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Abstract—Automated Lane Centering (ALC) is one of the
most popular autonomous driving (AD) technologies available in
many commodity vehicles. ALC can reduce the human driver’s
efforts by taking over their steering work. However, recent
research alerts that ALC can be vulnerable to off-road attacks
that lead victim vehicles out of their driving lane. To be secure
against off-road attacks, this paper explores the potential defense
capability of low-quality localization and publicly available maps
against off-road attacks against autonomous driving. We design
the first map-fusion-based off-road attack detection approach,
LaneGuard, LaneGuard detects off-road attacks based on the
difference between the observed road shape and the driver-
predefined route shape. We evaluate LaneGuar on large-scale
real-world driving traces consisting of 80 attack scenarios and
11,558 benign scenarios. We find that LaneGuard can achieve an
attack detection rate of 89% with a 12% false positive rate. In
real-world highway driving experiments, LaneGuard exhibits no
false positives while maintaining a near-zero false negative rate
against simulated attacks.

I. INTRODUCTION

Automated Lane Centering (ALC) [1], classified as Level-
2 driving automation, is one of the most popular autonomous
driving (AD) technologies widely available in many com-
mercial vehicles such as Tesla, GM Cadillac, Honda Accord,
Toyota RAV4, and Volvo XC90. ALC can automatically steer
a vehicle and maintain it within its current driving lane, which
is detected by windshield cameras. Despite its convenience for
drivers, the ALC system carries significant security and safety
implications. Despite its convenience for human drivers, ALC
systems carry significant security and safety implications. DRP
attack [2] demonstrated that the commercial ALC system can
be vulnerable to maliciously created dirty road patches. RAP-
ALC attack [3] shows that a malicious patch on the back of
a leading vehicle can mislead the victim vehicle controlled by
an ALC to out of the driving lane. Due to the nature of ALC,
which primarily controls steering, the attack effect on ALC
is realized by lateral movement that causes the victim vehicle
to deviate from its driving lane. We call this attack off-road
attack by following the prior work [4].

To fundamentally defend against off-road attacks, two
major approaches are actively researched: sensor fusion and

map fusion. Sensor fusion utilizes sensing information from
multiple sensors other than the windshield cameras to cross-
check the detected lanes. However, sensor fusion has critical
limitations to fully defend against off-road attacks: (1) The
lane marking is not easy to detect other than windshield
cameras. While prior research [5] demonstrates lane detection
with LiDAR, it is fundamentally hard to sense the pattern
on the road for other sensors than cameras; (2) The use of
other sensors may open another attack vectors as there is no
guarantee that the newly added sensors are more secure than
the sensing with the windshield cameras.

Map fusion utilizes off-line map information to cross-
check the detected lanes or to merely use the lane informa-
tion in the map data. This approach is commonly used in
Level-4 AD vehicles [1]. For example, Baidu Apollo [6] and
Autoware [7] merely use the lane line information in map
data without detecting lane lines on the fly. Since map data
is typically managed by companies privately, it is not easy
to compromise the data by the attacker. However, there are
two major challenges in the current map fusion used in the
Level-4 AD: (1) the Level-4-AD grade map, so-called High
Definition (HD) map [8], needs tremendous cost to create and
maintain and thus it is hard to scale to cover major roads.
For example, Waymo [9] can only operate within the geo-
fences such as the central area of San Francisco or Phoenix; (2)
the map fusion generally requires very high-accurate vehicle
localization, which is typically enabled by LiDAR localizer
in the Level-4 AD. However, AD-grade LiDARs are still too
expensive to install into commodity vehicles. Due to the two
challenges, map fusion is not adopted in the current popular
ALC systems. The map data is only referenced for navigation
as in Tesla [10] and OpenPilot [11].

However, map fusion may still have meaningful informa-
tion to defend against off-road attacks even with low-quality
localization (e.g., GNSS) and publicly available maps (e.g.,
Google Map [12] and OpenStreetMap [13]). This question
motivates us to design a cross-verification approach, Lane-
Guard, to detect off-road attacks by cross-checking the lane
line detection with the lane information in publicly available
maps. In §III, we explain the detailed design of our cross-
verification approach, LaneGuard. In §III-D, we evaluate the
attack detection capability of LaneGuard and perform false
positive analysis in benign scenarios. We also conduct a
feasibility study during online real-world driving. Finally, we
discuss the insights and limitations of our study in §IV.

In summary, our study makes the following contributions:
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• We are the first to design a map-fusion-based off-road attack
detection method under low-quality localization and publicly
available maps.

• We conduct a large-scale evaluation with multiple publicly
available maps and real-world driving traces consisting of 80
attack scenarios and 11,558 benign scenarios. We find that
LaneGuard can detect 89% of off-road attacks with a 12%
false positive rate.

• We perform a feasibility study of LaneGuard on a real-
world highway. LaneGuard shows 0% false positive rate with
almost 0% false negative rate against simulated attack traces.

II. BACKGROUND

A. Off-Road Attacks against ALC Systems

Recent studies demonstrate that ALC systems are vulnera-
ble to off-road attacks enabled by adversarial attacks [2], [3].
These attacks compromise the DNN-based lane detection in
the ALC systems to lead the victim out of their driving lane.
DRP attack [2] demonstrates that it can lead an ALC-controlled
vehicle out of the driving lane by fooling the DNN-based lane
detection with a maliciously designed road patch pretending
a benign but dirty road patch. Another study [14] shows that
they can mislead Tesla Model S to the adjacent lane by putting
several small stickers on the road without the original lane line.
Phantom attack [15] also demonstrates that they can mislead
Tesla Model S by projecting fake lane lines from a drone in
the nighttime. The motivation of this study is to design an
effective attack-defection methodology to defend against off-
road attacks including not only these existing attacks but also
any attacks compromising lane detection.

B. Prior Countermeasures against Off-Road Attacks

To defend against off-road attacks, there are 3 potential
approaches: sensor-fusion, map-fusion, and software-based
defenses. As discussed in §I, sensor-fusion-based defense
requires more cost for additional sensors (e.g., LiDAR [5])
and these sensors could be new attack channels. For map-
fusion-based defense, no prior work evaluates the capability
in lower-level AD setups than Level-4 AD. This is one of
the motivations for our research. For software-based defense,
Sato et al. [2] evaluate possible defenses but none of them
can be effective without harming the performance in benign
cases. So far, none of the defenses against adversarial attacks
are successful and the newly-proposed defenses are constantly
being defeated over time [16], [17]. This also motivates us to
seek a map-fusion-based defense.

C. Publicly Available Maps

Many recent web platformers host their routing and navi-
gation services on their map data as a part of their services,
such as Google Maps [12] and Bing Maps [18]. These map
services allow users to download the navigation routes upon
their query via apps or APIs. OpenStreetMap [13] (OSM) is
a free and open geographic database, which is maintained by
volunteers around the world. While OSM itself is just indexed
map data, many routing and navigation services are developed
on the OSM such as OSRM [19] and OpenRouteService [20].
We can also import the OSM data into PostGIS [21] and query
a route with pgRouting [22].

III. METHODOLOGY

In this section, We illustrate the design details of Lane-
Guard, which is a cross-verification approach to detect off-
road attacks by comparing the lane line detection with the
lane information in publicly available maps.

A. Threat Model

We assume that the attacker can launch off-road attacks by
compromising the detected lane line information in an ALC
system installed in the victim vehicle by some attack vectors,
e.g., physical-world adversarial attacks discussed in §II-A or
malware. The victim’s ALC can access publicly available map
data and its routing services like those discussed in §II-C. With
GPS and the IMU data, we assume that the victim’s ALC
has meter-level vehicle localization information that can know
which road the victim is driving and its rough location, but
the victim vehicle’s accurate postural is not available.

B. Design Overview of LaneGuard

Fig. 1 illustrates the detection procedure of our LaneGuard.
As described, (1) we first map the current driving route and
the vehicle positions at the current and previous frames. The
route is represented by a parameterized curve, e.g., spline
and polynomial curves. We calculate the heading angle based
on the position difference between the current and previous
frames since we cannot directly obtain the vehicle heading
due to its ill-quality localizations discussed in §III-A. (2) We
project the route trajectory and the vehicle positions into the
vehicle’s local coordinate system where the vehicle heading
is along with the x-axis. In this coordinate system, we can
also plot the detected lane center obtained from the ALC
system. The lane center is also represented by a parameterized
curve. (3) We translate the route trajectory along with the
y-axis to go through the origin where is the current vehicle
position. Major routing services generally do not provide lane-
level information, but road-level information, i.e., the route
trajectory is drawn to pass through the center of the road.
This is our approach to handling the coarse-grained route
information from the map. We assume that the victim is not
currently under attack effects and successfully driving the road.
(4) Finally, we calculate the area between the shifted route
trajectory and the detected lane center and use this area as a
detection metric δ to judge if the vehicle is under off-road
attack, i.e., LaneGuard considers that an off-road attack is
ongoing if δ is larger than a predefined threshold. For the
calculation of δ, we set a distance threshold D and only
consider the area until the distance because the lane line
detection at far points is generally inaccurate. In summary,
the attack detection metric δ can be calculated as follows:

δ :=

∫ D

0

|ShiftedRoute(x)− LaneCenter(x)|dx. (1)

C. Route Path Smoothing

As described in §III-B, LaneGuard requires the driving
route trajectory represented by a parameterized curve. How-
ever, the major routing services discussed in §II-C return the
route information represented by a sequence of points in a
geodetic coordinate system. The simplest method is to connect
them with a wire, but we find that this significantly degrades
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Fig. 1: Overview of our LaneGuard. Its effective but simple idea is to detect off-road attacks by cross-checking the difference
between the route trajectory shape and the detected road center line. To handle the low map and localization qualities, we assume
that the vehicle heading matches the road direction as it is driving the road if off-road attacks have not been effective yet.

Fig. 2: Comparison of OpenStreetMap and Google Maps on
a highway. The markers represent waypoints of the driver-
defined route. The blue and red lines are the driver-defined
route and the GNSS trajectory of our driving, respectively.

the detection accuracy of LaneGuard. The frequency of points
in a route varies widely between routing services. Particularly,
Google Maps [12] generates a route with very high frequency
but perturbed points, which should be automatically generated
by Google users’ prob data. If we directly connect them with
a line or interpolate them with a curve (e.g., spline), the
calculated route trajectory will be highly zig-zagged. Fig. 2
shows To handle this issue, we first apply a Gaussian filtering-
based path smoothing for the route points, and then we apply
the cubic spline interpolation for the smoothed points to get
the parameterized curve.

D. Evaluation

We evaluate the performance of the LaneGuard with re-
spect to its detection capability against off-road attacks and its
sensitivity against benign scenarios.

1) Evaluation on Attack Detection Capability:

Experimental Setup. We simulate the attack effect of the off-
road attacks by using the attack traces used in the DRP
attack [2], which is one of the most effective off-road attacks so
far and the only prior work that shared their evaluation code
and scenarios with real-world driving traces. The scenarios

are extracted from the comma2k19 dataset [23] and cover 40
eligible 10-second driving clips. Half of them are on highways,
the other half are on local roads. For the vehicle location,
we use the GNSS positions in the comma2k19 dataset [23]
corrected with a smartphone-grade UBlox’s GNSS receiver.
For each clip, we generate attacks to lead the victim to the left
and right, respectively. In total, there are 80 different attack
scenarios. To simulate the attack-influenced driving, we use
the input transformation with the perspective transformation
as used in [2]. We use the lane detection model used in the
OpenPilot v0.7.0 [11]. With these scenarios, we generate the
DRP attacks and evaluate the attack detection rates of the
LaneGuard. We place the DRP attack patch 7 m away from
an attack generation point.

We start the driving simulation 1 second before the attack
generation point, i.e., the distance from the simulation start
point to the patch varies in each scenario based on the vehicle
speed. From the simulation start point, we simulate the driving
for 2 seconds considering the average attack success time of
the DRP attack is around 1 second. For publicly available
maps, we evaluate 2 different maps: OpenStreetMap [13] and
Google Maps [12]. To evaluate the quality of the publicly
available maps, we also evaluate 2 other route trajectories that
can be seen as similar to ground truth. One is the human
driving trajectory of the comma2k19 dataset. Another one
is a simulated driving trajectory with benign scenarios. The
simulated driving trajectory is generated by calculating the
vehicle position by using the bicycle vehicle motion model [24]
based on the lane detection results.

Results. Table I lists the detection rates, the best thresholds δ
to achieve them, and the average δ in attacked and benign sce-
narios. As shown, the publicly available maps, OpenStreetMap
and Google Maps, have the highest detection rate as 89%
of the off-road attacks are correctly detected. Meanwhile, the
detection rates with the human driving and simulated route
trajectory are lower than these publicly available maps. We
consider that these approaches suffer from inaccuracies in their
GNSS and/or bicycle models, and this observation highlights
the necessity of utilizing offline map information for defense
since online sensing always contains a certain level of error.

For the results with OpenStreetMap and Google Maps, the
average benign δ is around 30 m2. This means that the route
trajectory and the detected lane center have around 1.5 m
deviation average since we use D = 20 m (§III-B). As typical
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TABLE I: Attack detection rates of LaneGuard on different
publicly available maps and baselines.

Map/Baseline
Detection

Rate

Threshold

θ [m2]

Avg.

Attacked δ [m2]

Avg.

Benign δ [m2]

OpenStreetMap 89% 89.8 141.1 28.6
Google Maps 89% 92.3 143.1 33.1

Human Driving 85% 74.2 141.0 28.8
Simulated Route 76% 125.7 142.9 43.3

smartphone-grade GNSS is accurate to within a 4.9 m [25], the
1.5 m deviation in benign scenarios is reasonable. Considering
the typical lane width is 2-3 m, this deviation is not so accurate,
but it still has the potential to detect off-road attacks that try
to largely deviate the victim vehicles out of the lane. On the
other hand, The average attacked δ is around 140 m2, i.e., 7
m average deviation between the detected lane center and the
route trajectory. The best threshold θ for the attack detection
thus can be around 90 m2 (4.5 m average deviation). Since
these deviations are close to the accuracy of the smartphone-
grade GNSS, it may be challenging for this naive single-frame
δ-based approach to detect all attacks as 11% of attacks are
not correctly detected even with OpenStreetMap and Google
Maps. To further explore this, we will evaluate more advanced
detection designs leveraging the knowledge in multi frames.

2) False Positive Analysis: For a defense mechanism to be
effective, it must not do much harm to the usability of the
application it defends. As the LaneGuard is designed to detect
off-road attacks, we evaluate the sensitivity of LaneGuard
detection in large-scale benign driving traces.

Experimental Setup. To evaluate the false positive rate on
benign driving, we extracted further scenarios from the
comma2k19 dataset [23]. We split all driving traces in the
comma2k19 dataset into every 5 seconds and obtain 30,565
5-second driving traces. Among the driving traces, we select
the traces for the evaluation with the following criteria: (1)
its minimum speed is larger than 45 km/h, which is a typical
operational speed of OpenPilot [11]; (2) the lateral deviation
between the human driving in the trace and simulated trajec-
tory based on the lane detection result = is less than 1 m
because such scenarios should not be in the operational domain
of ALC (e.g., lane changing and turning at an intersection).
After the filtering, we eventually find 11,558 valid driving
traces and calculate the detection metric δ for the first 20
frames (1 second) of the traces, i.e., we evaluate the false
positive with 231,160 frames. Note that each frame has a 0.05-
second duration. For the map, we use OpenStreetMap and the
route trajectory is calculated by pgRouting [22].

Results. Fig. 3 shows the histogram of the detection metric δ in
the 57,790 frames. The red vertical line represents the detection
threshold θ = 89.8 m2 which is the best threshold for the attack
detection as discussed in §III-D1. With this threshold θ, the
false positive rate is 12%. As shown, the LaneGuard does not
cause false positives for the majority of the benign frames.
There could be multiple potential causes such as inaccurate
matching with map and location, inaccurate vehicle heading
calculation, and inaccuracies in the GNSS localization. To
diagnose 12% of long-tail false positive cases, we will perform
further real-world online detection evaluation on a highway,
which is the main operational domain of ALC.

Fig. 3: Histogram of the detection metric δ in the 57,790
frames. The red vertical line is the detection threshold θ =
89.8 m2 with a 12% false positive rate.

Fig. 4: Case studies on false positives: (a) The map is associ-
ated with the wrong point as the road curve should start at a
further point; (b) the vehicle heading does not match with the
road curvature while the detected lane center looks accurate.

3) Failure Case Analysis: To diagnose the root causes of
the false positives, we diagnose them and find 2 common
causes for false positives. Fig. 4 shows the 2 representative
scenarios. In (a), the driver-defined route (dotted yellow line)
starts curving to the left even though the road is still straight
and the detected lane center is also detected like so. The
road soon starts curving after around 100 m away. This false
positive is caused by associating the GNSS position with the
wrong point of the road. In (b), the false positive is caused
by breaking the assumption that the vehicle heading and road
curvature are the same. As shown, the vehicle is slightly more
heading to the left. Furthermore, we think that the detected
lane center represents the actual road more accurately than the
map route. While the LaneGuard can handle the majority of
benign scenarios, the false positives derived from the ill-quality
of localization and maps are inevitable.

4) Attack Detection with Multi-Frame Metrics: As a simple
extension, LaneGuard can leverage the information in the past
multiple frames instead of the single-frame δ. LaneGuard de-
pends on low-quality GNSS localization and publicly available
maps, multi-frame aggregation of the detection metric δ (e.g.,
averaging) may improve the detection accuracy and reduce
false positive rates.

Experimental Setup. We use the same setups used in §III-D1
(for attack detection rate analysis) and §III-D2 (for false
positive analysis). We denote the multi-frame attack detection
metrics as δfw, where f means the aggregation method and
w means the number of frames to aggregate δ from the
current frame to the past with f . In this work, we explore
four aggregation functions: mean, median, min, and max.
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Fig. 5: Attack detection rates on different multi-frame windows
and their aggregation methods.

Fig. 6: False positive rates on different multi-frame windows
and their aggregation methods.

The attack detection threshold θ is decided to maximize the
detection rate and used for the false positive analysis for each
aggregation method and window size.

Results. Fig. 5 and 6 show the attack detection rates and
false positive rates on different multi-frame windows and their
aggregation methods. As shown, the multi-frame detection
metrics do not show any improvements in both detection and
false positive rates. While longer aggregation frames with
minimum aggregation slightly reduce the false positive rates,
minimum aggregation largely harms the attack detection rates.
We consider that these counterintuitive results should be due
to the side-effect of the LaneGuard design, which is designed
to be robust against low-quality localization and publicly
available maps. As described in §III-B, LaneGuard assumes
that the current vehicle heading is the same as the curvature
of the current driving road; path smoothing is also applied for
the road shape. These operations may dismiss the difference
between δ of the close frames, and produce similar δ values.
The aggregations thus do not make meaningful differences
from the single-frameδ.

5) Ablation Study on Path Smoothing: As discussed
in §III-C, several map services such as Google Maps generate
routes with highly frequent points that should be automati-
cally generated by their users’ prob data. Table II lists the
detection rates, the best thresholds δ to achieve them, and the
average δ in attacked and benign scenarios, when we disable
the path smoothing in the driver-defied route trajectory. As
expected, the detection rates are significantly dropped from

TABLE II: Attack detection rates of LaneGuard without the
path smoothing on different publicly available maps.

Map
Detection

Rate

Threshold

θ [m2]

Avg.

Attacked δ [m2]

Avg.

Benign δ [m2]

OpenStreetMap 91% 106.8 161.6 30.6
Google Maps 65% 109.4 198.0 66.2

89% to 65% on Google Maps compared to the case when
the path smoothing is enabled as in Table I. Meanwhile, the
detection rate of Open Steet Map is slightly improved even
without the smoothing. These results indicate that the benefit
of path smoothing highly depends on the map source. For
Google Maps, path smoothing is quite effective since the
path waypoints are frequent but noisy. For OpenStreetMap,
the waypoints are sparse and could be already smoothed.
Smoothing can reduce the noise effects, but it also causes
information losses. For LaneGuard implementation, we need a
pre-assessment of the publicly available maps we plan to use,
particularly about the characteristics of the route points.

6) Feasibility Study on Real-World Highway: We evaluated
the detection capability of the LaneGurad in §III-D1 and its
false positive analysis in §III-D2 with the driving traces in the
comma2k19 dataset [23].

Experimental Setup. As shown in Fig. 7, we installed an EON
Devkit, the official dashcam device of OpenPilot [11], onto the
windshield of a sedan vehicle. We drove the 2 km highway
route without changing lanes to be consistent with the driving
controlled by ALC. The vehicle speed was maintained around
120 km/h. We used a laptop to connect the dashcam and
obtained real-time driving logs via SSH. LaneGuard operated
with the logs and showed online detection results on the
laptop. To simulate the attack scenario, we added the offset
of the average DRP attack trace generated in §III-D1 into
the online detected lane center. For the map data, we use
OpenStreetMap [13] and pgRouting [22].

Results. For the attack detection accuracy, we did not observe
any false positives and only observed four times false negatives
for the simulated attack. All false negatives only lasted 1 frame
(0.05 sec) and thus the driver can get an attack detection alert at
least within 0.1 sec, which is an ignorable delay considering
human reaction time. For the latency of LaneGuard, we did
not see particular delays. We find that LaneGuard is efficient
enough to handle real-time driving logs sent from OpenPilot
at every 0.05 sec (20 Hz).

IV. DISCUSSIONS AND LIMITATIONS

Localization Quality. In this work, we only use GNSS localiza-
tion with a smartphone-grade receiver. While other expensive
localizers such as LiDAR localizers are not available for
typical ALC systems, we may still use other information
sources to improve the localization quality. For example, IMU
data is widely used for improving localization quality [6], [7].
In our setup, we may also use the driver-define route under
some assumptions, e.g., the vehicle should be on the route.

Further Improvement on Detection Algorithm. This study is
motivated by our question about the potential of low-quality
localization and publicly available maps to defend against
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Fig. 7: Overview of our feasibility study on a real-world
highway: The highway route for the real-world evaluation
(left) and the setup for the online LaneGuard detection on a
real vehicle (right). The LaneGuard is operated on the laptop
connecting to the OpenPilot dashcam via SSH.

off-road attacks. To simply answer this question, we focus
more on exploring the usefulness of information sources (low-
quality localization and publicly available maps) rather than
designing complex but more effective detection algorithms as
we are the first to design map-fusion-based defense against off-
road attacks. As a straightforward way to improve detection
accuracy, we can adopt a machine learning (ML)-based detec-
tion approach. In addition to our detection metric δ, we can
integrate any information as a feature such as vehicle speed,
steering angle, previous locations, and route information (e.g.,
highway and local road). However, for safety-critical applica-
tions, accountability is as important as detection accuracy. ML-
based approaches typically need large theoretical or empirical
efforts to ensure their accountability. We thus leave the ML-
based detection for future work.

Latency and Energy Consumption of LaneGuard. In §III-D6,
we find that LaneGuard can handle online driving logs sent
from OpenPilot at every 0.05 sec. However, we run the Lane-
Guard on our laptop, which has much higher computational
power than the smartphone-like OpenPilot’s EON DevKit.
To install the LaneGuard along with ALC systems, more
detailed and quantitative evaluation of its latency and energy
consumption analysis may help ALC developers estimate the
cost of integrating the LaneGuard.

Detection against Adaptive Attacks. As LaneGuard detects off-
road attacks based on the difference between road shape and
the detected lane center, the attacker may design more stealthy
attacks that gradually lead victims out of the lane while always
keeping the difference below the threshold. However, this type
of attack should require more time to lead the victim out of the
lane as the attacker cannot largely compromise the detected
lane center. For the attack against ALC, the attack duration
needs to be below the driver’s reaction time otherwise the
driver can take over the driving and apply countersteering. We
thus leave this for future study as this needs more advanced
attack design and careful evaluation design for user study.

V. CONCLUSION

In this work, we explore the potential defense capability
of low-quality localization and publicly available maps against
off-road attacks. We design the first map-fusion-based off-road
attack detection, named LaneGuard. To handle the ill-quality

localization and map data, we introduce a key assumption
that vehicle heading and the curvature of driver-defined route
trajectory should match if off-road attacks have not been
effective yet. To evaluate the performance of the LaneGuard,
we perform the attack detection capability analysis on 80
attack scenarios and evaluate the false positive analysis on
11,558 benign scenarios. Through the evaluation, we find
that LaneGuard can detect 89% of off-road attacks with
12% false positive rates. To further evaluate the usability of
LaneGuard, we conduct real-world driving experiments on the
highway, which is the main operational domain of ALC. In
the experiments, we do not observe any false positives, i.e.,
0% false positive rate while keeping almost 0% false negative
rate against simulated attacks. Recently, map information has
become publicly available on the internet, but its majority
application is navigation. While publicly available maps are
not as high quality as merely supporting AD, we hope that
our study facilitates further utilization of map information to
secure AD vehicles.
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