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Abstract. The field of automated face verification has become satu-
rated in recent years, with state-of-the-art methods outperforming hu-
mans on all benchmarks. Many researchers would say that face verifica-
tion is close to being a solved problem. We argue that evaluation datasets
are not challenging enough, and that there is still significant room for
improvement in automated face verification techniques. This paper in-
troduces the DoppelVer dataset, a challenging face verification dataset
consisting of doppelganger pairs. Doppelgangers are pairs of individuals
that are extremely visually similar, oftentimes mistaken for one another.
With this dataset, we introduce two challenging protocols: doppelganger
and Visual Similarity from Embeddings (ViSE). The doppelganger pro-
tocol utilizes doppelganger pairs as negative verification samples. The
ViSE protocol selects negative pairs by isolating image samples that are
very close together in a particular embedding space. In order to demon-
strate the challenge that the DoppelVer dataset poses, we evaluate a
state-of-the-art face verification method on the dataset. Our experiments
demonstrate that the DoppelVer dataset is significantly more challenging
than its predecessors, indicating that there is still room for improvement
in face verification technology.

Keywords: face verification · datasets · negative pair selection.

1 Introduction

The task of face recognition has received considerable attention from computer
vision and pattern recognition researchers in the past 20 years. This is because
face identification has significant utility in the fields of biometrics, visual search,
and socially assistive technologies [1,11]. Additionally, compute equipment ca-
pable of running increasingly powerful algorithms has become relatively cheap
and widely available. Face recognition technologies have significant impact on
society with a market share of $5.69 billion worldwide in 2023 and a projected
$12.05 billion by 2028 [18].

Work in face recognition and verification is dataset motivated. Every time a
new dataset is released, there are significant improvements in face verification
technology. Over the last several decades, there have been many datasets which
have challenged the state-of-the-art (SOTA) face verification methods, such as
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Labeled Faces in the Wild (LFW), IARPA Janus Benchmarks A, B, and C (IJB-
{A,B,C}), etc. [8,10,24,17]. With the release of these datasets came a renewed
interest in the field. Over the last few years, however, face identification on these
datasets has reached a saturation point. For example, many methods achieve over
99% accuracy on the LFW benchmark. With such high accuracies we are able to
visually inspect the samples that are incorrectly classified. In many cases these
incorrectly classified samples are mislabeled meaning there is really no room for
improvement on these datasets. In addition, face identification datasets are often
collected with a focus on quantity, neglecting other important attributes. These
problems provide the motivation for the proposed work.

This report introduces a new dataset – DoppelVer – consisting of uncon-
strained face images of doppelgangers – that is, individuals who look very sim-
ilar and are often mistaken for each other. The purpose of DoppelVer is to
challenge current SOTA facial feature extraction and face verification and iden-
tification methods. Although a plethora of datasets have been published to this
end in the past decade, many of them are either unavailable or have been nearly
solved. DoppelVer offers a specific challenge for modern face recognition meth-
ods, specifically the task of differentiating individuals who could pass for each
other. To the best of our knowledge DoppelVer is the first dataset to increase
face classification difficulty by increasing inter-class similarity rather than de-
creasing intra-class similarity. Upon publication of this paper, DoppelVer will be
made publicly available.

Here we detail the highlights of the DoppelVer dataset, which will be ex-
panded upon in the remainder of this work.

– DoppelVer contains 390 unique identities, each with at least one correspond-
ing doppelganger pair.

– We provide the unaltered source images along with cropped, aligned, and
centered (CCA) images.

– There is an average of 72 CCA samples per identity, with a minimum of 11
and a maximum of 98.

– For the CCA images we provide two evaluation protocols: doppelganger and
Visual Similarity from Embeddings (ViSE). Under the doppelganger proto-
col negative samples are select images depicting an identity’s doppelganger.
The ViSE protocol uses a generalized image embedding model to select neg-
ative images that are highly visually similar to the current image sample.

– Both protocols are divided into 10 cross validation splits which are dis-
tinct across identities. The doppelganger protocol’s cross validation splits
are made up of 14,000 image pairs while ViSE’s splits contain 3,500 image
samples.

The remainder of the paper is organized as follows: in Section 2 we provide
background to the field of face recognition, with a focus on feature extraction and
face classification methods. Section 2 also details similar datasets and the novelty
of DoppelVer. Section 3 contains a more detailed description of the DoppelVer
dataset including data collection, pre-processing, labeling, and the generation of
the evaluation protocols. In Section 4 we provide results of our experimentation
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comparing the performance of SOTA facial recognition pipelines on existing
benchmark datasets and DoppelVer.

2 Related Work

2.1 Background

Face recognition is separated into three well-defined steps: (1) face detection and
localization, (2) extraction of features from the detected face, and (3) classifi-
cation (verification or identification) [11]. The first task is to decide whether or
not there are faces in an image. If there are one or more faces, then the system
identifies bounding boxes for each face. The feature extraction step generates a
feature vector from the localized face. This feature vector should be discrimina-
tive enough to separate images of one identity from images of other identities.
Lastly, there is the classification step. This is separated into two classes of tech-
niques: identification and verification. In the identification scenario the system
is aware of a finite number of identities and it should learn to match each image
sample to one identity class. For the verification task the model is only provided
with supervision in the form of a binary label which represents either same or
different, and so pairs of images are compared at each step.

Any face recognition system that is meant to be deployed in “the wild” will
need to perform all three of these steps. That being said, each step is commonly
considered an active research topic. The intended purpose of the DoppelVer
dataset is to contribute towards improvements in the final two steps. In this work,
we devote our efforts towards the feature extraction and classification tasks.
This is because most modern methods employ deep learning techniques, which
combine feature extraction and classification into a single system. Additionally,
research has seemingly slowed in these areas.

One might suggest that the field of face classification is reaching its maturity,
citing results on the well-known benchmarks such as LFW, AgeDB, or IJB-
{A,B,C} [8,19,10,24,17]. Rather than assuming that the reported metrics are due
to the techniques solving the task of visually recognizing faces, we hypothesize
that the modern techniques have improved beyond the level of difficulty provided
by the current benchmarks. For example, in 2015 Liu et al. published a result of
99.77% accuracy on the LFW benchmark [13]. The dataset’s evaluation protocol
contains only 6000 images. This means that for nearly a decade methods have
been attempting to show improvements on a method that mis-classifies only 14
images, five of which are known to be incorrectly labeled.

Other methods have emerged with the intent of contributing to the issue of in-
creasing unconstrained face recognition benchmark difficulty [21,19,29,28]. These
methods primarily focus on increasing difficulty of the classification task with
highly varied pose and age. These features essentially decrease the intra-class
similarity (i.e. selecting images of the same identity that are visually different).

Our DoppelVer dataset increases classification difficulty by increasing inter-
class similarity (i.e. selecting images of different identities that are visually sim-
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ilar). We accomplish this goal in two distinct ways. First, we aggregate doppel-
ganger pairs. A doppelganger pair is simply two individuals who have similar
facial features. This protocol is constructed by human labelers selecting visually
similar identities. Second, for a given image we mine a negative sample which
is highly visually similar. This is accomplished by generating an embedding or
latent vector for all images in the dataset. We search for pairs of images whose
embeddings are near one another in the latent space. By these two methods we
produce two protocols that we have named doppelganger and Visual Similarity
from Embeddings (ViSE).

2.2 Existing Datasets

There are a large number of datasets collected and presented for the purpose of
facial feature extraction and classification. Many of these datasets are designed
either for training or evaluation. Here we describe the major datasets that al-
ready exist for the purpose of model evaluation and benchmarking and compare
them with the proposed DoppelVer dataset.

Labeled Faces in the Wild (LFW) [8]: The LFW dataset was created by
Huang et al. in 2007. At the time of publishing, many face recognition datasets
were collected by small teams of researchers with the intent of collecting fa-
cial images in constrained settings. LFW however was meant for studying the
problem of recognizing faces in unconstrained settings. The dataset contains
13,233 images and 7,549 identities. The researchers behind LFW contributed
significantly to the field by presenting a dataset organization that focused on
the honest reporting of results for the task of open-set face recognition. Their
dataset contains a development view and an evaluation view as well as splits for
10 fold cross-validation. The current SOTA accuracy on LFW is 99.8% (±0.2001)
[2].

AgeDB [19]: This dataset was introduced in 2017, with a focus on accurate
hand-labeling of age. This is a useful database when performing tasks such as
age-invariant face verification, age estimation, and face age progression. The
database contains 16,488 images of 568 identities with accurate-to-the-year age
labels. The average number of images per individual is 29, with an age range of
1 to 101 years old, the average age for an individual being 50.3 years. AgeDB
provides four face verification protocols, each split into 10 folds following LFW’s
process. These four protocols restrict the age variance across sample pairs. The
provided protocols cap age range to 5, 10, 20 and 30 years respectively. The
current SOTA accuracy on AgeDB 30 is 98.7% [3]

Cross-Age LFW (CA-LFW) [29]: The authors of this database posit that
methods reporting accuracy on LFW’s benchmark are optimistic. To show this,
CA-LFW has both positive and negative pairs which depict a large age gap,
while also providing negative pairs which are of the same race and gender. These
visually similar negative pairs emphasize the effect of age difference on classifier
performance. This dataset contains the same identifies as LFW with 6,000 image
pairs. The current SOTA accuracy on CA-LFW is 95.87% [5]
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Cross-Pose LFW (CP-LFW) [28]: CP-LFW was proposed by the same
authors as CA-LFW and was released one year later. This publication shifts focus
to the important task of face verification in the presence of extreme pose. They
note that nearly all images in LFW are near-frontal, suggesting that results on
LFW provide a poor representation of a face recognition method’s performance
when deployed into a real setting. The current SOTA accuracy on CA-LFW is
92.08% [5]

Each of the databases detailed above provide an important contribution to
furthering the field of face recognition. These datasets provide unconstrained
images and in the cases of [21,19,29,28] the sample pairs vary along specific
axis which were not well represented in LFW. As mentioned previously, these
datasets focus on selecting positive pairs which are visually dissimilar to one
another. DoppelVer’s goal is to expand on a dimension of challenge which has not
yet been addressed. This dimension is that of visual similarity among negative
samples. This yet unseen challenge will force methods to extract significantly
more fine-grained, prominent features from face images. In order to achieve high
performance on DoppelVer, techniques will be required to extract those features
which uniquely define a given identity.

3 Proposed Method

3.1 Dataset Collection

In order to construct a dataset for which negative samples are analogous to pos-
itive samples it is intuitive to begin by aggregating a list of identities which bare
visual similarity to human labelers (i.e. doppelgangers). Doppelganger identity
pairs were collected through labeler intuition of similar looking identities and
lists of doppelgangers publicly available on the Internet. We present a large list
of doppelganger identity combinations, totalling 237 pairs and 390 individuals.
For each individual, 100 images were scraped from online sources. The average
number of images presented in the dataset for each person is approximately 72
due to pruning of noisy samples and duplicates.

3.2 Data Preparation

Data preparation involved two distinct steps: (1) cropping, aligning and centering
the images, and (2) hand removal of erroneous samples and duplicate images.

Cropping, aligning and centering: The first step in the data preparation is
to reduce the original images into cropped, aligned, and centered images. We crop
to remove information which is extraneous to the face recognition task. Align-
ment and centering are performed as they have been recognized as important
for achieving competitive face recognition benchmark performance. Alignment
involves rotating the image such that the eyes lie on a horizontal line (i.e. the
same y-coordinates). The operation of centering moves the face in the frame of
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the image such that it appears centrally. Centering is accomplished by repeating
edge pixels along either the horizontal or vertical borders of the image. The crop-
ping operation relies on a bounding box and centering/alignment rely on facial
landmarks. We extract the bounding boxes and facial landmarks for images in
DoppelVer with the MTCNN detector [27].

While processing the dataset with MTCNN, three cases may occur: (1)
MTCNN does not detect a face, (2) MTCNN detects a single face, and (3)
MTCNN detects multiple faces. Images where a face is not detected are pruned
from the dataset. Although MTCNN returns a detected face in most images,
not all detections contain the target identity or a valid face. Each detection is
hand-checked for validity during the cleaning phase of pre-processing. When at
least one face is detected, MTCNN returns a bounding box for the image along
with five facial landmarks. The landmarks provide the detected location of the
centers of the eyes, corners of the mouth, and tip of the nose.

Initially we cropped the source images to the bounding boxes predicted by
MTCNN, but found that the crop was too tight. These crops often removed
valuable information such as the top of head, ears and most of the neck. We ex-
pand MTCNN’s detected bounding box width and height by 50%. This produces
crops which contain more contextual information. There are cases for which the
detected face is near the border of the image, restricting our ability to expand
the bounding box. In these cases we simply set the desired bounding box location
to the border of the image.

After cropping, we align the images according to the extracted landmark
locations. Our alignment rotates the images such that the detected landmark
for left and right eyes have the same y-axis coordinate. During the alignment
process some image information is lost due to the corners of the image rotating
outside of the frame. Following the lead of the CelebA dataset, we reduce the
effects of this information loss by performing same padding for any pixels that
are lost due to rotation [16].

The last pre-processing step is to center the image so that the center most
pixel of the image is within the bounds of the detected face. Centering is per-
formed by computing a landmark which lies at the mid-point between the left
and right eye landmarks. Additional pixels are appended to the horizontal and
vertical image borders such that the center of the face is equidistant to each
border. The appended pixels are simply duplicates of the pixels which are along
the border that needs to be expanded.

Removal of erroneous or duplicate Images: We remove unsatisfactory
images by hand and by automatic detection. In the case of hand labeling, labelers
began with the original image set collected from the internet. Their task was to
pass over the images and delete any image which contained erroneous detections
(e.g. not depicting the correct identity or images not containing a face). The set
of images which had complete labeler agreement was accepted. The set of images
which did not have agreement were re-labeled. Any remaining images which the
labelers did not reach agreement on were pruned from the dataset. The images



DoppelVer: A Benchmark for Face Verification 7

which achieved hand label agreement were passed to the automatic detection
system.

The automatic detection system works by generating embeddings for each
face image in the dataset with the dinov2s model [20]. dinov2s is a general
purpose image embedding model, built to capture a discriminative representation
of input images without finetuning. The cosine similarity is computed between all
combinations of input images’ embeddings to determine samples which are highly
visually similar. To compute the embeddings and cosine similarities efficiently
we utilize the fastdup library [12] from Visual Layer. For any image pair that has
exact similarity (i.e. duplicate images), one image from the pair is pruned from
the dataset. Next, we return all of the image pairs that are above a threshold
of 0.92 similarity. We extract these images pairs and provide them to human
labelers to find near duplicate images (i.e. images that have been horizontally
flipped, color jittered, cropped slightly differently, etc.), which are removed from
the dataset.

3.3 Protocol Generation

The DoppelVer dataset contains in total 27,967 carefully curated and processed
images. The question that remains is the best way to utilize these images for
assessing and benchmarking feature extraction and face classification methods.
To answer this question, we introduce two protocols for evaluation using Dop-
pelVer: doppelganger and ViSE. Fig. 1 provides example image pairs for each
protocol in DoppelVer and Fig. 2 shows samples from CA-LFW and CP-LFW.

Both protocols are made up of positive and negative image pairs. Positive
image pairs in both protocols signify instances where both images depict the
same identity. In the doppelganger protocol, negative pairs are made up of one
image sample depicting the current target identity and one image sample de-
picting their doppelganger. In the ViSE protocol the negative pairs contain an
image sample depicting an identity which does not generally appear as visually
similar to the current identity, but in a one-off case is visually similar. Such
similarity often arises due to comparable pose, lighting, hair style, clothing, or
image background. After generating a large number of image pairs, we divide
the dataset into 10 equally sized splits. Each split is divided such that images
of an identity are in only a single split. Identities are divided the same in each
protocol (e.g. split 0 of the doppelganger protocol depicts the same identities as
split 0 of ViSE).

The doppelganger protocol is generated with our curated list of doppelganger
pairs. We create the pair instances in the doppelganger protocol as follows. First,
we sample 500 image combinations, without replacement, for every pair of dop-
pelgangers and identities with themselves. After generating all pairs following
this criteria we separate the samples into 10 splits based on their identities and
pairs such that the same identity never shows up in multiple splits. Approxi-
mately 10 percent of the dataset is placed into each split. Finally, from each
split we randomly sample 7,000 positive pairs and 7,000 negative pairs. We do
this to follow the procedures laid out by LFW. This protocol has a positive label



8 N. Thom et al.

Fig. 1. Shown above are samples from both protocols of the DoppelVer dataset – dop-
pelganger and ViSE. We note that negative samples from the Doppelganger protocol
share facial attributes while the image pairs in ViSE frequently share factors external
to the face such as pose, clothing, and background.

Fig. 2. The upper portion of this figure presents samples from the CA-LFW dataset
and the lower portion contains samples from CP-LFW. The CA-LFW samples showcase
differences in age while CP-LFW’s images showcase differences in pose.



DoppelVer: A Benchmark for Face Verification 9

and negative label ratio of exactly 50%. It has a gender distribution of 44.96%
males and 55.04% female samples respectively. Identities in each split have a
relatively even representation with an average minimum contribution of 4.31%,
average maximum contribution of 19.07%, and an average standard deviation
between representation of 5.32%. In total the doppelganger protocol has 140,000
sample pairs.

To generate the ViSE protocol we use a similar approach to the one described
in the automatic detection of unsatisfactory images. We begin by generating
embeddings for each image in the dataset with the dinov2s model. Next, we
compute the cosine similarity between images which do not come from the same
identity. We retain all image pairs that have a similarity greater than 0.80. We
have found that this form of mining hard pairs image by image rather than
individual by individual results in significantly more visual similarity between
image pairs. Using the same identities in each split as the doppelganger protocol,
we break the protocol into 10 splits with unique identities in each split. This
protocol has a positive label and negative label ratio of exactly 50%. It has a
gender distribution of 40.36% male and 59.64% female. Identities in each split
have a relatively even representation with an average minimum contribution
of 2.29%, average maximum contribution of 17.61%, and an average standard
deviation between representation of 3.6%. This protocol has 35,000 verification
pairs.

3.4 Intended Use

The DoppelVer dataset is intended to provide a new challenge for the research
community developing methods in the area of facial recognition. DoppelVer has
been designed to act as an evaluation dataset, not a training dataset. In the
past decade the most effective methods of facial recognition have utilized large
training sets such as CASIA-WebFace, MegaFace, VGGFace2, MS-Celeb-1M
[26,9,4,7]. These datasets contain 34.94K, 1.03M, 3.31M, 10M samples respec-
tively. Although an aggregate of visually difficult pairs is attractive for faster
convergence time, DoppelVer does not contain enough diversity to effectively
and ethically train models.

We provide cross validation splits for both protocols in DoppelVer. The pur-
pose of these splits is two-fold. First, some methods may wish to perform feature
extraction prior to face classification. Such extraction methods should pre-train
on external sources and infer features for each image in DoppelVer. At evalua-
tion time final-stage classifiers should be iteratively trained from scratch (using
their pre-trained feature extraction methods) on nine splits and evaluated on the
tenth. Performance should be recorded as an average across the 9 models. We re-
fer to interaction with the dataset in this way as View 1. Second, methods that
wish to train on external data and perform only evaluation on DoppelVer should
use split 0 for algorithm development and validation of results. The model should
not be exposed to data in any of the other nine splits until final evaluation. Use
of the dataset in this way is called View 2.
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Taking motivation from the LFW dataset, we suggest that researchers uti-
lizing View 1 report estimated mean accuracy (EM ACC) and standard error
of the mean (SEM). We define these metrics in the following way:

µ̂ =
Σ9

i=1
pi

9
, SEM =

σ̂√
9
, σ̂ =

√

Σ9

i=1
(pi − µ̂)2

9

where pi is the percentage of correct classifications on View 1 when using
the ith split for testing. σ̂ is the estimate of the standard deviation. As noted by
the authors of LFW, it is important that accuracy is computed with parameters
and thresholds chosen independently of the test data. Researchers should not
simply choose the point on a Precision-Recall curve giving the highest accuracy.

For the methods which utilize View 2 of DoppelVer, we advocate for the use
of accuracy (ACC) and area under the receiver operating characteristic curve
(ROC AUC). We elect for the use of ACC and ROC AUC because of the bal-
anced nature of classes in the Doppelganger and ViSE protocols. In addition,
the correct classification of true positives is equally important to classification
of true negatives.

4 Experiments

In this section, we highlight the challenges posed by the DoppelVer dataset as
compared to other existing evaluation datasets. We detail the methods used for
evaluation, the training data, and the process employed for training and testing.

4.1 Evaluation Model

To provide an accurate depiction of the challenge posed by DoppelVer, it is im-
portant that we evaluate DoppelVer with SOTA face recognition models. Due
to ease of implementation and competitive results we have elected to utilize the
techniques described by Wen et al. in SphereFace2 [23]. In particular we train the
20 layer SphereFace Network (SFNet-20), initially proposed in [14], with the fol-
lowing loss functions: COCO, SphereFace, CosFace, ArcFace, and SphereFace2.
Following Wen et al., we equip SFNet-20 with batch normalization to facilitate
model optimization. A complete implementation for training SFNet-20 with the
aforementioned loss functions can be found in the OpenSphere GitHub reposi-
tory [25].

4.2 Training and Evaluation Process

For pre-processing, we crop face images in each dataset with MTCNN, resize
images to a size of 112×112, and normalize each RGB pixel [0, 255] to the range
[-1, 1]. We trained our models on a single Nvidia Geforce RTX 3090 GPU. Each
model is trained for 70,000 batches of size 512. The model weights are updated
by stochastic gradient descent with a momentum of 0.9 and weight decay of
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0.0005. The initial learning rate of 0.1 is reduced by a factor of 0.1 at batches
40,000; 60,000; and 70,000.

We evaluate our dataset and protocols with VGGFace2, MS-Celeb-1M, and
CASIA-WebFace [4,7,26]. In each run the VGGFace2 dataset was found to pro-
duce the best results on each evaluation dataset. VGGFace2 contains between
80 and 800 images for each identity making it a powerful training dataset for the
face verification task. Evaluation of the trained models is performed on LFW,
CA-LFW, CP-LFW, AgeDB 30, view 2 of DoppelVer’s doppelganger protocol,
and view 2 of DoppelVer’s ViSE protocol. Our measured accuracy and ROC
AUC are provided in Tables 1 and 2 respectively.

4.3 Discussion of Results

We are satisfied with the performance achieved by the SOTA methods on the
existing benchmark datasets. SOTA performance on the LFW dataset is 99.8%
accuracy. Our training of SphereFace achieves an accuracy of 99.58%, mis-
classifying just 25 samples. With this result we can be assured that this baseline
is competitive with other SOTA methods. The best published results on the
other benchmark datasets are 95.87%, 92.08%, and 98.7% accuracy on CA-LFW,
CP-LFW, and AgeDB 30 respectively. Regardless of loss function, the baseline
networks struggle significantly more with variations in pose than variations in
age. CA-LFW and AgeDB appear to present a similar degree of difficulty to the
models.

It is clear from our experiments that the doppelganger and ViSE protocols
of DoppelVer are much more difficult for the classifiers than the other datasets.

Table 1. Average accuracy of face verification for the comparison models trained with
VGGFace2 and benchmarked on various datasets.

Method LFW CA-LFW CP-LFW AgeDB Doppelganger ViSE

COCO [15] 99.08 91.25 88.48 89.40 61.14 52.53
SphereFace [14] 99.58 93.15 91.65 93.53 63.48 57.08
CosFace [22] 99.52 93.03 91.37 93.02 63.29 56.93
ArcFace [6] 99.55 93.40 91.18 92.57 63.28 57.70

SphereFace2 [23] 99.53 93.80 90.83 93.38 61.66 55.41

Average 99.45 92.93 90.70 92.38 62.57 55.93

Table 2. Average AUC of face verification for the comparison models trained with
VGGFace2 and benchmarked on various datasets.

Method LFW CA-LFW CP-LFW AgeDB Doppelganger ViSE

COCO [15] 99.89 96.56 93.57 96.03 65.13 50.53
SphereFace [14] 99.92 97.44 95.50 98.11 68.65 59.41
CosFace [22] 99.91 97.28 95.64 97.86 67.91 58.58
ArcFace [6] 99.89 96.99 95.46 97.53 68.15 59.79

SphereFace2 [23] 99.89 97.55 95.42 98.02 65.43 55.77

Average 99.90 97.16 95.12 97.51 67.05 56.82
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Results are better for the doppelganger protocol than the ViSE protocol. This
result aligns with intuition. Two identities that are doppelgangers may in general
share facial attributes, but variations in clothing, hair style, lighting, and facial
expression are expected when viewing a gallery of images depicting them.

On the other hand, the ViSE protocol contains image pairs which are adver-
sarial in nature. By this we mean that the combinations of samples are those
which a deep network is expected to struggle to differentiate. Although we use a
different deep convolutional network to select samples which are visually similar
than we do for performing facial recognition, one would expect that the visual
features which are attended to by deep networks would have some similarity.

We believe that methods which will perform well on the ViSE protocol will
need to extract features which are highly specific to the task of facial recognition.
In addition, methods will need to not only detect relevant facial features, but
discern if the features are prominent/defining to the individual’s face.

5 Conclusion

In this work we introduce DoppelVer, a novel evaluation dataset for the tasks
of facial feature extraction and face verification. DoppelVer consists of 27,967
carefully curated face images, which are used in two face verification protocols
of image pairs: doppelganger and ViSE. We evaluate our methods using sev-
eral SOTA methods. A near SOTA baseline model is only capable of correctly
performing face verification at an accuracy of 62.57% and 55.93% in the doppel-
ganger and ViSE protocols respectively. This indicates that despite impressive
results on popular benchmark datasets, there is still work to be done in the field
of facial recognition.

Future research should explore improvements to deep vision models to enable
accurate classification of visually similar individuals. Additionally, future work
might involve the application of the ViSE protocol’s adversarial image pair se-
lection to larger selections of facial data to enable the training of deep networks
with visually similar negative pairs. Lastly, this data might be used to under-
stand the difference in vision model perceptions between images of identical
twins or parents and children at similar times of life.
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