
LinGCN: Structural Linearized Graph Convolutional
Network for Homomorphically Encrypted Inference

?Hongwu Peng1, ?Ran Ran2, Yukui Luo3, Jiahui Zhao1, Shaoyi Huang1, Kiran Thorat1,
Tong Geng4, Chenghong Wang5, Xiaolin Xu6, Wujie Wen2, Caiwen Ding1

?These authors contributed equally.
1University of Connecticut, 2North Carolina State University,

3 University of Massachusetts Dartmouth, 4University of Rochester,
5Indiana University Bloomington, 6Northeastern University

{hongwu.peng, jiahui.zhao, shaoyi.huang, kiran_gautam.thorat}@uconn.edu,
{rran, wwen2}@ncsu.edu, yluo2@umassd.edu, tgeng@ur.rochester.edu

cw166@iu.edu, x.xu@northeastern.edu, caiwen.ding@uconn.edu

Abstract

The growth of Graph Convolution Network (GCN) model sizes has revolutionized
numerous applications, surpassing human performance in areas such as personal
healthcare and financial systems. The deployment of GCNs in the cloud raises
privacy concerns due to potential adversarial attacks on client data. To address
security concerns, Privacy-Preserving Machine Learning (PPML) using Homo-
morphic Encryption (HE) secures sensitive client data. However, it introduces
substantial computational overhead in practical applications. To tackle those chal-
lenges, we present LinGCN, a framework designed to reduce multiplication depth
and optimize the performance of HE based GCN inference. LinGCN is structured
around three key elements: (1) A differentiable structural linearization algorithm,
complemented by a parameterized discrete indicator function, co-trained with
model weights to meet the optimization goal. This strategy promotes fine-grained
node-level non-linear location selection, resulting in a model with minimized mul-
tiplication depth. (2) A compact node-wise polynomial replacement policy with a
second-order trainable activation function, steered towards superior convergence
by a two-level distillation approach from an all-ReLU based teacher model. (3)
an enhanced HE solution that enables finer-grained operator fusion for node-wise
activation functions, further reducing multiplication level consumption in HE-based
inference. Our experiments on the NTU-XVIEW skeleton joint dataset reveal that
LinGCN excels in latency, accuracy, and scalability for homomorphically encrypted
inference, outperforming solutions such as CryptoGCN. Remarkably, LinGCN
achieves a 14.2× latency speedup relative to CryptoGCN, while preserving an
inference accuracy of ~75% and notably reducing multiplication depth. Addition-
ally, LinGCN proves scalable for larger models, delivering a substantial 85.78%
accuracy with 6371s latency, a 10.47% accuracy improvement over CryptoGCN.
The codes are shared on Github1.

1 Introduction

Graph learning, a deep learning subset, aids real-time decision-making and impacts diverse appli-
cations like computer vision [1], traffic forecasting [2], action recognition [3, 4], recommendation
systems [5], and drug discovery [6]. However, the growth of Graph Convolution Network (GCN)

1https://github.com/harveyp123/LinGCN-Neurips23

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/harveyp123/LinGCN-Neurips23

model sizes [7, 8] introduces challenges in integrating encryption into graph-based machine learning
services. Platforms such as Pinterest’s PinSAGE [9] and Alibaba’s AliGraph [10] operate on extensive
user/item data graphs, increasing processing time. Furthermore, deploying GCN-based services in
the cloud raises privacy concerns [11, 12] due to potential adversarial attacks on client data, such as
gradient inversion attacks [13, 14]. Given the sensitive information in graph embeddings, it’s crucial
to implement lightweight, privacy-focused strategies for cloud-based GCN services.

Privacy-Preserving Machine Learning (PPML) with Homomorphic Encryption (HE) helps protect
sensitive graph embeddings, allowing client data encryption before transmission and enabling direct
data processing by the cloud server. However, this security comes with substantial computational
overhead from HE operations such as rotations, multiplications, and additions. For instance, using the
Cheon-Kim-Kim-Song (CKKS) [15], a Leveled HE (LHE) [16] scheme, the computational overhead
escalates significantly (e.g. ⇠ 3⇥) with the total number of successive multiplications, which is
directly related to the layers and non-linear implementations in deep GCNs.

Three research trends have emerged to lessen computational overhead and inference latency for HE
inference. First, leveraging the graph sparsity, as in CryptoGCN [12], reduces multiplication level
consumption. Second, model quantization, seen in TAPAS [17] and DiNN [18], binarizes activation
and weight to 1 bit, leading to a 3%-6.2% accuracy loss on smaller datasets and limited scalability.
Third, nonliear operation level reduction, as in CryptoNet [19] and Lola [20], substitutes low-degree
polynomial operators like square for ReLU in CNN-based models. However, these methods struggle
with performance due to absent encryption context of graph features, and the latter two are not
suitable for GCN-based models.

Figure 1: Frontier of LinGCN vs. CryptoGCN [12]

To bridge the research gap, in this paper, we
propose LinGCN, an end-to-end policy-guided
framework for non-linear reduction and polyno-
mial replacement. This framework is designed
to optimize deep Spatial-Temporal Graph Con-
volution Network (STGCN)-based models for
HE-based inference. We conduct extensive ex-
periments on the NTU-XVIEW [21] skeleton
joint [22, 23, 24] dataset and compare our ap-
proach with CryptoGCN [12]. The pareto fron-
tier comparison of accuracy-latency between
LinGCN and CryptoGCN [12] demonstrates
that LinGCN surpasses CryptoGCN [12] by over 5% accuracy under the same latency budget,
and achieves a 14.2-fold latency reduction under the same accuracy constraint (~75% accuracy).

Our proposed framework, LinGCN, is principally influenced by two observations: the need to
conserve levels in the CKKS scheme and the crucial role of synchronized linearization. In the
CKKS scheme, deeper networks demand a larger polynomial degree, thereby increasing the latency
of homomorphically encrypted operators. Non-linear layer pruning can mitigate this by reducing
level consumption. However, unstructured non-linear pruning is insufficient; structural linearization
becomes essential for effective level reduction, underscoring synchronized linearization’s significance
in optimizing CKKS performance. We summarize our contributions as follows:

1. We present a differentiable structural linearization algorithm, paired with a parameterized
discrete indicator function, which guides the structural polarization process. This method-
ology is co-trained with model weights until the optimization objective is attained. Our
approach facilitates fine-grained node-level selection of non-linear locations, ultimately
yielding a model with reduced multiplication levels.

2. We introduce a node-wise polynomial replacement policy utilizing a second-order trainable
polynomial activation function. This process is further steered by an all-ReLU based teacher
model employing a two-level distillation approach, thus promoting superior convergence.

3. We have engineered a corresponding HE solution that facilitates finer-grained operator
fusion for node-wise activation functions. This development further mitigates multiplication
level consumption during our HE-based inference process.

2

2 Background and Related Work

CKKS Homomorphic Encryption Scheme. The CKKS scheme [15], based on the ring learning
with errors (RLWE) problem, allows arithmetic operations on encrypted fixed-point numbers. It
provides configurable precision via encryption noise as natural error e [25]. We denote the cyclotomic
polynomial degree as N and the polynomial coefficient modulus as Q, both cryptographic parameters.
A ciphertext ct encrypts a message m with noise e as ct = m+ e (mod Q). The CKKS scheme’s
security level [26], measured in bits, suggests 2128 operations to break a � = 128 encryption.
CKKS supports operations including ciphertext addition Add(ct1, ct2), ciphertext multiplication
CMult(ct1, ct2), scalar multiplication PMult(ct , pt), rotation Rot(ct , k) and rescaling Rescale(ct).
Scalar multiplication multiplies a ciphertext with plaintext, and rotation cyclically shifts the slot vector.
For example, Rot(ct, k) transforms (v0, ..., vN/2�1) into (vk, ..., vN/2�1, v0, ..., vk�1). The level of
a ciphertext (L), the number of successive multiplications it can undergo without bootstrapping, is
reduced by the Rescale operation after each multiplication. With the level-reduced target network,
we do not consider using bootstrapping [27] in this work.

STGCN for Graph Dataset with Timing Sequence. The focus of this study revolves around the
STGCN, a highly esteemed category of GCNs proposed by [4]. The STGCN model primarily employs
two core operators, Spatial graph convolution (GCNConv) and Temporal convolution, designed to
extract spatial and temporal information from input graph data, respectively. The Spatial convolution
operation, as defined in Equation 1, precisely illustrates the process of extracting spatial information.
In Equation 1, the variables A, D, Xi, Wi, and Xi,out correspond to the adjacent matrix, degree
matrix, input feature, weight parameter, and output feature, respectively [4].

Xi,out = D� 1
2 (A+ I)D� 1

2XiWi (1)

Related Work. CryptoNets [19] pioneered Privacy-Preserving Machine Learning (PPML) via
Homomorphic Encryption (HE) but suffered from extended inference latency for large models.
Subsequent studies, like SHE [28] which realizes realize the TFHE-based PPML, and those employing
Multi-Party Computation (MPC) solutions[29, 30, 31], reduced latency but faced high communication
overhead and prediction latency. Research like TAPAS [17] and XONN [32] compressed models into
binary neural network formats, while studies like CryptoNAS [30], Sphynx [33], and SafeNet [34]
used Neural Architecture Search (NAS) to find optimal architectures. Delphi [29], SNL [35], and
DeepReduce [36] replaced ReLU functions with low order polynomial or linear functions to accelerate
MPC-based Private Inference (PI). Nevertheless, these strategies proved suboptimal for homomorphic
encrypted inference. Solutions like LoLa [20], CHET [37], and HEAR [38] sought to use ciphertext
packing techniques but were not optimized for GCN-based models.

Threat Model. In line with other studies [12, 37, 39], we presume a semi-honest cloud-based
machine learning service provider. The well-trained STGCN model’s weight, including adjacency
matrices, is encoded as plaintexts in the HE-inference process. Clients encrypt data via HE and
upload it to the cloud for privacy-preserving inference service. The server completes encrypted
inference without data decryption or accessing the client’s private key. Finally, clients decrypt the
returned encrypted inference results from the cloud using their private keys.

3 LinGCN Framework

3.1 Motivation

We present two pivotal observations that serve as the foundation for our LinGCN.

CKKS Based Encrypted Multiplication. As described in section 2, the message m is scaled
by a factor � = 2p before encoding, resulting in �m. Any multiplicative operations square the
ciphertext’s scale, including inherent noise e. The Rescale operation reduces this scale back to � by
modswitch [15], reducing Q by p bits and lowering the level, as depicted in Figure 2. When Q ! qo

after L multiplications and rescaling, the ciphertext’s multiplicative level reaches 0. At this stage,
bootstrapping [12] is necessary for further multiplication, unless a higher Q is used to increase the
multiplicative level L.
Observation 1: Saving Level is Important in CKKS Scheme. Within a STGCN model, the graph
embedding is encrypted with an initial polynomial degree, denoted as N , and a coefficient modulus,

3

represented by Q. These factors are determined by the network’s multiplicative depth. As the multi-
plication depth increases, the coefficient modulus must also increase, subsequently leading to a higher
polynomial degree N . To maintain a security level above a certain threshold (for example, 128-bit) in
the face of deeper multiplicative depths, a larger N is necessitated [37, 38, 12]. A larger N inherently
results in increased complexity in each homomorphic encryption operation such as Rot and CMult.

Δ m0
𝑒଴

Mult (Conv,
GCNConv …) & RS

Level: L

ct′′- (L-1)𝑒′′
Q ൉ 𝑝ିଵ

D
ec

re
as

ed
 re

m
ai

ni
ng

 m
od

ul
us

 b
it

…

q0

𝑒∗ 𝑐𝑡∗- 0
No bits left

Level: L-1

Level: 1

Remaining
modulus bits

Q ൉ 𝑝ିଵ

Δ m0m1
𝑒′′ 𝑐𝑡′′- (L-1)

Δ m0

Q
𝑒ଵ

𝑒଴

Δ m1

Q

RS by Δ

Δଶ m0m1
𝑒′

𝑐𝑡′- L

Q

Mult & RS

Mult (Conv, GCNConv …)

Rot CMult PMult Add

La
te
nc
y
(s
)

Polynomial degree 32768
Polynomial degree 16384

1

Figure 2: Top: Rescale decreases the cipher-
text level. Bottom: Higher polynomial degree
leads to longer HE operator’s latency.

These operations are integral to the computation of
convolution (Conv) and graph convolution (GCN-
Conv). We present a comparative analysis of operator
latency with differing polynomial degrees N in Fig-
ure 2. Thus, it can be inferred that pruning certain
operators to conserve levels not only diminishes the
latency of the pruned operators but also reduces other
operators’ latency.

Observation 2: Synchronized Linearization Mat-
ters. Our study mainly targets reducing multiplica-
tion depth in standard STGCN layers, comprising an
initial spatial GCNConv operation, two non-linear op-
erators, and a temporal convolution. Under the CKKS
base HE scheme, each operator’s input needs synchro-
nized multiplication depths, with any misalignment
adjusted to the minimal depth. This is particularly
vital for the GCNConv operator, while later node-
wise separable operators enable structured non-linear
reduction to boost computational efficiency.

1 2 3 4 5
C C C C C

GCNConv
L N L N N
C C C C C
N L N L L

Graph input

C
1

2
3

4
5

: Conv
L : Linear
N : Non-linear

Reduced mul level
consumption

9

8

8 87 7 7

7 76 6 6
6

: mul level

1 2 3 4 5
C C C C C

GCNConv
L N L N N
C C C C C
L N N L N

Same mul level
consumption

9

8

8 87 7 7

7 76 6 6

5
7 5 6 6 5

Sync Synced

(a) (b) (c)

C
on

su
m

pt
io

n:
 4

C
on

su
m

pt
io

n:
 3

9
8
7
6
5

Figure 3: Unstructured vs. structural linearization. Un-
structured one doesn’t lead to effective level reduction.

Unstructured non-linear reduction strate-
gies, common in MPC setups like Au-
toReP [40], PASNet [41] SNL [35], RR-
Net [42], DELPHI [29], and SAFENet [43],
prove suboptimal for homomorphic en-
crypted inference. Our example in Fig-
ure 3(b) illustrates node-wise unstructured
non-linear reduction in an STGCN layer,
leading to unsynchronized remaining mul-
tiplication depth budgets for nodes after
the layer. This approach is ineffective in
reducing levels consumption for homomor-
phic encrypted inference, emphasizing the
necessity for a more structured non-linear
reduction approach. To address the limitations of unstructured non-linear reduction, we propose a
structured approach, illustrated in Figure 3(c), where we apply an equal level of non-linear reduction
to each target node, reducing the overall multiplication depth. In contrast to CryptoGCN’s layer-wise
pruning method [12], our scheme provides nodes with the flexibility to perform non-linear operations
at preferred positions. This fine-grained, structural non-linear reduction may improve the non-linear
reduced structure, potentially augmenting the efficiency and effectiveness of HE inference.

3.2 Learning for Structural Linearization

Problem Formulation. Our methodology is aimed at the node-wise structural dropping of non-linear
operators within a given L-layered STGCN model fW , parameterized by W = {Wi}2Li=0. This model
maps the input X0 2 R

V⇥C⇥T to the target Y 2 R
d. Here, V , C, and T represent the number of

nodes, channels, and frames, respectively. The primary objective of our approach is to eliminate the
non-linear operator (designated as �n) in a structured, node-wise manner. The ultimate aim is to
achieve a reduced multiplication level while minimizing any resultant drop in model accuracy. This
goal serves to optimize the efficiency of homomorphic encrypted inference for STGCN model.

We introduce an indicator parameter, denoted as h, to mark the node-wise non-linear operator
dropping. The following conditions apply: (1) If hi,k = 0, the non-linear operator �n is substituted
by the linear function f(x) = x; (2) If hi,k = 1, the operator �n is utilized. Here, hi,k signifies

4

the kth node of the ith non-linear layer. The proposed node-wise non-linear indicator parameter
hi,k facilitates the expression of the ith non-linear layer with partial linearization, as given by
Xi,k = hi,k � �n(Z(i�1),k) + (1 � hi,k) � Z(i�1),k. Here, Zi�1 denotes the input of the ith

non-linear layer. Consequently, the issue of structural linearization can be formulated as follows:

argmin
W,h

L = argmin
W,h

Lacc(fW (X0), Y) + µ ·
2LX

i=1

||hi||0

subject to 8j, k 2 [1, V], (h2i,j + h2i+1,j) = (h2i,k + h2i+1,k)

(2)

In our formulation, ||hr||0 represents the L0 norm or the count of remaining non-linear operators.
Lacc signifies cross-entropy loss, while µ is the L0 norm penalty term in the linearization process.
The second term of Eq. 2 poses a challenge due to its non-differentiability, stemming from zero norm
regularization and additional constraints on the discrete indicator parameter hi. Hence, this issue
becomes difficult to handle using traditional gradient-based methods.

Differentiable Structural Linearization. To handle the non-differentiable discrete indicator parame-
ter, we introduce a trainable auxiliary parameter, hw, to denote its relative importance. However, the
transformation from hw to the final indicator h must comply with the structural constraint in Eq.2,
ruling out simple threshold checks used in SNL [35]. Structural pruning methods [44, 45], useful for
weight or neuron pruning, are ill-suited for our problem due to its exponential complexity arising
from 2 non-linear selections of 25 nodes, and its distinct nature from weight or neuron pruning.

Algorithm 1 Structural Polarization.
Input: hw: auxiliary parameter
Output: h: final indicator
1: for i = 0 to L do
2: sh, sl = 0 and indh, indl ;
3: for j = 1 to V do
4: if hw(2i,j) > hw(2i+1,j) then
5: sh + = hw(2i,j), sl + = hw(2i+1,j)

6: indh (2i, j), indl (2i+ 1, j)
7: else
8: sh + = hw(2i+1,j), sl + = hw(2i,j)

9: indh (2i+ 1, j), indl (2i, j)
10: end if
11: end for
12: hindh = sh > 0 and hindl = sl > 0
13: end for

To tackle this challenge, we propose a structural po-
larization forward process, detailed in Algorithm 1.
The algorithm first ranks the relative importance of
two auxiliary parameters (hw(2i,j) and hw(2i+1,j))
for every jth node within the ith STGCN layer,
obtaining the higher and lower values and their
respective indices. We then sum each ith layer’s
higher auxiliary parameter value into sh, and lower
auxiliary parameter value into sl. Next, we con-
duct a threshold check of sh and assign the final
polarization output of the indicator value into the
corresponding locations of higher value indices, ap-
plying the same polarization for lower values. The
proposed structural polarization enforces the exact
constraint as given in Eq. 2, where each STGCN
layer maintains a synchronized non-linear count
across all nodes. The structural polarization is also
capable of capturing the relative importance of the auxiliary parameter within each node and applying
the proper polarization to every position, all with a complexity of only O(V). Each STGCN layer
retains the flexibility to choose all positions to conduct the non-linear operation, or just select one
position for each node to conduct the non-linear operation, or opt not to perform the non-linear
operation at all. This selection is based on the importance of their auxiliary parameters.

Despite its benefits, the structural binarization in Algorithm 1 is discontinuous and non-differentiable.
To approximate its gradient, we use coarse gradients [46] via straight through estimation (STE), a
good fit for updating hw and reflecting the optimization objective in Eq.2. Among various methods
such as Linear STE[47], ReLU and clip ReLU STE [48], we adopt Softplus STE [49] due to its
smoothness and recoverability discovered in [49], to update hw as follows:

@L
@hw(i,k)

=
@Lacc

@Xi,k
(�n(Zi�1)�Zi�1)

@hi,k

@hw(i,k)
+µ

@hi,k

@hw,(i,k)
,

@hi,k

@hw(i,k)
= Softplus(hw(i,k)) (3)

The gradient of the auxiliary parameter, as displayed in Eq. 3, consists of two components: the
gradient from the accuracy constraint and the gradient from the linearization ratio constraint. The
gradient stemming from the accuracy constraint will be negative if it attempts to counteract the
linearization process, thereby achieving a balance with the L0 penalty term µ ·

P2L
i=1 ||hi||0. The

5

Conv2D

1
2

3
4

5
Time

GCNConv
Channel

Node 1

Node 2

Node 3

Node 4

Node 5

Adj list

Embedding

In CH

Input
Conv2D

Conv2D
Conv2D
Conv2D

1
2

3
1

2
3

4

…
…

Lnr.

Non-lnr.

Lnr.

Non-lnr.

Non-lnr.

Lnr.

Non-lnr.

Lnr.

Non-lnr.

Lnr.

In CH

Temporal Conv2D

Time
Temporal Conv2D
Temporal Conv2D

Temporal Conv2D

Temporal Conv2D

Ciphertext
AMA
Encoding

1
2
3

5
4

... Rotate
& sum

…

... Rotate
& sum…

1x1 Conv2D Non-lnr.Lnr.

…

GCNConv Temporal Conv2D
Separable

ops. of
Node 1

… …

(a) Single st-gcn layer example with structure pruned non-linear operator

(b) Single st-gcn layer computation for homomorphically encrypted inference

Sy
nc

 m
ul

. d
ep

th
Sy

nc
 d

ep
th

Node-wise balanced non-linear count in a st-gcn layer

Figure 4: Overview of single layer STGCN with non-linear reduction and computation.

entirety of the linearization process is recoverable, which allows for the exploration of a near-optimal
balance between accuracy and linearization ratio via the back-propagation process.

3.3 Learnable Polynomial Replacement with Teacher Guidance

CryptoNet [19] and DELPHI [29] suggest using quadratic functions y = x
2 as ReLU replacements for

private inference. A second-order polynomial replacement [50] y = x
2 + x for ReLU was proposed

but resulted in decreased performance. CryptoGCN [12] uses a layer-wise trainable polynomial
function (ax2 + bx + c) for the STGCN model, but it suffers from significant accuracy loss and
scalability problems. To tackle these issues, we offer a two-tiered strategy: node-wise trainable
polynomial replacement and a distillation technique to facilitate the convergence of replacement.

Node-wise Trainable Polynomial Replacement. In our HE setup (see Figure 4), each node can
independently perform non-linear, convolution, and further non-linear operations without increasing
the multiplication depth. We suggest using a node-wise trainable polynomial function as the non-
linear function (see Eq. 4). To prevent gradient explosion from quadratic terms, we include a small
constant c to adjust the gradient scale of the w2 parameter [41].

�n(x) = c · w2x
2 + w1x+ b (4)

Improved Convergence Through Distillation. Training a polynomial neural network from scratch
often overfits, leading to accuracy loss [50, 12]. To counteract this, we recommend initially training a
baseline ReLU model as the teacher, then transferring its knowledge to the polynomial student model
to lessen accuracy degradation. The student model’s parameters are initialized from the teacher’s and
polynomial function parameters start at (w2 = 0, w1 = 1, b = 0). To aid knowledge transfer, we use
KL-divergence loss [51] and peer-wise normalized feature map difference penalty. The loss function
for polynomial replacement is as follows:

Lp = (1� ⌘)LCE(fW,s(X0), Y) + ⌘LKL(fW,s(X0), fW,t(X0)) +
'

2

LX

i=1

MSE(
Xi,s

||Xi,s||2
,

Xi,t

||Xi,t||2
) (5)

In the above equation, ⌘ is employed to balance the significance between the CE loss and the KL
divergence loss components, while ' acts as the penalty weight for the peer-wise feature map
normalized L2 distance term, analogous to the approach in [52].

3.4 Put it Together

The comprehensive workflow of our proposed LinGCN framework is outlined in Algorithm 2.
Initially, we construct the student model, MS , utilizing the parameters of the teacher model,
MT , and subsequently initialize the indicator auxiliary parameter hw for MS . Following
this, MS undergoes training iterations involving updates for structural linearization. Upon

6

achieving convergence, the indicator function h is fixed, and the ReLU function in MS is
replaced with a polynomial function. Subsequently, we initialize wpoly and train the final
model using a combination of CE loss and the two-level distillation loss as defined in Eq. 5.

Algorithm 2 LinGCN Framework Workflow.
Input: Pretrain ReLU-based model MT , lin-

earization penalty µ and optim. OPL, polyno-
mial replacement optim. OPP

Output: Level-reduced polynomial model
1: Copy MS from MT

2: Initialize hw for MS

3: for Structural linearization iterations do
4: Calculate L via Eq. 2 and Algorithm 1
5: Update W and hw through back propaga-

tion (Eq. 3) by minimizing L using OPL

6: end for
7: Freeze hw and h

8: Replace ReLU in Ms with polynomial
9: Initialize wpoly

10: for Polynomial replacement iterations do
11: Calculate Lp via Eq. 5
12: Update W through back propagation by

minimizing Lp using OPP

13: end for

The resulting model output will feature structurally
pruned node-wise polynomial functions, render-
ing it primed for the final stage of homomorphic
encryption-based inference.

Further Operator Fusion to Save Level. Figure 4
shows an example of the single-layer STGCN struc-
ture generated by our LinGCN framework. The
STGCN utilizes both input nodes information and
aggregates them to generate output node features.
We adopt the same AMA format [12] for GCNConv
computation, as such, we are able to fuse the plaintext
weights c ·w2 of node-wise polynomial function into
GCNConv layer and save one multiplication depth
budget. Layer operators involve another temporal
convolution layer and non-linear/linear layer, we can
still fuse the plaintext weights c ·w2 from the second
polynomial function into the convolution operator
and save the multiplication depth budget. As such,
the ReLU-reduced example shown in Figure 4 only
consumes 3 multiplication level of ciphertext as op-
posed to the original 4 multiplication depth budget. For the convolution operator, we adopt the same
computation flow from [12, 38].

4 Experiment

4.1 Experiment Setting

HE Parameter Setting. We performed experiments with two sets of encryption parameters: one
without and one with non-linear reduction. We used a scaling factor � = 233 in both cases to
ensure comparable accuracy. This scaling consumes 33 bits from the ciphertext modulus Q per level.
Without non-linear reduction, a 3-layer STGCN network needs 14 levels, and a 6-layer network needs
27. For a security level of 128-bit, we set Q to 509 (932) and the polynomial degree N to 215(216)
for 3 (6) layers STGCN network. In the non-linear reduction case, the total level count ranges from
14 to 9 for 3-layer, and 27 to 16 for 6-layer networks. With the reduced models, we can use smaller
Q and N while maintaining 128-bit security. Specifically, we set Q to 410 to 344 and N to 214 for
the 3-layer network (from 3 non-linear reduced), and Q to 767 to 569 and N to 215 for the 6-layer
network (starting from 5 non-linear reduced).

Experiment Dataset. The NTU-RGB+D dataset [21], the largest available with 3D joint annotations
for human action recognition, is utilized in our study. With 56,880 action clips in 60 classes, each is
annotated with (X,Y, Z) coordinates of 25 joints (nodes) per subject. We chose the NTU-cross-View
(NTU-XView) benchmark given its representativeness as a human skeleton joint dataset, containing
37,920 training and 18,960 evaluation clips. For a thorough evaluation, 256 frames were used from
each clip, resulting in a 2⇥ 3⇥ 256⇥ 25 input tensor for two individuals each with 3 channels.

Baseline Model. Our experiment runs on 8*A100 GPU server, and uses the state-of-the-art STGCN
architecture for human action recognition, which combines GCN and CNN. We tested three con-
figurations: STGCN-3-128, STGCN-3-256, and STGCN-6-256, where the first number represents
the layer count, and the second the last STGCN layer’s channel count. These networks contain a
stack of three or six STGCN layers, followed by a global average pooling layer and a fully-connected
layer. They were trained for 80 epochs using SGD, with a mini-batch size of 64, a momentum of 0.9,
weight decay of 10�4, and dropout 0.5. The initial learning rate (LR) was 0.1, with a decay factor of
0.1 at the 10th and 50th epochs. The baseline accuracy of models can also be found in Table 1.

LinGCN Algorithm Setting. In our LinGCN algorithm, we used the baseline model from Table 1 as
the teacher model in Algorithm 2. For structural linearization, we used SGD optimizer with learning
rate (LR) 0.01 for both weight and auxiliary parameters. The L0 norm penalty µ was varied from 0.1

7

Table 1: All ReLU based model architecture and accuracy
Model Layer-wise number of channel configuration Accuracy (%)

STGCN-3-128 3-64-128-128 80.64
STGCN-3-256 3-128-256-256 82.80
STGCN-6-256 3-64-64-128-128-256-256 84.52

to 10 for desired linearized layers, over 25 epochs. Then, ReLU was replaced with a second-order
polynomial in the polynomial replacement iterations. We set scaling factor c at 0.01, parameters ⌘
and ' at 0.2 and 200 respectively. This process took 90 epochs, with SGD optimizer and initial LR of
0.01, decaying by a factor of 0.1 at the 40th and 80th epochs.

Private Inference Setup. Our experiments used an AMD Ryzen Threadripper PRO 3975WX
machine, single threaded. The RNS-variant of the CKKS scheme [53] was employed using Microsoft
SEAL version 3.7.2 [54]. We adopted the Adjacency Matrix-Aware (AMA) data formatting from
CryptoGCN [12] to pack input graph data and performed GCNConv layer inference via multiplying
with sparse matrices Ai split from the adjacency matrix A. The temporal convolution operation
was optimized using the effective convolution algorithm from [38, 12, 55]. The computation for the
global average pooling layer and fully-connected layer also follows the SOTA [38, 12].

Table 2: STGCN-3-128 comparison
Model STGCN-3-128

Methods Non-linear
layers

Test acc
(%)

Latency
(s)

LinGCN 6 77.55 1856.95
LinGCN 5 75.48 1663.13
LinGCN 4 76.33 1458.95
LinGCN 3 74.27 850.22
LinGCN 2 75.16 741.55
LinGCN 1 69.61 642.06

CryptoGCN 6 74.25 4273.89
CryptoGCN 5 73.12 1863.95
CryptoGCN 4 70.21 1856.36

Table 3: STGCN-3-256 comparison
Model STGCN-3-256

Methods Non-linear
layers

Test acc
(%)

Latency
(s)

LinGCN 6 80.29 4632.05
LinGCN 5 79.07 4166.12
LinGCN 4 78.59 3699.49
LinGCN 3 76.41 2428.88
LinGCN 2 74.74 2143.46
LinGCN 1 71.98 1873.40

CryptoGCN 6 75.31 10580.41
CryptoGCN 5 73.78 4850.93
CryptoGCN 4 71.36 4831.93

4.2 Experiment Result and Comparison

LinGCN Outperforms CryptoGCN [12]. The proposed LinGCN algorithm demonstrates superior
performance compared to CryptoGCN [12]. The STGCN-3-128 and STGCN-3-256 models, which
are the basis of this comparison, share the same backbone as those evaluated in CryptoGCN [12].
Hence, we have undertaken a comprehensive cross-work comparison between the LinGCN framework
and CryptoGCN [12]. The latter employs a heuristic algorithm for layer-wise activation layer pruning,
which necessitates a sensitivity ranking across all layers. This approach, however, proves to be
ineffective, leading to significant accuracy drops as the number of pruned activation layers increases.
Comparative results between LinGCN and CryptoGCN [12] are provided in Table 2 and Table 3. In
the context of LinGCN, the number of non-linear layers presented in the table represents the effective
non-linear layers post-structural linearization. For the STGCN-3-128 and STGCN-3-256 models,
LinGCN yielded an accuracy of 77.55% and 80.28% respectively for the baseline 6 non-linear layers
model, exceeding CryptoGCN [12] by 3.3% and 4.98%. This outcome signifies the superiority of
our proposed teacher-guided node-wise polynomial replacement policy over the naive layer-wise
polynomial replacement provided in CryptoGCN [12].

Importantly, the LinGCN model for the 6 non-linear layers employs a more fine-grained node-
wise polynomial function, which is fused into the preceding Conv or GCNConv layers. Thus,
the encryption level required is lower than that of CryptoGCN [12], resulting in reduced latency.
When considering non-linear layer reduction performance, LinGCN experiences only a 1.2 to 1.7 %
accuracy decline with a 2 effective non-linear layer reduction, whereas CryptoGCN [12] displays
approximately 4% accuracy degradation when pruned for 2 non-linear layers. Remarkably, LinGCN
achieves an accuracy improvement of more than 6% over CryptoGCN [12] for models with 4 non-
linear layers. Even in models with only 2 non-linear layers, LinGCN exhibits exceptional accuracy

8

(75.16% and 74.74%). While this accuracy aligns with the performance of 6 non-linear layer models
in CryptoGCN [12], LinGCN significantly outperforms it in terms of private inference latency,
providing more than a five-fold reduction compared to CryptoGCN [12].

Figure 5: STGCN-3-256 structural linearization

Non-linear Layer Sensitivity. We conduct a
sensitivity analysis on the STGCN-3-256 model
to investigate the effect of non-linear layers. The
results are displayed in Figure 5, wherein the i

layers in the figure represent the remaining ef-
fective non-linear layers in the model, and every
2i�1 and 2i exhibit a total number of non-linear
nodes summing up to an integer multiple of 25.
During the automatic structural linearization pro-
cess, the gradient propagation is orchestrated to
strike a balance between two goals: (i) preserving the feature structural information at the deeper
layers, and (ii) mitigating the over-smoothing effect [56] resulting from the deep linearized GCN
layers. Consequently, the middle 4th layer’s nonlinearity is most important within the STGCN model.

Table 4: LinGCN for STGCN-6-256 model.

Model STGCN-6-256

Methods Non-linear
layers

Test acc
(%)

Latency
(s)

LinGCN 12 85.47 21171.80
LinGCN 11 86.24 19553.96
LinGCN 7 85.08 8186.35
LinGCN 5 83.64 7063.51
LinGCN 4 85.78 6371.39
LinGCN 3 84.28 5944.81
LinGCN 2 82.27 5456.12
LinGCN 1 75.93 4927.26

LinGCN is Scalable. Beyond the evaluation of
the 3-layer model, we also apply our LinGCN
to a 6-layer STGCN-6-256 model, which no
prior work evaluated, maintaining the same set-
tings to assess the trade-off between accuracy
and latency. An intriguing finding is that the
teacher-guided full polynomial replacement not
only maintains model performance but also sur-
passes the accuracy of the teacher baseline by
0.95%, achieving an accuracy of 85.47%. This
suggests that the STGCN model equipped with
a smooth polynomial activation function may
enhance model expressivity. Experiments reveal
a significant redundancy in the non-linear layers
of the STGCN-6-256 model, as it exhibits no
accuracy degradation up to the reduction of 8 non-linear layers. When the pruning extends to 10
non-linear layers, the accuracy experiences a slight dip of 3.2% compared to the non-reduction one.

Pareto Frontier of LinGCN. Figure 1 compares the Pareto frontier between LinGCN and Cryp-
toGCN [12], showing LinGCN consistently surpassing CryptoGCN by at least 4% in accuracy across
all latency ranges. As latency constraints ease (around 6000s), LinGCN’s accuracy notably increases,
improving by roughly 10% over CryptoGCN. Impressively, LinGCN maintains an accuracy of 75.16%
while achieving a private inference latency of 742s, making it 14.2 times faster than CryptoGCN.

4.3 Abalation Studies

Non-linear Reduction & Replacement Sequence matters. Our LinGCN algorithm employs a
sequence of non-linear reduction and polynomial replacement, proving more efficacious in terms of
search space convergence compared to the inverse sequence of polynomial replacement followed by
non-linear reduction. The reasoning behind this lies in the possibility that the polynomial replacement
process may produce a model optimized for a given architecture, hence subsequent changes to the
architecture, such as non-linear reduction, could lead to significant accuracy degradation. Keeping all
other parameters constant and merely altering the replacement sequence, we present the accuracy
evaluation results of STGCN-3-256 model in Figure 6a. As depicted in the figure, the sequence of
polynomial replacement followed by non-linear reduction incurs an accuracy degradation exceeding
2% compared to the baseline sequence across all effective non-linear layer ranges.

LinGCN Outperforms Layer-wise Non-linear Reduction. A significant innovation in our LinGCN
framework is the structural linearization process. This process allows nodes to determine their
preferred positions for non-linearities within a single STGCN layer, as opposed to enforcing a
rigorous constraint to excise the non-linearity across all nodes. This less restrictive approach yields a
more detailed replacement outcome compared to the layer-wise non-linear reduction. To demonstrate
the impact of this method, we kept all other parameters constant for of STGCN-3-256 model, altering

9

(a) (b) (c) (d)

Figure 6: Ablation study for (a) Replacement sequence, (b) node-wise vs. layer-wise linearization.
(c) ⌘: KL divergence distillation parameter (d) ': feature map distance distillation parameter.

only the structural linearization to layer-wise linearization, and subsequently evaluated the model’s
accuracy, as shown in Figure 6b. The results indicate that layer-wise linearization results in a 1.5%
decrease in accuracy compared to structural linearization within the range of 2 to 5 effective non-linear
layers. This demonstrates the effectiveness of the proposed structural linearization methodology.

Distillation Hyperparameter Study. In prior experiments, we kept ⌘ and ' at 0.2 and 200 respec-
tively. To assess their influence during distillation, we tested ⌘ and ' across a range of values while
distilling the STGCN-3-256 model with 6 non-linear layers. We test ⌘ 2 [0.1, 0.2, 0.3, 0.4, 0.5] and
' 2 [100, 200, 300, 400, 500]. Notably, we maintained ' = 200 and ⌘ = 0.2 for the respective ⌘ and
' ablations. The study, shown in Figure 6c and Figure 6d, confirms that ⌘ = 0.2 and ' = 200 yield
optimal accuracy, and larger penalties might lower accuracy due to mismatch with the teacher model.
This study thus justifies our selection of the ⌘ and '.

Table 5: LinGCN for Flickr dataset.

Num. of nonlinear
layers in GCN layers

Accuracy
(val/test, %)

Latency
(s)

6 0.5281/0.5275 4290.93
2 0.5247/0.5266 2740.94
1 0.5269/0.5283 2525.80

LinGCN Generalize to Other Dataset. With-
out loss of generality, we extended our eval-
uation on Flickr [57] dataset, which is a rep-
resentative node classification dataset widely
used in GNN tasks.It consists of 89,250 nodes,
989,006 edges, and 500 feature dimensions.
This dataset’s task involves categorizing images
based on descriptions and common online prop-
erties. For the security setting, we assume that
node features are user-owned and the graph adjacency list is public. The Flickr dataset has a larger
adjacent list but smaller feature dimension compared to the NTU-XVIEW dataset. We utilize three
GCN layers with 256 hidden dimensions. Each GCN layer has similar structure as STGCN backbone
architecture and has two linear and nonlinear layers. We conduct full-batch GCN training to obtain
ReLU-based baseline model accuracies of 0.5492/0.5521 for validation/test dataset. We obtain the
accuracy/latency tradeoff detailed in the Table 5. LinGCN framework substantially diminishes the
number of effective nonlinear layers, which leads to 1.7 times speedup without much accuracy loss.

5 Discussion and Conclusion
Our LinGCN optimizes HE-based GCN inference by reducing multiplication levels through a
differentiable structural linearization algorithm and a compact node-wise polynomial replacement
policy, both guided by a two-level distillation from an all-ReLU teacher model. Additionally, we
improve HE solutions for GCN private inference, enabling finer operator fusion for node-wise
activation functions. LinGCN outperforms CryptoGCN by 5% in accuracy and reducing latency by
14.2 times at ~75% accuracy, LinGCN sets a new state-of-the-art performance for private STGCN
model inference. In the future, we will expand the proposed algorithm on other neural networks.

Acknowledgement

This work was in part supported by the NSF Grants CNS-2348733, 2247892, 2247893, OAC-2319962,
Semiconductor Research Corporation (SRC) Artificial Intelligence Hardware program, and UConn
CACC center. Any opinions, findings and conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the funding agencies.

10

References
[1] Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a

point cloud. In CVPR, pages 1711–1719, 2020.
[2] Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert

Systems with Applications, page 117921, 2022.
[3] Chenyang Si, Ya Jing, Wei Wang, Liang Wang, and Tieniu Tan. Skeleton-based action recog-

nition with spatial reasoning and temporal stack learning. In Proceedings of the European
conference on computer vision (ECCV), pages 103–118, 2018.

[4] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In Thirty-second AAAI conference on artificial intelligence,
2018.

[5] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys (CSUR), 2020.

[6] Pietro Bongini et al. Molecular generative graph neural networks for drug discovery. Neuro-
computing, 450:242–252, 2021.

[7] Anuroop Sriram et al. Towards training billion parameter graph neural networks for atomic
simulations. ArXiv, abs/2203.09697, 2022.

[8] Daniel Manu et al. Co-exploration of graph neural network and network-on-chip design using
automl. In Proceedings of the 2021 on Great Lakes Symposium on VLSI, pages 175–180, 2021.

[9] Rex Ying et al. Graph convolutional neural networks for web-scale recommender systems.
KDD ’18, 2018.

[10] Rong Zhu et al. Aligraph: A comprehensive graph neural network platform. KDD ’19, 2019.
[11] Ling Liang, Jilan Lin, Zheng Qu, Ishtiyaque Ahmad, Fengbin Tu, Trinabh Gupta, Yufei Ding,

and Yuan Xie. Spg: Structure-private graph database via squeezepir. Proceedings of the VLDB
Endowment, 16(7):1615–1628, 2023.

[12] Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie Wen. Cryptogcn: Fast
and scalable homomorphically encrypted graph convolutional network inference. Advances in
Neural Information Processing Systems, 35:37676–37689, 2022.

[13] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. Privacy-
preserving deep learning: Revisited and enhanced. In Applications and Techniques in Infor-
mation Security: 8th International Conference, ATIS 2017, Auckland, New Zealand, July 6–7,
2017, Proceedings, pages 100–110. Springer, 2017.

[14] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural
information processing systems, 32, 2019.

[15] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 409–437. Springer, 2017.

[16] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–
36, 2014.

[17] Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun Kanade. Tapas: Tricks to accelerate
(encrypted) prediction as a service. In International Conference on Machine Learning, pages
4490–4499. PMLR, 2018.

[18] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic
evaluation of deep discretized neural networks. In Advances in Cryptology–CRYPTO 2018:
38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19–23,
2018, Proceedings, Part III 38, pages 483–512. Springer, 2018.

[19] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In International conference on machine learning, pages 201–210. PMLR, 2016.

[20] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy preserving inference.
In International Conference on Machine Learning, pages 812–821. PMLR, 2019.

11

[21] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+d: A large scale dataset
for 3d human activity analysis. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1010–1019, 2016.

[22] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning
for human pose estimation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5693–5703, 2019.

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969, 2017.

[24] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose
estimation using part affinity fields. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7291–7299, 2017.

[25] Kim Laine. Simple encrypted arithmetic library (seal) manual, 2017.
[26] Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Jeffrey Hoffstein,

Kristin Lauter, Satya Lokam, Dustin Moody, Travis Morrison, et al. Security of homomorphic
encryption. HomomorphicEncryption. org, Redmond WA, Tech. Rep, 2017.

[27] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.
[28] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe: fast fully

homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020.
[29] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada

Popa. Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2505–2522, 2020.

[30] Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. Cryptonas:
Private inference on a relu budget. Advances in Neural Information Processing Systems,
33:16961–16971, 2020.

[31] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and
Laurens van der Maaten. Crypten: Secure multi-party computation meets machine learning.
Advances in Neural Information Processing Systems, 34:4961–4973, 2021.

[32] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and Farinaz
Koushanfar. {XONN}:{XNOR-based} oblivious deep neural network inference. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1501–1518, 2019.

[33] Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx:
Relu-efficient network design for private inference. arXiv preprint arXiv:2106.11755, 2021.

[34] Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. Safenet: A secure, accurate and fast neural
network inference. In International Conference on Learning Representations, 2020.

[35] Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Selective
network linearization for efficient private inference. In International Conference on Machine
Learning, pages 3947–3961. PMLR, 2022.

[36] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu
reduction for fast private inference. In International Conference on Machine Learning, pages
4839–4849. PMLR, 2021.

[37] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed Maleki, Madanlal
Musuvathi, and Todd Mytkowicz. Chet: an optimizing compiler for fully-homomorphic neural-
network inferencing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 142–156, 2019.

[38] Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan Shams. Secure
human action recognition by encrypted neural network inference. Nature communications,
13(1):1–13, 2022.

[39] Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan Shams. Hear:
Human action recognition via neural networks on homomorphically encrypted data. arXiv
preprint arXiv:2104.09164, 2021.

[40] Hongwu Peng, Shaoyi Huang, Tong Zhou, Yukui Luo, Chenghong Wang, Zigeng Wang, Jiahui
Zhao, Xi Xie, Ang Li, Tony Geng, et al. Autorep: Automatic relu replacement for fast private
network inference. arXiv preprint arXiv:2308.10134, 2023.

12

[41] Hongwu Peng, Shanglin Zhou, Yukui Luo, Nuo Xu, Shijin Duan, Ran Ran, Jiahui Zhao,
Chenghong Wang, Tong Geng, Wujie Wen, et al. Pasnet: Polynomial architecture search
framework for two-party computation-based secure neural network deployment. In 2023 60th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2023.

[42] Hongwu Peng, Shanglin Zhou, Yukui Luo, Nuo Xu, Shijin Duan, Ran Ran, Jiahui Zhao, Shaoyi
Huang, Xi Xie, Chenghong Wang, et al. Rrnet: Towards relu-reduced neural network for
two-party computation based private inference. arXiv preprint arXiv:2302.02292, 2023.

[43] Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. Safenet: A secure, accurate and fast neural
network inference. In International Conference on Learning Representations, 2021.

[44] Mingbao Lin, Yuxin Zhang, Yuchao Li, Bohong Chen, Fei Chao, Mengdi Wang, Shen Li,
Yonghong Tian, and Rongrong Ji. 1xn pattern for pruning convolutional neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

[45] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-
level structured pruning using polarization regularizer. Advances in neural information process-
ing systems, 33:9865–9877, 2020.

[46] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

[47] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 138–145, 2017.

[48] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin.
Understanding straight-through estimator in training activation quantized neural nets. arXiv
preprint arXiv:1903.05662, 2019.

[49] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. Autoprune: Automatic network pruning
by regularizing auxiliary parameters. Advances in neural information processing systems, 32,
2019.

[50] Ramy E Ali, Jinhyun So, and A Salman Avestimehr. On polynomial approximations for
privacy-preserving and verifiable relu networks. arXiv preprint arXiv:2011.05530, 2020.

[51] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[52] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In International Conference
on Learning Representations, 2017.

[53] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full rns
variant of approximate homomorphic encryption. In International Conference on Selected Areas
in Cryptography, pages 347–368. Springer, 2018.

[54] Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL, September 2021.
Microsoft Research, Redmond, WA.

[55] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No,
and Woosuk Choi. Low-complexity deep convolutional neural networks on fully homomorphic
encryption using multiplexed parallel convolutions. In International Conference on Machine
Learning, pages 12403–12422. PMLR, 2022.

[56] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

[57] Xiao Huang, Jundong Li, and Xia Hu. Label informed attributed network embedding. In
Proceedings of the tenth ACM international conference on web search and data mining, pages
731–739, 2017.

13

https://github.com/Microsoft/SEAL

A Appendix

A.1 HE encoding with AMA format

Prior to encoding input data into polynomials, it is necessary to map the four-dimensional tensor
X 2 R

B⇥C⇥T⇥J to a one-dimensional vector in R
N/2 using the AMA format, as proposed in [12].

This transformation allows for more efficient execution of STGCN forward-computation in the HE
domain. Below, we present the definition of the V ec function employed to map tensor X to a vector
in R

N/2:

V ec(X) = yj = (y0,j , . . . , yi,j , . . . , yN/2,j) 2 R
N/2

s.t. yi,j = X((i mod T)%B)⇥(i mod B·T)⇥(i % T)⇥j

j 2 J

(6)

Following the mapping process, the vectors yj are encoded into polynomials with degree N and
subsequently encrypted into ciphertext ctj , as detailed in [53]. In this study, when N is set to 216,
all tensors, including intermediate tensors, can be encrypted and packed into 25 ciphertexts, which
corresponds to the number of nodes. For cases where N = 215 (214) the number of ciphertexts
is 50(100). By selecting an appropriate value for N, the encryption and packing processes can be
optimized to maintain performance and efficiency.

A.2 HE Setting Details

In Table 6, we furnish comprehensive details regarding the HE inference parameters. Specifically,
i-STGCN-3 denotes a 3-layer STGCN model with i effective non-linear layers, while i-STGCN-6
signifies a 6-layer STGCN model with i effective non-linear layers. In this context, N represents the
polynomial degree, and Q corresponds to the coefficient modulus.

To guarantee computation precision utilizing a one-time rescale operation, we assign the scale factor
p for both ciphertext and plaintext to 233. This allocation results in a reduction of the current Q of
ciphertext by p bits. This setup ensures that the overall performance and accuracy conform to the
desired criteria while capitalizing on the security and resilience advantages conferred by HE.

Table 6: HE parameter settings in detail.

Model Encryption Parameters Mult
N Q p q0 Level

6-STGCN-3 32768 509 33 47 14
5-STGCN-3 32768 476 33 47 13
4-STGCN-3 32768 443 33 47 12
3-STGCN-3 16384 410 33 47 11
2-STGCN-3 16384 377 33 47 10
1-STGCN-3 16384 344 33 47 9

12-STGCN-6 65536 932 33 41 27
11-STGCN-6 65536 899 33 41 26
7-STGCN-6 32768 767 33 41 22
5-STGCN-6 32768 701 33 41 20
4-STGCN-6 32768 668 33 41 19
3-STGCN-6 32768 635 33 41 18
2-STGCN-6 32768 602 33 41 17
1-STGCN-6 32768 569 33 41 16

A.3 HE inference on GCNConv and Temporal-Conv Layer

Upon obtaining the AMA-packed ciphertexts ctj , the adjacency matrix multiplication A ·X can be
decomposed into a series of plaintext multiplications, PMult, in the HE domain. This decomposition
accelerates HE-inference without necessitating rotations. Furthermore, the subsequent temporal
convolution is performed solely on the temporal dimension T , utilizing 1⇥ 9 kernels.

14

Table 7: Comparison of latency breakdown between the non-reduced model with optimized model.

Model HE Operators latency (s) Total Latency Speedup
Rot PMult Add CMult (s) (⇥)

6-STGCN-3-128 1336.25 378.25 99.65 37.45 1851.60 -
2-STGCN-3-128 392.21 266.13 68.90 14.31 741.55 2.50
6-STGCN-3-256 2641.09 1508.19 397.17 74.90 4621.36 -
2-STGCN-3-256 777.68 1062.21 274.96 28.63 2143.47 2.16

12-STGCN-6-256 18955.09 1545.09 396.23 275.39 21171.80 -
2-STGCN-6-256 4090.08 1006.79 244.19 115.05 5456.12 3.88

ct
0
k = A ·X =

mX

i=1

ctkAi =
mX

i=1

JX

k=1

PMult(ctik , aikk) (7)

The AMA-packed ciphertexts allow for natural temporal convolution by single-node ciphertext ctj ,
facilitating independent computation. This approach results in a ReLU-reduction design through
structural pruning of ReLUs. The primary constraint to consider in this context is ensuring that the
level consumption of each ciphertext remains equal prior to the GCNConv layer (node aggregation).

A.4 Further Detail of Operator Fusion

During the HE-inference process, employing weight fusion conserves the multiplicative depth,
consequently reducing the ciphertext level budget. For instance, batch normalization, defined by
an affine transformation a

0
x+ b

0, and a polynomial activation function, defined by (ax+ b)2 + c,
can be readily fused into the corresponding temporal convolution layer wx+ b

00 with the function
w(a(a0x+ b

0)+ b)+ b
00 = (w ·a ·a0)x+ab

0+wb+ b
00. As a result, three consecutive multiplications

are consolidated into a single multiplication (pre-computing w · a · a0), thereby reducing the level
consumption of ciphertext from 4 to 2 (1 ⇥ 9 convolution, batch normalization, and polynomial
activation).

Analogous to the temporal-convolutional layer, the same fusion strategies can be applied to the
polynomial activation and batch normalization of the GCNConv layer. Utilizing AMA-packed
ciphertexts, the node aggregation in GCNConv is translated as depicted in Equation 7, where each
ciphertext carries out scalar multiplication with the plaintext of matrix elements aik,k. Consequently,
these plaintext matrix elements aik,k are fused with the primary 1 ⇥ 1 convolutional kernels to
conserve the multiplicative level, reducing the total level consumption of the GCNConv layer from
4 to 2 (1 ⇥ 1 convolution, adjacency matrix multiplication, batch normalization, and polynomial
activation).

A.5 Operator latency breakdown

Table 7 presents a comprehensive operator latency breakdown encompassing Rot, PMult, Add, and
CMult operations. The designation i-STGCN-3-128 refers to an STGCN-3-128 model with i residual
non-linear layers. As indicated in the table, the non-linear reduction contributes to a significant
reduction in latency. By leveraging a smaller polynomial degree N, the overall latency experiences
substantial improvement.

A.6 More Training Details and Insight

In this section, we present the training curves for the STGCN-3-256 model, which employs 6 to 1
effective second-order polynomial (non-linear) layers. Figures 7(a) through Figure 7(f) depict the
training curve progression. During the training process, we utilized mixed-precision training for the
polynomial model, which led to occasional instability in some iterations, as evidenced by spikes in
the loss values. Nevertheless, the training process demonstrated rapid recovery following such loss
spikes.

As demonstrated in training curve, a smaller number of second-order polynomial (non-linear) layers
contribute to a more stable training process and facilitate smoother convergence. This finding

15

(a) (b) (c)

(d) (e) (f)

Figure 7: Polynomial replacement training curves for (a) 6-STGCN-3-128 (b) 5-STGCN-3-128 (c)
4-STGCN-3-128 (d) 3-STGCN-3-128 (e) 2-STGCN-3-128 (f) 1-STGCN-3-128

(a) (b) (c)

Figure 8: Polynomial replacement training curves for (a) 12-STGCN-6-256 (b) 4-STGCN-6-256 (c)
2-STGCN-6-256

explains the enhanced performance of the STGCN-6-256 model, which features a reduced number of
non-linear layers, as compared to the full-polynomial model baseline.

To substantiate our hypothesis, we plot the polynomial replacement training curve for the STGCN-6-
256 model in Figure 8. The training curves for 12 effective non-linear layers (12-STGCN-6-256), four
effective non-linear layers (4-STGCN-6-256), and two effective non-linear layers (2-STGCN-6-256)
are presented. As the number of non-linear layers increases, the model achieves greater expressivity;
however, the polynomial replacement process becomes increasingly unstable. Consequently, for the
STGCN-6-256 model with only 4 non-linear layers, a more stable replacement process facilitates
better convergence, ultimately leading to improved accuracy performance.

16

	Introduction
	Background and Related Work
	LinGCN Framework
	Motivation
	Learning for Structural Linearization
	Learnable Polynomial Replacement with Teacher Guidance
	Put it Together

	Experiment
	Experiment Setting
	Experiment Result and Comparison
	Abalation Studies

	Discussion and Conclusion
	Appendix
	HE encoding with AMA format
	HE Setting Details
	HE inference on GCNConv and Temporal-Conv Layer
	Further Detail of Operator Fusion
	Operator latency breakdown
	More Training Details and Insight

