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Abstract. During the past decade, hyperspectral imaging (HSI) has been an
area of broad, innovative work in a variety of applications such as health,
defense, and remote sensing. Hyperspectral images can be collected using
a compact HSI imager and are referred to also as hypercubes. Currently,
there are no biometric hyperspectral databases available to the community. In
this paper, we create the Finger Hypercubes Sanitization with Demograph-
ics Database (FHSD) (https://github.com/cysber-CSIS/GMU-CSIS—Finger-
Hypercubes-Sanitization-with-Demographics-FHSD-2022) consisting of hyper-
spectral images of human fingers along with their demographics (i.e., age, gender,
and ethnicity) captured before and after hand sanitization. This gender-balanced
database consists of images pertaining to 100 subjects collected in an indoor
environment with a white background under proper lighting conditions using the
Resonon bench-top Pika-L hyperspectral imaging system (400–1000 nm). For
each subject, multiple left and right index samples were acquired before and after
sanitization. In addition to spatial information, HSI data provides 281 channels
decoding a spectral component able to describe skin reflectance. Thus, this data
holds great potential for enabling a more in-depth analysis of demographic dif-
ferentials in fingerprints compared to conventional sensing technologies.
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1 Introduction

Despite several benefits, the use of algorithmic decision systems is also associated with
different risks for individuals, such as discrimination and unfair practices. In particular,
biometric systems (e.g., face and fingerprint recognition) have exhibited undesirable
demographic differentials by yielding lower genuine scores for ethnic minorities and
women. While numerous studies evaluate the fairness of various face recognition sys-
tems, these studies are limited for fingerprint recognition [15]. Over the past decade,
researchers have demonstrated the possibility of predicting gender from fingerprint
images. The majority of current methods for predicting gender rely on techniques based
on textural properties such as ridge density [2,15].
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Over the past ten years, sensor-based fingerprint recognition systems have been
under careful examination to see if they exert racial and gender bias. It has been
found that the use of Binarized Statistical Image Features (BSIF), Local Binary Pat-
terns (LBP), and Local Phase Quantization (LPQ) were able to identify features to
discriminate males from females fingerprint images with an accuracy of 88.7% using
K-Nearest Neighbor. To further explore gender classification with respect to capture
bias, cross-sensor evaluation was performed using local textural descriptors (LBP, and
BSIF) achie-ved an accuracy of 80% [2,15].

Recent studies found that demographic covariates may exhibit bias in fingerprint
match scores obtained using automatic matchers. ROC regression techniques have been
used to evaluate the impact of demographics such as age, gender, and ethnicity on the
performance of the latent fingerprint automatic matchers. These techniques show that
the models perform significantly better on male subjects with an AUC of 71% and 76%
for the right index and thumb instances respectively. They perform even better when
latent image quality has been used as an auxiliary covariate along with the demograph-
ics [4,18,19]. Statistical testing frameworks have also been used to evaluate biases in a
commercial-off-the-shelf fingerprint matcher (VeriFinger 12.3 SDK) and a neural fin-
gerprint matcher (DeepPrint). The highest True Match Rate (TMR) was observed in
females with a TMR of 99.58% and 93.3% for Verfinger 12.3 and DeepPrint, respec-
tively. The analysis of biases in fingerprints may be limited by existing sensing tech-
nologies; therefore, we propose to investigate the problem from a richer perspective,
i.e., in the hyperspectral domain [1,3,5].

Over the past few years, Hyperspectral imaging (HSI) has been used across various
fields such as forensic science, seed viability, environmental monitoring, and food qual-
ity checks [12]. Recently, HSI has also gained a lot of interest in biometrics and is used
to analyze a person’s physical and biological characteristics to authenticate and verify
their identity [7–11]. These imagers collect both spectral and spatial information from
the subjects and hence are more widely adopted by many security services to expand
their capabilities for different biometric purposes. HSI can measure continuous spec-
tral bands to analyze a wide spectrum of light instead of assigning primary colors (red,
green, and blue) to each pixel. While a standard RGB camera acquires data across 3
channels, the hyperspectral imager collects data from 281 channels and offers a much
wider spectrum. It uses fine wavelength resolution to measure the continuous spectrum
of light for each pixel of the scene, not only in the visible but also in the near-infrared
region [14]. Using deep learning technology in HSI analysis has advanced quickly in
recent years and attracted a lot of attention. Researches have been conducted to develop
deep learning models for hyperspectral image classification specifically to deal with a
few labeled samples by proposing techniques to achieve good performance in such a
critical scenario including autoencoders, few-shot learning, transfer learning, activate
learning, and data augmentation [37].

In this paper, we create the Finger Hypercubes Sanitization with Demographics
(FHSD) database which is the first one providing containing finger hypercubes from
100 subjects with demographics. The images are captured in various temporal sessions,
i.e., before and after applying hand sanitizer, enabling the analysis of the impact of this
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product on the spectral signature of finger data. The collection is multi-instance (i.e.,
left and right index) and multi-sample (i.e., three per subject).

The rest of the paper is structured as follows: Sect. 2 describes recent applications
of hyperspectral technology. Section 3 presents technical details about HSI scanning
methods and acquisition modes. Section 4 discusses the data collection protocol, the
tools used, and the challenges faced, and Sect. 5 draws our conclusion.

2 Literature Review

Lately, subject identification and authentication using hyperspectral and multispectral
imaging have gained a lot of interest due to their ability to collect spectral information
from the subjects besides spatial information by acquiring their data cubes from across
the different bands of the electromagnetic spectrum.

In 2008, Robila proposed an approach to study and analyze the efficiency of hyper-
spectral face recognition and the effectiveness of human matching based on spectral
characteristics by acquiring the data in indoor and outdoor environments from over 120
bands across multiple spectra in various angles. It was performed to improve the face
recognition by combining images from different sources, such as the visible and the
infrared spectrum. They observed that spectral angle and data together could be used to
differentiate humans [9].

In 2017, L. Di Cecilia et al. built an optical system and developed a method to mea-
sure the spectral reflectance of the human iris. They collected data in the spectral range
of 440 to 900 nm. By performing hyperspectral analysis on the iris, its pigmentation
and age-related changes could be observed over time. They also found that machine
learning techniques like k-means clustering can be used to improve the evaluation of
iris structural features [10]. In 2017, Dabhade et al. conducted a laboratory experiment
to perform an analysis on human authentication using a hyperspectral face database of
120 cubes collected from 70 subjects. They performed feature extraction on the UWA
HSFD database developed by the university of Western Australia using principal com-
ponent analysis. They found that recognition rates of hyperspectral face images vary
across different spectral bands [11].

In 2018, Jenerowicz et al. conducted a study to analyze the possibilities of using a
pushbroom hyperspectral camera to interpret the hand biometric characteristics, such
as hand shape and vein pattern of the subjects, for accurate identification. They found
that data collected at 900mm (near-infrared region) could be used to better identify the
hand’s vascular patterns, making it a viable alternative to currently available commer-
cial biometric systems [8].

In 2022, Marasco et al. conducted a study to analyze the impact of hand sanitizer on
the spectral signature pertain to finger hypercubes using a subset of the proposed Finger
Hypercubes Sanitization with Demographics (FHSD) database. They built a framework
to perform a non-parametric classifier-based two-sample test to determine whether the
spectral signals collected from the finger hypercubes before hand sanitization differs
from the signal collected after hand sanitization. They found that hand sanitizer does
not have a significant impact on the finger hypercubes [6].
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3 Fingerprints in the Hyperspectral Domain

Electromagnetic radiation (EMR) is energy in the form of electromagnetic waves that
interact with substances in various ways depending on whether it strikes a solid, liq-
uid, or gas and undergoes one or more of the processes of reflection, absorption, and
transmission. Reflection occurs when the electromagnetic radiation is reflected by the
target surface upon which it is incident. The absorption process, on the other hand,
occurs when the target absorbs the incident radiation. Finally, transmission occurs when
the radiation passes through the target unaffected [27–30]. The physical characteris-
tics of the target and the wavelength of the incident light determine how much light is
absorbed, reflected (which the camera can capture), and transmitted by the target.

Light is an EMR within a visible region that enters human biological tissue, which
undergoes multiple scattering and absorption events as it travels through it. The analep-
tic window spanning from 600 to 1300 nm allows significant light penetration because
most tissues are weak absorbers. The penetration depth of light entering the human bio-
logical tissues is determined by the tissue’s ability to absorb it [32]. This light absorbed
is either converted to heat or is radiated in the form of luminescence. The EMR in this
visible to the near-infrared region can penetrate the skin up to 4–5 mm [33]. Over time,
long exposure of the instrument to the light will lead to accumulation of electrons, lead-
ing to dark currents, i.e., a flow of charges in the absence of light. This phenomenon
generates noise in the hypercubes which must be eliminated by dark current correction
[31,43].

HSI systems are categorized based on the acquisition mode and on how the target’s
spectral and spatial information is obtained [34]. There are two main types of scanning
methods: spatial (point and line) and spectral (area) scanning [35], and three ways to
acquire the hypercube: point, line, and area scanning [36].

As shown in Fig. 1, point scanning (also known as whisk-broom imaging) is the
most time-consuming method in which the spectrum is procured at only one spatial
location at a time, and then the detector or the target is moved to acquire other points.
It aids in obtaining a high spectral resolution to perform a more detailed analysis of the
captured pixel [38].

Pushbroom cameras (also known as Line-scan cameras) can scan 100 times faster
than point-scan cameras while still achieving high spectral resolution, see Fig. 1 [39,
40]. At a given time, the imager captures one line of pixels from the target (y-axis).
Moving the camera’s field-of-view (FOV) in that direction generates the other spatial
dimension (x-axis) [38].

Area scan (also known as staring imaging) acquires the hyperspectral image one
wavelength at a time from the target using a rotating filter or a tunable filter such as
LCTF or AOTF, as shown in Fig. 1. This method requires no relative movement between
the target and the imager, and the imager captures a whole spatial scene (wavelength)
at each spectral band in a sequence [41]. Hyperspectral images are a stack of images
collected across the electromagnetic spectrum by obtaining a continuous spectrum of
wavelengths for every pixel in an image. The images are collected at different spectral
bands resulting in three-dimensional data structures containing two spatial dimensions
(X-Y) and one spectral dimension (λ) known as a hypercube [42]. The Resonon Pika
L line scan camera was used to collect the hypercubes in this study. As the object is
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Fig. 1. Classification of different types (line, point, and area scan) of hyperspectral cameras and
the amount of data each camera acquires within a single scan.

translated, it gathers data one line at a time and assembles multiple lines to complete the
two-dimensional image; this line-by-line assembly of the numerous line-images results
in a complete finger hypercube with spectral and spatial dimensions. The application of
this system can be extended and used to distinguish demographic information such as
age and gender and can also perform contactless fingerprint recognition using machine
learning. As this imager collects the data across 281 spectral channels, it helps analyze
the biochemical content in the finger skin for a better understanding of the effect of hand
sanitizer on spectral information across the subjects over time. Therefore, our database
bridges the gap between biometrics and advanced image processing, making it distinct
from other databases in the biometric community.

4 The Data Collection

The hypercubes and the demographics were collected from 100 subjects. The subjects
are gender-balanced, as shown in Fig. 2, and are primarily students, their families, and
friends who are 18 years of age or older, free of metabolic diseases, malfunction of the
genetic disorder of metabolism (e.g., diabetes), and are of normal weight. We collected
data from people of various ages and backgrounds. In terms of ethnicity, 84% of the sub-
jects are Asians/Asian Americans, 6% are Hispanic/Latino, 6% are White/Caucasians,
and 4% are North African/African Americans. The subjects with known health issues
and under any kind of hormone treatment are excluded from this study. Individuals
with open wounds/cuts on their hands were also excluded due to the burning sensation
caused by the hand sanitizer.

For each subject, six hypercubes (3 per finger) were collected from the left and right
index fingers before the hand sanitizer was applied, as shown in Fig. 3. Once the hand
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Fig. 2. Distribution of gender for the participants of the data collection.

Fig. 3. Hypercube samples collected before hand sanitization: (a) Hypercubes captured from the
left index before hand sanitization, and (b) hypercubes captured from the right index before hand
sanitization.

sanitizer is applied, each fingerprint instance was collected three times after 1, 10, and
25 min resulting in a total of 24 hypercubes collected from each subject as shown in
Fig. 4. In total this dataset comprises of 600 hypercubes collected before sanitization
and 1800 hypercubes from both the fingers after hand sanitization as shown in Table 1.
Therefore, it comprises a total of 2400 hypercubes collected from 100 subjects, and the
total time taken for each subject during the data acquisition is 45 min. In this data col-
lection, each finger hypercube at an instance is collected three times to better understand
the spectral variations at each instance. To study demographic biases, the demographic
data were also collected from the subjects via an in-person paper survey. For this col-
lection, we used Purell hand sanitizer containing 70% ethanol, manufactured by GOJO,
and subjects applied a single pump of hand sanitizer, approximately 3 ml of this product
once the six hypercubes were collected before hand sanitization.

The challenges encountered during this data collection involve difficulties for some
of the subjects in placing their finger directly under the camera, others faced problem
to keep their finger still while the stage was moving. Some of the subjects could not
look and put their finger directly under the camera due to the halogen lighting assembly
being too bright. A few technical challenges faced during the initial assembly of the
bench-top system are setting the stage controls and focusing the objective lens of the
imager. As Pika-L is a line scan camera, the stage must move at a speed proportional to
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Table 1. Details about the data collected in this study.

Sanitization # of Subjects Finger instance Time (min.) # of Samples
per Subject

# of
Datacubes

Before Sanitization 100 Left Index 0 3 300

Right Index 3 300

After Sanitization Left Index 1 3 300

10 3 300

25 3 300

Right Index 1 3 300

10 3 300

25 3 300

Total # of
Datacubes

2400

Fig. 4. The 18 hypercubes, 6 collected at each instance from the left (L) and right (R) index fingers
after 1, 10 and 25 min of hand sanitization.

the imager’s frame rate to acquire the target with a unit aspect ratio. The image could
be elongated or shortened if the stage is too slow or too fast in comparison to the frame
rate of the camera. Focusing the bench-top system’s objective lens is a difficult task
that is accomplished by placing a calibration sheet within the imager’s field of view and
rotating the lens with an allen wrench until the sheet is focused.

4.1 The Sensing Module

The data was captured by using the Resonon bench-top hyperspectral camera Pika
L illustrated in Fig. 6. The resonon bench-top system comprises of a linear transla-
tion stage, mounting tower, lighting assembly, and SpectrononPro software installed
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on a desktop computer. The Pika L is a lightweight and compact Visible Near Infrared
(VNIR) hyperspectral imager with a maximum frame rate of 165fps; it has a 23 mm lens
with a spectral range of 400–1000 nm, as shown in Fig. 5, 281 spectral channels, 13.1◦

field of view, 2.1 nm spectral resolution, and 900 spatial pixels. The Resonon Hyper-
spectral cameras are line scan imagers that collect data one line at a time. The multiple
line images are then pieced together line-by-line to form a final image. A linear stage
assembly is used in the bench-top system, which is moved forward and backward with
the help of a stage motor [43].

Fig. 5. Finger hypercubes across the Electromagnetic spectrum

The pika imaging spectrometers were connected to the computer via USB cables;
one of the two USB ports was connected to the camera, which supplies power to the
camera; the second USB (Black) port from the computer was connected to the stage of
the bench-top system via the Mini USB connection, and the DC power supply powers
the stage. Finally, another regulated power supply was used to supply power to the
lighting assembly of the bench-top system [43].

Four halogen bulbs are positioned above the stage to emit light at a proper angle
to focus the scene and create ideal scanning conditions. Resonon’s laboratory bench-
top hyperspectral imaging system uses broadband halogen lighting for hyperspectral
reflectance measurements. The lights used in the 4-fixture are: 5300 Kelvin 36 Degree
12V 35W Halogen Flood Light Bulb. A stabilized power supply controls these lights,
reducing variation caused by illumination fluctuations [43]. Since hyperspectral imag-
ing separates light from a scene into many spectral components, the total radiation inci-
dent on a single sensor pixel is relatively small. The halogen lighting assembly provides
adequate illumination at all wavelengths to acquire high-quality hyperspectral data from
the bench-top system. The hyperspectral imaging system was set up with a distance of
about 25 cm between the lens and the linear stage, with the lighting assembly also at
the same level as the lens. Once the lighting assembly is adjusted to focus on the linear
stage, the dark currents are corrected by blocking all the light entering the lens of the
camera with the cap as shown in Fig. 7(a). The camera is then calibrated for response
correction by placing a white tile under the lens; these corrections are performed in the
same environment where the data collection was performed.

The Spectronon Pro is the software used by Resonon to control its bench-top sys-
tem. It is connected to the Pika L camera via a USB cable. As shown in Fig. 6(b), this
software performs all of the scans and collects hypercubes from each subject. Before
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performing the scans, the camera and stage parameters of the bench-top system are
adjusted using the Spectronon Pro interface. It analyzes the hypercube across various
wavelengths by selecting the Region of Interest (ROI) and generating the mean spec-
trum for each ROI in the hypercube.

Fig. 6. The Resonon bench-top system: (a) the hyperspectral camera Pika L, and (b) the spec-
tronon Pro interface used to collect the hypercubes from the subjects.

4.2 The Protocol

Data from each subject is collected by placing the subject’s left and right index fingers
under the camera. As shown in Fig. 3(a) & Fig. 3(b), each fingerprint instance is col-
lected three times using the HSI camera before the hand sanitizer is applied. Once the
hand sanitizer is applied, each fingerprint instance is collected three times after 1, 10,
and 25 min as shown in Fig. 4. These images are equally distributed over both genders
and are stipulated with their respective demographics. Before starting the acquisition, a
white tile is placed under the camera to provide a white background while capturing the
image and it is placed three holes from the right. The finger should be placed 1 cm from
the border of the white surface in a way that the finger is under the camera, as shown in
Fig. 7(b).

Fig. 7. (a) Dark current correction by blocking the lens (b) Placing the finger on the white surface
for hypercube acquisition.
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To acquire the hypercubes, subjects are asked to perform the following steps,

– The subjects are first asked to place their left index finger on the white surface under
the camera without moving it, and three hypercubes are collected.

– The subjects then place their right index finger under the camera and three more
hypercubes are collected before the hand sanitizer is applied.

– After applying the hand sanitizer, 6 hypercubes are collected, 3 at each instance
from the left and right index fingers after 1, 10, and 25 min, resulting in a total of 18
hypercubes after the hand sanitization.

The hypercubes are saved in .bil format. The nomenclature of the hypercubes col-
lected before sanitization is shown in Fig. 8(a). The first four digits indicate the subject’s
label, which ranges from 1 to 100. The two characters after the underscore denote if the
hypercube is collected from the L (left) or R (right) index finger. Finally, the sam-
ple number, which ranges from S1 to S3, is indicated by the last two characters after
the underscore. Hypercubes collected after sanitization are labeled similarly, with the
exception that the time after which the hypercubes were collected is stated last after the
underscore, as shown in Fig. 8(b).

Fig. 8. (a) Nomenclature for the hypercubes collected before hand sanitization, (b) Nomenclature
for the hypercubes collected after hand sanitization.

5 Conclusions

This paper presents a new biometric database of hyperspectral images of fingers per-
taining to 100 subjects along with their demographics (age, gender, and ethnicity) from
left and right index. Furthermore, the images were captured before and after 1, 10, and
25 min of applying a hand sanitizer. For each subject, three samples per finger were
collected to study intra-class variability. The data acquisition protocol was carefully
designed to minimize changes of biochemical content in finger skin reflectance and
subsequently in the spectral signature. Participants with metabolic diseases and genetic
disorders were not eligible to minimize variations in the spectra. Calibration and setup
procedures pertaining to the instrument Resonon Pika L hyperspectral imager used in
this data collection are also described.

In future work, we will: i) extend the experiments by considering additional com-
mercial hand sanitizer to study how they affect the spectral and spatial features, ii),
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design algorithms for HSI gender and age estimation to understand and mitigate demo-
graphic differential in fingerprint data, and iii) establish a benchmark that evaluates the
robustness of spectral signature with respective hand sanitization.
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