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Abstract

In autonomous driving (AD), accurate perception is in-
dispensable to achieving safe and secure driving. Due to
its safety-criticality, the security of AD perception has been
widely studied. Among different attacks on AD perception,
the physical adversarial object evasion attacks are espe-
cially severe. However, we find that all existing literature
only evaluates their attack effect at the targeted AI compo-
nent level but not at the system level, i.e., with the entire
system semantics and context such as the full AD pipeline.
Thereby, this raises a critical research question: can these
existing researches effectively achieve system-level attack
effects (e.g., traffic rule violations) in the real-world AD
context? In this work, we conduct the first measurement
study on whether and how effectively the existing designs
can lead to system-level effects, especially for the STOP
sign-evasion attacks due to their popularity and severity.
Our evaluation results show that all the representative prior
works cannot achieve any system-level effects. We ob-
serve two design limitations in the prior works: 1) physical
model-inconsistent object size distribution in pixel sampling
and 2) lack of vehicle plant model and AD system model
consideration. Then, we propose SysAdv, a novel system-
driven attack design in the AD context and our evaluation
results show that the system-level effects can be significantly
improved, i.e., the violation rate increases by around 70%.

1. Introduction
Autonomous Driving (AD) vehicles are now a reality in

our daily life, where a wide variety of commercial and pri-
vate AD vehicles are driving on the road. For instance, the
millions of Tesla cars [30] equipped with Autopilot [54] are
publicly available. To ensure safe and correct driving, a
fundamental pillar is perception, which is designed to de-
tect surrounding objects in real time. Due to the safety- and
security-criticality of AD perception, various prior works
have studied its security, especially the ones that aim at
causing the evasion of critical physical road objects (e.g.,

STOP signs and pedestrians), or physical adversarial ob-
ject evasion attack [7, 8, 12, 16, 27, 32, 62, 66, 70].

Although these attacks are all motivated by causing er-
roneous driving behaviors at the AD system level (e.g., ve-
hicle collisions and traffic rule violations), we find that so
far they predominately only evaluate the attack success at
the targeted AI component level alone (e.g., judged by per-
frame object misdetection rates [12,16,27,66,70]), without
further evaluation at the system level. Specifically, to sys-
tematically perform such system-level evaluation, we need
to measure the end-to-end system-level attack success met-
rics (e.g., collision rates) with the full system-level attack
context enclosing the attack-targeted AI component, for ex-
ample, the remaining AD system pipeline such as object
tracking, planning, and control, closed-loop control, and the
attack-targeted driving scenario. In this paper, we call such
system-level attack context system model for such adversar-
ial attacks (§2). This thus raises a critical research question:
can these existing works on physical adversarial object eva-
sion attacks effectively achieve the desired system-level at-
tack effects in the realistic AD system settings?

To systematically answer this critical research question,
we conduct the first measurement study on representative
prior object-evasion attacks with regard to their capabili-
ties in causing system-level effects (§3). We propose a gen-
eral framework, i.e., a system model, including perception
modeling from the physical world, to measure STOP sign-
evasion attack which is our target due to its high represen-
tativeness [53] and its direct impacts on driving correctness
and road safety. Our results show that all the representa-
tive existing works cannot cause any STOP sign traffic rule
violation within the system model including a representa-
tive closed-loop control AD system in the common speed
range for STOP sign-controlled roads in the real world even
though the most effective attack can achieve more than 70%
average attack success rate at the AI component alone.

We further investigate the root causes and find that all
the existing works have design limitations on achieving
effective system-level effects due to the lack of a system
model in AD context for attack design: 1) physical model-
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inconsistent object size distribution in pixel sampling and
2) lack of vehicle plant model and AD system model con-
sideration (detailed in §4). We further propose SysAdv, a
system-driven attack design, which can be integrated with
all state-of-the-art attack methods to significantly improve
system-level effects by overcoming the two limitations.

We evaluate our novel proposed attack design in our plat-
form and show that the system-level effect can be signifi-
cantly improved in §5, i.e., the system violation rate can be
increased by around 70%. To further validate the generality
of our attack, we also examine generality on different AD
system parameters (§5.2) and different object types (§5.3),
which shows improvement at both component- and system-
level. Demo videos are at the project website: https:
//sites.google.com/view/cav-sec/sysadv.

To sum up, this paper makes the following contributions:
• We conduct the first measurement study on the system-

level effect of the representative prior object-evasion
attacks with our proposed novel evaluation framework
(i.e., system model) including 4 popular object detec-
tors and 3 state-of-the-art object-evasion attacks.

• We identify the limitations of prior works which hin-
der them in potently achieving system-level effects and
propose SysAdv, a system-driven adversarial object-
evasion attack with the system model in AD context.

• We further evaluate SysAdv and show that the system-
level effect of SysAdv can be significantly improved,
i.e., the system violation rate increases by around 70%.

2. Related Work and Background
Camera-based AD perception. Camera-based AD per-

ception generally leverages DNN-based object detection to
detect or recognize road objects of various categories (e.g.,
traffic signs, vehicles, and pedestrians) in consecutive im-
age frames [10]. State-of-the-art DNN-based object detec-
tors can be classified into two categories: one-stage object
detector, and two-stage object detector [74]. The former,
such as YOLO [29, 45, 46], usually has higher detection
speed, while the latter, such as Faster R-CNN [47], usually
has higher detection accuracy. In this paper, we focus on the
security aspects of camera-based AD perception and per-
form the corresponding experiments on both object detector
categories. We perform the measurement study of physical
adversarial object evasion attack in AD perception §3 in-
cluding these two kinds of object detectors.

Physical adversarial object evasion attacks in AD
context. Recent works find that DNN models are gener-
ally vulnerable to adversarial attacks [9, 18, 37, 38, 65, 69].
Due to the direct reliance of camera-based AD percep-
tion on DNN object detectors, various prior works have
explored the feasibility of adversarial attacks in AD con-
text [14,27,36,37,50,51,53,59,60,66,70,73]. Among them,

physical adversarial object evasion attacks, which typically
use physical-world attack vectors such as malicious patches
to cause the disappearance of road objects (e.g., pedestrians
and traffic signs) [12, 16, 27, 62, 66, 70], are especially se-
vere due to their direct impacts on driving correctness and
road safety. However, as detailed in later sections, we find
that so far the considerations and integration of the corre-
sponding system models (detailed below) in the prior works
are far from enough in both attack designs and evaluation,
which substantially jeopardizes the meaningfulness of their
designs from the end-to-end AD driving perspective (§3).

Gap between AI component errors and their system-
level effect. We do not intend to claim to be the first to
point out, analyze, measure, or optimize the gap between
AI component errors and their system-level effect in gen-
eral; there exists a large body of prior works in various other
problem contexts (e.g., computer vision system [24,26,44],
image analysis [22, 68], camera surveillance [20, 21], video
analytics [19, 55], planning [42, 43, 56], and control [56])
across academia and industry that have studied the charac-
terization and/or optimization of end-to-end system perfor-
mance [5, 17] with regard to AI/vision component errors.
Nevertheless, to the best of our knowledge, none of them
1) quantified such gaps in the context of adversarial attacks
on autonomous systems, especially those in real-world sys-
tem setups; and 2) identified novel designs that can system-
atically address or fill such gaps on autonomous systems,
which we believe are our novel and unique contributions.

Systems model for AD AI adversarial attacks. To un-
derstand the end-to-end system-level impacts of an adver-
sarial attack against a targeted AI component in an AD sys-
tem (e.g., whether it can indeed effectively cause undesired
AD system-level property violations), we need to system-
atically consider and integrate the overall system semantics
and context that enclose such AI component into the secu-
rity analysis [15, 52]. In this paper, we call a systematic
abstraction of such system semantics and context the sys-
tem model of such AD AI adversarial attacks. Specifically,
in the AD context we identify 3 essential sub-components
in such system model: 1) the AD system model, i.e., the full-
stack AD system pipeline that encloses the attack-targeted
AI components and closed-loop control, e.g., the object
tracking, planning, and control pipeline for the object de-
tection AI component; 2) the vehicle plant model [15, 40],
which defines the physical properties of the underlying ve-
hicle system under control, e.g., maximum/minimum accel-
eration/deceleration, steering rates, sensor mounting posi-
tions, etc.; and 3) the attack-targeted operation scenario
model, which defines the physical driving environment
setup, driving norms (e.g., traffic rules), and the system-
level attack goal (e.g., vehicle collision, traffic rule viola-
tion, etc.) targeted by the AD AI adversarial attack.

System model for adversarial object-evasion attacks.
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Figure 1: Illustration of the system model for adversarial
object-evasion attacks in AD context.

Fig. 1 illustrates the aforementioned system model defined
for the adversarial object-evasion attack. The AD sys-
tem model for object detection, the targeted AI component
in adversarial object-evasion attacks, mainly includes its
downstream tasks of object tracking, planning, and control,
and closed-loop control. The vehicle plant model mainly
includes the physical properties related to longitudinal con-
trol, e.g., the minimum brake distance (dmin), and the dis-
tance to the stop line (stop to avoid violating traffic rules
or crashes) where the stop line is out of sight in the camera
image doos (depending on the hood length and the camera
mounting position). The operation scenario model includes
the speed limit, lane width, the relative positioning and fac-
ing of the object to the ego lane, the driving norm that the
vehicle typically drives at constant speed before it starts to
see the object (dmax), and the system-level attack goal that
triggers the traffic rule violation (i.e., hit into the object or
exceeding the stop line). We will use this system model in
our studies in the following sections. There exists several
example attacks for the system model such as STOP sign-
evasion attack, which is the most extensively-studied physi-
cal adversarial object evasion attack in AD context [53], and
thus will be the main focus of our study in later sections;
pedestrian-evasion attack [66]; car-evasion attack [58]; etc.

3. System-Level Effect of Prior Works
Scientific gap in existing works: Lack of system-level

evaluation. Despite a plethora of published attack works
on physical adversarial object evasion attacks in AD context
(§2), we find that actually all of them only evaluate their at-
tack effect at the targeted AI component level (i.e., judged
by per-frame object misdetection rates [16, 27, 66, 70]),
without any evaluation at the system level, i.e., with the
corresponding system models for such attacks as described
in §2. However, in the Cyber-Physical System (CPS) area,
it is widely recognized that in AD system, AI component-
level errors do not necessarily lead to system-level effects
(e.g., vehicle collisions) [15, 28, 52]. Thus, without system-
level evaluation, it can be highly difficult to scientifically
know whether the attack is actually meaningful from the
end-to-end AD driving perspective. We view this as a crit-
ical scientific gap in this current research space, and to ad-
dress this, we perform a measurement study on the existing

(a) Benign (b) RP!-Y2 (c) SIB-Y3 (d) SIB-FR (e) FTE-Y3 (f) FTE-Y5

Figure 2: Visualisation of STOP signs attack reproduction
(in Table 1) for measurement study in physical world.

works about their system-level effects. We choose to focus
on adversarial STOP sign-evasion attck as our target due to
its high representativeness in this research space and also its
direct impacts on driving correctness and road safety (§2).

3.1. Attack Formulation and Selection

Attack formulation. We assume that the attacker can ar-
bitrarily manipulate pixels within restricted regions known
as adversarial patch attack [4, 16, 70]. Such a patch attack
is easy to deploy in the real-world and very stealthy. We
consider the patch stays on the STOP sign shown in Fig. 2.

Selection of prior STOP sign attack works and their
reproduction. There are various prior works on physical
adversarial STOP sign-evasion attacks [12,16,27,33,34,67,
70]. To perform our system-level effect measurement, we
select the most effective ones at AI component level as rep-
resentative examples. Four model designs (including one-
stage and two-stage object detectors in §2) have been cov-
ered. For each model, we select the most effective attack
design published so far which are shown in Table 1. How-
ever, all the STOP sign attacks in Table 1 do not provide
the source code. Since we tried to contact the authors of
the attacks for the source code but they all cannot provide
it, we try our best to reproduce some of the works. Cur-
rently, we only have the reproduction for RP2 and FTE. For
SIB, we directly use the STOP sign images shared by the
authors of that paper used for their physical-world experi-
ments. We print the high-resolution STOP signs on multiple
ledger-size papers and concatenate them together to form
full-size real STOP signs which are shown in Fig. 2.

To demonstrate the reproduction correctness, we utilize
their original evaluation setups for our trials. Our results
are generally similar to theirs confirming the correctness of
reproduction. For instance, the original RP2 paper [16] re-
ports an attack success rate of approximately 63.5% from 0
to 30 feet. With the same setup (outdoor), our results pro-
vide a 61.0% attack success rate — nearly mirroring the
original. Note that SIB attack on the FR in Table 3 seems
anomalous: it records around 47% attack success rate only
from 40 to 45 meters, while consistently registering 0% in
others. Despite the patch being provided by the authors, the
pre-trained FR can be different, where we use MMDetec-
tion [11], a PyTorch-based object detection toolbox. Given
such potential low transferability, the attack may be less ef-
fective compared to their original results. However, this is
our best effort to reproduce their results faithfully.
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(a) Physical-world scene (b) Simulation scene

Figure 3: Experiment scenes. (a) Real-world scene with
real road and injected STOP sign; (b) SVL simulation scene
with the San Francisco map in a sunny day at noon.

3.2. Measurement Methodology and Setup

To measure system-level effects, we adopt a simulation-
centric evaluation methodology, which has been widely
adopted both in academia [49, 57] and in industry [25, 61]
due to the inherent limitations of real-road AD testing in
cost, safety, efficiency, and corner-case coverage. In this
study, we use SVL, a production-grade high-fidelity AD
simulator designed for AD systems [48]. As repeatedly
demonstrated in various prior works, the end-to-end AD
system-level evaluation results in SVL can highly correlate
with the same setup tested in the physical world [49,57]. To
ensure the fidelity of our evaluation results, we improve the
fidelity of the rendering process by modeling the percep-
tion results in the real world with a practical setup (details
below). Note that the attacks themselves are agnostic to
map and time by design, and thus are not generally affected
by their changes. In SVL, we use San Francisco map on a
sunny day at noon, which is the most representative setup.

Perception results modeling from physical world. To
enhance the perception fidelity of simulators, we model the
perception results using a practical setup in the real world.
This approach represents our best effort to improve the fi-
delity of the simulation due to the experimental feasibility.
Previous studies collect video frames by directly moving to-
wards the STOP sign and simulate varying view angles by
rotating the STOP sign itself. This approach is not prac-
tical since the vehicles do not directly drive towards the
STOP sign, and the STOP sign should instead be located
on the roadside as shown in Fig. 1. To improve such unreal-
istic setups, we follow the system model defined in §2. We
recorded several pieces of video along the driving direction
D using an iPhone 12 Pro Max starting from 45 m to 4 m (4
m is the doos in §2). We choose 45 m since 1) it is the mini-
mal brake distance for speed above 50 mph, which exceeds
the usual maximum speed of STOP sign areas, and 2) it is
already much larger than the maximum distance evaluated
in all the prior STOP sign-evasion attack works. We sepa-
rate the whole range into 9 pieces, each spanning 5 m except
the one near the STOP sign, which is 1 m long. Then, we
record a video in each region and feed the video into the ob-
ject detectors to model the perception results. We perform
these experiments on sunny days as shown in Fig. 3. With

Table 1: Selection of the representative prior works. Specif-
ically, for each of the 4 model types targeted by prior works,
we select the most effective attack design published so far.

Model YOLO v5 (Y5) YOLO v3 (Y3) YOLO v2 (Y2) Faster RCNN (FR)

Attack FTE [27] SIB [70] RP2 [16] SIB [70]

Table 2: System-level violation rate in the simulation-based
testing and component-level overall ASR for model Y2, Y3,
Y5, and FR in benign and attacked scenarios. 10 runs for
each cell with different initial AD position. B: benign; Sys:
system; Comp: component; ASR: attack success rate.

Y2 Y3 Y5 FREval.
level

Speed
(mph) B RP2 B SIB FTE B FTE B SIB

Sys (violation) 25, 30, 35 0% 0% 0% 0% 0% 0% 0% 0% 0%

Comp (ASR) Overall - 71.2% - 53.1% 53.3% - 41.0% - 5.2%

that, we perform perception results injection at the output
of the object detection task in the AD system, i.e., first read
the ground-truth STOP sign detection results from the sim-
ulator and then drop/keep the detection results based on de-
tection rate. For instance, if the attack success rate is 60%
for a range, we will randomly drop the STOP sign detection
results with a possibility of 60% in that range.

Evaluated AD system pipeline. The AD system
pipeline includes representative downstream tasks after ob-
ject detection, which contains 1) a tracking step using a
general Kalman Filter based multi-object tracker [35]; 2)
a planning step using a lane-following planner from Baidu
Apollo [1], an industry-grade full-stack AD system; and 3)
a control step using classic controllers, i.e., PID for longi-
tudinal control used in OpenPilot [41], a production-grade
Level-2 AD system, and Stanley [23] for lateral control.

Speed selection. The driving speed is from 25 to 35
mph, with a step size of 5 mph, which is the most com-
mon speed range for STOP sign-controlled roads in the real
world. 25 mph [3] is the common speed limit for the STOP
sign-controlled road intersections, which is more likely to
avoid a crash, and 35 mph [6] is the most common speed
limit for city streets, which STOP signs are designed for.

3.3. Measurement Results

We evaluate the targeted AD system-level attack effect,
i.e., STOP sign violation rate, by defining the STOP sign vi-

olation rate as
Nviolation

Ntotal
, in which Nviolation means the num-

ber of runs where the AD vehicle exceeds the stop line and
Ntotal is the number of total runs. Table 2 shows the results
where each speed has 10 runs with random initialization of
the AD vehicle position while the perception results mod-
eling from real world is shown in Table 3. To our surprise,
none of the existing representative attacks can trigger STOP
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Table 3: Detection rates of different objectors in benign, RP2-, SIB-, and FTE-attacked scenarios tested in the physical world

for perception results modeling (shown in §3.2). Each detection rate below is calculated with at least 400 video frames.

Object Detector

Distance range (m)
4 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40 40 - 45

Benign 100% 100% 71.3% 31.3% 0% 0% 0% 0% 0%
YOLO v2 (Y2)

RP2 [16] 58.2% 90.0% 76.2% 34.6% 0.1% 0% 0% 0% 0%

Benign 100% 100% 100% 100% 80.1% 11.8% 6.7% 1.0% 0%

SIB [70] 93.7% 100% 100% 90.4% 38.2% 0% 0% 0% 0%YOLO v3 (Y3)

FTE [27] 89.9% 100% 100% 87.3% 42.9% 0.6% 0% 0% 0%

Benign 100% 100% 100% 100% 98.7% 89.4% 52.3% 25.3% 0%
YOLO v5 (Y5)

FTE [27] 91.2% 100% 100% 99.7% 88.2% 48.4% 3.9% 0% 0%

Benign 100% 100% 100% 100% 100% 100% 100% 100% 100%
Faster-RCNN (FR)

SIB [70] 100% 100% 100% 100% 100% 100% 100% 100% 53.2%

sign violations in any of the common speeds for STOP sign-

controlled roads when the benign performs well, though

most of the attacks are effective in the component (i.e., with

about 45% average attack success rate across the 5 attacks).

After inspecting the details, we find that the STOP sign is al-

ways tracked at the object tracking step before reaching the

minimum brake distance of the AD vehicle due to the low

attack success rate in such regions. Taking SIB attack on

Y3 as an example, the brake distance for 30 mph is around

15 m. In the benign scenario, the detection rate for 15-20 m

is 100%, while the SIB attack can still have 90.4% detection

rate as shown in Table 3, which is not enough to make the

tracking vanish before the minimum braking distance.

4. System-Driven Attack Design
After realizing that existing works cannot provide any

system-level violation in AD context, we propose SysAdv,

a system-driven attack design, which can be integrated with

all the existing attacks to improve system-level effects.

4.1. System-Driven Attack Design Framework

For the attack design in the prior works [12, 16, 27, 70],

we can abstract the key part for attack generation:

argmin
pa

Es∼S [L(M(pa, O, s, B), γ)] (1)

S is the distribution to sample different object sizes in pix-

els, which is a very important factor in achieving the robust

attack at different distances between the AD vehicle and the

object. The L is the loss function used in the prior attacks

to achieve high attack effectiveness, pa is the adversarial

patch, O is the object, and function M(pa, O, s, B) indi-

cates applying pa to O, then resizing object size in pixel to

s, and applying O into the background B, γ means other in-

puts for loss function in the prior works (e.g., the bounding

box information and threshold) related to the object detec-

tor alone. After investigation on Eq. (1), we find out that

the system model can be involved into two parts, i.e., S and

function M(.), which do not rely on object detector alone.

After exploring all the prior works, we discover that all

of them do not consider such a system model information

into their attack designs, which hinder them to achieve po-

tent system-level effects in AD context. Thus, we propose

two novel system-driven designs to significantly improve

the system-level effects. Specifically, we involve the system

model information into S and function M(.) from Eq. (1).

4.2. Physical Model-Inconsistent Object Size Distri-
bution in Pixel Sampling

In the prior works [16, 27, 70], to make the attack ro-

bust to different distance, Expectation over Transformation

(EoT) [2] is used to uniformly sample the object size (S in

Eq. (1)) in a certain range [2,12,27]. However, with system

model (§2), we find that this assumption is not held, which

leads to the first observation: physical model-inconsistent
object size distribution in pixel sampling. To justify the

observation, we perform the experimental and theoretical

analysis with STOP sign system model as an example.

Experimental analysis. With the same setup in §3, we

simulate the real driving scenario in SVL. The STOP sign

size in pixels and the distance between the vehicle and the

STOP sign can be directly obtained from SVL (§3.2). With

that, we can get the frequency distribution histogram over

different STOP sign sizes in pixels as shown in the Fig. 4

(b), in which the AD vehicle runs for 30 rounds at speed 25

mph. The distribution shown in Fig. 4 (b) is not uniform,

which is wrongly assumed by the prior works [12, 27]. To

compare, we sample the STOP sign size from the most re-

cent prior work [27], which designs an algorithm to deter-

mine the STOP sign size in a uniform way. We run that

algorithm 30k times and collect the STOP sign size shown

in Fig. 4 (a). The difference between Fig. 4 (a) and (b) indi-

cates that our observation is held experimentally.

Theoretical analysis. Assuming a uniform motion

for AD vehicles, we leverage the camera pin-hole model

(Fig. 5) for the theoretical analysis. From Fig. 5, we abstract

the relationship of real object size (L), real distance(D), fo-

cal length(f ), and object size in pixel(s) with similar tri-
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Fi g ur e 4: Diff er e nt S T O P si g n si z e distri b uti o n: ( a) st at e- of-t h e- art e xisti n g
w or k [ 2 7 ], ( b) o ur e x p eri m e nt al a n al ysis, a n d ( c) o ur t h e or eti c al a n al ysis.

I m a g e pl a n eC a m er aO bj e ct

F o c al l e n gt h:
f

R e al dist a n c e:
D

R e al o bj e ct si z e:
L

O bj e ct si z e i n pi x el:
s

Fi g ur e 5: T h e or eti c al a n al ysis of § 4. 2 ,
i. e., t h e c a m er a pi n- h ol e m o d el.

a n gl es: L
D = s

f . Wit h t h e s yst e m m o d el s h o w n i n Fi g. 1 ,
w e ass u m e t h at t h e i niti al v e hi cl e t o S T O P si g n dist a n c e is
t h e r o a d l e n gt h D 0 a n d t h e c urr e nt v e hi cl e t o S T O P si g n
dist a n c e is D . D u e t o u nif or m m oti o n, t h e v e hi cl e tr a v el e d
dist a n c e c a n b e f or m ul at e d as D 1 = v ∗ t, w h er e v is t h e
v e hi cl e s p e e d ( us u all y it is t h e s p e e d li mit) a n d t is t h e ti m e.
T o b uil d t h e r el ati o ns hi p b et w e e n s a n d t h e s a m pl e d fr e-
q u e n c y (i. e., t h e fr a m e n u m b er) F , w e f or m ul at e d t h e ti m e
t as t = F

η , w h er e t h e η is t h e i m a g e c a pt uri n g fr e q u e n c y
fr o m t h e c a m er a. D u e t o D 1 + D = D 0 a n d t h e c a m er a pi n-
h ol e m o d el ( Fi g. 5 ), w e c a n o bt ai n t h e f oll o wi n g e q u ati o n:

D 0 = D + v ∗
F

η
=

L ∗ f

s
+ v ∗

F

η
→ F = ( D 0 −

L ∗ f

s
) ∗

η

v
( 2)

E q. ( 2 ) is t h e C D F of s , si n c e t h e F is a c c u m ul at e d fr a m es.
T o o bt ai n P D F, C D F’s d eri v ati v e is c al c ul at e d:

F ′ =
d F

d s
=

η ∗ L ∗ f

v ∗ s 2
( 3)

Fr o m E q. ( 3 ), t h e pr o b a bilit y distri b uti o n is d e fi nit el y n ot
u nif or m. We als o pl ot E q. ( 3 ) as s h o w n i n Fi g. 4 ( c) wit h
η = 2 0 , L = 1 .5 , v = 2 5 m p h , a n d f = 2 5 m m ( c o m m o nl y
us e d i n A D s yst e m s u c h as B ai d u A p oll o). T h e distri b u-
ti o n is si mil ar t o t h e distri b uti o n i n t h e e x p eri m e nt al a n al y-
sis s h o w n i n Fi g. 4 ( b), w hi c h s u p p orts o ur o bs er v ati o n.

O u r s yst e m- d ri v e n s ol uti o n ( S 1). Wit h t h at, w e pr o-
p os e o ur s yst e m- dri v e n s ol uti o n ( S 1) t o a d dr ess t his i n c o n-
sist e n c y a b o v e. L e v er a gi n g t h e s yst e m m o d el i n Fi g. 1 ,
w e d e fi n e a n o v el o bj e ct si z e distri b uti o n b as e d o n E q. ( 3 ):
S = { s 1 , s2 , ..., sN } as a dis cr et e distri b uti o n, w h er e s i is
t h e o bj e ct si z e i n pi x els. B as e d o n t h e E q. (3 ), t h e pr o b a-
bilit y of s i c a n b e a bstr a ct as p (s i ) = 1

s 2
i
/

N
k = 1

1
s 2

k
. S u c h

n e w o bj e ct si z e distri b uti o n c a n b e us e d t o a d dr ess t h e i n-
c o nsist e n c y o bs er v ati o n a n d e asil y i nt e gr at e d i nt o t h e att a c k
d esi g n ( E q. ( 1 )). H o w e v er, t o g et t h e d et ail e d distri b uti o n,
w e h a v e t o k n o w t h e r a n g e of S , w hi c h will b e a d dr ess e d i n
t h e f oll o wi n g s yst e m- dri v e n s ol uti o n ( S 2) i n §4. 3 .

4. 3. L a c k of Ve hi cl e Pl a nt M o d el a n d A D S yst e m
M o d el C o nsi d e r ati o n

I n t h e E o T pr o c ess, u nif or ml y s a m pli n g t h e o bj e ct si z e
(S i n E q. (1 )) i n a r a n g e is g e n er all y us e d. I n t h e pri or
w or ks, t h e y j ust tr e at it as h y p er- p ar a m et ers wit h o ut a n y
r e as o ns [1 2 ,2 7 ]. I n pr a cti c e, n ot e v er y r a n g e is e q ui v al e ntl y
i m p ort a nt t o a c hi e v e s yst e m-l e v el eff e cts. Ta ki n g S T O P

Ta bl e 4: Att a c k s u c c ess r at e of R P 2 f or Y 2 e v al u at e d i n
si m ul ati o n wit h b ot h s m all a n d l ar g e S T O P si g n pi x el si z es.

Dist a n c e ( m)

4 - 5 5 - 1 0 1 0 - 1 5 1 5 - 2 0 2 0 - 2 5 2 5 - 3 0 3 0 - 3 5
A v e

S m all 6. 7 % 3 7. 1 % 6 8. 3 % 8 1. 1 % 1 0 0 % 1 0 0 % 1 0 0 % 7 0. 5 %C o m p.

A S R L ar g e 9 8. 6 % 6. 1 % 0 % 1. 0 % 5 8. 5 % 9 9. 1 % 1 0 0 % 5 1. 9 %

si g n c as e as a n e x a m pl e, wit hi n d m i n i n Fi g 1 , d es pit e a p-
pl yi n g m a xi m u m d e c el er ati o n, A D v e hi cl e still c a n n ot f ull y
st o p b ef or e t h e st o p li n e. T h er e b y, s u c h a r a n g e is n ot i m-
p ort a nt t o a c hi e v e s yst e m-l e v el eff e cts. H o w e v er, n o n e of
t h e pri or w or ks i n v ol v e t h e s yst e m- criti c al r a n g e r el at e d t o
t h e v e hi cl e pl a nt m o d el a n d A D s yst e m m o d el i n t h eir at-
t a c k d esi g ns, w hi c h l e a ds t o t h e s e c o n d o bs er v ati o n: l a c k of
v e hi cl e pl a nt m o d el a n d A D s yst e m m o d el c o nsi d er ati o n.

N ot e t h at pr e vi o us st u di es w hi c h i n dis cri mi n at el y uti-
li z e a br o a d r a n g e of o bj e ct si z es f or att a c ks h a v e e x hi b-
it e d r e d u c e d eff e cti v e n ess i n c o m p aris o n t o t h os e e m pl o y-
i n g a s m all si z e r a n g e. F or e x a m pl e, w h e n t h e o bj e ct si z e
is s m all (i m pl yi n g t h e A D v e hi cl e is f ar a w a y fr o m t h e o b-
j e ct), att a c k c o n v er g e n c e b e c o m es c h all e n gi n g [2 7 ], w hi c h
i n di c at es t h at it is h ar d er t o att a c k. T h er ef or e, g e n er all y,
utili zi n g a m or e o pti m all y d e fi n e d r a n g e, as o p p os e d t o a n
e x c essi v el y br o a d o n e, e n h a n c es t h e ef fi c a c y of t h e att a c k.

T o el u ci d at e t h e dis p arit y i n att a c k eff e cti v e n ess b et w e e n
utili zi n g a br o a d v ers us a n arr o w o bj e ct si z e r a n g e, w e c o n-
d u ct e d e x p eri m e nts c o m p ari n g t h e att a c k s u c c ess r at es wit h
s m all a n d l ar g e r a n g e of t h e S T O P si g n si z e. We f oll o w a
si mil ar e v al u ati o n s et u p as i n § 3. 2 b ut us e a p ur e si m ul ati o n-
b as e d s et u p f or R P 2 att a c k. S p e ci fi c all y, t h e s m all r a n g e
f or t h e S T O P si g n s p a ns fr o m 3 0 p x t o 1 0 0 p x, w h er e as
t h e l ar g e r a n g e e xt e n ds fr o m 3 0 p x t o 4 1 6 p x, r e pr es e nti n g
t h e m a xi m u m r a n g e at w hi c h t h e b e ni g n S T O P si g n is d e-
t e ct a bl e. R es ults pr es e nt e d i n Ta bl e 4 r e v e al a s u p eri or a v-
er a g e att a c k s u c c ess r at e f or t h e s m all r a n g e o v er t h e l ar g e
r a n g e. Alt h o u g h t h e l ar g e r a n g e d e m o nstr at es pr o misi n g
c o n v er g e n c e at cl os e dist a n c es, its p erf or m a n c e di mi nis h es
b et w e e n 5 t o 3 0 m. T his s u g g ests t h at si m pl y o pti n g f or a
l ar g er r a n g e d o es n ot g u ar a nt e e e n h a n c e d p erf or m a n c e.

O u r s yst e m- d ri v e n s ol uti o n ( S 2). We i ntr o d u c e o ur
S ol uti o n ( S 2) t o as c ert ai n t h e s yst e m- criti c al r a n g e fr o m
t h e v e hi cl e pl a nt m o d el a n d t h e A D s yst e m m o d el . Wit h
t h es e, w e dir e ctl y d e d u c e t h e d m i n a n d d m a x v al u es as
s h o w n i n Fi g. 1 . T h e n, w e c o n v ert t h es e dist a n c es t o t h e
c orr es p o n di n g o bj e ct si z es i n pi x els ( S ). Fr o m t h e s yst e m

4 4 1 7



model (Fig.1), it’s evident that the minimum braking dis-
tance can be used as dmin. Within this distance, detection
results have a negligible impact on system-level effects. As
for the dmax, several tasks in the AD system, such as ob-
ject detection and tracking, can influence its determination.
For object detection, the maximum distance can be the fur-
thest benign distance where an object is detected. For object
tracking, we select a conservative tracking [28] since attack-
ers might not always access the precise tracking parameters
of the targeted AD system and a conservative tracking pro-
vides a broader system-critical range generally. To achieve
system-level effects, the object should not be tracked when
the vehicle reaches the dmin. Due to conservative track-
ing, such tracking distance (i.e., if within this distance, the
object can never be detected, the tracker will be deleted)
usually exceeds the distance where the object detector can
detect the object. Thus, simplifying this, we select the dis-
tance where the benign object can be detected with a small
detection rate as dmax. Having deduced the dmin and dmax,
the next step involves translating these distances into pixel
object sizes (S) and determining the appropriate object lo-
cation in the background (function M(.) in §4.1). We sug-
gest two methodologies to solve address it: 1) camera-based
rendering [5,8,65] and 2) manual annotation [66]. Employ-
ing these methods allows us to acquire precise specifica-
tions about position and pixel size range (in §5.1 and §5.3).

5. Evaluation
We adopt the same evaluation methodology and setup

as §3.2. The printed STOP signs with the newly generated
patches are in Fig. 6. We evaluate some attacks on one-stage
object detectors, i.e. Y2, Y3, and Y5 due to their better real-
time performance compared to two-stage ones [74]. RP2

and FTE are selected as the evaluated attacks. Attack gen-
erality is evaluated in §5.2 and §5.3. The combination for
attacks and object detectors are RP2, FTE-Y3, and FTE-Y5.

5.1. System-level Attack Effectiveness Evaluation

Attack generation. We adopt the attack methodology
in §4. We employ a camera-based rendering method and
utilize the nuScenes dataset [5] to translate the system-
critical range from the physical world to the pixel range
in images. Notably, nuScenes offers APIs that facilitate
rendering objects within images. Specially, we render the
four corners of the STOP sign and obtain its size in pix-
els by measuring the distance between these four corner
points in the image. With S1 and S2, we can embed the
system-model property into the attack generation process to
improve system-level effects. To further validate the effects
of S1 and S2, we perform ablation studies by generating the
attack with S1 only and S2 only, and comparing them to the
attack generated with/without both S1 and S2. Details of
attacks without S1 and S2 (i.e., original attacks) are in §3.

a RP!-Y2

S1 S2

(b) FTE-Y3 (c) FTE-Y5

S1+S2 S1 S2 S1+S2 S1 S2 S1+S2 TV*

Figure 6: Visualization of STOP sign attacks with system-
driven design. S1: with S1 only; S2: with S2 only; S1 + S2:
with both S1 and S2; TV∗: S1 + S2 with TV loss (§5.1).

Results. The STOP sign attack images are in Fig. 6,
which are printed in physical world and the perception mod-
eling results from the physical world are in Table 5. From
the results in Table 5, almost all the results (bolded in the
table) with our system-driven attack improvement can out-
perform the original attack. As shown in Table 6, with our
system-driven attack designs, the system-level violation rate
can increase by around 70% on average, where we only in-
clude the results where the benign cases have a 0% system-
level violation rate. The p-value (Table 6) is generally at
the statistically significant level (e.g., generally < 0.05 or at
a similar magnitude, especially for S1+S2). With S1 + S2,
the overall component attack success rate can increase by
around 33% on average. Especially, in the system critical
range, the attack success rate can increase by 122%, which
can significantly improve the system-level effects. Taking
FTE-Y5 at 35 mph as an example, the brake distance of 35
mph is around 20 m and the attack success rate from 20 -
35 m shown in Table 5 is around 98%, which shows a high
chance to make the STOP sign not tracked before the brake
distance, which leads to the 100% violation rate (Table 6).

For FTE-Y5 at 25 mph, due to the low effectiveness
(i.e., around 4%) from 10 m to 15 m, the tracker cannot
be deleted, which leads to 0% system violation. Thus, we
provide a special improvement by applying the total vari-
ation (TV) loss as prior works [16, 65] which benefits the
attack effectiveness. The perception modeling results from
the physical world are in Table 5 and the attack visualization
is shown in Fig. 6. The system violation rate increases to
10% after improvement as shown in Table 6 with ∗. Based
on results in Table 5, the attack success rate in a near dis-
tance is generally lower, which aligns well with the results
of prior work [70]. This leaves space for future works: im-
proving component attack success rate in the near distance.

The results of the ablation study are also summarized
in Table 6. Although in the majority of cases, S1 cannot
significantly improve the system-level effects (20% on av-
erage), the component attack success rate in the system-
critical range is improved. Compared to S1, S2 has better
results (around 28% on average). Only combining S1 and
S2 can further benefit the system-level effects (around 70%
on average), which shows the necessity of both S1 and S2.

5.2. Generality on Different AD System Parameters

Methodology and setup. We select the most safety-
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Table 5: Attack success rates of RP2, FTE-Y3, and FTE-Y5 on STOP sign-evasion attack (§5) and ADV-Tshirt on pedestrian-
evasion attack (§5.3) for our attack design evaluation with perception results modeling from physical world. + S1: with S1
only; + S2: with S2 only; + S1 + S2: with S1 and S2; + S1 + S2 (TV): + S1 + S2 with TV loss (§5.1). Bolded numbers
indicate the cases where our design outperforms the original baseline attack (“Original”) within the system-critical range.

Distance (m): Gray color means the attack success rate within the system-critical range

Object detector Attack design 4 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40 40 - 45

Original [16] 41.8% 10.0% 23.8% 65.4% 99.9% 100% 100% 100% 100%
+ S1 4.4% 13.7% 51.2% 99.3% 100% 100% 100% 100% 100%
+ S2 5.6% 44.9% 57.8% 98.7% 100% 100% 100% 100% 100%YOLO v2 (Y2) RP2

+ S1 + S2 36.1% 65.8% 88.0% 100% 100% 100% 100% 100% 100%

Original [27] 10.1% 0% 0% 12.7% 57.1% 99.4% 100% 100% 100%
+ S1 0% 0% 0% 14.0% 72.2% 95.9% 100% 100% 100%
+ S2 0% 0% 0% 13.4% 81.4% 94.4% 97.2% 100% 100%YOLO v3 (Y3) FTE-Y3
+ S1 + S2 5.3% 0% 34.7% 94.0% 99.4% 100% 100% 100% 100%

Original [27] 8.8% 0% 0% 0.3% 11.8% 51.6% 96.1% 100% 100%
+ S1 0.3% 0% 0% 1.3% 13.9% 69.3% 94.1% 99.0% 100%
+ S2 1.5% 0% 0.1% 1.7% 32.7% 81.9% 99.0% 100% 100%
+ S1 + S2 16.5% 0% 4.3% 47.2% 93.4% 99.7% 100% 100% 100%

YOLO v5 (Y5) FTE-Y5

+ S1 + S2 (TV) 43.6% 51.7% 42.1% 26.3% 23.8% 66.1% 97.7% 99.7% 100%

Original [66] 13.5% 0% 31.3% 86.1% 96.1% 90.7% 86.0% 100% 100%YOLO v2 (Y2) ADV-Tshirt + S1 + S2 0% 0% 34.2% 89.0% 91.7% 83.5% 78.5% 98.7% 100%

Original [66] 3.8% 0% 3.8% 32.2% 75.7% 89.8% 90.5% 91.5% 95.1%YOLO v3 (Y3) ADV-Tshirt + S1 + S2 0% 0% 33.6% 88.2% 91.3% 92.4% 89.7% 90.7% 87.7%

Original [66] 35.9% 6.8% 17.1% 36.7% 37.4% 72.0% 88.6% 92.3% 91.5%YOLO v5 (Y5) ADV-Tshirt + S1 + S2 2.6% 1.0% 61.6% 74.7% 58.3% 89.6% 90.5% 64.1% 61.1%

Table 6: System-level violation rate tested in simulation and component-level ASR evaluation including baseline comparison
(i.e., Original and ablation studies). Each cell contains 10 runs with different initial positions of the AD vehicle. S1: with S1
only; S2: with S2 only; S1 + S2: with S1 and S2; SCR: System-critical range (§4.3). ∗ with special improvements (§5.1).

RP2 FTE-Y3 FTE-Y5
Evaluation level Speed (mph)

Original [16] S1 S2 S1 + S2 Original [27] S1 S2 S1 + S2 Original [27] S1 S2 S1 + S2

25 0% 90% 100% 100% 0% 0% 0% 40% 0% 0% 0% 10%∗

30 - - - - 0% 0% 30% 100% 0% 0% 0% 80%System (violation rate)
35 - - - - - - - - 0% 30% 40% 100%

p-value - 0.00 0.00 0.00 - - 0.08 0.00 - 0.08 0.04 0.00

Overall 71.2% 74.2% 78.6% 87.8% 53.3% 53.6% 54.0% 70.4% 41.0% 42.0% 46.3% 62.3%Component (ASR) SCR 33.1% 54.7% 67.1% 84.6% 33.8% 36.4% 37.8% 65.6% 26.6% 29.8% 35.9% 57.4%

Table 7: System-level violation rate tested in simulation on
different AD parameter settings which are highly critical to
the system-level effects. The perception modeling results
from physical world are in Table 3 and Table 6.

Tracking param (H , R) (4, 6) [1] (3, 5) [31] (4, 40) [71]

Brake (m/s2) -3.4 -6.0 -3.4 -6.0 -3.4 -6.0

Original [27] 20% 0% 50% 0% 40% 0%
Ours 100% 100% 100% 90% 100% 100%

critical parameters on system-level effects in AD systems
for this evaluation including the tracking parameters (H ,
R), where the tracking creates a tracker for an object only
when it is continuously detected for H frames, and deletes
its tracker only when the object continuously disappears for

R frames [1, 28, 31, 72], and the brake deceleration where
we use the safe vehicle deceleration and max vehicle decel-
eration [13]. We select the tracking parameters from Baidu
Apollo [1] and Autoware.AI [31], and the representative re-
search paper [71]. All the parameter details are in Table 7
and for others, we follow the same setup in §5.1. We select
the FTE-Y5 since it is the most representative attack so far
and 35 mph as the target speed due to its high safety impact.

Results. The system-level attack effect results (violation
rate) are summarized in Table 7, where we compared our
attack with the original naive attacks (§3). The results show
that our attack can outperform the original attack in all the
different AD parameter settings on the system-level effect.
On average, we have around 98% system violation rate (5
times larger than the original one) while the original naive
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Table 8: Pedestrian collision rate tested in simulation with
ADV-Tshirt attack on different object detectors. 10 runs for
each cell with different initial AD vehicle position.

YOLO v2 (Y2) YOLO v3 (Y3) YOLO v5 (Y5)Speed
(mph) Original [66] Ours Original [66] Ours Original [66] Ours

25 20% 50% 0% 50% 0% 70%
30 100% 100% 50% 100% 10% 80%
35 100% 100% 80% 100% 60% 90%

Original Original OriginalOur Our Our

YOLO v2 (Y2) YOLO v3 (Y3) YOLO v5 (Y5)

Figure 7: Visualization of ADV-Tshirt attack with and with-
out system-driven design.

attack only has 18%. The results further point out that our
attack is general to different critical AD system parameters.

5.3. Generality on a Different Object Types

Methodology and setup. We select the “pedestrian” as
our target object type since making the pedestrian vanish
will cause a significant impact on AD. We select the most
representative patch attack – adversarial T-shirt [66], which
is called ADV-Tshirt in our paper. For object detectors, we
select Y2, Y3, and Y5 and follow the same setup in ADV-
Tshirt paper [66], and we collect the videos from the real
world (similar methodology in §3) for attack generation and
manually annotate the four corner points for placing the
patch (obtaining the size and position §4.3). Each video
segment has around 200 frames. We perform digital per-
ception result modeling with real-world data we collected.

Results. The perception results modeling results for
ADV-Tshirt are shown in Table 5 and the generated patches
are visualized in Fig. 7. We define the system-level ef-

fect metric as pedestrian collision rate:
Kcollision

Ktotal
, in which

Kcollision means the number of runs where the AD vehicle
crash into the pedestrian, and Ktotal is the number of to-
tal runs. The system-level evaluation with the comparison
with the original attack [66] is shown in Table 8. In average,
our attack designs can achieve around 82% pedestrian col-
lision rate while the original attack can only achieve around
47% pedestrian collision rate. Especially, for the most ad-
vanced object detector such as Y3 and Y5, our pedestrian
collision rate has significant improvement compared to the
original attack. Y2 is more fragile than others which makes
the original attack have very high attack effectiveness in the
component level and leads to pedestrian collision rates at
the similar level as ours. The results show the generality
of our attack designs to different object types which further
shows the generality to different system models (§2).

6. Discussion
Potential mitigation. The ongoing tug-of-war between

adversarial attacks and their defenses has yielded a range
of mitigation strategies, such as adversarial training [39].
Since several object-evasion attacks in AD context have
been identified [27, 70], there is an immediate need for de-
fense exploration. Before pursuing novel mitigation strate-
gies, it is imperative to first measure how existing defenses
affects system-level attack effectiveness in AD, especially
the ones with theoretical guarantees [63, 64], which should
be a future work. Another promising direction involves
cross-checking with alternate perception sources. For ex-
ample, AD systems might verify camera-based pedestrian
detection with LiDAR perception. Despite not offering a
fundamental defense strategy [8], they may make system-
level attack effects more difficult to achieve. Thus, we leave
a systematic exploration of these defenses to future work.

Limitation and future work. First, although we lever-
age the perception results that modeling from the physical
world and demonstrate the system-level effects in AD sys-
tem with LGSVL, the feasibility of the attack effects on
real AD systems in physical world remains unclear. Thus,
the exploration of the attack practicality is a valuable fu-
ture work. Second, our attack is within white-box threat
model, which is less practical compared to black-box one.
Thereby, the development of a novel attack with a practical
threat model is a potential future work. Third, although we
explore the generality on different AD system parameters
in §5.2, our evaluation results and findings are limited by
the current AD system setups introduced in §3.2. There-
fore, the system-level effect measurement on commercial
AD systems such as Tesla is an important future direction.

7. Conclusion
In this paper, we ask whether previous works can achieve

system-level effects (e.g., vehicle collisions, traffic rule vi-
olations) under real AD settings. Then, we perform the first
measurement study to answer this research question. Our
evaluation results show that all representative prior works
cannot achieve any system-level effects in a closed-loop AD
setup due to the lack of the system model. With our newly
proposed system-driven designs, i.e., SysAdv, the system-
level effects can be significantly improved. We hope that
the concept of the system model could guide future security
analysis/testing for real/practical AD systems.
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