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Abstract— All vehicles must follow the rules that govern traffic
behavior, regardless of whether the vehicles are human-driven
or Connected Autonomous Vehicles (CAVs). Road signs indicate
locally active rules, such as speed limits and requirements to
yield or stop. Recent research has demonstrated attacks, such
as adding stickers or projected colored patches to signs, that
cause CAV misinterpretation, resulting in potential safety issues.
Humans can see and potentially defend against these attacks.
But humans can not detect what they can not observe. We
have developed an effective physical-world attack that leverages
the sensitivity of filterless image sensors and the properties
of Infrared Laser Reflections (ILRs), which are invisible to
humans. The attack is designed to affect CAV cameras and
perception, undermining traffic sign recognition by inducing
misclassification. In this work, we formulate the threat model
and requirements for an ILR-based traffic sign perception
attack to succeed. We evaluate the effectiveness of the ILR
attack with real-world experiments against two major traffic
sign recognition architectures on four IR-sensitive cameras. Our
black-box optimization methodology allows the attack to achieve
up to a 100% attack success rate in indoor, static scenarios and
a ≥80.5% attack success rate in our outdoor, moving vehicle
scenarios. We find the latest state-of-the-art certifiable defense
is ineffective against ILR attacks as it mis-certifies ≥33.5% of
cases. To address this, we propose a detection strategy based on
the physical properties of IR laser reflections which can detect
96% of ILR attacks.

I. INTRODUCTION

Every vehicle, whether a connected, autonomous vehicle
(CAV), semi-autonomous, or human-driven vehicle, must obey
traffic signs. Disobeying signs can cause potential accidents
and threaten human life. Recent studies [1]–[7] on traffic sign
recognition systems show how physical, adversarial attacks
can degrade recognition accuracy. Such attacks include pro-
jecting shadows [5], projecting visible colored patterns [3],
[6]–[8], and adding stickers to traffic signs [1], [2], [4], to
induce misclassification. However, these prior attacks have a
clear limitation in stealthiness. Stickers, strong light projec-
tions, or shadows inconsistent with the environment are visible
to humans, who can detect and mitigate them. For example,
in semi-autonomous vehicles, such as Tesla’s [9], drivers are
required to stay alert and ready to take manual control of the

∗ denotes co-first authors.

STO
P

Human driver sees:

CAV perception stack sees:

IR reflection is 
invisible to 
humans 

CAV camera sees:

Autonomous

Victim CAV

IR Laser Emitter

A
tta

ck

Without IR filter
(A CAV camera)

With IR filter
(Human eye)

Without IR filter
(A CAV camera)

With IR filter
(Human eye)

Fig. 1: Overview of our ILR (Infrared Laser Reflection) attack.
Unlike cameras without IR filters, humans can not see IR light.
When an IR-sensitive camera images an object illuminated by
an IR laser, the camera’s output is altered at the pixel level.
Our attack causes CAV perception stacks to misclassify traffic
signs, causing dangerous misinterpretations.

vehicle if needed. As long as visual changes are inevitable,
humans may notice them, even if they are subtle.

In this work, we design and demonstrate a novel, invisible
attack that is able to mislead traffic sign recognition systems
by leveraging patterns of infrared (IR) light reflections that are
invisible to humans. As shown in Fig. 1, the reflections are
visible to CAV cameras without an IR filter. These cameras
capture the attacker’s IR light reflections on the target traffic
sign and output an altered image that is misinterpreted by
the vehicle’s perception module in its autonomy stack (e.g.,
detecting a speed limit sign instead of a stop sign).

Camera sensors are normally sensitive to photons in both
visible and infrared wavelengths. Typically, commercial cam-
eras use IR filters to ensure accurate color reproduction and
prevent unwanted contamination by infrared photons. How-
ever, some autonomous vehicles employ cameras without these
filters to improve detection in dark environments [10], [11].
Our attack targets sensors lacking these filters. Moreover,
although humans might perceive infrared light reflections
through such cameras, CAVs generally do not display the
captured images to the drivers, making this attack challenging
to detect, or to distinguish from ordinary CAV malfunctions.
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For example, the recent I-Can-See-the-Light (ICSL) at-
tack [12] takes advantage of filterless sensors by projecting
an IR pattern directly onto the camera image sensor in order
to create fake objects and induce SLAM errors. Another work
describes an invisible mask attack [13], which uses multiple
IR emitters inside a hat to evade face recognition surveillance.
However, these attacks only focus on changing traffic light
colors and inducing detection errors, leaving unclear the
impact of IR-based attacks on CAV traffic sign recognition
systems. Furthermore, those attacks either require that the IR
light source be aimed continuously and precisely at the target
camera on a moving CAV, or only function at short distances.
This limits the attacks’ practicality in real-world scenarios.
These limitations motivate our work.

Our Infrared Laser Reflection (ILR) attack causes CAV
perception modules to misclassify, or in the worst case mis-
detect, traffic signs. We use an IR laser source to reflect IR
projections off of a portion of a target sign surface. Leveraging
the unique properties of laser light reflections, an IR-sensitive
CAV camera will see the reflected light and incorporate
it into the camera’s output images. We call these images
traces. The vehicle’s perception module will then attempt to
classify the trace-tainted images from the camera, resulting
in misclassification. Unlike ICSL and similar attacks [14],
[15], which require precisely aiming at the target sensor and
accurately synchronizing timing, we only need to aim a single
IR laser at a target traffic sign. The IR laser emitter is static
and needs no sophisticated setup to track a moving CAV. We
also find that the laser reflection properties can achieve stable
misclassification at long distances with minimum power (up
to 25 meters away from the target sign, with a laser power
of 26 mW). To maximize the attack effect, we developed a
technique for generating optimized traces using the IR laser
reflections, which allow the attacker to automatically find the
optimal misclassification, minimizing the required laser power,
and covering a minimal portion of the target sign with the
reflection (7–17% of real-world stop and speed limit sign size
in our outdoor evaluation).

We evaluate our ILR attack’s effectiveness against two
major traffic sign recognition architectures, using images cap-
tured with four different IR-sensitive cameras. Our paper is
structured as follows: In §III, we formulate our threat model.
We determine what parameters the attacker can control and
what parameters are required to make the attack robust to dif-
ferent conditions. In §IV, we describe our attack optimization
methodology, which incorporates modeling the attack reflec-
tion characteristics to automatically find the optimal location
of the projection on the target sign while minimizing the
required power and reflection size. In §V, we demonstrate that
our attack achieves up to a 100% attack success rate in the real
world against both stop sign and speed limit sign targets under
static, indoor laboratory conditions, and a ≥80.5% attack
success rate in outdoor conditions, with a vehicle moving at
increasing speeds. In §VI, we evaluate ILR against the current
state-of-the-art certifiable defense PatchCleanser [16], which
has been evaluated against patch attacks that target generic

image classification tasks for the ImageNet [17] and CIFAR-
10 [18] datasets. We found that PatchCleanser’s major intuition
does not hold for traffic sign recognition systems, making
the defense ineffective against ILR, as PatchCleanser mis-
certifies ≥33.5% of attack and benign cases. To address this
limitation, we propose a potential defense strategy based on
the unique features of IR laser reflections. Finally, we discuss
the limitations of this study in §VII.

In summary, our study makes the following contributions:
• We identify ILR, a long-distance and human-invisible

attack vector that can cause misclassification by traffic sign
recognition systems. The ILR attack can not be seen by
humans, but can be seen by cameras lacking IR filters.
Our attack addresses the aiming and power limitations
of previous works by combining invisible laser reflection
properties and adversarial optimization.

• We design a novel methodology to optimize attack ef-
fectiveness by simulating IR laser projections, and their
traces on signs, by modeling reflection size, intensity, and
position using a black-box optimization.

• We evaluate the ILR attack against two different sign
recognition architectures using four IR-sensitive cameras.
We confirm that the ILR attack reaches a 100% attack suc-
cess rate under indoor laboratory conditions and a ≥80.5%
attack success rate in outdoor, real-world environments
with different light conditions and victim vehicle speeds
(up to 13 Km/h).

• We show that the major assumption of the state-of-the-art,
certifiable defense, PatchCleanser [16], does not hold in the
traffic sign recognition domain. PatchCleanser mis-certifies
≥33.5% of cases. We then propose a potential detection
technique based on the unique physical characteristics
of the IR laser reflections, which achieves a 96% True
Positive Rate (TPR) and 6.7% False Positive Rate (FPR)
in our proof-of-concept tests.

Details and demo videos are available on our website: https:
//sites.google.com/view/cav-sec/ilr-attack.

II. BACKGROUND AND RELATED WORK

A. Vision-Based Traffic Sign Recognition

Vision-based traffic sign recognition systems use camera
sensor outputs as inputs to fast neural networks, which perform
real-time object recognition and classification [19], [20]. These
recognition systems have benefits in terms of both capability
and cost. They are also essential, as autonomous vehicles must
recognize road signs in order to operate safely on public
roads. This has driven their wide adoption in autonomous
driving systems, such as those offered by OpenPilot [21] and
Tesla [10]. Ertler et al. [20] identify two major vision-based
traffic sign recognition architectures: single-stage and two-
stage, as illustrated in Fig. 2:
Single-Stage Architectures. Single-stage architectures im-
plement an object detector, such as YOLO [22], using a
multi-class classification head to interpret traffic sign types.
While the single-stage architecture is advantageous in terms
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Fig. 2: The two major traffic sign recognition system architec-
tures used in our work. (a) A single-stage architecture detects
and classifies traffic signs only with a single object detector;
(b) A two-stage architecture’s first-stage object detector finds
and isolates (crops) the traffic sign in the image. The second-
stage classifier provides the sign’s class label.

of computational cost, Ertler et al. [20] report that the single-
stage architecture does not yield acceptable performance when
the number of classes is large, as with the 314 classes in [20].
Hence, typically, a single-stage architecture is suitable for
Level-2 autonomy systems that only need to recognize a
limited number of signs.
Two-Stage Architectures. A two-stage architecture, which is
capable of handling a large number of different signs, uses a
first-stage object detector to crop the image to a ”Region of
Interest” (ROI) that contains the traffic sign. It then classifies
the cropped image in its second stage [20]. Specifically, the
first-stage object detector detects the sign’s position, with
croping performed regardless of sign type. The second stage
then classifies the cropped region with a sign type [23].

Unfortunately, previous work has shown how real-time sign
perception can be vulnerable to attacks that affect what the
camera sees [1], [2], [24]. Our work focuses on a novel
perception attack that can affect both one and two-stage
architectures. These are available in production vehicles.

B. Human Perception of Visible and IR Light

Invisible to humans, infrared light is electromagnetic radi-
ation with wavelengths between 780 nm and 1 mm [25]. The
CMOS image sensors used in today’s cameras have sensitivity
to some IR light. To match the perception characteristics
of human eyes, they usually incorporate a filter that cuts
out this IR light [26], [27]. However, to improve camera
performance for nighttime driving, some production CAVs
use cameras without IR filters [10], [11], [28]. Discussion
of the prevalence of IR-sensitive cameras is challenging, as
manufacturers seldom disclose specific information. To the
best of our knowledge though, Tesla Model 3 cameras lack
IR filters [12].

Our attack manipulates what the IR-sensitive camera sensor
sees by projecting IR light patterns onto an object in the field
of view of a CAV’s camera. Since the unfiltered image sensor
in the camera can see IR light, the reflection of the projection

becomes part of the sensor’s output image. Humans cannot
react to the attack since they can not perceive it.

As shown in Fig. 1, the reflection of the IR projection on
the sign is visible in the output image. This occurs because
the sensor can only measure the intensity of incident photons
at each sensor photosite, not the wavelength of each photon.
Typically, image sensors have color filters to only allow red,
green, or blue photons to hit each photosite [29]. Because
this filtering is imperfect, a portion of incident IR light
passes through the color filters, reaches the photosites, and
is integrated into the output image. Depending on the IR
transmittance of these color filters, IR light appears in the
output image with a false color, which is usually purple,
magenta, or even orange.

C. Previous Work and Comparisons

Deep Neural Network (DNN) models today are shown to
be generally vulnerable to adversarial examples (or adversarial
attacks) [30], [31]. These attacks have previously been ex-
plored in the physical world [1], [2], [15], [24], [32]–[40].
In particular, traffic sign recognition has been shown to be
vulnerable to adding small stickers to signs [1], [2], [24], vis-
ible pattern projection [3], [6], [41], and shadow shading [5].
Unlike physical patch attacks that leave permanent, detectable
artifacts (such as small stickers) on the target sign [1], [2],
our attacks avoid destructive changes or physical alterations
to the target through the use of light projection and reflection.
More specifically, our attack has the following three major
differences or advantages over prior, related work:

(1) Invisibility and Attacker Capabilities. As discussed
in §II-B, our attack is invisible to humans, rendering it more
difficult to detect than physical patches [1], [2] or visible
colored pattern projections [3], [41]–[43]. Previous work, such
as ICSL [12], remote attacks [44], and invisible masks [13]
use IR light to enhance stealthiness. In contrast to this work,
which uses non-coherent IR LED light, the ILR attack uses
coherent laser light. Because coherent light waves are in phase
with each other [45], laser light remains in a confined, tightly
focused, and persistent beam over long distances, with little
attenuation. This property can persist even when reflected from
a surface, such as that of a sign, allowing us to optimize our
projected patterns.

For example, we demonstrate how our ILR attack can
achieve successful misclassification at different victim camera
locations. We show this for both day and night conditions,
with our laser up to 25 meters away from the target sign,
and using only 26 mW of laser power, in §III-C and §V.
In contrast, LED light beams diverge in flight, attenuating
over long distances. This makes them unsuitable for long-
distance, confined pattern projection attacks unless a high
powered beam is aimed directly at a vehicle’s camera. As
an example, ICSL [12], an IR LED-based attack, requires its
LED light to operate at 30 Watts at 12 meters and must be
aimed directly at the victim vehicle’s camera (which is likely
in motion) in order to successfully create fake objects.
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(2) Continuous Tracking. A major challenge of light
projection-based attacks on cameras, such as GhostImage [42],
Rolling Colors [14], and similar laser spoofing attacks on
LiDARs (PLA-LiDAR [15], PRA [46], Adv-LiDAR [47], and
Illusion and Dazzle [48]), is the requirement to accurately and
continuously aim at the victim sensor. This step is essential to
ensure timing synchronization and accurate projection place-
ment, which are needed to generate the correct adversarial
pattern. Nevertheless, accurately tracking the sensor location
on a CAV at any given moment proves challenging due
to the dynamic nature of the vehicle’s motion and external
disturbances like vibrations, rendering the execution of such
attacks difficult in practical scenarios.

To overcome this challenge, the use of reflection instead of
direct injection has become a viable strategy in recent proof-
of-concept attacks. For instance, AdvLB [6] and AdvSL [41]
project visible light spots onto objects to fool object detectors
and traffic sign recognition models. However, such attacks use
human-detectable visible light and have not shown effective-
ness in real-world moving driving scenarios. In contrast, we
realize that optimized invisible laser reflections are capable
of inducing stable and prolonged misclassification in moving
CAVs by targeting single-stage and two-stage traffic sign
recognition architectures without the need for tracking and
accurate projection. We demonstrate the effective application
of our technique to moving vehicle scenarios in §V-D.

(3) Ambient Light Variations. Another challenge of light-
based attacks is their effectiveness under different lighting
conditions. Previous work that used projected lights [3], [7]
and shadows [5] only succeeded under specific lighting con-
ditions, such as at night. Success depends in part on the light
source used. For example, non-coherent LED sources, as well
as diffuse light from projectors, undergo scattering, causing it
to spread out. When there is strong ambient light, the increased
total luminance reduces the contrast between the projected
pattern and its background. This can significantly reduce the
attack success rate, rendering the attack impractical in bright
environments. We show how ILR can succeed under diverse
lighting conditions in §V-B.
Defense Strategies. Wang et al. [12] propose a defense against
the ICSL attack. Their defense strategy distinguishes active
street lights from IR light sources. Unlike active street lights,
IR light sources do not reflect off of roadways. If the source
lacks a reflection, it is not an active street light. They also use
differences in reflection colors for real street lights versus the
non-reflected sources used for attacks in order to distinguish
between active and IR sources. Our attack can not be detected
or mitigated using their solution since, unlike active street
lights, street signs lack active illumination.

The ILR attack is a type of perception attack that changes
how a small portion of a target traffic sign is perceived, as
shown in Fig. 1. Thus, it can be considered an adversarial
patch attack [1], [2], [24], [35]. Defenses against adversarial
patch attacks should apply in theory. So far, there are two types
of defenses against adversarial patch attacks: (i) empirical
defenses, such as the detection of anomalous patterns in attack

patches [2], [5], [49]–[52], and (ii) certified defenses with
theoretical guarantees [16], [53]–[55]. Since the former is vul-
nerable to adaptive attacks [53], we focus on certified defenses,
especially PatchCleanser [16], which is the current state-of-
the-art. We evaluate our ILR attack against this defense and
propose potential alternative defense strategies in §V-A.

III. THREAT MODEL AND ATTACKER CAPABILITIES

Fig. 1 shows an overview of the ILR attack. The attacker’s
goal is to cause the vision-based traffic sign recognition system
of a victim CAV to incorrectly classify a target traffic sign,
such as a stop sign, as a different type of sign, such as a yield
sign. We focus on untargeted attack scenarios. Sign misclas-
sification can cause the CAV to behave dangerously, such as
by braking unexpectedly or not stopping at an intersection. To
do this, the adversary uses an IR laser to project an infrared
light pattern onto a target sign with a specific size and position
relative to that sign. While invisible to humans, the IR laser’s
reflected pattern is visible to the CAV’s camera sensor. This
results in the perception system’s sign misclassification.
Prior Knowledge and Assumptions. We assume that the
attacker can obtain specifications for the victim camera, such
as the presence of the IR filter, by using public information
such as datasheets and teardown reports [56], [57]. This is
similar to the assumptions made by prior attacks on CAV
cameras [12], [14]. Note that we assume the camera’s internal
settings, such as exposure time, are unknown to the attacker.

We also assume that the attacker has a basic understanding
of IR light and optics in order to control the location of the
projected IR pattern on the traffic sign surface as in previous
work [46], [47]. The attack is remote and does not require
any firmware access or information about the images captured
by the camera in the victim CAV. However, we assume the
attacker has access to, or can purchase, a similar camera,
and can empirically study and infer the properties of the
camera as in previous work [14], [58]. We assume that the
attacker has knowledge of the traffic sign recognition model
used by the victim CAV and has black-box access to it as
an oracle (for example, by reverse-engineering the vehicle
communication [59]). Specifically, the attacker can learn the
recognition results, including the confidence scores, of similar
models but cannot directly access the victim CAV’s model or
its internal parameters (e.g., model weights).
Attack Scenarios. The attacker selects a target traffic sign
and places an IR laser emitter in line of sight, up to 25 meters
away, based on our evaluation setup, from the traffic sign along
the roadside where the victim CAV is likely to pass by. The
attacker can find a suitable location in advance, and the attack
device can be secretly installed to reduce the possibility of
being detected by others, as was done in prior work [3], [7].
Note that the suitable location of the emitter is adjustable by
the attacker using appropriate lenses and supports.

A. Attack Modeling

We formulate the ILR attack as in Fig. 3, where the distance
of the victim AV camera from the traffic sign, dvs, and the
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Fig. 3: Overview of parameters of ILR attack

TABLE I: Definition of parameters

Attack Parameter
Parameters Description

das Distance: attacker ↔ sign
D Diameter of IR pattern
Pa Laser power

(xb, yb) IR Pattern center coordinates

Scenario Parameter
Parameters Description

dvs Distance: victim ↔ sign
dav Distance: attacker ↔ victim
L Intensity of ambient light

distance of the victim AV camera from the attacker IR emitter
dav change dynamically as the victim CAV moves. We model
the ILR attack with the parameters listed in Table I.

The attack parameters represent the factors controlled by
the attacker and include (1) the distance of the attacker’s
laser from the traffic sign, das; (2) the laser beam power (in
mW), Pa; (3) the diameter of the projected IR pattern, D; and
(4) the location of the center of the IR pattern in the traffic
sign surface coordinates, (xb, yb). The attacker can optimize
various combinations of parameters to maximize the attack’s
effectiveness. Throughout this work, we consider a circular IR
pattern with a diameter D to evaluate our ILR attack. This is
because it is the easiest pattern to create for a non-sophisticated
attacker by positioning a lens or an iris in front of the laser
emitter. Thus, we define the size of the projected pattern in
terms of the diameter value D. More elaborate shapes and
patterns can be achieved with more specialized equipment.

Finally, scenario parameters represent environmental fac-
tors not controllable by the attacker, such as the ambient
light intensity L, the longitudinal distance between the victim
camera and the traffic sign dvs, and the lateral distance
between the victim camera and the attacker setup dav , as
shown in Fig. 3. Note that we define only the minimum set of
required parameters in our attack formulation necessary for the
attacker to pursue a successful attack, as demonstrated in §V.

In our analysis, we consider the CAV camera output to be a
stream of still images, and we call the set of still image pixels
altered by our ILR attack an attack trace (see Fig. 4). Every
change in the attacker parameters in Table I independently
affects the camera’s output image, resulting in different attack
traces. Using these assumptions, we describe an attack model
optimization that accounts for temporal image noise (random
fluctuations in victim camera’s output) in terms of image pixel
intensity (photon count) values [60] that occur as stray pho-
tons hit different sensor photosites across consecutive image
frames. We thus evaluate the attack’s effects on CAV sign
classification over multiple consecutive camera image frames.
A detailed methodology description is provided in §IV.

Difference Image 
Processing

No Attack ILR Attack IR Laser Emitter Iris 2 lens Optical 
Setup

Difference Trace Classified as
SpeedLimit (50km/h) 30%

Classified as
SpeedLimit (50km/h) 46%

Classified as
Stop sign 99%

Classified as
Stop sign 100%

Simulated SimulatedReal Real

Fig. 4: Overview of Image Difference-based IR Trace Model-
ing (Left). The IR Laser module has a two-lens optical setup
(right-top). A comparison of the simulated IR pattern with our
modeling and the corresponding real-world IR pattern.

B. Physics of IR Laser Reflections

To define the attacker’s capability to conduct the attack, it
is necessary first to understand the impact of the reflected,
projected IR pattern on the output images of the CAV camera.

As described in §II-C, laser light is a coherent source where
all the light waves are in phase. In contrast with diffuse light,
laser light preserves some properties of the original beam when
reflected. Thus, when a laser beam strikes an ideal reflective
surface, the reflected beam will be similarly directional and
focused, preserving all the properties of the original beam.

Traffic signs, such as the ones in Fig. 1, generally use
high-quality corrosion-resistant aluminum alloy sheets to meet
Manual on Uniform Traffic Control Devices (MUTCD) stan-
dards [61]. When a laser beam illuminates a rough surface that
is not perfectly reflective, such as a traffic sign, the laser beam
is scattered in all directions by surface irregularities. These
scattered light waves interfere with each other and produce
a speckle pattern visible in the CAV camera from different
viewing angles. Since the scattered waves are still coherent,
they preserve the same directionality and circular shape as the
incident laser beam. A small portion of the light is diffused,
adding noise to the captured image while also attenuating the
light, as shown in Fig. 7. The ratio of coherent to incoherent
light depends on surface roughness, laser light wavelength,
and camera locations, all of which affect the visibility and
complexity of the speckle pattern [62].

C. ILR Attack Capability Study

In this section, we investigate the ability of an attacker
to perform an ILR attack. Our study aims to define (1) the
relationship between the emitted IR power and the resulting
range of pixel intensity variations in the captured images, (2)
the correlation between the size of the projected IR pattern and
image pixel intensity variation in the resulting speckle, and
(3) the maximum achievable distance from which the attacker
can make a successful attack. Note that the experiments in
this section are conducted in a controlled, closed, indoor
environment, except for the maximum distance experiment.
We use real-world aluminum stop, and 25 mph speed limit,
signs as targets. We also use a Leopard camera with an
OnSemi AR032ZWDR image sensor as the victim camera [63]
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(referred to as OnSemi in the rest of the paper). OnSemi’s
camera is an automotive camera used by Baidu Apollo [64].
Attacker Setup. The attacker setup, used in all experiments
in this work, consists of an IR laser emitter that projects
an IR pattern with a controllable size onto the target traffic
sign’s surface. We use a 780 nm IR laser module from
CivilLaser [65] with a maximum output power of 1 W. It
projects a collimated beam with a 0.7 cm diameter and 0.75◦

divergence angle. The attacker controls the power Pa of the
laser by changing the input current to the laser module.
Laser modules generally consist of a stack of multiple edge-
emitting laser diodes. These diodes have different parallel
and perpendicular divergence angles, resulting in an elliptical
beam [66]. Thus, we place an iris in front of the laser module
to create a circular IR pattern from the original elliptical beam.
Finally, the divergence angle of the projected laser beam is
regulated by adjusting the distance between a two-lens optical
setup as shown in Fig. 4. This design allows the attacker to
control the projected circular pattern diameter D. Details on
laser safety are described in §VII and Appendix I.
Laser Power vs Pixel Intensity. In a controlled, indoor
scenario, we set das = 3 m, the maximum distance achievable
indoors. The room is illuminated by artificial ambient light, L,
at 100 Lux. We then position the victim OnSemi camera such
that dav is 0.3 m and dvs is 3 m. We set the circular IR
pattern’s diameter D to 15 cm and, starting from 0 mW, we
increase the power up to 80 mW and measure the average
difference in RGB pixel values created by the speckle as
illustrated in Fig. 5. We observe that the minimum laser power
required for the attacker to alter the image’s pixel values and
create a speckle is 2.4 mW – less than the power emitted by
a laser pointer. This can be achieved by operating our laser
module at 0.25% of its capability. We further notice that the 8-
bit intensity variation created for blue pixels is larger than for
red and green pixels (by at least 30) for laser powers greater
than 20 mW. The red and green channel intensity variations
follow a similar trend, as shown in Fig. 5 (top).

Similar to the laser power variation, the room’s ambient
light impacts pixel intensities by varying the victim camera’s
auto-exposure-controlled light sensitivity. Note that we treat
the victim camera as a black box. The bottom graph in Fig. 5
shows that the average 8-bit pixel intensity variation for the
attack traces decreases with increasing room ambient light, I ,
at a logarithmic rate of −40.1 · log(I) with a measured offset
based on the transmitted laser beam power.
IR Pattern Size vs Pixel Intensity. The attacker can use
the two-lens optical setup to control the size of the projected
circular IR pattern. For a given distance das, we observe that
the attacker can achieve a circular diameter D between 3.5
cm and 30 cm based on our hardware setup. The details about
laser power attenuation with respect to beam size increase
are provided in Appendix §A. We then characterize the pixel
intensity variation for laser power increasing from 20 mW to
80 mW. We observe that the intensity offset decreases linearly
at increasing sizes of IR patterns, as shown in Fig. 6.
Attenuation at Increased Lateral Distance. We verify the
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Fig. 5: 8-bit RGB pixel intensity and overall pixel intensity
variation of the attack traces for D = 15 cm IR pattern at
increasing power (top). The impact of artificial ambient light
on pixel intensity offset (bottom).
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Fig. 6: The offset in 8-bit pixel intensity values at increasing
IR pattern size D at different laser powers Pa.

speckle intensity attenuation in the captured images at increas-
ing lateral distance from the emitter (dav). We place the emitter
at 3 m (das) away from a stop sign and then measure the
variation of pixel intensity values in the RGB channels of
the captured attack trace images. We observe pixel intensity
drops of up to 18% when the victim camera moves from 0
to 1.5 m (approximately the distance from the center of a
roadway lane). Since this attenuation is negligible compared
to the attenuation due to IR pattern size and emitter distance
from the target sign, we only consider those factors in our
attack optimization design described in §IV.

IV. ILR OPTIMIZED ATTACK METHODOLOGY

Based on the attacker capabilities described in §III-C, we
design an optimization framework to automatically generate
effective ILR attacks in terms of the optimal IR pattern loca-
tion, the minimum circular pattern diameter, and the minimum
laser power required by the attacker to achieve misclassifi-
cation. Fig. 7 shows an ILR attack generation overview. To
obtain optimized attacks, the framework performs: (1) image
difference-based IR trace modeling (§IV-A and §IV-B), (2)
optimization-based ILR attack generation (§IV-C), and (3)
attack deployment on attack scenarios (§V).

A. Image Difference-based IR Trace Modeling

To optimize ILR attack effectiveness, we first synthesize
the attack traces captured by the victim camera. As described
in §III, the IR pattern projection generates a speckle (attack
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Fig. 8: Overview of the DNN-based interpolation using
FILM [67]. The method interpolates two traces at increasing
emitted power and IR pattern diameters D.

trace) in the output images. Accurately synthesizing attack
traces is challenging since they result from multiple, randomly
phased, coherent waves. Thus, we model the phenomena
by collecting and applying image differencing to the attack
traces to extract RGB intensity offsets while varying attacker
parameters, such as emitted power and circular IR pattern size,
as shown in Fig. 4. More details are in Appendix B.

B. Trace Image Interpolation

Collecting all possible real-world traces for all laser powers
and IR pattern sizes is infeasible. Naive interpolation with
averaging does not work for our attack, as averaging cancels
out the speckle patterns. For this reason, we design a method
to derive attack traces by interpolating real-world traces. To
preserve the local spatial information while interpolating, we
adopt a recent DNN-based frame interpolation algorithm,
FILM [67]. FILM generates slow-motion videos from very
similar photos. As shown in Fig. 8, we build the interpolation
process for increasing laser powers and trace diameters and
obtain intermediate attack traces as video frames. We note
that this methodology can be applied to different traffic signs
by adjusting the trace color or by collecting the appropriate
real-world traces. We use the official pre-trained model in [67].

C. Optimization-based ILR Attack Generation

Finally, we design a black-box optimization formulation
to optimize the image difference-based IR trace modeling

(§IV-A) and trace image interpolation (§IV-B). This technique
allows the simulation of an attack-influenced image with arbi-
trary trace position (xb, yb), laser power Pa, and trace diameter
D, to find the optimal configuration. For other parameters
listed in Table I, we do not directly optimize the parameters,
but consider them in the expectation over transformation (EoT)
technique [34], [35] to be robust against changes to them. The
attack formulation can be written as follows:

min EX∼EoT(XILR) [L(X, θ)]

s.t. XILR = TraceModeling(Xbase, T, xb, yb), (1)
T = Interp(D,Pa)

where the diameter of trace D, laser power Pa, and the
position of attack trace (xb, yb) are the decision variables and
θ is the targeted DNN model’s parameter set. Interp(·) is a
function of the trace image interpolation. TraceModeling(·)
is a function of the image difference-based IR trace modeling
used to get a simulated attack-influenced image, XILR. Xbase

is a benign (base) image containing the target traffic sign.
In EoT(XILR), we sample images with the EoT technique
from the simulated image XILR. In the EoT, we add Gaussian
noises, change color brightness, and apply rotation and shear.
L is a loss function. In this study, we simply minimize the con-
fidence value of the target class — our attack is an untargeted
attack as discussed in §III. As the attack formulation Eq. (1) is
not differentiable, we use a black-box optimization method to
find effective D,Pa, and (xb, yb). We adopt the Tree-structured
Parzen Estimator algorithm [68] in Optuna [69]. We note that
the optimization generally converges to the global minimum
since the search space is small (4 variables).

V. EVALUATION

We evaluate the ILR attack for effectiveness, generality,
robustness, and transferability in the real world. We also
evaluate the effectiveness of ILR attacks in outdoor moving
victim scenarios.

A. Attack Effectiveness and Generality Evaluation

In this section, we evaluate our attack on real-world alu-
minum, stop, and 25 mph speed limit signs in a controlled,
closed, indoor environment with the setup described in §III-C,
as shown in Fig. 1. We place the victim camera and IR emitter
at dvs = das = 3 m in front of the target sign. For collecting
the traces for our optimization model, we increase the laser
power Pa from 2.4 to 80 mW and the diameter D from 10
to 30 cm, based on our assumed attacker capabilities. The
artificial ambient light, L is set to 100 Lux. We use the OnSemi
camera as a default for this evaluation if not mentioned
otherwise. Table III lists all the four cameras tested in the
generality study. Note that we evaluate the physically realized
ILR attack in the real world after applying our optimization
methodology, not the digitally simulated IR patterns. We then
compare our results against a baseline random attack in which
an IR laser beam hits random portions of the target signs.
Detailed setup of the random attack is in Appendix E.
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TABLE II: Benign Performance of the object detectors and
classifiers for traffic sign recognition. The architecture of the
CNN model is in Appendix D. YOLOv3 is evaluated in APb.
Others are in mAP.

Object Detector (Training Dataset) mAP/APb Classifier (Training Dataset) Acc.
Faster-RCNN [70] (ARTS [71]) 84.3 CNN (ARTS [71]) 81%

Faster-RCNN [70] (Mapillary [20]) 18.3 CNN (LISA [72]) 99%
YOLOv3 [73] (COCO [74]) 33.8 CNN (GTSRB [19]) 98%

TABLE III: Target cameras considered in our evaluation.

Leopard Raspberry Pi LifeCam Leopard
OnSemi HQ v1.1 HD-3000 OmniVision

Sensor AR032ZWDR IMX477 N/A OV10635
Usage CAV General WebCam CAV

Resolution 1920×1080 4056×3040 1280×720 1280×800
Lens f 6 mm 16 mm N/A 6 mm

Max FPS 30 90 30 30
FOV H - 60◦ 44.6◦ × 33.6◦ D - 68.5◦ D - 68.5◦

1) Targeted Traffic Sign Recognition Models: Table II lists
the targeted object detectors and classifiers and their benign
performances. For the single-stage architectures, we train an
object detection model with the ARTS [71] and Mapillary [20]
datasets. As the Mapillary dataset includes worldwide traffic
signs, we only use the stop and speed limit signs used
in the United States. For the stop sign only, we evaluate
YOLOv3 [73] trained with the COCO dataset [74], which is
a generic object detector but does not contain US-style speed
limit signs. Thus, we evaluate different datasets for stop and
speed limit signs. We use 0.3 as the object-detection threshold
of confidence score, following conventional practice [75].

For the two-stage architectures, we manually crop the
ROI area for each sign to focus on the analysis of the
second-stage classification. For the second-stage classifiers,
we train classification models with three datasets, one trained
on European traffic signs and the other on U.S. signs. For
the European traffic signs, we trained a CNN classification
model on the GTSRB [19] dataset. For the U.S. traffic signs,
we trained CNN models on the LISA [72] and ARTS [71]
datasets. We use a CNN model architecture that is among the
best performers on the GTSRB dataset [76]. Details are in
Appendix D.

2) Evaluation Metrics: We design two evaluation metrics
based on our threat model (§III) and attack design: the attack
success rate (ASR) and the simulation consistency rate (SCR).
ASR measures the percentage of cases in which a sign is
misclassified or undetected, thus satisfying our attack goal,
as discussed in §IV-B. SCR is defined as the percentage of
cases in which the classification caused by the ILR attack is
consistent between physical and digital scenarios. We use SCR
to evaluate the quality of attack trace modeling (§IV-C). We
do not consider the SCR for the single-stage architecture since
a successful attack typically just prevents the object detector
from detecting the traffic signs. ASR is our primary metric.

SCR is necessary to evaluate the validity of our attack design.
3) Results: Table IV shows the effectiveness of the ILR

attack against single-stage and two-stage traffic sign recog-
nition systems. Our ILR attacks show significantly higher
effectiveness than the random attack, with a 100% success
rate for all models. These results indicate that while the IR
laser traces fool traffic sign recognition systems, effective
attack optimization is needed to cause a significant impact
on recognition. Table V shows the ASR and SCR of the ILR
attack compared with “w/o interp.”, which only explores the
discrete power and size values of the collected IR patterns
without interpolation, and “Spline Interp.”, which is a baseline
method that adapts a cubic spline interpolation. Details on
this method are described in Appendix C. The DNN-based
interpolation method has the highest ASR and SCR with 100%
ASR and 92.5% SCR on average. This reveals that high-
quality interpolation is essential to find effective ILR attacks.
Generality to Different Cameras. To further study the impact
of the ILR attack on different cameras, we evaluate the attack’s
effectiveness using a Raspberry Pi HQ v1.1 camera [77] with
a Sony IMX477 image sensor [78], a Microsoft LifeCam HD-
3000 camera [79], and another automotive camera with an
OmniVision OV10635 image sensor [80], [81] (referred to as
OmniVision) with the IR filter removed. As shown in Fig. 9,
the perceived IR pattern varies between different cameras,
as they vary in their sensitivities to infrared wavelengths.
Table VI lists the ASR and SCR of the ILR attack on the four
tested cameras. The ILR attack is always successful, with an
ASR of 100%. On the other hand, the speed limit sign SCR
was 0% for the Raspberry Pi HQ v1.1 and LifeCam cameras.
We observed that IR trace color is camera sensor dependent.
Thus, the relationship between trace color, diameter, D, and
power, Pa, is also sensor dependent. This affects the accuracy
of simulated IR traces.
Maximum Achievable Distance. To evaluate the maximum
achievable distance from the emitter to the target traffic sign,
the experiment was conducted in both indoor and outdoor
scenarios in a controlled environment. Using our setup, we
verify the ASR against the speed limit sign using the LISA
model [72] configured as described in §V-A. Our results show
that with our minimal setup, ILR consistently succeeds (100%
ASR) up to 25 meters away from the target sign with a power
of 26 mW. Long-range attacks are possible because of the
laser beam properties described in §III-B. Beyond 25 m, the
speckle intensity loss and beam divergence prevent coherent
pattern shape projection, dropping the ASR to zero. More
sophisticated optics can be used to increase the attack range.
Attack with Saturated IR Speckle. The optimization method-
ology focuses on minimizing the laser power necessary for
the attacker to achieve a successful attack. We can further
evaluate ILR by considering an attacker whose goal is to
achieve camera sensor saturation using the projected IR laser
speckle. We consider an IR speckle to be saturated if > 50%
of the pixels in the pattern are saturated, meaning intensity =
255. For this analysis, maintaining the same attack scenario
as the maximum achievable distance evaluation, we optimize
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Fig. 9: Examples of captured images of the 4 IR-sensitive
cameras in benign and during a successful attack. The detected
colors differ as each camera has a different sensitivity to IR.

TABLE IV: Attack effectiveness of single-stage and two-stage
traffic sign recognition systems with ASR and SCR.

Random Attack ILR Attack
ASR SCR ASR SCR

S
to

p
S

ig
n Single-Stage

Faster R-CNN (ARTS) 0% N/A 100% N/A
YOLOv3 (COCO) 0% N/A 100% N/A

Two-Stage
CNN (ARTS) 0% N/A 100% 100%

CNN (GTSRB) 20% N/A 100% 70%

S
pe

ed
L

im
it

Single-Stage
Faster R-CNN (ARTS) 60% N/A 100% N/A

Faster R-CNN (Mapillary) 100% N/A 100% N/A

Two-Stage
CNN (ARTS) 64% N/A 100% 100%
CNN (LISA) 10% N/A 100% 100%

the trace only with respect to the trace diameter D and the
coordinate position of the center of the trace (xb, yb). We
increase the IR beam power to achieve saturation when the
trace diameter is optimized. Our results for the OnSemi camera
exhibit a 100% ASR in all evaluated two-stage models. We
observe that the optimized trace diameter for stop sign attacks
drops from 21.25 cm to 17.5 cm on average and from 31.5
cm to 27 cm for speed limit sign attacks under saturation
conditions. This evaluation reveals how attackers can achieve
high attack success independently of the tested model at the
cost of increasing laser power.
Generality to Different Laser Wavelengths To evaluate the
attack generality against different laser wavelengths, we con-
ducted experiments with 830-nm and 980-nm laser modules
(in addition to our 780 nm laser). For each of the laser
modules, we collect the IR traces and optimize for the attack
trace individually. We find that the ILR attack can achieve a
100% ASR on stop and speed limit signs with both tested laser
modules. 37 and 17 mW laser powers were required for the
830 and 980 nm laser modules respectively to attack the stop
sign. Similarly, 44 and 26 mW laser powers respectively were
required in the case of speed limit signs. We observe that for
higher frequency modules, a lower laser power is required to
attack a stop sign. We hypothesize that this is because the IR
traces created by high-frequency lasers tend to appear with a
more blue-shifted (higher contrast) hue in the camera image,
when compared with the stop sign’s red surface color.

TABLE V: Evaluation of the interpolation method. “w/o
interp.” only optimizes the attack with discrete laser powers
and sizes without interpolation. “Spline Interp.” is a baseline
spline-based method detailed in Appendix C.

DNN-based Interp. w/o Interp. Spline Interp.
ASR SCR ASR SCR ASR SCR

Stop
Sign

CNN (ARTS) 100% 100% 20% 20% 100% 100%
CNN (GTSRB) 100% 70% 90% 90% 80% 80%

Speed
Limit

CNN (ARTS) 100% 100% 100% 100% 100% 0%
CNN (LISA) 100% 100% 100% 100% 100% 100%

TABLE VI: Attack effectiveness on the 4 different cameras.

OnSemi Raspberry Pi HQ LifeCam HD-3000 OmniVision
ASR SCR ASR SCR ASR SCR ASR SCR

Stop
Sign

CNN (ARTS) 100% 100% 100% 100% 100% 100% 100% 20%
CNN (GTSRB) 100% 70% 100% 100% 100% 100% 90% 90%

Speed
Limit

CNN (ARTS) 100% 100% 100% 0% 100% 100% 100% 100%
CNN (LISA) 100% 100% 100% 0% 100% 0% 100% 100%

50 100 150 200 250 300
Ambient Light (Lux)

0%

100%

AS
R Stop Sign

Speed Limit

Fig. 10: Attack success rates under different ambient lights.
The attack is generated under 100 Lux at the red bar.

B. Attack Robustness Evaluation

We evaluate the robustness of the ILR attack under varied
ambient lighting conditions and camera positions using the
same indoor setting as detailed in §V-A.
Robustness to Different Ambient Lightings. Fig. 10 shows
the ASR of the ILR attack against second-stage classifiers with
increasing ambient light levels. The attack is generated at 100
Lux and evaluated for 7 other artificial light levels, ranging
from 50 to 300 Lux. For the stop and speed limit signs, we
use the CNN classifier models trained with the GTSRB and
LISA datasets, respectively. As shown, the ILR attack against
the stop sign shows high robustness between 100 and 230
Lux, but its ASR drops significantly above 230. In contrast,
the attack against the speed limit sign shows high robustness,
with 100% ASR for all light settings. We believe the difference
in performance is due to differences in contrast between the
traffic sign surface colors and the laser speckle. On a white
sign, the speckle has a higher contrast than on a red sign.
The speckle color is dependent upon the laser wavelength and
camera sensor used, as described in §III-B.
Robustness to Different Object Detectors in Single-Stage
Architecture. Table VII lists the ASR for single-stage archi-
tecture object detectors at increasing distances dvs between
the camera and the traffic sign. The attack is generated for
all the models at a fixed distance (dvs = 6 m) and evaluated
for the others. As shown, the ILR attack reaches high attack
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TABLE VII: ASR for single-stage architecture under 4 differ-
ent distances dvs between the camera and the sign.

Target Sign Detection Model 4 m 5 m 6 m 7 m

Stop
Sign

Faster R-CNN (ARTS) 100% 100% 100% 100%
YOLOv3 (COCO) 0% 0% 100% 0%
YOLOv5 (COCO) 10% 90% 100% 100%

Speed
Limit

Faster R-CNN (ARTS) 100% 100% 100% 100%
Faster R-CNN (Mapillary) 100% 100% 100% 100%

YOLOv5 (ARTS) 100% 100% 100% 100%

effectiveness for the speed limit sign with 100% ASR at all
tested distances and models. For the stop sign, the ILR attack
is effective against Faster R-CNN trained on the ARTS dataset
but not always effective against YOLOv3 and YOLOv5. We
believe these variations are due to the architectural differences
in object detectors. The Faster R-CNN model, a two-shot
object detector, finds region proposals and classifies those
regions. It thus has a high ASR similar to the second-
stage classification model as discussed in §V-A. YOLOv3
and YOLOv5, single-shot object detectors, perform the two
steps simultaneously. This strategy may improve robustness
as it can take into account global features from the region
proposal. These results indicate that single-stage traffic sign
recognition with a single-shot object detector can provide
effective mitigation against ILR attacks. However, we note
that the current object detectors are still not able to handle
several types of different traffic signs, as discussed in §II-A.
Robustness to Different Camera Positions. Fig. 11 and 12
show the ASR and SCR of the ILR attack at increasing longi-
tudinal (dvs) and lateral (dav) distances of the victim camera.
The attack is optimized with the traces collected at dvs = 2 m
and dav = 1 m and evaluated with real-world experiments at all
other victim camera positions. As shown, the lateral direction
has a higher impact on attack success than the longitudinal
direction. We believe that the ROI cropping and resizing before
applying the CNN model inference can cancel the effect of
the longitudinal differences, while lateral differences change
the viewing angle of the traffic signs, significantly altering the
speckles in the resulting images. As the attack is not optimized
for the viewing angle, attack performance is degraded despite
applying EoT techniques (See §IV-C). Nevertheless, the ASRs
remain high, particularly within 1 m lateral translations. Since
a road lane is approximately 3.0-3.6 meters wide in real-world
scenarios, degradation from different camera viewing angles
does not have a major impact on attack performance. For SCR,
the stop sign typically has higher values than the speed limit
sign, while the speed limit sign has higher ASRs.
Robustness to Different Laser Projection Angles. Table VIII
lists the ASR and SCR for the ILR attack against the second-
stage classifiers at different angles between the laser emitter
and the targeted traffic sign. The attack is generated with the
laser emitter in front of the target traffic sign and evaluated
for four different laser projection angles, spanning a total of
40◦ (±20◦ relative to the plane of the traffic sign). As shown,
the attack on the stop sign in the GTSRB model has high
robustness while for the ARTS model, the ASR drops at 20◦

TABLE VIII: Attack robustness to different angles between
the laser emitter and the targeted traffic sign.

Left-20° Left-10° Right-10° Right-20°
ASR SCR ASR SCR ASR SCR ASR SCR

Stop
Sign

GTSRB 100% 100% 100% 100% 100% 100% 100% 100%
ARTS 50% 50% 100% 100% 100% 100% 70% 70%

Speed
Limit

LISA 100% 100% 100% 100% 100% 100% 100% 0%
ARTS 100% 100% 100% 100% 100% 100% 100% 100%

0% 100% 100% 100% 0%
0% 70% 100% 100% 0%
N/A 100% 100% 100% 100%
2 m 3 m 4 m 5 m 6 m

(a) GTSRB Model

0% 100% 100% 100% 100%
0% 100% 100% 100% 100%
N/A 0% 0% 0% 0%
2 m 3 m 4 m 5 m 6 m

(b) ARTS Model

(d) ARTS Model(c) LISA Model

100% 100% 100% 100% 100%
100% 100% 100% 100% 100%
N/A 100% 100% 100% 100%

100% 100% 100% 100% 100%
0% 100% 100% 100% 100%
N/A 0% 0% 40% 100%
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Fig. 11: ASR for two-stage architecture model with 14 differ-
ent camera positions. N/A: the traffic sign is not visible.
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Fig. 12: SCR for two-stage architecture model with 14 differ-
ent camera positions. N/A: the traffic sign is out of FOV.

in both directions. The attack on the speed limit shows a
100% ASR for all projection angles for both models. The
slight performance degradation for the stop sign in ARTS is
consistent with the IR speckle pattern variations observed in
the camera position and ambient light experiments.
Robustness to Inaccuracy in First-Stage Object Detection.
We evaluate robustness against first-stage architecture inaccu-
racies, which can modify the ROI cropping, and consequently
alter the input to the second-stage classification model. We
found that the ILR attack is robust against displacement errors
of ≤8%. More detailed results are in Appendix F.

C. Attack Transferability Evaluation

In this section, we evaluate ILR attack generality for dif-
ferent classifiers in the two-stage approach, and for different
object detectors in the single- and two-stage approaches. We
follow the same experimental setup as in §V-A.
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TABLE IX: ASR of the transfer attacks between different
model architectures. The attacks are generated by the source
model and evaluated in the transferred model.

Source Model Transferred Model
Dataset CNN DenseNet121 [82] EfficientNet B0 [83] ResNet50 [84]

Stop
Sign

ARTS 100% 0% 0% 0%
GTSRB 100% 0% 100% 0%

Speed
Limit

ARTS 100% 100% 100% 100%
LISA 100% 100% 100% 100%

Transferability to Different Model Architectures. Table IX
lists the ASR of transferred attacks generated with the CNN
models and applied to 3 types of models: DenseNet121 [82],
EfficientNet B0 [83], and ResNet50 [84]. The speed limit sign
has significantly higher attack transferability to other models,
as the ASR is always 100%. Meanwhile, the stop sign has
a low transferability due to the low contrast between the
speckle color and the stop sign surface color (red). However,
the transferability on EfficientNet has an ASR of 100%. We
hypothesize that the ILR attack causes perturbations in features
to which the model has greater sensitivity than it does for
adversarial patch attacks. [1], [2], [24].

Our results show that the ILR attack can be transferred from
one model to another if the two models rely on the same
robustness features to determine their predictions, as with the
CNN and EfficientNet, but may fail if the features differ, as
exemplified by DenseNet121 and ResNet50.
Transferability to Different Training Datasets. We evaluate
ILR attack transferability across three datasets (ARTS GT-
SRB and LISA) using the same CNN model (CNN model
details are listed in Appendix D). Our evaluation shows high
transferability (100% ASR) for all the datasets. We believe
this is due to the large, manipulated area of traffic signs
resulting from the speckle. Compared to the results in §V-C,
the model architecture has a more significant impact on attack
transferability than does the training data set since it influences
the features used for the classification.
Transferability between Different Object Detectors. Ta-
ble X lists the ASRs for ILR attacks transferred between
different object detectors. As observed in §V-C and §V-C,
the ILR attack shows higher transferability even against object
detectors. However, the YOLOv3 model trained on the COCO
dataset appears more robust with only a 20% ASR. The
model trained on the COCO dataset is used for generic object
detection rather than specific for traffic sign recognition. Thus,
it only has a single class for traffic signs (the stop sign). For
this reason, it becomes harder to alter the legitimate prediction
of the stop sign with small IR traces compared to a model
trained on several different traffic signs. This result indicates
that the first-stage object detector in the two-stage approach
can be robust against ILR attacks while the second-stage
classifier is still vulnerable. We will discuss it in §VII.

D. Outdoor Evaluation

To study the effectiveness of the ILR attack in realistic
scenarios, we evaluate the attack against the second-stage

classification models in a controlled outdoor scenario with
the setup described in §V-A under different ambient light
conditions (e.g., day and night). Fig. 13 shows an overview of
the evaluation scenario and victim camera view during day and
night natural light conditions. We evaluate the two automotive
camera sensors: OnSemi and OmniVision. The results of the
OmniVision are detailed in Appendix §H.

1) Static Scenarios: We follow the same experimental setup
as in §V-A and perform 10 trials for each experiment.
Nighttime Attack. We collect attack traces for optimization
with the victim camera placed at a 5 m longitudinal distance
and a 1 m lateral distance, and then perform the optimized
attack in the real world. Similarly to §V-A, we set das to 3
m. We measure an average ambient light of 120 lux.

For GTSRB stop sign recognition, we achieve 100% ASR
and SCR using 45 mW of power and an average trace diameter
of 23 cm, equivalent to 7% of the entire traffic sign surface.
For LISA, as used for speed limit signs, we achieve 100%
ASR and 20% SCR using 46 mW of power, covering 17% of
the traffic sign. Finally, we achieve a 100% ASR and SCR for
ARTS on the stop sign. For the speed limit sign, the attack
causes a 100% ASR and a 0% SCR with a laser power of
115 mW and an average trace diameter of 28 cm, covering
10.6% of the stop sign. We observe that ILR requires higher
power compared to the indoor setting because of the different
outdoor illuminance compared with artificial light. We believe
the degradation of SCR is due to illuminance instability, which
we also notice in all our outdoor experiments.
Daytime Attack. During the day, we measured an average
ambient light of 982 lux. In this case, we set a shorter distance
das = 1.5 m to reach the required power and pattern size of
our optimization methodology for safety constraints.

For ARTS used for stop sign recognition, we achieve a
100% ASR and SCR, using a power of 226 mW and 31 cm
trace diameter, equivalent to 13.1% of the stop sign surface.
For the speed limit sign, we achieve a 100% ASR for both
ARTS and LISA, using a power of 52 mW and an average
trace diameter of 17.5 cm, covering an average of 13% of the
speed limit sign. The SCR for ARTS and LISA on the speed
limit sign are 50% and 90%, respectively. Finally, for GTSRB,
we achieve an ASR of 100% and an SCR of 80% on speed
limit with a laser power of 115 mW and an average trace
diameter of 31 cm, covering 7.9% of the traffic sign surface.

2) Dynamic Driving Scenarios: We collect the attack traces
using the same setup as in the static scenarios (§V-D1). We
recorded videos with the victim camera placed in a car moving
towards the traffic sign (from 12 meters away from the traffic
sign) at three increasingly high speeds: 5, 8, and 13 km/h
(approximately 3, 5, and 8 mph)1.

In this case, the ASR is calculated as the percentage of suc-
cessful misclassification in terms of the number of successful
frames among all the frames collected by the camera.

1We did not evaluate at higher speeds due to the safety and spatial
constraints of our testing facility. The demo videos of our experiments are
available at https://sites.google.com/view/cav-sec/ilr-attack
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TABLE X: Transfered ILR attack success rates (ASRs) for different object detectors.

Target model
Stop Speed

Faster R-CNN (ARTS) YOLOv3 (COCO) Faster R-CNN (ARTS) Faster R-CNN (Mapillary)
Source
Model

Faster R-CNN (ARTS) 100% 20% Faster R-CNN (ARTS) 100% 100%
YOLOv3 (COCO) 100% 100% Faster R-CNN (Mapillary) 100% 100%

Laser Emitter

Overview Daytime Setup

Windshield Camera

Nighttime Camera View

Daytime Camera View

Fig. 13: Overview of the outdoor experimental scenarios. The
setup is used in the daytime (left). The camera view during the
attack is at nighttime (Right-top) and daytime (Right-bottom).

TABLE XI: ASR of the OnSemi camera in the outdoor driving
scenarios.

Stop Sign Speed Limit
ARTS GTSRB ARTS LISA

Speed ASR SCR ASR SCR ASR SCR ASR SCR
Night Scenario

5 km/h 100% 100% 99% 90% 100% 0% 99% 31%
8 km/h 100% 100% 92% 91% 100% 0% 100% 0%
13 km/h 100% 100% 85% 85% 100% 0% 99% 16%

Day Scenario
5 km/h 98% 82% 85% 57% 100% 18% 100% 98%
8 km/h 100% 88% 88% 46% 100% 50% 100% 87%
13 km/h 91% 75% 80% 40% 100% 58% 100% 98%

Results. Table XI shows the ASR in the outdoor driving
scenarios for the OnSemi camera. The results are consistent
with the indoor robustness experiments in §V-B, i.e., the ILR
attack achieves an ASR >99% for all the tested speeds on
ARTS and LISA models. For the stop sign, on the other hand,
we observe an ASR >90% for ARTS and >80.5% in GTSRB
at all speeds. The ASR for the ARTS detection model is 100%
in all scenarios. The low SCR for attacks on speed limit sign
classification is due to the high sensitivity of the models for the
speed limit classification compared to stop sign classification.
Appendix §H Table XVI shows results for the OmniVision
camera. These results show that our attack achieves high
effectiveness in outdoor, moving scenarios, especially in night
driving conditions.

VI. DEFENSE EVALUATION

In this section, we evaluate existing defenses against patch
attacks on ILR attacks and propose a new defense strategy.

A. Evaluation of generic defenses against patch attacks

While invisible to humans, ILR attack traces are visible in
camera images. Thus, existing defense methods against adver-
sarial patch attacks [1], [2] are theoretically applicable. So far,
two types of defenses against adversarial patch attacks have
been proposed: empirical defenses, such as the detection of
anomalous patterns in attack patches [2], [5], [49]–[52]), and
certifiable defenses, which provide theoretical guarantees [16],
[53]–[55]. As the empirical defenses are known to be generally
vulnerable to adaptive attacks [53], we focus on certifiable
defenses. PatchCleanser [16] is the current state-of-the-art for
defending classifiers against adversarial patch attacks.

Experimental Setup. We evaluate the defense capability of
PatchCleanser [16] on second-stage classifier models in the
two-stage architecture. This architecture scales to a large
number of classes and is thus applicable to a more general set
of CAV systems. We use the same models as in §V-A – CNN
models trained on the ARTS, GTSRB, and LISA datasets.
We generate ILR attacks against 20 scenarios with 2 lateral
positions (0.5 m and 1 m) at 2 m from the traffic signs. We
limit the diameter of the ILR trace to 12 cm, corresponding
to approximately 10 pixels in the image. In order to focus
on defense capabilities, we used our simulated, rather than
physical, attack for our evaluation. PatchCleanser requires the
estimated attack patch size as a parameter, thus, we set the
patch size to 9 and 12 pixels. The 9-pixel patch is equivalent
to the 2%-pixel patch scenario in [16] (note that this size is
smaller than our ILR traces), while the 12-pixel patch (4%-
pixel patch) is designed to cover an ILR trace 10 pixels in
diameter. For the other parameters, we follow the official
implementations [16].

Results. Tables XII and XIV (in Appendix G), show the
defense evaluation of PatchCleanser against the ILR attacks
in the 2%-pixel patch scenario and 4%-pixel patch scenario,
respectively. The accuracy without any defenses is the ac-
curacy without the PatchCleanser. The clean accuracy is the
percentage of correct labels after PatchCleanser is applied. The
certified accuracy is the percentage of correct labels that the
PatchCleanser can certify. The mis-certified (false positive) FP
is the percentage of incorrect labels PatchCleanser certifies.

As shown, our results indicate that PatchCleanser either
does not benefit, or decreases, model performance for traffic
sign recognition. For example, ILR attacks are not successful
(100% accuracy without PatchCleanser) against the ARTS
model on the stop sign because we limit the trace size.
Nevertheless, PatchCleanser cannot handle them correctly as
the clean accuracy is 0%. As shown in the bold numbers in
Table XII and XIV, PatchCleanser degrades accuracy by an
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TABLE XII: Defense evaluation of PatchCleanser against the
ILR attacks with the 2%-pixel patch, as used in the original
PatchCleanser paper [16]. The certified TP is the rate of correct
labels that PatchCleanser can certify. The mis-certified FP is
the rate of incorrect labels PatchCleanser certifies.

Benign Attack
Stop Sign Speed Limit Stop Sign Speed Limit

GTSRB ARTS LISA ARTS Avg. GTSRB ARTS LISA ARTS Avg.
No Defense Acc.↑ 93% 93% 100% 93% 95% 15% 100% 0% 0% 29%

Clean Acc.↑ 93% 93% 71% 71% 82% 15% 0% 0% 0% 4%
Certified Acc.↑ 0% 64% 0% 0% 16% 0% 0% 0% 0% 0%

Miscertified FP↓ 0% 0% 29% 21% 13% 5% 90% 100% 20% 54%

(a) Bounding box area of 
the captured image with 

ILR attack trace

(b) Image portion after  
speckle color analysis

(c)  Spatial Frequency 
Evaluation

Fig. 14: Speckle Detection on a stop sign. (a) Real-world
attack trace during daytime. (b) Color masking result. (c)
Spatial Frequency analysis of the selected portion.

average of ≥12% for benign cases and 25% for attack cases
for ILR attacks. We believe this is because PatchCleanser’s
main assumption does not apply to traffic sign recognition.
PatchCleanser states that “model predictions on images with-
out adversarial pixels are generally correct and invariant to
the masking operation.” This consideration generally holds for
image classification tasks whose classes tend to be inferable
even if some parts of the image are missing, such as the
ImageNet [17] and CIFAR-10 [18] datasets. However, traffic
sign recognition is an exception to this intuition. For example,
a 35 mph sign could be classified as an 85 mph sign if the
left side of “3” is altered [85]. Fig. 16 in Appendix G shows
examples of PatchCleanser mis-certifying examples of two-
rounded, masked images. A two-round mask hides important
text on the traffic sign and causes misclassification in all 36
combinations. Thus PatchCleanser’s agreement-based defense
strategy fails in those cases. Our evaluation shows that while
certifiable defenses are typically considered more effective
than empirical defenses [53], this does not mean that they
are effectively applicable in every domain. More details are
discussed in Appendix G.

B. Proposed Alternative Defense Strategies

While certifiable defenses are not sufficient to eliminate
ILR, and applying optical IR filters defeats the advantage of
using the IR light components to detect obstacles, alternative
strategies can be adopted to evaluate the trustworthiness of
traffic sign recognition. We propose a detection strategy based
on the physics-based characteristics of laser light reflections.

Speckle Features. As described in §III-B, laser beam light
generates speckle patterns when coherent light diffuses off
of a rough surface (such as that of a traffic sign), causing
interference. The resulting reflected speckle pattern appears as
a random distribution of bright and dark spots in images. The
pattern varies based on speckle location, surface roughness,
camera settings, captured images pixel resolution, and the
optical power of the reflection, as shown in 7.

The spatial pixel frequency of an image refers to the rate of
change in intensity values from one pixel to its neighboring
pixels. Laser speckles exhibit high spatial frequency, indicating
that adjacent pixels have significant variations in intensity
in smaller spaces [86]. Additionally, the speckle can only
manifest as a monotonous false color, such as magenta, purple,
or orange, depending on image sensor type, the IR light, and
the ambient light condition described in §II-B. Leveraging
these unique features [87], [88], various defense strategies can
be adopted to identify and locate ILR attack traces within
images, independently of speckle size and shape.
Color-Frequency Detection. Taking inspiration from image
processing techniques [89]–[91], a detection methodology
can begin by extracting salient regions from captured traffic
sign images that may contain false colors as a result of an
ILR attack, A spatial frequency analysis is then performed
to determine whether selected regions also manifest higher
spatial frequencies, indicating a potential attack. For instance,
for the OnSemi camera, our outdoor experiments show that at
high ambient illuminance, the speckle color falls within the
range of #FFB266 to #CC6600, while during low ambient
light, it ranges between #CF9FFF and #DA70D6. These color
ranges can be extracted from the camera output and used as
references for the subsequent frequency analysis.
Proof-of-Concept Analysis. To test the feasibility of the
approach, as a proof of concept, we implement the strategy
on a random selection of real-world images collected with
the OnSemi camera from all of the outdoor attack scenarios
tested in §V-D. We build two sample datasets containing
both speed limit and stop signs, collected during daytime
and nighttime respectively. Each dataset consists of 75 benign
samples and 75 attack samples. We then extract from the
ARTS model output the traffic sign bounding box areas to
perform the analysis. To apply the methodology, we first use
a color masking technique, with potential IR light color ranges
measured empirically. Next, to differentiate IR speckles from
naturally occurring image components, we apply a Gaussian
smoothing low-pass filter [91] to separate the low-frequency
components of the image, and to retain regions with high-
frequency components, as shown in Figure 14. We then
identify a potential ILR attack if more than 1% of an extracted
region exhibits high spatial frequencies. This threshold is
chosen because benign traffic sign images typically contain
few high spatial frequency components. This preliminary test
achieves a 96% TPR and a 2.7% FPR for the daytime data.
For the nighttime data instead, the methodology shows 92%
TPR and 6.7% FPR. More sophisticated techniques such as
color segmentation [92] and cross-correlation [93], [94] can
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also be used for detecting known patterns.

VII. DISCUSSION AND LIMITATIONS

CAV Safety Implications. As demonstrated in §V-D2, the
ILR attack can achieve a nearly 100% ASR in outdoor driving
scenarios, particularly at night. This can severely undermine
CAV safety. Furthermore, we note that the ILR attack can be
easily enhanced if the attacker uses multiple laser emitters to
affect wider areas or to generate saturated IR speckles. Using
our methodology, the attacker can alter traffic signs of any size
by scaling the power and size of the attack trace proportionally,
and of any color by adjusting the traces according to the traffic
sign surface color, as shown in §IV-A. Thus, we recommend
that CAV companies either use IR filters, or deploy adequate
defenses such as the one proposed in §VI-B.
Single-Stage v.s. Two-Stage Architectures. We observe that
both single-stage and two-stage architectures are vulnerable to
the ILR attack in §V-A and §V-B. The generic object detector
trained with the COCO dataset shows higher robustness to
ILR, thus it might appear suitable to use for a single-stage
architecture, or the first stage of a two-stage architecture.
However, the single-stage architecture is not applicable to
higher SAE autonomy levels [95], as it does not scale to
a large number of traffic sign classes [20].
Daytime Attack under Strong Sunshine. While we con-
firmed that the ILR attack is robust to some lighting conditions
in §V-B, the ILR attack is not likely to work in strong
sunshine without raising the laser power to Class 4 (above
500mW) [96]. We could not evaluate this condition because
of safety hazards and the uncontrollability of the sunshine
level. However, our ILR attack should achieve at least equal
or higher robustness than the attacks that use incoherent light,
such as projection of an image of a person on the ground [7]
or projection of an adversarial pattern onto a traffic sign [3]
as they use incoherent lights not robust to reflection.
Laser Safety. All of our real-world experiments were con-
ducted in closed controlled environments by trained personnel.
For outdoor experiments, the power of a class 3-B laser was
used (see Appendix I for the details).

VIII. CONCLUSION

We propose ILR, a novel, invisible attack vector that can
cause CAV traffic sign recognition systems to misclassify
traffic signs. Our attack uses an IR laser to reflect a pattern
onto a target sign that is invisible to humans, but visible to
CAV cameras that lack IR filters. Unlike previous attacks, our
attack does not require continuous aiming of a moving CAV.

To maximize attack efficacy, we designed a novel method-
ology to optimize the attack using image difference-based IR
trace modeling and interpolation. We evaluated the effective-
ness of our attack against two major traffic sign architectures
achieving a 100% success rate for indoor experiments and
≥80.5% in outdoor driving scenarios. Finally, we determined
that certifiable defenses have limited applicability to the traffic
sign recognition domain. Thus we propose an alternative
defense technique based on speckle detection.

ACKNOWLEDGEMENTS

We thank the anonymous shepherd and reviewers for their
valuable comments. This research was supported in part by the
NSF CNS-1932464, CNS-1929771, CNS-2145493, USDOT
UTC Grant 69A3552047138, JST CREST JPMJCR23M4, and
unrestricted research funds from Toyota InfoTech Labs. We
want to thank Himanandhan Reddy Kottur for his help with
the outdoor experiments.

REFERENCES

[1] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, F. Tramer,
A. Prakash, T. Kohno, and D. Song, “Physical Adversarial Examples
for Object Detectors,” in Workshop on Offensive Technologies (WOOT),
2018.

[2] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, and K. Chen, “Seeing
isn’t Believing: Practical Adversarial Attack Against Object Detectors,”
in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019, p. 1989–2004.

[3] G. Lovisotto, H. Turner, I. Sluganovic, M. Strohmeier, and I. Martinovic,
“SLAP: Improving Physical Adversarial Examples with Short-Lived
Adversarial Perturbations,” in USENIX Security Symposium, 2021, pp.
1865–1882.

[4] W. Jia, Z. Lu, H. Zhang, Z. Liu, J. Wang, and G. Qu, “Fooling the
Eyes of Autonomous Vehicles: Robust Physical Adversarial Examples
Against Traffic Sign Recognition Systems,” in 29th Annual Network and
Distributed System Security Symposium (NDSS), 2022.

[5] Y. Zhong, X. Liu, D. Zhai, J. Jiang, and X. Ji, “Shadows can be
Dangerous: Stealthy and Effective Physical-world Adversarial Attack
by Natural Phenomenon,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022, pp. 15 345–15 354.

[6] R. Duan, X. Mao, A. K. Qin, Y. Chen, S. Ye, Y. He, and Y. Yang,
“Adversarial Laser Beam: Effective Physical-World Attack to DNNs in
a Blink,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 16 062–16 071.

[7] B. Nassi, Y. Mirsky, D. Nassi, R. Ben-Netanel, O. Drokin, and Y. Elovici,
“Phantom of the adas: Securing advanced driver-assistance systems from
split-second phantom attacks,” in 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2020, pp. 293–308.

[8] L. Yufeng, Y. Fengyu, L. Qi, L. Jiangtao, and C. Chenhong, “Light can
be Dangerous: Stealthy and Effective Physical-world Adversarial Attack
by Spot Light,” Computers & Security, p. 103345, 2023.

[9] Tesla, Inc., “Tesla Model 3 Owner’s Manual,” https://www.tesla.com/si
tes/default/files/model 3 owners manual north america en.pdf, 2020.

[10] Tesla Inc., “Tesla Autopilot,” https://www.tesla.com/autopilot, 2020.
[11] MobilEye., “About MobilEye.” https://www.mobileye.com/about/, 2020.
[12] W. Wang, Y. Yao, X. Liu, X. Li, P. Hao, and T. Zhu, “I Can See the

Light: Attacks on Autonomous Vehicles Using Invisible Lights,” in ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2021, pp. 1930–1944.

[13] Z. Zhou, D. Tang, X. Wang, W. Han, X. Liu, and K. Zhang, “Invisible
Mask: Practical Attacks on Face Recognition with Infrared,” arXiv
preprint arXiv:1803.04683, 2018.

[14] C. Yan, Z. Xu, Z. Yin, X. Ji, and W. Xu, “Rolling Colors: Adversarial
Laser Exploits against Traffic Light Recognition,” in 31st USENIX
Security Symposium, 2022, pp. 1957–1974.

[15] Z. Jin, X. Ji, Y. Cheng, B. Yang, C. Yan, and W. Xu, “PLA-LiDAR:
Physical Laser Attacks against Lidar-based 3D Object Detection in Au-
tonomous Vehicle,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2023, pp. 1822–1839.

[16] C. Xiang, S. Mahloujifar, and P. Mittal, “PatchCleanser: Certifiably
Robust Defense against Adversarial Patches for Any Image Classifier,”
in Workshop on Offensive Technologies (WOOT), 2022.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A Large-Scale Hierarchical Image Database,” in IEEE conference on
computer vision and pattern recognition (CVPR). IEEE, 2009, pp.
248–255.

[18] A. Krizhevsky, G. Hinton et al., “Learning Multiple Layers of Features
from Tiny Images,” 2009.

14

https://www.tesla.com/sites/default/files/model_3_owners_manual_north_america_en.pdf
https://www.tesla.com/sites/default/files/model_3_owners_manual_north_america_en.pdf
https://www.tesla.com/autopilot
https://www.mobileye.com/about/


[19] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of Traffic Signs in Real-World Images: The German Traffic
Sign Detection Benchmark,” in International Joint Conference on Neural
Networks (IJCNN), no. 1288, 2013.

[20] C. Ertler, J. Mislej, T. Ollmann, L. Porzi, G. Neuhold, and Y. Kuang,
“The Mapillary Traffic Sign Dataset for Detection and Classification on
a Global Scale,” in European Conference on Computer Vision (ECCV),
2020, pp. 68–84.

[21] comma.ai, “OpenPilot: Open Source Driving Agent,” https://github.com
/commaai/openpilot, 2023.

[22] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
IEEE conference on computer vision and pattern recognition (CVPR),
2017.

[23] Y.-C. Chiu, H.-Y. Lin, and W.-L. Tai, “A Two-Stage Learning Approach
for Traffic Sign Detection and Recognition,” in 7th International Confer-
ence on Vehicle Technology and Intelligent Transport Systems (VEHITS
2021), 2021, pp. 276–283.

[24] S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau, “Shapeshifter:
Robust Physical Adversarial Attack on Faster R-CNN Object Detector,”
in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2018, pp. 52–68.

[25] C. G. Someda, Electromagnetic waves. CRC Press, 2017.
[26] R. Araneta, “Seeing the unseen: How infrared cameras capture beyond

the visible,” https://possibility.teledyneimaging.com/seeing-the-unsee
n-how-infrared-cameras-capture-beyond-the-visible/, 2019.

[27] G. Ahearn, “Cameras that See Beyond Visible Light: Inspecting the Seen
and Unseen,” https://www.qualitymag.com/articles/96211, 2020.

[28] R. Thakur, “Infrared sensors for autonomous vehicles,” in Recent De-
velopment in Optoelectronic Devices. Rijeka: IntechOpen, 2017, ch. 5.

[29] B. E. Bayer, “Color imaging array,” Jul. 20 1976, uS Patent 3,971,065.
[30] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, “Intriguing Properties of Neural Networks,” in 2nd
International Conference on Learning Representations (ICLR), 2014.

[31] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.

[32] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in Artificial intelligence safety and security, 2018,
pp. 99–112.

[33] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a
Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition,”
in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2016, pp. 1528–1540.

[34] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing Ro-
bust Adversarial Examples,” in International Conference on Machine
Learning (ICML), 2018.

[35] T. Brown, D. Mane, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
Patch,” arXiv preprint arXiv:1712.09665, 2017.

[36] Z. Zhong, W. Xu, Y. Jia, and T. Wei, “Perception Deception: Physical
Adversarial Attack Challenges and Tactics for DNN-Based Object
Detection,” in Black Hat Europe, 2018.

[37] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated Whitebox
Testing of Deep Learning Systems,” in Symposium on Operating Systems
Principles, 2017, pp. 1–18.

[38] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated Testing
of Deep-Neural-Network-Driven Autonomous Cars,” in International
Conference on Software Engineering (ICSE), 2018, pp. 303–314.

[39] A. Chernikova, A. Oprea, C. Nita-Rotaru, and B. Kim, “Are Self-
Driving Cars Secure? Evasion Attacks Against Deep Neural Networks
for Steering Angle Prediction,” in 2019 IEEE Security and Privacy
Workshops (SPW), 2019, pp. 132–137.

[40] H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, and C. Liu, “Deep-
billboard: Systematic Physical-World Testing of Autonomous Driving
Systems,” in International Conference on Software Engineering (ICSE),
2020.

[41] Y. Li, F. Yang, Q. Liu, J. Li, and C. Cao, “Light can be Dangerous:
Stealthy and Effective Physical-world Adversarial Attack by Spot Light,”
Computers & Security, vol. 132, p. 103345, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404823002559

[42] Y. Man, M. Li, and R. Gerdes, “GhostImage: Remote perception
attacks against camera-based image classification systems,” in 23rd
International Symposium on Research in Attacks, Intrusions and

Defenses (RAID 2020), Oct. 2020, pp. 317–332. [Online]. Available:
https://www.usenix.org/conference/raid2020/presentation/man

[43] B. Nassi, D. Nassi, R. Ben-Netanel, Y. Mirsky, O. Drokin, and Y. Elovici,
“Phantom of the ADAS: Phantom Attacks on Driver-Assistance Sys-
tems.” IACR Cryptol. ePrint Arch., vol. 2020, p. 85, 2020.

[44] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote Attacks on
Automated Vehicles Sensors: Experiments on Camera and Lidar,” Black
Hat Europe, vol. 11, p. 2015, 2015.

[45] O. Svelto, D. C. Hanna et al., Principles of lasers. Springer, 2010,
vol. 1.

[46] Y. Cao, S. H. Bhupathiraju, P. Naghavi, T. Sugawara, Z. M. Mao, and
S. Rampazzi, “You Can’t See Me: Physical Removal Attacks on LiDAR-
based Autonomous Vehicles Driving Frameworks,” in USENIX Security
Symposium, 2023.

[47] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen,
K. Fu, and Z. M. Mao, “Adversarial Sensor Attack on Lidar-Based
Perception in Autonomous Driving,” in 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2019, pp. 2267–
2281.

[48] Hocheol Shin and Dohyun Kim and Yujin Kwon and Yongdae Kim,
“Illusion and dazzle: Adversarial optical channel exploits against
lidars for automotive applications,” Cryptology ePrint Archive, Paper
2017/613, 2017, https://eprint.iacr.org/2017/613. [Online]. Available:
https://eprint.iacr.org/2017/613

[49] J. Hayes, “On Visible Adversarial Perturbations & Digital Watermark-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2018, pp. 1597–1604.

[50] S. Gowal, K. D. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. Mann, and P. Kohli, “Scalable Verified Training
for Provably Robust Image Classification,” in IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 4842–4851.

[51] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
Deep Learning Models Resistant to Adversarial Attacks,” in Interna-
tional Conference on Learning Representation (ICLR), 2018.

[52] C. Yu, J. Chen, Y. Xue, Y. Liu, W. Wan, J. Bao, and H. Ma, “Defending
against Universal Adversarial Patches by Clipping Feature Norms,” in
IEEE/CVF International Conference on Computer Vision (ICCV), 2021,
pp. 16 434–16 442.

[53] P. yeh Chiang, R. Ni, A. Abdelkader, C. Zhu, C. Studor, and T. Gold-
stein, “Certified Defenses for Adversarial Patches,” in International
Conference on Learning Representations (ICLR), 2020.

[54] C. Xiang, A. N. Bhagoji, V. Sehwag, and P. Mittal, “PatchGuard:
A Provably Robust Defense against Adversarial Patches via Small
Receptive Fields and Masking,” in USENIX Security Symposium, 2021,
pp. 2237–2254.

[55] A. Levine and S. Feizi, “(de)randomized smoothing for certifiable
defense against patch attacks,” in International Conference on Neural
Information Processing Systems (NIPS), 2020, pp. 6465–6475.

[56] J. Yoshida, “Teardown: Lessons Learned From Audi A8,” https://www.
eetasia.com/teardown-lessons-learned-from-audi-a8/, 2020.

[57] MarkLines Co., Ltd., “BMW 320i Teardown: ADAS/onboard devices ,”
https://www.marklines.com/en/report all/rep2018 202004, 2020.
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APPENDIX

A. IR Laser Power Attenuation

The laser optical power emitted by the attacker laser module
can be given by P = I · A, where I is the beam’s irradiance
(power per unit area) and A is the cross-section area of the
laser beam. For an attacker distance das from the target traffic
sign, the irradiance of the beam decreases according to inverse
square law as I = P

/
(4π · d2as). The cross-section area of the

beam A at das can be measured as A = (π · d2as · tan2 θ)
/
4,

where θ is the divergence angle, controlled by the attacker
using the two lens setup. Thus the resulting laser optical power
at the traffic sign surface Pf at das with divergence angle θ
can be given by Pf = (Pa · tan2 θ)

/
(4π).

B. Laser Speckle Modeling Details

To accurately synthesize the pixel distribution of the attack
traces, we use image differencing to extract the RGB pixel
intensity variation in our controlled closed indoor scenario (we
follow a similar procedure for outdoor scenarios except for the
illuminance setting).

For the indoor setting, we use the same attack setup de-
scribed in §III-C and we locate the victim camera at a 0.5
m dav from the IR emitter. We set das to 3 m and the room
ambient light to 100 Lux. We then capture the images of a
stop sign without and during the attack and extract the pixel
intensity variation caused by the IR patterns in the form of
RGB pixel difference between both images. These intensity
differences are then applied on to the benign traffic sign image
to simulate IR beams targeted at different sign locations for
optimization as shown in Fig. 4.

We account for the temporal image noise in the target
camera by averaging ten consecutive frames for each benign
and attack case. Further, we observe that the RGB pixel offset
values depend on the camera’s perceived surface color for the
selected traffic sign. To model this, we first collect the attack
traces with a baseline traffic sign surface color (e.g., the RGB
pixel values that correspond to the red color of the stop sign).
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We then synthesize the IR pattern on the target traffic sign
surface colors (different from the baseline), by measuring the
average offset in the RGB values between the baseline and the
target traffic sign color.

C. Pixel-wise Spline-based Interpolation

As a baseline method for the trace image interpolation, we
design the pixel-wise spline-based interpolation in which we
simply apply the cubic spline interpolation for each pixel. This
method consists of three steps, (1) Spline fitting: The real-
world traces are synthesized by a pixel-wise cubic interpola-
tion function to model the RGB pixel distribution changes for
each trace individually; (2) Spline interpolation: For a desired
emitted laser power, two adjacent real-world traces are used
to calculate the RGB pixel values of the trace; and (3) using
weighted averages between the real-world traces and the traces
generated in step (2), the RGB pixel values are derived at the
desired diameter.

D. CNN Model Architecture

Table XIII lists the architecture of the CNN model we use.
The input image size is 60×60 pixels. This model achieves
one of the highest performances on the GTSRB dataset [76].

TABLE XIII: CNN model architecture.

Layer (type) Output Shape

0. Input (batch size, 60, 60, 3)
1. Conv2D (batch size, 28, 28, 16)
2. Conv2D (batch size, 26, 26, 32)
3. MaxPooling2D (batch size, 13, 13, 32)
4. BatchNorm (batch size, 13, 13, 32)
5. Conv2D (batch size, 11, 11, 64)
6. Conv2D (batch size, 9, 9, 128)
7. MaxPooling2 (batch size, 4, 4, 128)
8. BatchNorm (batch size, 4, 4, 128)
9. Flatten (batch size, 18432)
10. Dense (batch size, 512)
11. BatchNorm (batch size, 512)
12. Dropout (batch size, 512)
13. Dense (batch size, 43)

E. Detailed Setup of Random Attacks

A naive attacker might decide to project the IR pattern
onto random locations on a sign and observe the behavior
of the victim CAV. To show the consequences of a random
attack on both single-stage and two-stage architectures, we
use the setup discussed in §III-C to collect the IR traces from
the OnSemi camera [63] for the stop and speed limit signs.
For this analysis, we set the pattern diameter to D = 15
cm as in our indoor evaluation. To avoid sensor saturation,
we used a 51 mW laser power. We then randomly pick a
location to place the IR pattern within the traffic signs. As
shown in Table IV, the random attack has an ASR of ≤20%
against the stop sign, and ≤20% against the speed limit sign,
for the two architectures. We use the random attack as a
comparison baseline to demonstrate our optimized ILR attack
methodology’s effectiveness in §IV.
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Fig. 15: Evaluation results of bounding box position noise
detected in the first stage. Given noise level δ, the resulting
perturbation, U , obeys: U(−δ, δ) = percentage of bounding
box width or height.

F. Robustness to Inaccuracy in First-Stage Object Detection

While we focused more on attacking the second-stage
classification model for the two-stage architecture, we also
evaluated how inaccuracies in the first stage can change
the automatic bounding cropping and consequently alter the
input of the second-stage classification model. To evaluate
the impact of the inaccuracy on the classification results, we
apply vertical and horizontal translation noise to our manually
annotated bounding boxes. For the stop sign, we use the CNN
model trained on the GTSRB dataset. For the speed limit
sign, we use the CNN model trained on the LISA dataset.
Fig. 15 shows the ASR for random vertical and horizontal
displacement. Since the bounding box sizes are different for
each image, we use the percentage over the width and height
of the bounding box as a displacement level, δ, instead of the
corresponding sizes in pixels. Given δ, we generate a random
number under the uniform distribution U(−δ, δ) and displace
the bounding box based on the result. For example, a 10-
pixel displacement will be applied on a bounding box with
100-pixel height and width if the random number is 10%. As
shown, bounding box inaccuracy has a greater impact on the
stop sign than the speed limit sign. The ASR and SCR for the
stop sign decrease with increasing noise levels. In contrast, the
ASR for the speed limit sign is always 100%, while the SCR
eventually starts to decrease around a noise level of 8%.

We hypothesize that these results are due to the shape, and
the resulting pixel RGB values, of the attack beam traces. For
example, the majority of attacks against the speed limit signs
are classified as stop signs, as shown in Fig. 4. This suggests
that the beam and stop sign may have similar features, which
result in similar classifications. Thus, small translations of the
IR spot can negate attacks, resulting in the correct stop sign
classification.

G. Considerations over PatchCleanser

PatchCleanser and PatchGuard [54], and current state-of-
the-art defenses, assume that classification models can return
a correct prediction even if a small portion of the image is
masked. However, this assumption does not always hold for
traffic sign recognition, since any portion of the sign has the
potential to be important for correct classifications. As listed
in Tables XII and XIV, the certified accuracy of PatchCleanser
is significantly lower than the reported (>60% certified accu-
racy) on ImageNet [17]. Even for benign cases, the certified
accuracies are 16% for the 2%-pixel patch scenario and 0% for
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TABLE XIV: Defense evaluation of PatchCleanser against the
ILR attacks with the 4%-pixel patch, which can cover the
ILR trace. The certified TP is the rate of correct labels that
PatchCleanser can certify. The miscertified FP is the rate of
incorrect labels but PatchCleanser certifies.

Benign Attack
Stop Sign Speed Limit Stop Sign Speed Limit

GTSRB ARTS LISA ARTS Avg. GTSRB ARTS LISA ARTS Avg.
No Defense Acc.↑ 93% 93% 100% 93% 95% 15% 100% 0% 0% 29%

Clean Acc.↑ 86% 43% 64% 71% 66% 15% 0% 0% 0% 4%
Certified Acc.↑ 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Miscertified FP↓ 7% 50% 36% 21% 29% 0% 100% 100% 85% 71%

(a) All are classified as “Yield” (b) All are classified as “truckSpeedLimit55”

Fig. 16: Mis-certified examples of two-round masked images.
(a) For the stop sign, all images are classified as a “Yield”
sign in the 4%-pixel patch scenario. (b) For the speed limit
sign, all images are classified as a “truckSpeedLimit55” sign
in the 2%-pixel patch scenario.

the 4%-pixel patch scenario. In the 2%-pixel patch scenario,
the clean accuracy in the benign case (82% on average) is
close to the reported clean accuracy (>80%) on ImageNet,
but it drops to a 66% average in the 4%-pixel patch scenario.
For the attack cases, the clean accuracies are even worse (4%)
than the accuracy without PatchCleanser (29%). Furthermore,
PatchCleanser mis-certifies 33.5% of cases for the 2-pixel
patch scenario and 50% of cases for the 4-pixel patch scenario
(averages of the underlined numbers in Tables XII and XIV)
and does not have any correctly certified cases for the 4-
pixel patch scenario. This means that the two-round masking
of PatchCleanser itself works as an attack, with prediction
agreement occurring for a wrong label. Fig. 16 shows mis-
certified examples of the two-round masked images. The two-
round mask hides important text on the traffic sign and causes
misclassification in all 36 combinations. These images might
also be challenging for humans to classify correctly.

Our ILR attack can break another prerequisite for Patch-
Cleanser – that the attack trace size is known in advance. The
size of an ILR attack trace is relative to the target sign size
and it can be increased without reducing attack stealthiness
using our methodology described in IV (note that to maintain a
constant trace intensity, the attacker would need to change the
laser power based on the distance). Additionally, the circular
shape of the ILR attack trace cannot be used in PatchCleanser

as it is since a significant number of patches are required for
circular masks to meet the R-covering conditions.

H. Outdoor Evaluation of the OmniVision Camera
TABLE XV: ASR of ILR attacks on Omnivision in the outdoor
static scenarios.

Night. Day
ASR SCR ASR SCR

Stop
Sign

ARTS 100% 100% 100% 20%
GTSRB 100% 100% 100% 90%

Speed
Limit

ARTS 100% 100% 100% 50%
LISA 100% 0% 100% 100%

TABLE XVI: ASR of ILR attacks on Omnivision in the
outdoor dynamic scenarios.

Stop Sign Speed Limit
ARTS GTSRB ARTS LISA

Speed ASR SCR ASR SCR ASR SCR ASR SCR
Night Scenario

5 km/h 100% 95% 100% 92% 95% 0% 100% 0%
8 km/h 100% 78% 100% 85% 89% 0% 100% 6%

13 km/h 100% 85% 100% 90% 96% 0% 100% 1%
Day Scenario

5 km/h 100% 54% 99% 39% 100% 18% 100% 96%
8 km/h 100% 10% 99% 94% 100% 50% 100% 100%

13 km/h 100% 11% 100% 80% 100% 58% 100% 100%

I. Considerations on Laser Safety

In our experiments, we use the maximum emission power
of 80mW in controlled indoor scenarios and 115mW in out-
door controlled scenario (daytime), below the 3-B class laser
limit (= 500mW) [96]. The maximum permissible exposure
(MPE) [97] of a 780 nm continuous class 3-B laser with
an exposure time t > 10 seconds is given by MPE =
102·(w−0.7) · 10−3, where w is the wavelength of the IR laser.
Using this equation, at w = 780 nm, MPE = 0.33 mW/cm2.
As an example, for a given 45 mW optical power, the emitter
energy is equivalent to 57.7 mW/cm2, nearly 175 times more
than the MPE. However, the IR beam’s energy can be reduced
to below the MPE values by increasing the beam diameter to
3.6 times the original size (1.3 cm for our setup). From this
analysis, an IR pattern diameter of nearly 5 cm is required
in order to follow MPE guidelines. Using our ILR attack
configuration, which considers a diverging beam, the resulting
IR pattern diameter at 45 mW is 17 cm.
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