method for estimating an individual patient’s utility.

This work is closely related to inverse reinforcement learning (Kalman, 1964; Ng et al.,
2000; Abbeel and Ng, 2004; Ratliff et al., 2006), which involves studying decisions made
by an expert and constructing the utility function that is optimized by the expert’s deci-
sions. Inverse reinforcement learning has been successfully applied in navigation (Ziebart
et al., 2008) and human locomotion (Mombaur et al., 2009). Inverse reinforcement learning
methods assume that decisions are made in a single environment. However, in the context
of precision medicine, both the utility function and the probability of optimal treatment
may vary across patients. Our approach is a version of inverse reinforcement learning with
multiple environments.

This work is also related to the notion of stated and revealed preferences in the health
economics literature.2 Viewed through this lens, our work might be characterized as using
clinical decisions as a kind of surrogate for patient revealed preferences thereby avoiding
the need for the elicitation of stated preferences using specialized instruments. This is
advantageous as the construction of high-quality instruments is difficult and collection of
preference information is not routine in many areas (Carlsson and Martinsson, 2003; Ryan
et al., 2007; de Bekker-Grob et al., 2012; Soekhai et al., 2019); though see Butler et al.
(2018) for an illustrative application when such an instrument is available. Challenges
associated with preference elicitation for precision medicine are discussed in Laber et al.
(2014b), Lizotte and Laber (2016).

In Section 2, we introduce a pseudo-likelihood method to estimate patient utility func-
tions from observational data. In Section 3, we state a number of theoretical results per-
taining to the proposed method, including consistency and inference for the maximum
pseudo-likelihood estimators. Section 4 presents a series of simulation experiments used
to evaluate the finite sample performance of the proposed methods. Section 5 presents an
illustrative application using data from the STEP-BD bipolar disorder study. Conclusions
and a discussion of future research are given in Section 6. Proofs are given in the appendix
along with additional simulation results and a discussion of an extension to more than two
outcomes.

2. We gratefully acknowledge an anonymous referee for identifying this connection.
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2. Pseudo-likelihood Estimation of Utility Functions

Assume the available data are (X i, Ai, Yi, Zi), i = 1, . . . , n, which comprise n independent
and identically distributed copies of (X , A, Y, Z), where X ∈ X ⊆ Rp are patient covariates,
A ∈ A = {−1, 1} is a binary treatment, and Y and Z are two real-valued outcomes for which
higher values are more desirable. The extension to scenarios with more than two outcomes
is discussed in the Appendix. An individualized treatment rule is a function d : X → A such
that, under d, a patient presenting with covariates X = x will be assigned to treatment
d(x). Let Y ∗(a) denote the potential outcome under treatment a ∈ A, and for any regime
d, define Y ∗(d) =

∑
a∈A Y

∗(a)1 {d(X) = a}. An optimal regime for the outcome Y , say

doptY , satisfies EY ∗
(
doptY

)
≥ EY ∗(d) for any other regime d. The optimal regime for the

outcome Z, say doptZ , is defined analogously. In order to identify these optimal regimes, and
subsequently to identify the optimal regime across the class of utility functions introduced
below, we make the following assumptions.

Assumption 1 Consistency, Y = Y ∗(A) and Z = Z∗(A).

Assumption 2 Positivity, Pr(A = a|X = x) ≥ c > 0 for some constant c and all pairs
(x, a) ∈ X ×A.

Assumption 3 Ignorability, {Y ∗(−1), Y ∗(1)}⊥A |X and {Z∗(−1), Z∗(1)}⊥A |X.

In addition we assume that there is no interference between units nor are the multiple
versions of treatment (Rubin, 1980). These assumptions are standard in causal inference
(Robins, 2004; Hernan and Robins, 2010). Assumption 3 is not empirically verifiable in
observational studies (Rosenbaum and Rubin, 1983; Rosenbaum, 1984).

Define QY (x, a) = E (Y |X = x, A = a). Then, under the preceding assumptions, it
can be shown that doptY (x) = arg maxa∈AQY (x, a) (Zhang et al., 2012b; Qian and Mur-

phy, 2011). Similarly, it follows that doptZ (x) = arg maxa∈AQZ(x, a) where QZ(x, a) =

E (Z|X = x, A = a). In general, doptY (x) need not equal doptZ (x); therefore, if both Y and

Z are clinically relevant, neither doptY nor doptZ may be acceptable. We assume that there
exists an unknown and possibly covariate-dependent utility U = u(Y, Z), where u : R2 → R
measures the “goodness” of the outcome pair (y, z). The optimal regime with respect to U ,

say doptU , satisfies EU∗
(
doptU

)
= Eu

{
Y ∗
(
doptU

)
, Z∗

(
doptU

)}
≥ Eu {Y ∗(d), Z∗(d)} = EU∗(d)

for any other regime d. The goal is to use the observed data to estimate the utility and
subsequently doptU . Define QU (x, a) = E(U |X = x, A = a). For the class of utility func-
tions we consider below, QU (x, a) is a (possibly covariate-dependent) convex combination
of QY (x, a) and QZ(x, a) and is therefore identifiable under the stated causal assumptions
and furthermore doptU (x) = arg maxa∈AQU (x, a).

We assume that clinicians act with the goal of optimizing each patient’s utility and that
their success in identifying the optimal treatment depends on individual patient characteris-
tics. Therefore, we assume that the clinicians are approximately, i.e., imperfectly, assigning
treatment according to doptU (x). If the clinician were always able to correctly identify the
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optimal treatment and assign A = doptU (X) for each patient, there would be no need to
estimate the optimal treatment policy (Wallace et al., 2016). Instead, we assume that the

decisions of the clinician are imperfect and that Pr
{
A = doptU (x)|X = x

}
= expit (xᵀβ)

where β is an unknown parameter. We show in Section 2.2 that the model is identifiable
under mild conditions; e.g., these exclude the possibility of a malevolent clinician that is
systematically assigning poor treatments. We implicitly assume throughout that X may
contain higher order terms, interactions, or basis functions constructed from patient covari-
ates.

2.1 Fixed Utility

We begin by assuming that the utility function is constant across patients and takes the form
u(y, z;ω) = ωy + (1− ω)z for some ω ∈ [0, 1]. Lemma 1 of Butler et al. (2018) states that,
for a broad class of utility functions, the optimal individualized treatment rule is equivalent
to the optimal rule for a utility function of this form. Define Qω(x, a) = ωQY (x, a) +
(1 − ω)QZ(x, a) and define doptω (x) = arg maxa∈AQω(x, a). Let Q̂Y,n and Q̂Z,n denote
estimators of QY and QZ obtained from regression models fit to the observed data (Qian
and Murphy, 2011). For a fixed value of ω, let Q̂ω,n(x, a) = ωQ̂Y,n(x, a)+(1−ω)Q̂Z,n(x, a)

and subsequently let d̂ω,n(x) = arg maxa∈AQ̂ω,n(x, a) be the plug-in estimator of doptω (x).

Given Q̂Y,n and Q̂Z,n, d̂ω,n(x) can be computed for each ω ∈ [0, 1].
The joint distribution of (X , A, Y, Z) is

f(X, A, Y, Z) = f(Y,Z|X, A)f(A|X)f(X)

= f(Y,Z|X, A)f(X)
exp

[
Xᵀβ1

{
A = doptω (X)

}]
1 + exp (Xᵀβ)

.

Assuming that f(Y,Z|X, A) and f(X) do not depend on ω or β, the likelihood for (ω, β)
is

Ln(ω, β) ∝
n∏
i=1

exp
[
Xᵀi β1

{
Ai = doptω (Xi)

}]
1 + exp (Xᵀi β)

, (1)

which depends on the unknown function doptω . Plugging in d̂ω,n for doptω into (7) yields the
pseudo-likelihood

L̂n(ω, β) ∝
n∏
i=1

exp
[
Xᵀi β1

{
Ai = d̂ω,n(Xi)

}]
1 + exp (Xᵀi β)

. (2)

If we let ω̂n and β̂n denote the maximum pseudo-likelihood estimators obtained by maximiz-
ing (2), then an estimator of the utility function is ûn(y, z) = u (y, z; ω̂n) = ω̂ny+ (1− ω̂n)z

and expit
(
xᵀβ̂n

)
is an estimator of the probability that a patient presenting with covariates

x would be treated optimally under standard care. An estimator of the optimal policy at
x is d̂ω̂n,n(x) = arg maxa∈AQ̂ω̂n,n(x, a).

Because the pseudo-likelihood given in (2) is non-smooth in ω, standard gradient-based
optimization algorithms cannot be used. However, for a given ω, it is straightforward to
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compute the profile estimator β̂n(ω) = arg maxβ∈RpL̂n(ω, β). We can compute the profile
pseudo-likelihood estimator over a grid of values for ω and select the point on the grid

yielding the largest pseudo-likelihood. The algorithm to construct
(
ω̂n, β̂n

)
is given in

Algorithm 1 below. Step (3) can be accomplished using logistic regression. The theoretical

Algorithm 1: Pseudo-likelihood estimation of fixed utility function.

1 Set a grid 0 = ω0 < ω1 < . . . < ωK = 1;
2 for m = 0, . . . ,K do

3 compute β̂n(ωn) = arg maxβ∈Rp L̂n(ωm, β) ;
4 end

5 Select m̂n = arg max0≤m≤KL̂n
{
ωm, β̂n(ωm)

}
;

6 Set
(
ω̂n, β̂n

)
=
{
ωm̂n , β̂n (ωm̂n)

}
;

properties of this estimator are discussed in Section 3.

2.2 Patient-specific Utility

Outcome preferences can vary widely across patients in some application domains, includ-
ing schizophrenia (Kinter, 2009; Strauss et al., 2010) and pain management (Gan et al.,
2004). To accommodate this setting, we assume that the utility function takes the form
u(y, z;x, ω) = ω(x)y + {1− ω(x)} z where ω : X → [0, 1] is a smooth function. For
illustration, we let ω(x; θ) = expit (xᵀθ) where θ is an unknown parameter. Misspeci-
fied utility models are discussed in the Appendix. Define Qθ(x, a) = ω(x; θ)QY (x, a) +
{1− ω(x; θ)}QZ(x, a) and define doptθ (x) = arg maxa∈AQθ(x, a). Let Q̂Y,n and Q̂Z,n de-
note estimators of QY and QZ obtained from regression models fit to the observed data.
For a fixed value of θ, let Q̂θ,n(x, a) = ω(x; θ)Q̂Y,n(x, a)+{1− ω(x; θ)} Q̂Z,n(x, a) and sub-

sequently let d̂θ,n(x) = arg maxa∈AQ̂θ,n(x, a) be the plug-in estimator of doptθ (x). Assume

that decisions are made according to the model Pr
{
A = doptθ (x)|X = x

}
= expit (xᵀβ).

We compute the estimators
(
θ̂n, β̂n

)
of (θ, β) by maximizing the pseudo-likelihood

L̂n(θ, β) ∝
n∏
i=1

exp
[
Xᵀi β1

{
Ai = d̂θ,n(Xi)

}]
1 + exp (Xᵀi β)

. (3)

An estimator for the utility function is ûn(y, z;x) = ω
(
x; θ̂n

)
y+
{

1− ω
(
x; θ̂n

)}
z and an

estimator for the optimal decision function is d̂
θ̂n,n

. The model, as stated is not identifiable.
However, we show below that it is identifiable under the following conditions.

Assumption 4 The following conditions hold.

1. β ∈ B ⊂ Rp and θ ∈ Θ ⊂ Rq, where B and Θ are compact.

2. β0 6= 0.
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3. X is bounded (X ∈ X ⊂ Rp a.s.).

4. Let XS be the collection of subsets of X consisting of sets of the form {x ∈ X :
dθ(x) 6= dθ0(x)} for θ ∈ Θ \ {θ0}, together with the complements of these sets. Then:

(a) For all XS ∈ XS, 0 < Pr (X ∈ XS) < 1, and

(b) E
(
XXT |X ∈ XS

)
is full rank ∀XS ∈ XS.

Theorem 5 (Identifiability) Under Assumption 4, (θ0, β0) is uniquely identified under
the model given by Ln(θ, β).

Remark 6 A less technical but sufficient condition is to assume that (β0, θ0) satisfies

Pr
{
A = dθ0(

¯
X)|X

}
> 1/2 almost surely, i.e., that clinical decisions are always better than

a coin toss. A proof of sufficiency is given in the Appendix.

As before, the pseudo-likelihood given in (3) is non-smooth in θ and standard gradient-
based optimization methods cannot be used. It is again straightforward to compute the
profile pseudo-likelihood estimator β̂n(θ) = arg maxβ∈RpL̂n(θ, β) for any θ ∈ Rp. However,

because it is computationally infeasible to compute β̂n(θ) for all θ on a grid if θ is of
moderate dimension, we generate a random walk through the parameter space using the
Metropolis algorithm as implemented in the metrop function in the R package mcmc (Geyer
and Johnson, 2017) and compute the profile pseudo-likelihood for each θ on the random

walk. Let L̃n(θ) = maxβ∈Rp L̂n(θ, β). We can compute L̃n(θ) = L̂n
{
θ, β̂n(θ)

}
by estimating

β̂n(θ) using logistic regression as described in Section 2.1. The algorithm to construct a
random walk through the parameter space is given in Algorithm 2 below. After generating a

Algorithm 2: Pseudo-likelihood estimation of patient-dependent utility function

1 Set a chain length, B, fix Σ < 0, and initialize θ1 to a starting value in Rp;
2 for b = 2, . . . , B do
3 Generate e ∼ N(0,Σ);

4 Set θ̃b+1 = θb + e;

5 Compute p = min
{
L̃n

(
θ̃b+1

)
/L̃n

(
θ̃b
)
, 1
}

;

6 Generate U ∼ U(0, 1); if U ≤ p, set θb+1 = θ̃b+1; otherwise, set θb+1 = θb;

7 end

chain (θ1, . . . , θB), we select the θk that leads to the largest value of L̃n(θk) as the maximum
pseudo-likelihood estimator. Standard practice is to choose the variance of the proposal
distribution, σ2, so that the acceptance proportion is between 0.25 and 0.5 (Geyer and
Johnson, 2017).

3. Theoretical Results

Here we state a number of theoretical results pertaining to the proposed pseudo-likelihood
estimation method for utility functions. We state results for a patient-specific utility func-
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tion; the setting where the utility function is fixed is a special case. All proofs are deferred
to the Appendix.

We assume that Pr
{
A = doptU (x)|X = x

}
= expit(xᵀβ0) and that the true utility func-

tion is u(y, z;x, θ0) = ω (X; θ0) y + {1− ω (X; θ0)} z, where ω(X; θ) has bounded contin-
uous derivative on compact sets and doptθ0

(X) = doptθ (X) almost surely implies θ = θ0,
i.e., the model introduced in Section 2.2 is well-defined and correctly specified with true
parameters β0 ∈ Rp and θ0 ∈ Rd. We further assume that the estimators Q̂Y,n(x, a) and

Q̂Z,n(x, a) are pointwise consistent for all ordered pairs (x, a). Along with Assumptions 1-3,
we implicitly assume that the densities f(Y,Z|X, A) and f(X) exist. The following result
states the consistency of the maximum pseudo-likelihood estimators for the utility function
and the probability of optimal treatment. The proof involves verifying the conditions of
Theorem 2.12 of Kosorok (2008).

Theorem 7 (Consistency with patient-specific utility) Let the maximum pseudo- like-

lihood estimators be as in Section 2.2,
(
θ̂n, β̂n

)
= arg maxθ∈Rp,β∈BL̂n(θ, β). Assume that

B is a compact set with β0 ∈ B and that ‖EX‖ < ∞. Then,
∥∥∥θ̂n − θ0∥∥∥ P−→ 0 and∥∥∥β̂n − β0∥∥∥ P−→ 0 as n→∞, where ‖ · ‖ is the Euclidean norm.

Let Vθ(d) = E {u(Y, Z;X, θ)|A = d(X)} be the mean composite outcome in a population
where decisions are made according to d. The following result establishes the consistency
of the value of the estimated optimal policy. The proof uses general theory developed by
Qian and Murphy (2011).

Theorem 8 (Value consistency with patient-specific utility) Let θ̂n be the maximum
pseudo-likelihood estimator for θ and let d̂

θ̂n,n
be the associated estimated optimal policy.

Then, under the given assumptions,
∣∣∣Vθ0 (d̂θ̂n,n)− Vθ0 (doptθ0

)∣∣∣ P−→ 0 as n→∞.

Next, we derive the convergence rate and asymptotic distribution of
(
θ̂n, β̂n

)
. Assume

that X is a bounded subset of Rp and let ‖ · ‖X be the sup norm over X , i.e., for f : X → R,
‖f‖X = supx∈X |f(x)|. Let ω̇θ(x) = (∂/∂θ)ω(x; θ). Assume that

∥∥‖ω̇θ0(x)‖
∥∥
X < ∞ and

that limθ→θ0
∥∥‖ω̇θ(x) − ω̇θ0(x)‖

∥∥
X = 0. Define RY (x) = QY (x, 1) − QY (x,−1) to be the

treatment contrast for outcome Y at patient covariates X = x; define RZ(x) = QZ(x, 1)−
QZ(x,−1) analogously. Let R0(x) = RY (x)−RZ(x) denote the difference in the treatment
contrasts across the two outcomes. Similarly, define R̂Y,n(x) = Q̂Y,n(x, 1) − Q̂Y,n(x,−1),

R̂Z,n(x) = Q̂Z,n(x, 1) − Q̂Z,n(x,−1), and R̂0,n(x) = R̂Y,n(x) − R̂Z,n(x). Define Dθ(x) =
ω(x; θ)RY (x) + {1− ω(x; θ)}RZ(x) to be the convex combination of treatment contrasts
dictated by ω(x; θ) and let D̂θ,n(x) = ω(x; θ)R̂Y,n(x) + {1− ω(x; θ)} R̂Z,n(x). Note that

doptθ (x) = sign {Dθ(x)} and d̂θ,n(x) = sign
{
D̂θ,n(x)

}
. Further define

Pβ(x) = expit(xᵀβ),

ψi,A =
[
1
{
Ai = doptθ0

(Xi)
}
− Pβ0(Xi)

]
Xi,

In(β) = En [Pβ(X) {1− Pβ(X)}XXᵀ] ,

I0 = E [Pβ0(X) {1− Pβ0(X)}XXᵀ] .
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We use the following regularity conditions.

Assumption 9 There exist independent and identically distributed influence vectors ψ1,Y ,
ψ2,Y , . . . ∈ Rq1, and ψ1,Z , ψ2,Z , . . . ∈ Rq2, and vector basis functions φY (x) and φZ(x) such
that both ∥∥∥∥∥√n{R̂Y,n(x)−RY (x)

}
− φY (x)ᵀn−1/2

n∑
i=1

ψi,Y

∥∥∥∥∥
X

= oP (1)

and ∥∥∥∥∥√n{R̂Z,n(x)−RZ(x)
}
− φZ(x)ᵀn−1/2

n∑
i=1

ψi,Z

∥∥∥∥∥
X

= oP (1).

Let ZY,n = n−1/2
∑n

i=1 ψi,Y , ZZ,n = n−1/2
∑n

i=1 ψi,Z , ZA,n = n−1/2
∑n

i=1 ψi,A, and q =
q1 + q2. Furthermore, assume that ‖RY (x)‖X , ‖RZ(x)‖X ,

∥∥‖φY (x)‖
∥∥
X , and

∥∥‖φZ(x)‖
∥∥
X

are bounded by some M < ∞. Let Σ0 = E
[{(

ψᵀ1,Y , ψ
ᵀ
1,Z , ψ

ᵀ
1,A

)ᵀ}⊗2]
be positive definite

and finite, where u⊗2 = uuᵀ.

Assumption 10 The following conditions hold.

1. The random variable Dθ0(X) has a continuous density function f in a neighborhood
of 0 with f0 = f(0) ∈ (0,∞);

2. The conditional distribution of X given that |Dθ0(X)| ≤ ε converges to a non-
degenerate distribution as ε ↓ 0;

3. There exist δ1, δ2 > 0 such that

lim
ε↓0

inf
t∈Sd

Pr
[
|Xᵀβ0| ≥ δ1, | {RY (X)−RZ(X)} ω̇θ0(X)ᵀt| ≥ δ1

∣∣∣|Dθ0(X)| ≤ ε
]
≥ δ2,

where Sd is the d-dimensional unit sphere.

Assumption 11 Define, for ZY ∈ Rq1, ZZ ∈ Rq2, and U ∈ Rd,

(ZY , ZZ , U) 7→ k0(ZY , ZZ , U) = E
[
X {2Pβ0(X)− 1} ·

∣∣ω(X; θ0)RY (X)φY (X)ᵀZY +

{1− ω(X; θ0)}RZ(X)φZ(X)ᵀZZ +R0(X)ω̇θ0(X)ᵀU
∣∣∣∣∣Dθ0(X) = 0

]
. (4)

Assume that U 7→ βᵀ0k0(ZY , ZZ , U) has a unique, finite minimum over Rd for all
(
ZᵀY , Z

ᵀ
Z

)ᵀ ∈
Rq.

Remark 12 Assumption 9 establishes a rate of convergence for the estimated Q-functions
and is automatically satisfied if the Q-functions are estimated using linear or generalized
linear models with or without interactions or higher order terms. Assumption 10 is needed to
ensure that there is positive probability of patients with x values near the boundary between
where each treatment is optimal. Assumption 11 is standard in M-estimation.
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Let
(
θ̂n, β̂n

)
be the maximum pseudo-likelihood estimators given in Section 2.2. The

following theorem states the asymptotic distribution of
(
θ̂n, β̂n

)
.

Theorem 13 (Asymptotic distribution) Under the given regularity conditions

√
n

(
θ̂n − θ0
β̂n − β0

)
 

(
U

I−10 {ZA − k0(ZY , ZZ , U)}

)
≡
(
U
B

)
, (5)

where
(
ZᵀY , Z

ᵀ
Z , Z

ᵀ
A

)ᵀ ∼ N(0,Σ0), and U = arg minu∈Rd β
ᵀ
0k0(ZY , ZZ , u).

Let
P
 
Z∗

denote convergence in probability over Z∗, as defined in Section 2.2.3 and Chapter

10 of Kosorok (2008). Theorem 14 below establishes the validity of a parametric bootstrap

procedure for approximating the sampling distribution of
(
θ̂n, β̂n

)
.

Theorem 14 (Parametric bootstrap) Assume Σ̂n = Σ0 + oP (1) and hn = v̂nn
−1/5,

where v̂n
P−→ v0 ∈ (0,∞) and v0 is the standard error of Dθ0(X). Assume the regularity

conditions given above hold. Let Z∗ ∼ N(0, Ir×r), where Ir×r is an r × r identity matrix

and r = q + p. Let Z̃n = Σ̂
1/2
n Z∗ =

(
Z̃ᵀY , Z̃

ᵀ
Z , Z̃

ᵀ
A

)ᵀ
, where

Σ̂1/2
n =

 Σ̂
1/2
1 0

Σ̂2Σ̂
−1/2
1

(
Σ̂2 − Σ̂21Σ̂

−1
1 Σ̂12

)1/2
 ,

Σ̂1 is the top left q × q block of Σ̂n (corresponding to ZY and ZZ), Σ̂2 is the lower right
p × p block, Σ̂21 is the upper right q × p block, Σ̂12 = Σ̂ᵀ21, and the matrix square roots are
the symmetric square roots obtained from the associated Eigenvalue decompositions. Let

T̃n(X, ZY , ZZ) = ω
(
X; θ̂n

)
R̂Y,n(X)φY (X)ᵀZY +

{
1− ω

(
X; θ̂n

)}
R̂Z,n(X)φZ(X)ᵀZZ

and define

k̃n(ZY , ZZ , U) = En
[
X
{

2P
β̂n

(X)− 1
}
·
∣∣∣T̃n(X, ZY , ZZ)

+
{
R̂Y,n(X)− R̂Z,n(X)

}
ω̇
θ̂n

(X)ᵀU
∣∣∣ · h−1n φ0

{
D̂
θ̂n,n

(X)/hn

}]
×
{
En
[
h−1n φ0

{
D̂
θ̂n,n

(X)/hn

}]}−1
,

where φ0 is the standard normal density. Define Ũn = arg minu∈Rd β̂
ᵀ
nk̃n

(
Z̃Y , Z̃Z , u

)
and

B̃n = In

(
β̂n

)−1 {
Z̃A − k̃n

(
Z̃Y , Z̃Z , Ũn

)}
. Then,(

Ũn
B̃n

)
P
 
Z∗

(
U
B

)
, (6)

where (Uᵀ, Bᵀ)ᵀ is as defined in Theorem 13.
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If we fix a large number of bootstrap replications, B, then
(
Ũn,b, B̃n,b

)
, b = 1, . . . , B will

provide an approximation to the sampling distribution of the maximum pseudo-likelihood
estimators. In Sections 4 and 5, we demonstrate the use of the bootstrap to test for
heterogeneity of patient preferences.

Remark 15 In Theorem 13, it can be seen that when β0 only involves an intercept, there
is no relationship between β0 and U , as the argmax of an objective function does not change
under multiplication by a positive scalar. This relationship is more complex when β0 includes
covariate effects. Theorem 13 also indicates that the asymptotic behaviors of θ̂ and β̂ are
driven largely by what happens at the boundary where Dθ0(X) = 0.

4. Simulation Experiments

4.1 Fixed Utility Simulations

To examine the finite sample performance of the proposed methods, we begin with the
following simple generative model. Let X = (X1, . . . , X5)

ᵀ be a vector of independent
normal random variables with mean 0 and standard deviation 0.5. Let treatment be as-
signed according to Pr

{
A = doptω (x)|X = x

}
= ρ, i.e., the probability that the clinician

correctly identifies the optimal treatment is constant across patients. Let εY and εZ be
independent normal random variables with mean 0 and standard deviation 0.5 and let
Y = A (4X1 − 2X2 + 2) + εY and Z = A (2X1 − 4X2 − 2) + εZ . We estimated QY and QZ
using linear models, implemented the proposed method for a variety of n, ω, and ρ values,
and examined ω̂n, ρ̂n, and d̂ω̂n,n, across 500 Monte Carlo replications per scenario.

Table 1 contains mean estimates of ω and ρ across replications along with the associated
standard deviation across replications, and estimated error rate defined as the proportion of
subjects to whom the estimated optimal policy does not recommend the true optimal treat-
ment; to better characterize sampling variability in the estimated error rate the last column
displays the median along with the first and third quartiles of the sampling distribution of
the estimated error rate.

The pseudo-likelihood method performs well at estimating both ω and ρ, with estimation
improving with larger sample sizes as expected. Table 2 contains estimated values of the
true optimal policy, a policy where the utility function is estimated (the proposed method),
policies estimated to maximize the two outcomes individually (corresponding to fixing ω = 1
and ω = 0), and the standard of care. The value of the standard of care is the mean
composite outcome under the generative model. For each policy, the value is estimated by
generating a testing sample of size 500 with treatment assigned according to the policy and
averaging utilities (calculated using the true ω) in the testing set. The standard deviation
across replications is included in parentheses.

The column labeled “estimated ω” refers to the proposed method. We see that the
proposed method produces values which increase with n and generally come close to the
true optimal policy. In all settings, the proposed method offers significant improvement
over the standard of care. The proposed method also offers improvement over policies to
maximize each individual outcome.
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n ω ρ ω̂n ρ̂n Error rate Median(25th, 75th)

100 0.25 0.60 0.34 (0.24) 0.61 (0.08) 0.12 (0.13) 0.07 (0.03, 0.13)
0.25 (0.05) 0.80 (0.04) 0.03 (0.02) 0.02 (0.01, 0.03)

0.75 0.60 0.66 (0.24) 0.61 (0.07) 0.12 (0.13) 0.07 (0.03, 0.14)
0.75 (0.05) 0.80 (0.04) 0.03 (0.02) 0.02 (0.01, 0.03)

200 0.25 0.60 0.28 (0.16) 0.61 (0.04) 0.07 (0.08) 0.04 (0.02, 0.10)
0.25 (0.02) 0.80 (0.03) 0.01 (0.01) 0.01 (0.01, 0.02)

0.75 0.60 0.72 (0.16) 0.61 (0.04) 0.07 (0.09) 0.03 (0.01, 0.08)
0.75 (0.03) 0.80 (0.03) 0.01 (0.01) 0.01 (0.01, 0.02)

300 0.25 0.60 0.26 (0.11) 0.61 (0.03) 0.05 (0.06) 0.03 (0.01, 0.06)
0.25 (0.02) 0.80 (0.02) 0.01 (0.01) 0.01 (0.00, 0.01)

0.75 0.60 0.74 (0.13) 0.61 (0.03) 0.06 (0.07) 0.03 (0.01, 0.08)
0.75 (0.02) 0.80 (0.02) 0.01 (0.01) 0.01 (0.01, 0.01)

500 0.25 0.60 0.25 (0.08) 0.61 (0.02) 0.04 (0.04) 0.02 (0.01, 0.04)
0.25 (0.01) 0.80 (0.02) 0.01 (0.01) 0.01 (0.00, 0.01)

0.75 0.60 0.75 (0.08) 0.61 (0.02) 0.04 (0.04) 0.02 (0.01, 0.05)
0.75 (0.01) 0.80 (0.02) 0.01 (0.01) 0.01 (0.00, 0.01)

Table 1: Estimation results for simulations where utility and probability of optimal treat-
ment are fixed.

n ω ρ Optimal Estimated ω Y only Z only Standard of care

100 0.25 0.60 1.90 (0.07) 1.70 (0.38) 0.38 (0.11) 1.76 (0.08) 0.37 (0.24)
1.90 (0.07) 1.89 (0.07) 0.39 (0.12) 1.76 (0.08) 1.14 (0.21)

0.75 0.60 1.90 (0.06) 1.71 (0.37) 1.76 (0.08) 0.39 (0.12) 0.37 (0.23)
1.90 (0.06) 1.89 (0.07) 1.76 (0.08) 0.39 (0.12) 1.14 (0.21)

200 0.25 0.60 1.90 (0.07) 1.82 (0.21) 0.39 (0.11) 1.76 (0.07) 0.39 (0.16)
1.90 (0.07) 1.90 (0.06) 0.39 (0.11) 1.76 (0.07) 1.14 (0.14)

0.75 0.60 1.90 (0.07) 1.82 (0.22) 1.76 (0.07) 0.38 (0.11) 0.39 (0.17)
1.90 (0.07) 1.90 (0.06) 1.76 (0.07) 0.38 (0.11) 1.14 (0.15)

300 0.25 0.60 1.90 (0.07) 1.86 (0.13) 0.39 (0.11) 1.76 (0.07) 0.38 (0.14)
1.90 (0.07) 1.89 (0.06) 0.39 (0.11) 1.76 (0.07) 1.14 (0.12)

0.75 0.60 1.90 (0.06) 1.85 (0.17) 1.77 (0.07) 0.38 (0.11) 0.38 (0.14)
1.90 (0.06) 1.90 (0.07) 1.77 (0.07) 0.38 (0.11) 1.13 (0.12)

500 0.25 0.60 1.90 (0.06) 1.88 (0.10) 0.39 (0.10) 1.76 (0.07) 0.38 (0.10)
1.90 (0.06) 1.90 (0.07) 0.39 (0.11) 1.76 (0.07) 1.14 (0.09)

0.75 0.60 1.89 (0.07) 1.88 (0.08) 1.77 (0.07) 0.39 (0.11) 0.38 (0.11)
1.89 (0.07) 1.90 (0.07) 1.77 (0.07) 0.39 (0.11) 1.14 (0.09)

Table 2: Value results for simulations where utility and probability of optimal treatment
are fixed.

To further examine the performance of the proposed method, we allow the probability

of optimal treatment to depend on patient covariates. Let Pr
{
A = doptω (X)

}
= expit(0.5+
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X1). This corresponds to the case where β = (0.5, 1, 0, . . . , 0)ᵀ, where the first element of
β is an intercept. Let X, Y , and Z be generated as described above. In this generative
model, the probability that a patient is treated optimally in standard care is larger for
patients with positive values of X1 and smaller for patients with negative values of X1. We
applied the proposed method to 500 replications of this generative model for various n and
ω. Table 3 contains mean estimates of ω, root mean squared error (RMSE) of β̂n, and the
error rate along with its standard error and quartiles.

n ω ω̂n RMSE of β̂n Error rate Median(25th, 75th)

100 0.25 0.34 (0.23) 1.32 (0.50) 0.10 (0.14) 0.04 (0.02, 0.10)
0.75 0.71 (0.21) 1.37 (0.48) 0.10 (0.11) 0.06 (0.03, 0.12)

200 0.25 0.27 (0.13) 0.81 (0.30) 0.04 (0.08) 0.02 (0.01, 0.03)
0.75 0.75 (0.15) 0.85 (0.29) 0.07 (0.07) 0.04 (0.02, 0.10)

300 0.25 0.26 (0.09) 0.60 (0.21) 0.03 (0.05) 0.01 (0.01, 0.02)
0.75 0.75 (0.10) 0.63 (0.22) 0.04 (0.05) 0.03 (0.01, 0.07)

500 0.25 0.25 (0.03) 0.44 (0.14) 0.01 (0.01) 0.01 (0.00, 0.01)
0.75 0.76 (0.07) 0.46 (0.16) 0.03 (0.04) 0.02 (0.01, 0.04)

Table 3: Estimation results for simulations where utility is fixed and probability of optimal
treatment is variable.

Estimation of the observational policy (as defined by β) improves with larger sample
sizes. The probability that the estimated policy assigns the optimal treatment also increases
with the sample size. The true value of ω does not affect estimation of ω or β.

Table 4 contains estimated values of the true optimal policy, a policy where the utility
function is estimated (the proposed method), policies estimated to maximize each outcome
individually, and the standard of care. Values are estimated from independent testing sets
of size 500 as described above. The value under the standard of care is the mean composite
outcome under the generative model.

n ω Optimal Estimated ω Y only Z only Standard of care

100 0.25 1.90 (0.07) 1.72 (0.40) 0.39 (0.12) 1.76 (0.07) 0.33 (0.23)
0.75 1.90 (0.06) 1.75 (0.30) 1.76 (0.08) 0.39 (0.12) 0.56 (0.23)

200 0.25 1.90 (0.06) 1.85 (0.23) 0.37 (0.11) 1.76 (0.07) 0.34 (0.16)
0.75 1.89 (0.06) 1.83 (0.18) 1.76 (0.07) 0.38 (0.11) 0.58 (0.16)

300 0.25 1.90 (0.06) 1.88 (0.16) 0.39 (0.10) 1.77 (0.07) 0.33 (0.14)
0.75 1.90 (0.06) 1.87 (0.08) 1.76 (0.07) 0.40 (0.11) 0.57 (0.13)

500 0.25 1.90 (0.07) 1.89 (0.06) 0.39 (0.10) 1.76 (0.07) 0.33 (0.11)
0.75 1.90 (0.07) 1.88 (0.07) 1.77 (0.07) 0.39 (0.11) 0.58 (0.10)

Table 4: Value results for simulations where utility is fixed and probability of optimal treat-
ment is variable.

The proposed method (found in the column labeled “estimated ω”) produces values
that are close to the true optimal policy in large samples and a significant improvement
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over standard of care in small to moderate samples. We note that value under the standard
of care differs across ω. When ω is close to 1, the composite outcome places more weight
on Y , for which the magnitude of the association with X1 is larger. Because patients with
larger values of X1 are more likely to be treated optimally in this generative model, the
standard of care produces larger composite outcomes when ω is closer to 1. Likewise, the
mean composite outcome under policies to maximize each individual outcome varies with
the true value of ω.

4.2 Patient-specific Utility Simulations

Next, we examine the case where the utility function is allowed to vary across patients. Let

X, Y , and Z be generated as above. Again, assume that Pr
{
A = doptθ (X)

}
= expit(0.5 +

X1), i.e., β = (0.5, 1, 0, . . . , 0)ᵀ. Consider the composite outcome U = ω(X; θ)Y+ {1− ω(X, θ)}Z,
where ω(X; θ) = expit (1− 0.5X1), i.e., θ = (1,−0.5, 0, . . . , 0)ᵀ, where the first element of
θ is an intercept. We implemented the proposed method for various n and examined esti-
mation of θ and β across 500 replications. Each replication is based on a simulated Markov
chain of length 10,000 as described in Section 2.2. Results are summarized in Table 5.

n RMSE of θ̂n RMSE of β̂n Error rate Median(25th, 75th)

100 0.85 (0.45) 1.28 (0.46) 0.10 (0.08) 0.06 (0.04, 0.13)
200 0.72 (0.31) 0.81 (0.27) 0.07 (0.06) 0.05 (0.04, 0.08)
300 0.63 (0.16) 0.63 (0.21) 0.05 (0.04) 0.04 (0.03, 0.06)
500 0.60 (0.09) 0.46 (0.15) 0.05 (0.02) 0.04 (0.03, 0.05)

Table 5: Estimation results for simulations where both utility and probability of optimal
treatment are variable.

Larger sample sizes produce marginal decreases in the RMSE of θ̂n. The estimated policy
assigns the true optimal treatment more than 80% of the time for all sample sizes and the
error rate decreases as the sample size increases. Table 6 contains estimated values of the
true optimal policy, the policy estimated using the proposed method, policies estimated to
maximize each outcome individually, and standard of care.

n Optimal Estimated ω Y only Z only Standard of care

100 1.74 (0.06) 1.65 (0.14) 1.66 (0.06) 1.41 (0.08) 0.50 (0.21)
200 1.74 (0.06) 1.69 (0.11) 1.67 (0.06) 1.41 (0.08) 0.49 (0.15)
300 1.74 (0.06) 1.71 (0.07) 1.66 (0.06) 1.41 (0.07) 0.50 (0.13)
500 1.74 (0.06) 1.71 (0.07) 1.66 (0.06) 1.41 (0.08) 0.50 (0.11)

Table 6: Value results for simulations where both utility and probability of optimal treat-
ment are variable.

The proposed method produces policies that achieve significant improvement over the
standard of care across sample sizes.
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Finally, we examine the performance of the parametric bootstrap as described in Sec-
tion 3. Let X be a bivariate vector of normal random variables with mean 0, standard de-
viation 0.5, and correlation zero. Let Y and Z be generated as above and let β = (2.5, 1, 0)ᵀ

where the first element of β is an intercept. Let θ(1) be the vector θ with the first element
removed. We are interested in testing the null hypothesis H0 :

∥∥θ(1)∥∥ = 0, which corre-
sponds to a test for heterogeneity of patient preferences. The table below contains estimated
power across 500 Monte Carlo replications under the null hypothesis, where the true value
is θ = (1, 0, 0)ᵀ, and two alternative hypotheses: H1 : θ = (1, 4, 3)ᵀ, and H2 : θ = (1, 6, 6)ᵀ.
All tests were conducted at level α = 0.05 and based on 1000 bootstrap samples. The
last column in Table 7 shows the average agreement between the bootstrap and estimated
optimal decision rule when θ0 = (1, 0, 0); the results suggest the decision rule is stable at
sample sizes and generative models considered.

n Type 1 error Power against H1 Power against H2 Stability

100 0.002 0.238 0.264 0.805
200 0.004 0.790 0.782 0.831
300 0.004 0.958 0.948 0.833
500 0.002 0.998 0.990 0.829

Table 7: Power of bootstrap test for homogeneity of utility function

The proposed bootstrap procedure produces type I error rates near nominal levels under
the null and moderate power in large samples under alternative hypotheses.

5. Case Study: The STEP-BD Standard Care Pathway

The Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) was a
landmark study of the effects of antidepressants in patients with bipolar disorder (Sachs
et al., 2007). In addition to a randomized trial assessing outcomes for patients given an
antidepressant or placebo, the STEP-BD study also included a large-scale observational
study, the standard care pathway. As our method requires observational data on clinical
decision making, we apply the proposed method to the observational data from the STEP-
BD standard care pathway to estimate decision rules for the use of antidepressants in
patients with bipolar disorder. (Clearly, as clinicians are not generally assigning treatment
according to their best clinical judgment in a randomized clinical trial, the proposed method
is not applicable to the randomized pathway of STEP-BD.)

Although bipolar disorder is characterized by alternating episodes of depression and
mania, recurrent depression is the leading cause of impairment among patients with bipolar
disorder (Judd et al., 2002). However, the use of antidepressants has not become standard
care in bipolar disorder due to the risk of antidepressants inducing manic episodes in certain
patients (Ghaemi, 2008; Goldberg, 2008). Thus, the clinical decision in the treatment of
bipolar disorder is whether to prescribe antidepressants to a specific patient in order to
balance trade-offs between symptoms of depression, symptoms of mania, and other side
effects of treatment.

We use the SUM-D score for depression symptoms and the SUM-M score for mania
symptoms as outcomes. We consider a patient treated if they took any one of ten antidepres-
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sants that appear in the STEP-BD standard care pathway (Deseryl, Serzone, Citalopram,
Escitalopram Oxalate, Prozac, Fluvoxamine, Paroxetine, Zoloft, Venlafaxine, or Bupro-
pion). To generate candidate predictors for our model we made use of a complimentary
randomized pathway in the STEP-BD trial. In this pathway, the patients are drawn from
the same population, and the same variables are measured; however, treatment is randomly
assigned so that there is no unmeasured confounding. Using step-wise variable selection
to construct an outcome model from these data identified the following variables: mood
elevation, anxiety, irritability, baseline SUM-M, and baseline SUM-D. We also used a step-
wise logistic regression for the propensity score in the observational pathway to identify
any additional potential confounders (Moodie et al., 2012). In addition to the variables
in the outcome model, the logistic regression model identified race, insurance status, age,
and substance abuse. The union of variables identified in through the randomized path-
way and the propensity score were used in our models of the Q-functions and as tailoring
variables in our treatment rules. Figure 1 contains box plots of SUM-D scores on the log
scale by substance abuse and treatment. Figure 2 contains box plots of SUM-M scores
on the log scale by substance abuse and treatment. For both outcomes, lower scores are
more desirable. Figure 1 indicates that those without a history of substance abuse benefit
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Figure 1: Box plots of log SUM-D by substance abuse and treatment.

from treatment with antidepressants. However, among those with a history of substance
abuse, patients treated with antidepressants appear to have worse symptoms of depression.
Figure 2 indicates that treatment has no effect on symptoms of mania among those without
a history of substance abuse. However, among those with a history of substance abuse, it
appears that treatment may be inducing manic episodes. Thus, a sensible treatment policy
would be one that tends to prescribe antidepressants only to patients without a history of
substance abuse.

We analyzed these data using the proposed method for optimizing composite outcomes.
Results are summarized in Table 8 below. We estimated policies where both utility and
probability of optimal treatment are fixed (fixed-fixed), where utility is fixed but probabil-
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Figure 2: Box plots of log SUM-M by substance abuse and treatment.

ity of optimal treatment is assumed to vary between patients (fixed-variable), and where
both utility and probability of optimal treatment are assumed to vary between patients
(variable-variable). For both the fixed-variable policy and the variable-variable policy, we

report En
{

expit
(
Xᵀβ̂n

)}
in place of ρ̂n and for the variable-variable policy, we report

En
{

expit
(
Xᵀθ̂n

)}
in place of ω̂n. Thus, for parameters that are assumed to vary across

patients, Table 8 contains the mean estimate in the sample. To evaluate each estimated pol-
icy, we used five-fold cross-validation of the inverse probability weighted estimator (IPWE)
of the value for each outcome; i.e., for each fold, we used the training portion to estimate
the optimal policy and propensity score, and we used the testing portion to compute the
IPWE of the value; taking the average of the IPWE value estimates across folds yields
the reported values. For both SUM-D and SUM-M, lower scores are preferred. Value is
reported as the percent improvement over standard of care, calculated using the estimated
utility function. Large percent improvements in value are preferred.

Policy SUM-D SUM-M Value (% improvement) ω̂n ρ̂n
fixed-fixed 2.336 0.857 1.8% 0.039 0.431
fixed-variable 2.324 0.838 3.9% 0.039 0.440
variable-variable 2.321 0.804 8.3% 0.334 0.448

standard of care 2.480 0.868 0.0% · ·

Table 8: Results of analysis of STEP-BD data for SUM-D and SUM-M.

All estimated policies produce more desirable SUM-D scores and SUM-M scores com-
pared to standard of care and improved value according to the estimated utility. Allowing
the probability of optimal treatment to vary between patients leads to further improvements
in value, as does allowing the utility function to vary between patients. All policies produce
similar estimates for the probability of optimal treatment averaged across patients.
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Intercept Age Substance Mood elevation Insurance Race

Estimate 2.427 -0.177 -1.666 -2.632 4.263 1.078
Standard error 3.039 0.953 2.746 2.238 3.241 3.274

Table 9: Estimates of θ̂n in the variable-variable policy

The resulting decision rules can be written as the sign of a linear combination of the
covariates. As an example, the fixed-fixed policy assigns treatment with antidepressants
when 0.032− 0.001(age)− 0.646(substance abuse)− 0.007(mood elevation) + 0.007(medical
insurance) + 0.129(white) is non-negative. The negative coefficient for substance abuse
means that a history of substance abuse indicates that a patient should not be prescribed
antidepressants. Prior research has shown that patients with a history of substance abuse
are more likely to abuse antidepressants (Evans and Sullivan, 2014). This may contribute to
the poor outcomes experienced by STEP-BD patients with a history of substance abuse who
were treated with antidepressants. Table 9 displays estimates and standard errors of the
components of θ̂n in the variable-variable policy. A test for preference heterogeneity based
on 1000 bootstrap samples generated according to Theorem 14 yielded a p-value < 0.001.

As a secondary analysis, we use the SUM-D score and a side effect score as the outcomes.
Eight side effects were recorded in the STEP-BD standard care pathway (tremors, dry
mouth, sedation, constipation, diarrhea, headache, poor memory, sexual dysfunction, and
increased appetite). Patients rated the severity of each side effect from 0 to 4 with larger
values indicating more severe side effects. We took the mean score across side effects as
the second outcome. Results are summarized in Table 10, reported analogously to those in
Table 8.

Policy SUM-D Side effect score Value (% improvement) ω̂n ρ̂n
fixed-fixed 2.377 0.156 5.2% 0.601 0.462
fixed-variable 2.384 0.159 5.7% 0.100 0.472
variable-variable 2.430 0.161 6.1% 0.378 0.487

standard of care 2.480 0.172 0.0% · ·

Table 10: Results of analysis of STEP-BD data for SUM-D and Side effect score.

Intercept Age Substance Mood Irritable Anxiety Insurance Race

Estimate -3.125 -4.614 2.094 -0.609 2.594 0.332 -3.493 -2.563
Standard error 2.257 2.300 2.395 2.603 2.610 2.538 2.599 2.449

Table 11: Estimates of θ̂n in the variable-variable policy

Each estimated policy produces improved SUM-D scores and improved side effect scores
compared to the standard of care. Each policy also produces improvement in value according
to the estimated utility function. Again, allowing the utility function to vary between
patients results in further improvements in value. Each policy produces similar estimates of
the probability that patients are treated optimally in standard care. The variable-variable
policy places more weight on SUM-D scores on average compared to the other policies.
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Table 11 displays estimates and standard errors of coefficients in θ̂n in the variable-variable
policy. The bootstrap procedure for testing the null hypothesis that patient preferences are
homogeneous based on 1000 bootstrap samples yielded a p-value < 0.001.

6. Discussion

The estimation of individualized treatment rules has been well-studied in the statistical
literature. Existing methods have typically defined the optimal treatment rule as optimizing
the mean of a fixed scalar outcome. However, clinical practice often requires consideration
of multiple outcomes. Thus, there is a disconnect between existing statistical methods
and current clinical practice. It is reasonable to assume that clinicians make treatment
decisions for each patient with the goal of maximizing that patient’s utility. Therefore,
it is natural to use observational data to estimate patient utilities from observed clinician
decisions. This represents a new paradigm for the use of observational data in the context
of precision medicine in that clinical decisions are viewed as a (noisy) surrogate for patient
preferences and leveraged to improve the quality of a learned treatment rule and to generate
new insights into heterogeneity in patient preferences.

The proposed methodology offers many opportunities for future research. In the present
manuscript, we have considered only the simplest case— that of one decision time, two out-
comes, and two possible treatments. Scenarios with more than two outcomes are discussed
in the Appendix, and the simulation results there demonstrate that the proposed method
performs well with three outcomes. Extensions to more than two treatments or multiple
time points represent potential areas for future research. The proposed method requires
positing a parametric model for the utility function. Model misspecification is discussed
in the Appendix, and the simulation results there demonstrate that the proposed method
performs reasonably well when important covariates are omitted from the model for the
utility function. However, the use of semi- or non-parametric models is an important ex-
tension. A more technical direction for future work is a more nuanced study of the affect
of boundary conditions on the resulting rate of convergence (see Assumption 10). Finally,
while we have proposed our utility function estimator inside the framework of one-stage
Q-learning, the pseudo-likelihood utility function estimator could be used alongside other
existing one-stage optimal treatment policy estimators based on (augmented) inverse prob-
ability weighting (e.g., Zhao et al., 2012; Zhang et al., 2012a). There is a great future for
the development of methods for optimizing composite outcomes in precision medicine and
application of these methods in clinical studies.

Acknowledgments

We would like to acknowledge support for this project from the National Science Foundation
(NSF grants DMS-1555141 and DMS-1513579) and the National Institutes of Health (NIH
grants R01 DK108073 and P01 CA142538). We also gratefully acknowledge the National
Institute of Mental Health for providing access to the STEP-BD data set. Finally, we would
like to thank the Editor, Associate Editor, and two anonymous referees for their constructive
feedback during the review process.

19



Luckett, Laber, Kim, and Kosorok

Appendix A: Proofs

Proof [Proof of Theorem 5] Consider (β, θ) ∈ B ×Θ and suppose

Pβ(X)1{Y=dθ(X)}(1−Pβ(X)1−1{Y=dθ(X)} = Pβ0(X)1{Y=dθ0 (X)}(1−Pβ0(X)1−1{Y=dθ0 (X)},

∀(X, Y ) a.s. (7)

Let XS = {X : dθ(X) = dθ0(X)}. For all X ∈ XS , we have that Pβ(X) = Pβ0(X) ⇒
β = β0 by 4 in Assumption 4 which implies identifiability of Pβ(X) on XS .

Now suppose θ 6= θ0, then since β = β0, we have by (7), that ∀X ∈ Xc
S , Pβ(X) =

1−Pβ0(X) which by applying 4 in Assumption 4 again, we obtain that β = −β0. However,
this is impossible by 2 in Assumption 4. Thus θ = θ0, and we obtain that (β, θ) = (β0, θ0).

Proof [Proof of Theorem 7] The log of the pseudo-likelihood is given by

̂̀
n(θ, β) = En

[
Xᵀβ1

{
A = d̂θ,n(X)

}
− log {1 + exp (Xᵀβ)}

]
.

Let m̂(·, ·; θ, β) : X × A → R be defined by m̂(X, A; θ, β) = Xᵀβ1
{
A = d̂θ,n(X)

}
−

log {1 + exp (Xᵀβ)} and consider the class of functions {m̂(·, ·; θ, β) : θ ∈ Rp, β ∈ B}. The
class {log {1 + exp(Xᵀβ)} : β ∈ B} is contained in a VC class by Lemma 9.9 (viii) and (v)
of Kosorok (2008). By Theorem 9.3 of Kosorok (2008), this is also a Glivenko–Cantelli
(GC) class.

Let u(X, A; θ) = ω(X; θ)
{
Q̂Y,n(X, A)− Q̂Z,n(X, A)

}
+ Q̂Z,n(X, A), which lies in a

VC class indexed by θ ∈ Rp by Lemma 9.6 and Lemma 9.9 (viii), (vi), and (v) of Kosorok
(2008). We have that

1
{
A = d̂θ,n(X)

}
= 1(A = 1)1 {u(X, 1; θ)− u(X,−1, θ) ≥ 0}

+ 1(A = −1)1 {u(X, 1; θ)− u(X,−1, θ) < 0} ,

and it follows that 1
{
A = d̂θ,n(X)

}
is contained in a GC class indexed by θ ∈ Rp. From

Corollary 9.27 (ii) of Kosorok (2008) it follows that Xᵀβ1
{
A = d̂θ,n(X)

}
lies in a GC class

indexed by (θ, β) ∈ Rp × B as long as Xᵀβ is uniformly bounded by a function with finite
mean, which holds as long as B is compact and ‖EX‖ <∞. It follows that

sup
(θ,β)∈Rp×B

∣∣∣(En − E)
[
Xᵀβ1

{
A = d̂θ,n(X)

}
− log {1 + exp(Xᵀβ)}

]∣∣∣ P−→ 0.

Next, define

M̂(θ, β) = E {m̂(X, A; θ, β)} = E
(
XᵀβE

[
1
{
A = d̂θ,n(X)

}
|X
])
− E log {1 + exp(Xᵀβ)}
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and note that M̂(θ, β) is continuous in β. The inside expectation of the first piece is

E
[
1
{
A = d̂θ,n(X)

}
|X
]

= expit(Xᵀβ0)1
{
d̂θ,n(X) = doptθ0

(X)
}

+ {1− expit(Xᵀβ0)} 1
{
d̂θ,n(X) 6= doptθ0

(X)
}
,

using the fact that Pr
{
A = doptθ0

(X)
}

= expit(Xᵀβ0). Define a(X) = QY (X, 1)−QY (X,−1)−
QZ(X, 1) + QZ(X,−1) and b(X) = QZ(X, 1) − QZ(X,−1). Similarly, define â(X) =
Q̂Y,n(X, 1)−Q̂Y,n(X,−1)−Q̂Z,n(X, 1)+Q̂Z,n(X,−1) and b̂(X) = Q̂Z,n(X, 1)−Q̂Z,n(X,−1).
Then,

1
{
d̂θ,n(X) = doptθ0

(X)
}

= 1
[{
ω(X; θ)â(X) + b̂(X)

}
{ω(X; θ)a(X) + b(X)} ≥ 0

]
= 1

[
ω(X; θ) {ω(X; θ)a(X)â(X) + â(X)b(X)}

+ω(X; θ)a(X )̂b(X) + b̂(X)b(X) ≥ 0
]
,

and thus E
[
1
{
A = d̂θ,n(X)

}
|X
]

is continuous in θ.

Let m(X, A; θ, β) = Xᵀβ1
{
A = doptθ (X)

}
− log {1 + exp (Xᵀβ)}. Because the model

is identifiable and Ln(θ, β) is a parametric log-likelihood, Em(X, A; θ, β) has unique max-
imizers at θ0 and β0. Let θ̃n and β̃n be the maximizers of Em̂(X, A; θ, β). Because

E
{∣∣∣d̂θ,n(X)− doptθ (X)

∣∣∣} → 0 in probability, for any θ ∈ Rd, E
[
1
{
A = d̂θ,n(X)

}
|X
]
−

E
[
1
{
A = doptθ (X)

}
|X
]
→ 0 in probability, uniformly in θ over compact subsets of Rd,

which implies that both θ̃n → θ0 and β̃ → β0 in probability. The claim now follows from
Lemma 14.3 and Theorem 2.12 of Kosorok (2008).

Proof [Proof of Theorem 8] Define Qθ0(x, a) and Q
θ̂n

(x, a) as defined in Section 2. Let
u(Y,Z;A,X, θ) = ω(X; θ)QY (X, A) + {1− ω(X; θ)}QZ(X, A). Under the given assump-
tions, for some constant 0 < c <∞,

∣∣∣V (d̂θ̂n,n)− V (doptθ0

)∣∣∣
≤ c

∣∣∣∣E{u(Y,Z;A,X, θ0)− Q̂θ̂n,n(X, A)
}2
− E {u(Y, Z;A,X, θ0)−Qθ0(X, A)}2

∣∣∣∣1/2 (8)

by equation (3.1) of Qian and Murphy (2011) (see also Murphy, 2005). The right hand side
of (8) converges in probability to 0 by the consistency of θ̂n, consistency of Q̂Y,n and Q̂Z,n,
and the continuous mapping theorem. The result follows.
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Proof [Proof of Theorem 13] By definition of
(
θ̂n, β̂n

)
,

0 ≤ ̂̀
n

(
θ̂n, β̂n

)
− ̂̀n (θ0, β0)

=
n∑
i=1

[
Xᵀi β̂n1

{
Ai = d̂

θ̂n,n
(Xi)

}
−Xᵀi β01

{
Ai = d̂θ0,n(Xi)

}
−
(
β̂n − β0

)ᵀ
XiPβ0(Xi)

]
− 1

2

√
n
(
β̂n − β0

)ᵀ
In(β∗)

√
n
(
β̂n − β0

)
=
√
n
(
β̂n − β0

)ᵀ
n−1/2

n∑
i=1

Xi

[
1
{
Ai = d̂

θ̂n,n
(Xi)

}
− Pβ0(Xi)

]
−1

2

√
n
(
β̂n − β0

)ᵀ
In(β∗)

√
n
(
β̂n − β0

)
+

n∑
i=1

Xᵀi β0

[
1
{
Ai = d̂

θ̂n,n
(Xi)

}
− 1

{
Ai = d̂θ0,n(Xi)

}]
,

where β∗ is a point between β̂n and β0. Using the definition of a maximizer and let-

ting ûn(θ) = n−1/2
∑n

i=1Xi

[
1
{
Ai = d̂θ,n(Xi)

}
− Pβ0(Xi)

]
, we have that

√
n
(
β̂n − β0

)
=

In(β∗)
−1ûn

(
θ̂n

)
by setting ∂

∂β l̂n(θ̂, β)|β̂ = 0, since In(β∗)
P−→ I0 and I0 is positive definite.

Next, note that

ûn

(
θ̂n

)
= n−1/2

n∑
i=1

Xi

[
1
{
Ai = d̂

θ̂n,n
(Xi)

}
− 1

{
Ai = doptθ0

(Xi)
}]

+ ZA,n

= Gn

(
X
[
1
{
A = d̂

θ̂n,n
(X)

}
− 1

{
A = doptθ0

(X)
}])

+ ZA,n

+
√
nE
(
X
[
1
{
A = d̂

θ̂n,n
(X)

}
− 1

{
A = doptθ0

(X)
}])

= ZA,n +
√
nE
(
X
[
1
{
A = d̂

θ̂n,n
(X)

}
− 1

{
A = doptθ0

(X)
}])
{1 + oP (1)}+ oP (1),

where Gnf = n1/2(En − E)f(X) and ZA,n = n−1/2
∑n

i=1

[
1
{
Ai = doptθ0

(Xi)
}
− Pβ0(Xi)

]
.

We also have 1
{
A = d̂

θ̂n,n
(X)

}
− 1

{
A = doptθ0

(X)
}

= −
[
2 · 1

{
A = doptθ0

(X)
}
− 1
]

·1
{
d̂
θ̂n,n

(X) 6= doptθ0
(X)

}
, which implies that

√
nE
(
X
[
1
{
A = d̂

θ̂n,n
(X)

}
− 1

{
A = doptθ0

(X)
}])

= −
√
nE
[
X {2Pβ0(X)− 1} 1

{
d̂
θ̂n,n

(X) 6= doptθ0
(X)

}]
= −
√
nE
{
X {2Pβ0(X)− 1}

(
1
[
0 ≤ Dθ0(X) < −

{
D̂
θ̂n,n

(X)−Dθ0(X)
}]

+1
[
−
{
D̂
θ̂n,n

(X)−Dθ0(X)
}
≤ Dθ0(X) < 0

] )}

= −
√
nE

[
X{2Pβ0(X)− 1}

( ∫ −(D̂θ̂n−Dθ0 )
0

f0(u)du+

∫ 0

−(D̂θ̂n−Dθ0 )
f0(u)du

)∣∣|Dθ0(X)| ≤ εn

]
×(1 + oP (1))
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= −E
[
X {2Pβ0(X)− 1} ·

∣∣∣√n{D̂θ̂n,n
(X)−Dθ0(X)

}∣∣∣ ∣∣∣Dθ0(X) = 0
]
f0 + oP (1),

for some sequence εn converging down to zero slowly enough. The second to last equality

holds by the fact that
∥∥∥D̂θ̂n,n

(x)−Dθ0(x)
∥∥∥
X

= oP (1) and Assumption 10 yields that the

distribution of X converges to a random variable independent of Dθ0(X) conditional on
|Dθ0(X)| ≤ εn, as n goes to ∞.

Note that

√
n
{
D̂
θ̂n,n

(X)−Dθ0(X)
}

=
√
n

[
ω
(
X; θ̂n

){
R̂Y,n(X)−RY (X)

}
+
{

1− ω
(
X; θ̂n

)}{
R̂Z,n(X)−RZ(X)

}]
+
√
n
{
ω
(
X; θ̂n

)
− ω (X; θ0)

}
{RY (X)−RZ(X)}

= ω (X; θ0)φY (X)ᵀZY,n + {1− ω (X; θ0)}φZ(X)ᵀZZ,n

+ω̇θ0(X) {RY (X)−RZ(X)}
√
n
(
θ̂n − θ0

)
{1 + oP (1)}

= OP

(
1 +
√
n
∥∥∥θ̂n − θ0∥∥∥) ,

thus,
∥∥∥ûn (θ̂n)∥∥∥ = OP

(
1 +
√
n
∥∥∥θ̂n − θ0∥∥∥). Letting vn

(
θ̂n, β∗

)
= n−1/2ûn

(
θ̂n

)ᵀ
I−1n (β∗)

·ûn
(
θ̂n

)
,

0 ≤ n−1/2
{̂̀

n

(
θ̂n, β̂n

)
− ̂̀n (θ0, β0)

}
= n−1/2

n∑
i=1

Xᵀi β0

[
1
{
Ai = d̂

θ̂n,n
(X)

}
− 1

{
Ai = d̂θ0,n(X)

}]
+ vn

(
θ̂n, β∗

)
/2

= n1/2E
(
Xᵀβ0

[
1
{
A = d̂

θ̂n,n
(X)

}
− 1

{
A = d̂θ0,n(X)

}])
+ oP

(
1 +
√
n
∥∥∥θ̂n − θ0∥∥∥)

= n1/2E
(
Xᵀβ0

[
1
{
A = d̂

θ̂n,n
(X)

}
− 1

{
A = doptθ0

(X)
}])

−n1/2E
(
Xᵀβ0

[
1
{
A = d̂θ0,n(X)

}
− 1

{
A = doptθ0

(X)
}])

+ oP

(
1 +
√
n
∥∥∥θ̂n − θ0∥∥∥)

= −E
[
Xᵀβ0 {2Pβ0(X)− 1} ·

∣∣∣√n{D̂θ̂n,n
(X)−Dθ0(X)

}∣∣∣ ∣∣∣Dθ0(X) = 0
]
f0rn

+OP (1) + oP

(
1 +
√
n
∥∥∥θ̂n − θ0∥∥∥)

≤ −E
[
Xᵀβ0 {2Pβ0(X)− 1} ·

∣∣∣{RY (X)−RZ(X)} ω̇θ0(X)ᵀ
√
n
(
θ̂n − θ0

)∣∣∣ ∣∣∣Dθ0(X) = 0
]
f0rn

+OP (1) + oP

(
1 +
√
n
∥∥∥θ̂n − θ0∥∥∥)

≤ −δ21
(

exp(δ1)− 1

exp(δ1) + 1

)
inf
t∈Sd
{Pr
[
|Xᵀβ0| ≥ δ1, | {RY (X)−RZ(X)} ω̇θ0(X)ᵀt| ≥ δ1

∣∣∣Dθ0(X) = 0
]
}

×
√
n
∥∥∥θ̂n − θ0∥∥∥ f0rn +OP (1) + oP

(
1 +
√
n
∥∥∥θ̂n − θ0∥∥∥)

≤ −δ2δ21
(

exp(δ1)− 1

exp(δ1) + 1

)√
n
∥∥∥θ̂n − θ0∥∥∥ {1 + oP (1)}+OP (1) + oP

(
1 +
√
n
∥∥∥θ̂n − θ0∥∥∥) ,
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where rn = 1 + oP (1). This implies that
√
n
∥∥∥θ̂n − θ0∥∥∥ = OP (1). From the above calcula-

tions, and the fact that the arg min or arg max of a function t 7→ g(t) does not change if we
add a term that is invariant in t, we obtain that θ̂n = arg mint∈RdMn(t), where

Mn (t) = n−1/2
n∑
i=1

Xᵀi β0

[
1
{
Ai = d̂t,n(X)

}
− 1

{
Ai = doptθ0

(X)
}]

+ vn (t, β∗) /2.

Let M(u) = βᵀ0k0(ZY , ZZ , u) and U = arg minu∈RdM(u). We will show that Mn(θ0 +
u/
√
n)  M(u) in `∞(K) for any compact subset K of Rd. Then, it will follow from

the argmax Theorem (See chapter 14 of Kosorok, 2008) that Ũn  U , where Ũn =
arg minu∈RdMn(θ0 + u/

√
n). Let hn(u) = θ0 + u/

√
n. Similar arguments along with As-

sumptions 11 and 10, yield that, for any compact K ⊂ Rd,

arg min
u∈K

Mn {hn(u)}

= arg min
u∈K

n1/2E
(
Xᵀβ0

[
1
{
A = d̂hn(u),n(X)

}
− 1

{
A = doptθ0

(X)
}])

+ oP (1)

= arg min
u∈K

n1/2E
{
Xᵀβ0 {2Pβ0(X)− 1}

(
1
[
−
{
D̂hn(u),n(X)−Dθ0(X)

}
≤ Dθ0(X) < 0

]
+ 1

[
0 ≤ Dθ0(X) < −

{
D̂hn(u),n(X)−Dθ0(X)

}])}
+ oP (1)

= arg min
u∈K

E
[
Xᵀβ0 {2Pβ0(X)− 1}

∣∣∣√n{D̂hn(u),n(X)−Dθ0(X)
}∣∣∣∣∣∣Dθ0(X) = 0

]
f0 + oP (1),

However,

√
n
{
D̂hn(u),n(X)−Dθ0(X)

}
 ω (X; θ0)φY (X)ᵀZY + {1− ω (X; θ0)}φZ(X)ᵀZZ

+R0(X)ω̇θ0(X)ᵀu

uniformly over X when X has its conditional distribution given Dθ0(X) = 0. By applying
continuous mapping theorem, this implies that Mn(θ+u/

√
n) M(u) in `∞(K) as desired

and thus Ũn  U . It is straightforward to verify the remaining conclusions of the theorem
using previous arguments.

Proof [Proof of Theorem 14] Using the assumptions, the fact that both
√
n
(
θ̂n − θ0

)
=

OP (1) and
√
n
(
β̂n − β0

)
= OP (1), and standard arguments, we obtain that, for any

compact K1 ⊂ Rq, sup(Zᵀ
Y ,Z

ᵀ
Z)

ᵀ∈K1

∥∥∥T̃n {x, Z̃Y (ZY , ZZ), Z̃Z(ZY , ZZ)
}
− T0(x, ZY , ZZ)

∥∥∥
X

=

oP (1), where (
Z̃Y (ZY , ZZ)

Z̃Z(ZY , ZZ)

)
= Σ̂

1/2
1 Σ

−1/2
1

(
ZY
ZZ

)
,
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Σ1 is the upper left q × q block of Σ0, and also T0(x, ZY , ZZ) = ω(x; θ0)φY (x)ᵀZY +
{1− ω(x; θ0)}φZ(x)ᵀZZ . Furthermore,∥∥∥{R̂Y,n(x)− R̂Z,n(x)

}
ω̇
θ̂n

(x)ᵀu− {RY (x)−RZ(x)} ω̇θ0(x)ᵀu
∥∥∥
X

≤
∥∥∥∥ ∥∥∥{R̂Y,n(x)− R̂Z,n(x)

}
ω̇
θ̂n

(x)− {RY (x)−RZ(x)} ω̇θ0(x)
∥∥∥ ∥∥∥∥
X
· ‖u‖

= OP

(
n−1/2

)
‖u‖,

∥∥∥D̂θ̂n,n
(x)−Dθ0(x)

∥∥∥
X

= OP
(
n−1/2

)
, and

∥∥∥Pβ̂n(x)− Pβ0(x)
∥∥∥
X

= OP
(
n−1/2

)
. Thus,

sup
(Zᵀ
Y ,Z

ᵀ
Z)

ᵀ∈K1

En

[
‖X‖ ·

∣∣∣{2P
β̂n

(X)− 1
}
T̃n

{
X, Z̃Y (ZY , ZZ), Z̃Z(ZY , ZZ)

}∣∣∣ 1

hn
φ0

{
D̂
θ̂n,n

(X)

hn

}]

≤ OP (1)En

[
1

hn
φ0

{
D̂
θ̂n,n

(X)

hn

}]
. (9)

However,

En

(
1

hn

[
φ0

{
D̂
θ̂n,n

(X)

hn

}
− φ0

{
Dθ0(X)

hn

}])

= En

[
1

h3n

∫ 1

0

{
(1− s)Dθ0(X) + sD̂

θ̂n,n
(X)

}
φ0

{
(1− s)Dθ0(X) + sD̂

θ̂n,n
(X)

hn

}
ds

·
{
D̂
θ̂n,n

(X)−Dθ0(X)
}]

= OP

(
1

h3nn
1/2

)
·En

[∫ 1

0

{
(1− s)Dθ0(X) + sD̂

θ̂n,n
(X)

}
φ0

{
(1− s)Dθ0(X) + sD̂

θ̂n,n
(X)

hn

}
ds

]

= OP

(
1

h3nn
1/2

)
OP (hn) = OP

(
1

h2nn
1/2

)
= oP (1),

since |uφ0(u)| ≤ (2π)−1/2e−1 < ∞. Now, since E
[
h−1n φ0 {Dθ0(X)/hn}

] P−→ f0, we have
that (9) is equal to OP (1). Thus, if ‖un‖ → ∞,

β̂ᵀnk̃n

(
Z̃Y , Z̃Z , un

)
≥ En

[
β̂ᵀnX

{
2P

β̂n
(X)− 1

}
·
∣∣∣{R̂Y,n(X)− R̂Z,n(X)

}
ω̇
θ̂n

(X)ᵀun

∣∣∣
· 1

hn
φ0

{
D̂
θ̂n,n

(X)

hn

}]
−OP (1), (10)
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where the OP (1) is uniform over K1. Thus, up to the OP (1) added on the right-hand side,

(10) ≥ ‖un‖

· inf
t∈Sd

En

[
β̂ᵀnX

{
2P

β̂n
(X)− 1

} ∣∣∣{R̂Y,n(X)− R̂Z,n(X)
}
ω̇
θ̂n

(X)ᵀt
∣∣∣ 1

hn
φ0

{
D̂
θ̂n,n

(X)

hn

}]

≥ ‖un‖
(
oP (1) + inf

t∈Sd
E
[
βᵀ0X {2Pβ0(X)− 1} |{RY (X)−RZ(X)} ω̇θ0(X)ᵀt|

1

hn
φ0

{
Dθ0(X)

hn

}])
= ‖un‖

·
(
oP (1) + inf

t∈Sd
E
[
βᵀ0X {2Pβ0(X)− 1} |{RY (X)−RZ(X)} ω̇θ0(X)ᵀt|

∣∣∣Dθ0(X) = 0
]
f0

)
≥ ‖un‖

[
oP (1) + δ2δ

2
1

{
exp(δ1)− 1

exp(δ1) + 1

}]
,

with the expectation over X. Let Ûn (ZY , ZZ) = arg minu∈Rd β̂
ᵀ
nk̃n

{
Z̃Y (ZY , ZZ), Z̃Z(ZY , ZZ), u

}
,

where, if the arg min set has more than one element, one can be chosen randomly or algo-
rithmically. Since the OP (1) above is uniform over K1, we conclude that

sup
(Zᵀ
Y ,Z

ᵀ
Z)

ᵀ∈K1

∥∥∥Ûn (ZY , ZZ)
∥∥∥ = OP (1). (11)

Now, let K2 be any compact subset of Rd. Previous and standard arguments give us that

sup(Zᵀ
Y ,Z

ᵀ
Z)

ᵀ∈K1
supu∈K2

∥∥∥k̃n {Z̃Y (ZY , ZZ) , Z̃Z (ZY , ZZ) , u
}
− k0 (ZY , ZZ , u)

∥∥∥ = oP (1). Thus,

we also have that

sup
(Zᵀ
Y ,Z

ᵀ
Z)

ᵀ∈K1

sup
u∈K2

∥∥∥β̂ᵀnk̃n {Z̃Y (ZY , ZZ) , Z̃Z (ZY , ZZ) , u
}
− βᵀ0k0 (ZY , ZZ , u)

∥∥∥ = oP (1).

(12)
Define U0(ZY , ZZ) = arg maxu∈Rdβ

ᵀ
0k0(ZY , ZZ , u). Previous arguments yield that

sup
(Zᵀ
Y ,Z

ᵀ
Z)

ᵀ∈K1

‖U0(ZY , ZZ)‖ = O(1). (13)

By Assumption 11, the arg min for each
(
ZᵀY , Z

ᵀ
Z

)ᵀ ∈ K1 is unique. Fix ε > 0. By (11),

there exists an m2 <∞ such that Pr
(

sup(Zᵀ
Y ,Z

ᵀ
Z)

ᵀ∈K1

∥∥∥Ûn (ZY , ZZ)
∥∥∥ < m2

)
≥ 1− ε for all

n large enough. By (13), we can enlarge m2 such that

sup(Zᵀ
Y ,Z

ᵀ
Z)

ᵀ∈K1
‖U0(ZY , ZZ)‖ < m2 <∞.

We can also find an m1 <∞ such that K1 ⊂ Kq
m1 as defined in Corollary 17. It is straight-

forward to show that (1) and (3) in Corollary 17 are satisfied by f(Z, u) = βᵀ0k0(ZY , ZZ , u),

where Z =
(
ZᵀY , Z

ᵀ
Z

)ᵀ
. Let fn(Z, u) = β̂ᵀnk̃n(ZY , ZZ , u). Standard arguments and the given
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assumptions yield that there exists a w1 <∞ such that supZ∈Kq
m1

supu∈Kd
m2
|fn(Z, u)| < w1

almost surely and

sup
Z1,Z2∈Kq

m1:‖Z1−Z2‖<δ
‖fn(Z1, u)− fn(Z2, u)‖Kd

m2
< w1δ

for all δ > 0 and all n ≥ 1 almost surely. Every subsequence in (12) has a further
subsequence n′′ on which the convergence in probability to zero can be replaced with
almost sure convergence. Thus, (2) and (4) of Corollary 17 apply, using the fact that
minimizing is equivalent to maximizing after a change in sign. Setting Û∗n(ZY , ZZ) =

arg minu∈Kd
m2
β̂ᵀnk̃n

{
Z̃Y (ZY , ZZ) , Z̃Z (ZY , ZZ) , u

}
, Corollary 17 now yields that

sup
(Zᵀ

Y ,Z
ᵀ
Z)

ᵀ∈Kq
m1

∥∥∥Û∗n′′(ZY , ZZ)− U0(ZY , ZZ)
∥∥∥→ 0

almost surely. Since this is true for every subsequence, we have that

sup
(Zᵀ

Y ,Z
ᵀ
Z)

ᵀ∈Kq
m1

∥∥∥Û∗n(ZY , ZZ)− U0(ZY , ZZ)
∥∥∥ P−→ 0

as n→∞. Note that, on K2, Û
∗
n(ZY , ZZ) = Ûn(ZY , ZZ) for all

(
ZᵀY , Z

ᵀ
Z

)ᵀ ∈ Kq
m1 . Hence,

lim sup
n→∞

Pr

 sup
(Zᵀ

Y ,Z
ᵀ
Z)

ᵀ∈Kq
m1

∥∥∥Ûn(ZY , ZZ)− U0(ZY , ZZ)
∥∥∥ > ε


≤ lim sup

n→∞

[
Pr

Ûn(ZY , ZZ) ∈ K2, sup
(Zᵀ

Y ,Z
ᵀ
Z)

ᵀ∈Kq
m1

∥∥∥Û∗n(ZY , ZZ)− U0(ZY , ZZ)
∥∥∥ ≥ ε


+Pr

{
Ûn(ZY , ZZ) ∈ Kc

2

}]
≤ ε.

Since ε was arbitrary, we obtain that

sup
(Zᵀ

Y ,Z
ᵀ
Z)

ᵀ∈Kq
m1

∥∥∥Ûn(ZY , ZZ)− U0(ZY , ZZ)
∥∥∥ = oP (1).

Let BL(B) be the space of all Lipschitz continuous functions mapping B → R which are
bounded by 1 and which have Lipschitz constant 1. Let EZ be expectation with respect to

Z∗0 = (Z∗Y
ᵀ, Z∗Z

ᵀ, Z∗A
ᵀ)ᵀ ∼ N(0,Σ0). Let B0 (Z∗0 ) = I−10

[
Z∗A − k0

{
Z∗Y , Z

∗
Z , Ũn (Z∗0 )

}]
and

let f ∈ BL
(
Rd+p

)
. Then, using Ũn and B̃n as defined in the statement of the theorem,∣∣∣EZ [f {Ũn(Z∗0 ), B̃n(Z∗0 )

}
− f {U0(Z

∗
0 ), B0(Z

∗
0 )}
]∣∣∣

≤
∣∣∣EZ [f {Ũn(Z∗0 ), B̃n(Z∗0 )

}
− f

{
U0(Z

∗
0 ), B̃n(Z∗0 )

}]∣∣∣
+
∣∣∣EZ [f {U0(Z

∗
0 ), B̃n(Z∗0 )

}
− f {U0(Z

∗
0 ), B0(Z

∗
0 )}
]∣∣∣

=
∣∣∣EZ [f1 {Ũn(Z∗0 )

}
− f1 {U0(Z

∗
0 )}
]∣∣∣+

∣∣∣EZ [f2 {B̃n(Z∗0 )
}
− f2 {B0(Z

∗
0 )}
]∣∣∣
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for some other f1 ∈ BL
(
Rd
)

and f2 ∈ BL (Rp). Hence,

sup
f∈BL(Rd+p)

∣∣∣EZf {Ũn(Z∗0 ), B̃n(Z∗0 )
}
− EZf {U0(Z

∗
0 ), B0(Z

∗
0 )}
∣∣∣

≤ sup
f∈BL(Rd)

∣∣∣EZf {Ũn(Z∗0 )
}
− EZf {U0(Z

∗
0 )}
∣∣∣

+ sup
f∈BL(Rp)

∣∣∣EZf {B̃n(Z∗0 )
}
− EZf {B0(Z

∗
0 )}
∣∣∣

= An +Bn,

where we define both An = supf∈BL(Rd)

∣∣∣EZf {Ũn(Z∗0 )
}
− EZf {U0(Z

∗
0 )}
∣∣∣ and

Bn = supf∈BL(Rp)

∣∣∣EZf {B̃n(Z∗0 )
}
− EZf {B0(Z

∗
0 )}
∣∣∣ .

Fix some compact K1 ⊂ Rq such that Pr {(Z∗Y
ᵀ, Z∗Z

ᵀ)ᵀ ∈ K1} ≥ 1− ε. Then,

sup
f∈BL(Rd)

∣∣∣EZ [f {Ũn(Z∗0 )
}
− EZf {U0(Z

∗
0 )}
]∣∣∣

≤ sup
f∈BL(Rd)

∣∣∣EZ1 (Z∗0 ∈ K1) f
{
Ũn(Z∗0 )

}
− EZ1 (Z∗0 ∈ K1) f {U0 (Z∗0 )}

∣∣∣
+2EZ1 (Z∗0 ∈ K1)

= oP (1) + 2ε,

which implies that An = oP (1) since ε was arbitrary. ForK2 ⊂ Rq+p such that Pr (Z∗0 ∈ K2) ≥
1− ε, previous arguments yield that

supZ∗0∈K2

∥∥∥B̃n(Z∗0 )−B0(Z
∗
0 )
∥∥∥ = oP (1).

As before, we can argue that Bn = oP (1) + 2ε, which implies that Bn = oP (1) since ε was
arbitrary. The result follows.

Theorem 16 Let H be a compact set in a metric space with metric d and let F be a
compact subset of C[H] with respect to the uniform norm, ‖ · ‖H . For each f ∈ F , let
u(f) = arg maxh∈Hf(h), where, when the arg max is not unique, we select one element of
the arg max set either randomly or algorithmically. Suppose also that there exists a closed
F1 ⊂ F for which each f ∈ F1 has a unique maximum. Then,

lim
δ↓0

sup
f∈F1

sup
g∈F :‖f−g‖H<δ

d {u(f), u(g)} = 0.

Proof [Proof of Theorem 16] Fix ε > 0. For each f ∈ F1, there exists δf > 0 such that

sup
h∈H∩Bε{u(f)}c

f(h) < f {u(f)} − 2δf ,
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where Bε(u) is the open d-ball of radius ε around u. This follows since the compactness
of F ensures that all f ∈ F are continuous. Let g ∈ F be such that ‖f − g‖H < δf .
Then, f {u(g)} > g {u(g)} − δf ≥ g {u(f)} − δf > f {u(f)} − 2δf , which implies that
d {u(g), u(f)} < ε. We have that ∪f∈F1 {g ∈ F : ‖g − f‖H < δf} is an open cover of F1.
Since F1 is compact, there exists a set F ε1 such that F ε1 is finite and

∪f∈Fε1 {g ∈ F : ‖g − f‖H < δf}

still covers F1. Let {fn} ∈ F1 and {gn} ∈ F be sequences such that ‖fn − gn‖ → 0. By
compactness, every subsequence has a further subsequence n′′ such that fn′′ → f0 ∈ F1

and gn′′ → g0 ∈ F so that both f0 and g0 are in a set of the form {g ∈ F : ‖g − f‖H < δf}
for some f ∈ F ε1. This implies that d {u(g0), u(f0)} < ε. Since the subsequence was arbi-
trary, we have that lim supn→∞d {u(gn), u(fn)} ≤ ε. Since ε was arbitrary, we now have
that lim supn→∞d {u(gn), u(fn)} = 0 for any sequences {fn} ∈ F1 and {gn} ∈ F such that
‖fn − gn‖ → 0. This proves the result.

Corollary 17 For m1 < ∞, let Kq
m1 = {z ∈ Rq : ‖z‖ ≤ m1}. Let (z, u) 7→ f(z, u) and

(z, u) 7→ fn(z, u) be a fixed function and a sequence of functions, respectively, from Kq
m1×Rd

to R. Suppose there exists m2 <∞ such that for each z ∈ Kq
m1, u(z) = arg maxu∈Rdf(z, u) <

m2 and is uniquely defined. Suppose also that un(z) = arg maxu∈Rdfn(z, u) < m2 for all n
large enough, where we allow the arg max to be non-unique, but we randomly or algorith-
mically select one element from the arg max set. Define Kd

m2
similarly to Kq

m1 and assume
that

1. supz∈Kq
m1

supu∈Kd
m2
|f(z, u)| <∞

2. lim supn→∞ supz∈Kq
m1

supu∈Kd
m2
|fn(z, u)| <∞

3. limδ↓0 supz1,z2∈Kq
m1

:‖z1−z2‖<δ ‖f(z1, ·)− f(z2, ·)‖Kd
m2

= 0

4. limδ↓0 supz1,z2∈Kq
m1

:‖z1−z2‖<δ ‖fn(z1, ·)− fn(z2, ·)‖Kd
m2

= 0

for all n large enough. Then, provided supz∈Kq
m1
‖fn(z, ·)− f(z, ·)‖Kd

m2
→ 0,

sup
z∈Kq

m1

‖un(z)− u(z)‖ → 0,

as n→∞.

Proof [Corollary 17] By the Arzelà–Ascoli Theorem, there exists a compact K ⊂ C[H] for
H = Kd

m2
, such that both f(z, ·) ∈ K and fn(z, ·) ∈ K, for all z ∈ Kq

m1 and all n large
enough. If we let F1 = {f(z, ·) : z ∈ Kq

m1}, we can directly apply Theorem 16 to obtain
that

lim
δ↓0

sup
z∈Kq

m1

sup
g∈K:‖g−f(z,·)‖H<δ

‖u(g)− u {f(z, ·)}‖H = 0.

Because supz∈Kq
m1
‖fn(z, ·)− f(z, ·)‖Kd

m2
< δ for all n large enough, the result follows.
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Proof [Remark 6.] We require estimation be restricted to parameters (β, θ) which satisfy
Pβ {A = dθ(X)|X} > 1/2 with probability one. Suppose towards a contradiction that such
a set of parameters also satisfies

Pβ(X)1{A=dθ(X)} {1− Pβ(X)}1−1{A=dθ(X)}

= Pβ0(X)1{A=dθ0 (X)} {1− Pβ0(X)}1−1{A=dθ0 (X)} a.s.,

where Pβ(x) = expit(xᵀβ). For any (x, a) such that a = dθ(x) 6= dθ0(x) and it follows that
Pβ(x) = P−β0(x) < Pβ0(x) = P−β(x) which contradicts the restriction that the probability
of recommending an optimal treatment exceeds 1/2. Thus, it follows that dθ(x) = dθ0(x)
for almost all x. This in turn implies that Pβ(x) = Pβ0(x) for almost all x from which it
follows that β = β0 provided EXXᵀ is full rank.

Appendix B: Three or More Outcomes

Assume the available data consist of (X i, Ai, Y1,i, . . . , YK,i), i = 1, . . . , n, which comprise n
independent and identically distributed copies of (X, A, Y1, . . . , YK), where X and A are as
defined previously, and Y1, . . . , YK are outcomes, with each outcome coded so that higher
values are better. Assume there exists an unknown utility function U = u(Y1, . . . , YK),
where u : RK → R, such that u(y1, . . . , yK) quantifies the “goodness” of the outcome vector
(y1, . . . , yK). As before, let U∗(d) be the potential utility under a treatment regime d. Let

doptU be the optimal regime for the utility defined by u, i.e., EU∗
(
doptU

)
≥ EU∗(d) for any

regime d. The goal is to estimate the utility function and the associated optimal regime in
the presence of more than two outcomes.

To begin, we assume that the utility function is constant across patients and takes the

form u(y1, . . . , yK ;ω) =
∑K−1

k=1 ωkyk +
(

1−
∑K−1

k=1 ωk

)
yK , where ω = (ω1, . . . , ωK−1) is a

vector of parameters with
∑K−1

k=1 ωk ≤ 1 and ωk ≥ 0 for k = 1, . . . ,K − 1. Thus, we assume
that the utility function is a convex combination of the set of outcomes. Let doptω be the
optimal regime for the utility defined by ω. Assume that there exists a true utility function
defined by some ω0 = (ω1,0, . . . , ωK−1,0) such that observed decisions were made with the
intent to maximize U = u(y1, . . . , yK ;ω0). Further assume that treatment decisions in

the observed data follow Pr
{
A = doptω0 (x)|X = x

}
= expit (xᵀβ) , where β is an unknown

parameter.
Define QYk(x, a) = E (Yk|X = x, A = a), for k = 1, . . . ,K. Define also

Qω(x, a) = E {u (Y1, . . . , YK ;ω) |X = x, A = a}

and note that Qω(x, a) =
∑K−1

k=1 ωkQYk(x, a)+
(

1−
∑K−1

k=1 ωk

)
QYK (x, a). The Q-functions

for each outcome can be estimated from the observed data using regression models. Let
Q̂Yk,n(x, a) denote an estimator for QYk(x, a). Then, an estimator for Qω(x, a) is Q̂ω,n(x, a) =∑K−1

k=1 ωkQ̂Yk,n(x, a) +
(

1−
∑K−1

k=1 ωk

)
Q̂YK ,n(x, a). For any fixed ω, we can compute an
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estimator for doptω as d̂ω,n(x) = arg maxa∈A Q̂ω,n(x, a). The pseudo-likelihood is

L̂n(ω, β) ∝
n∏
i=1

exp
[
Xᵀi β1

{
Ai = d̂ω,n(Xi)

}]
1 + exp (Xᵀi β)

, (14)

for a vector β and a vector ω = (ω1, . . . , ωK−1). For K = 2, this reduces to the formulation
in Section 2. Estimators for β and ω1, . . . , ωK−1 can be obtained by maximizing the pseudo-
likelihood in (14). Letting ω̂n = (ω̂1,n, . . . , ω̂K−1,n denote the maximum pseudo-likelihood

estimator for ω, an estimator for the optimal regime is d̂ω̂n,n(x) = arg maxa∈AQ̂ω̂n,n(x, a).
When the number of outcomes is large, maximizing (2) using the grid search proposed in

Section 2.1 is infeasible. However, we can use the Metropolis algorithm similar to that pro-
posed for a patient-specific utility function. A patient-specific utility function can be accom-

modated by setting u(y1, . . . , yK ;x, θ) =
∑K−1

k=1 expit(xᵀθk)y1+
{

1−
∑K−1

k=1 expit(xᵀθk)
}
yK

for a vector θ = (θᵀ1 , . . . , θ
ᵀ
K−1)

ᵀ and maximizing the pseudo-likelihood using the Metropolis
algorithm.

To examine the performance of the proposed method in the presence of more than two
outcomes, we use the following generative model. As before, let X = (X1, . . . , X5)

ᵀ be
independent normal random variables with mean 0 and standard deviation 0.5. Let ε1, ε2,
and ε3 be independent normal random variables with mean 0 and standard deviation 0.5.
Given treatment assignment, outcomes are generated according to Y1 = A(4X1−2X2+2)+
ε1, Y2 = A(2X1−4X2−2)+ε2, and Y3 = 1+A(X1+X2+1)ε3. For a fixed ω = (ω1, ω2) and

fixed ρ ∈ [0, 1], treatment assignment is made according to Pr
{
A = doptω (x)|X = x

}
= ρ.

We set ω1 = 0.2, ω2 = 0.4, and ρ = 0.6, 0.8. Table 12 contains parameter estimates
averaged across 500 replications along with standard deviations (in parentheses) across
replications. The error rate is the proportion of samples in a testing set that were assigned
the optimal treatment by the estimated policy. Table 13 contains estimated values (cal-

n ρ ω̂1,n ω̂2,n ρ̂n Error rate

100 0.60 0.21 (0.16) 0.34 (0.20) 0.63 (0.07) 0.15 (0.11)
0.80 0.21 (0.07) 0.42 (0.09) 0.81 (0.04) 0.04 (0.03)

200 0.60 0.21 (0.13) 0.40 (0.17) 0.62 (0.04) 0.11 (0.09)
0.80 0.21 (0.04) 0.41 (0.06) 0.80 (0.03) 0.03 (0.02)

300 0.60 0.21 (0.12) 0.39 (0.16) 0.62 (0.03) 0.09 (0.08)
0.80 0.20 (0.03) 0.41 (0.04) 0.80 (0.02) 0.02 (0.01)

500 0.60 0.21 (0.09) 0.41 (0.12) 0.61 (0.02) 0.06 (0.05)
0.80 0.20 (0.02) 0.40 (0.03) 0.80 (0.02) 0.01 (0.01)

Table 12: Estimation results for simulations where utility and probability of optimal treat-
ment are fixed, with three outcomes.

culated by generating an independent testing set following the same generative model but
with decisions made according to each policy) of the optimal policy, a policy where the
utility function is estimated (the proposed method), policies estimated to maximize each
outcome individually, and standard of care. The proposed method results in values close
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n ρ Optimal Estimated utility Y1 only Y2 only Y3 only Standard of care

100 0.60 1.38 (0.04) 1.28 (0.15) 1.09 (0.06) 1.00 (0.06) 0.62 (0.10) 0.59 (0.14)
0.80 1.39 (0.04) 1.37 (0.06) 1.09 (0.06) 1.00 (0.06) 0.62 (0.11) 0.99 (0.13)

200 0.60 1.38 (0.04) 1.32 (0.12) 1.09 (0.06) 1.00 (0.06) 0.62 (0.08) 0.60 (0.10)
0.80 1.39 (0.04) 1.38 (0.05) 1.09 (0.05) 1.00 (0.06) 0.62 (0.09) 0.98 (0.09)

300 0.60 1.38 (0.04) 1.34 (0.10) 1.09 (0.06) 1.00 (0.06) 0.63 (0.08) 0.60 (0.08)
0.80 1.38 (0.04) 1.39 (0.05) 1.10 (0.06) 1.00 (0.06) 0.63 (0.08) 0.99 (0.07)

500 0.60 1.39 (0.04) 1.36 (0.07) 1.09 (0.05) 1.00 (0.06) 0.62 (0.07) 0.60 (0.06)
0.80 1.39 (0.04) 1.38 (0.05) 1.10 (0.06) 1.00 (0.06) 0.63 (0.07) 0.99 (0.06)

Table 13: Value results for simulations where utility and probability of optimal treatment
are fixed, with three outcomes.

to the true optimal in large samples and larger than maximizing each individual outcome
across sample sizes.

Appendix C: Misspecified Model for the Utility Function

In this section, we demonstrate that the proposed method achieves reasonable performance
even in the presence of a misspecified model for the utility function. Let X, Y , and Z be
generated as above. Let the true underlying utility function be u(y, z;x, θ) = ω(x; θ)y +
{1− ω(x; θ)} z, where ω(x; θ) = expit

(
1 + x21 + xᵀθ0

)
with θ0 = (−0.5, 0, 0, 1, 0.5)ᵀ. The

misspecified model fit to estimate the utility function contained only an intercept, X1,
X2, X3, and X4. Therefore, these simulations represent the setting where one important
covariate and a squared term for one covariate are omitted from the model for the utility

function. Treatment was assigned according to Pr
{
A = doptω (x)|X = x

}
= expit (0.5 + x1).

Table 14 contains the estimated value when the model for the utility function is correctly
specified and when the model is incorrectly specified, along with the value of the true
optimal policy and the standard of care. The proposed method produces comparable results

n Optimal Correct Misspecified Standard of Care

100 1.86 (0.07) 1.61 (0.21) 1.64 (0.20) 0.59 (0.23)
200 1.85 (0.07) 1.68 (0.16) 1.69 (0.17) 0.57 (0.16)
300 1.86 (0.07) 1.72 (0.13) 1.74 (0.13) 0.57 (0.13)
500 1.86 (0.07) 1.77 (0.10) 1.76 (0.11) 0.58 (0.10)

Table 14: First simulation results with a misspecified model for the utility function.

regardless of whether the utility function is misspecified or not.
Table 15 contains results for the same model misspecification, but where the true utility

function is ω(x; θ) = expit
(
1 + 4x21 + xᵀθ0

)
with θ0 = (−0.5, 0, 0, 1, 4)ᵀ, i.e., the coefficients

for the components that are left out of the misspecified model are larger. When the co-
efficients of the components left out of the utility function model are larger, the proposed
method produces better results when the model is correctly specified. However, even in
the presence of model misspecification, the proposed method produces results that improve
upon the standard of care.
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n Optimal Correct Misspecified Standard of Care

100 2.11 (0.08) 1.63 (0.28) 1.64 (0.23) 0.69 (0.26)
200 2.11 (0.08) 1.76 (0.22) 1.68 (0.18) 0.67 (0.18)
300 2.10 (0.07) 1.84 (0.19) 1.70 (0.16) 0.68 (0.15)
500 2.10 (0.08) 1.88 (0.16) 1.73 (0.15) 0.67 (0.12)

Table 15: Second simulation results with a misspecified model for the utility function.

Appendix D: Misspecified Model for the Probability of Assigning the
Optimal Treatment

Similar to the model with the misspecified utility function, the model with the misspecified
probability of the optimal treatment resulted in the values that are comparable to the
correct model. X, Y and Z were generated as above. Let ω(x; θ) = expit(1 + 4x21 + xT θ0),
with θ0 = (−0.5, 0, 0, 1, 0.5) and Pr{A = doptω |X = x} = expit(0.5 + 4x21 + x1). For this
simulation, the misspecified model for the probability of assigning the optimal treatment
is assumed to not include 4X2

1 . In Table 16, the estimated value of the model with the
misspecified probability of assigning the optimal treatment is confirmed to be similar to the
estimated value of the correct model.

n Optimal Correct Misspecified Standard of Care

100 2.01 (0.07) 1.90 (0.14) 1.89 (0.20) 1.29 (0.23)
200 2.01 (0.08) 1.96 (0.09) 1.95 (0.12) 1.29 (0.16)
300 2.01 (0.08) 1.97 (0.09) 1.97 (0.10) 1.29 (0.13)
500 2.00 (0.08) 1.98 (0.08) 1.98 (0.08) 1.30 (0.10)

Table 16: Value results with a misspecified model for the probability of assigning the opti-
mal treatment.

In the next simulation, let ω(x; θ) = expit(1 + xTθ0) with θ0 = (−0.5, 0, 0, 1, 0.5) and
the true probability of assigning the optimal treatment is Pr{A = doptω (x)|X = x} =
expit(0.5 + x1) when the misspecified model is assumed as a constant. In Table 17, it is
noticeable that the difference between the two estimated values is similar as in Table 16. For
all settings above, the estimated value of the correct model is similar to the estimated value
of the models with both the misspecified utility functions and the misspecified probability
of optimal treatment.

n Optimal Correct Misspecified Standard of Care

100 1.76 (0.06) 1.66 (0.19) 1.67 (0.19) 0.51 (0.22)
200 1.76 (0.06) 1.71 (0.12) 1.71 (0.13) 0.49 (0.15)
300 1.76 (0.06) 1.72 (0.11) 1.74 (0.08) 0.50 (0.13)
500 1.76 (0.06) 1.75 (0.07) 1.75 (0.06) 0.50 (0.10)

Table 17: Value results with a misspecified model for the utility function.
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Appendix E: Relationship between the probability of assigning the
optimal treatment and the variance of the estimator of the utility

n
ω
ρ

0.2 0.3 0.35 0.4

100 0.25 0.25 (0.05) 0.25 (0.09) 0.27 (0.15) 0.33 (0.24)
0.75 0.75 (0.05) 0.75 (0.10) 0.74 (0.14) 0.66 (0.24)

200 0.25 0.25 (0.03) 0.25 (0.05) 0.25 (0.08) 0.28 (0.16)
0.75 0.75 (0.03) 0.75 (0.05) 0.75 (0.09) 0.73 (0.13)

300 0.25 0.25 (0.02) 0.25 (0.04) 0.25 (0.07) 0.26 (0.12)
0.75 0.75 (0.02) 0.75 (0.04) 0.75 (0.07) 0.73 (0.13)

500 0.25 0.25 (0.01) 0.25 (0.02) 0.25 (0.04) 0.25 (0.08)
0.75 0.75 (0.01) 0.75 (0.03) 0.75 (0.05) 0.76 (0.08)

Table 18: Estimates of ω across different ρs

n
ω
ρ

0.6 0.65 0.7 0.8

100 0.25 0.34 (0.24) 0.27 (0.14) 0.25 (0.10) 0.25 (0.05)
0.75 0.66 (0.24) 0.73 (0.15) 0.74 (0.10) 0.75 (0.05)

200 0.25 0.28 (0.16) 0.25 (0.08) 0.25 (0.05) 0.25 (0.02)
0.75 0.72 (0.16) 0.75 (0.08) 0.75 (0.05) 0.75 (0.03)

300 0.25 0.26 (0.11) 0.25 (0.07) 0.25 (0.04) 0.25 (0.02)
0.75 0.74 (0.13) 0.75 (0.07) 0.75 (0.04) 0.75 (0.02)

500 0.25 0.25 (0.08) 0.25 (0.04) 0.25 (0.03) 0.25 (0.01)
0.75 0.75 (0.08) 0.76 (0.05) 0.75 (0.02) 0.75 (0.01)

Table 19: Estimates of ω across different ρs

In this section, we explore the relationship between the probability of assigning the
optimal treatment and the variance of the estimator of the utility, which was mentioned in
Remark 15. We empirically examine how the standard error of the estimator of the utility
changes as Pr{A = doptω (x)|X = x} varies. For simplicity, we focus on the fixed utility
setting described in 4.1. Let X, Y and Z be generated as in 4.1. For each ρs, we estimate
ω̂ when ω = 0.25 and ω = 0.75.

Table 18 and Table 19 display ω̂ and s.e.(ω̂) across values of n, ω, and ρ. As ρ deviates
from 0.5 (so that β is not close to 0), ω̂ is closer to the true ω, and the standard error of ω̂
decreases. Moreover, if ω1 and ω2 satisfy ω1 = 1− ω2, their estimates and standard errors
are similar as logit(ω1) = −logit(ω2).

Appendix F: Performance of Metropolis optimizer in the algorithm with
the patient-specific utility.

In this section, we examine the performance of the Metropolis optimizer that is used in 2.2.
We randomly select 10000 points in the unit ball around θ0, and use the point that yields the
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n Absolute diffrence-MH Absolute difference-Unit ball Distance-MH Distance-Unit ball

100 1.49 (0.71) 1.66 (0.30) 0.85 (0.45) 0.86 (0.12)
200 1.30 (0.49) 1.60 (0.31) 0.72 (0.31) 0.84 (0.13)
300 1.19 (0.20) 1.63 (0.29) 0.63 (0.16) 0.86 (0.13)
500 1.15 (0.12) 1.63 (0.32) 0.60 (0.09) 0.85 (0.13)

Table 20: Absolute difference and the Euclidean distance of the estimates of the patient
utility and θ0

best likelihood as the reference for the comparison. We define θ̂ by Metropolis algorithm as
θ̂MH, and a best point from a unit ball around θ0 as θ̂Uball. We obtain the distance between
θ0 and θ̂MH and the distance between θ0 and θ̂Uball for each of 500 replications.

In Table 20, absolute difference-MH was calculated as the mean of |θ̂MH − θ0|, and
absolute difference-Unit ball was calculated as the mean of |θ̂Uball− θ0| for 500 replications.

Similarly, Distance-MH was calculated as the mean of
√∑6

j=1(θ̂MH,j − θ0,j)2, and Distance-

Unit ball was calculated as the mean of
√∑6

j=1(θ̂Uball,j − θ0,j)2 for 500 replications. The

standard errors of these distances are in the parentheses.

By Table 20, it is noticeable that both absolute difference and the Euclidean distance
of θ̂MH are smaller, and we could conclude that it is reasonable to use Metropolis algorithm
when estimating a patient-specific utility.
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