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ABSTRACT

We explore eXplainable AI (XAI) to enhance user experience and
understand the value of explanations in Al-driven pedagogical deci-
sions within an Intelligent Pedagogical Agent (IPA). Our real-time
and personalized explanations cater to students’ attitudes to pro-
mote learning. In our empirical study, we evaluate the effectiveness
of personalized explanations by comparing three versions of the
IPA: (1) personalized explanations and suggestions, (2) suggestions
but no explanations, and (3) no suggestions. Our results show the
IPA with personalized explanations significantly improves students’
learning outcomes compared to the other versions.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCI; «
Computing methodologies — Inverse reinforcement learn-
ing; « Applied computing — Computer-assisted instruction;
E-learning; Interactive learning environments.
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1 INTRODUCTION

An important goal of eXplainable AI (XAI) is to make Al systems
more transparent and trustworthy by displaying their inner work-
ings. While some research focuses on increasing the interpretability
of black-box algorithms for model validation and improvement,
there has been a growing interest in XAI to improve the end-users’
experience with Al applications. Studies have found the importance
of Al explanations for end-users [32, 53], but that explanations
aren’t always wanted or beneficial [13, 20, 57]. There is a general
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agreement that the need for explanations depends on the context of
the Al application or task criticality [13, 44] and that user differences
like cognitive abilities and personality traits play a role in determin-
ing if, when, and how explanations are valuable [16,31, 41, 43, 45, 54].
These findings call for research on personalized XAI to understand
how to create Al systems that effectively explain their actions and
decisions to the right users at the right time.

This led us to explore XAI to enhance student’s experience and
understand explanations’ value in Al-driven pedagogical decisions
within an Intelligent Pedagogical Agent (IPA). This work has two
main contributions: first, is that we explore the personalization of
explanations to user traits that have not been studied before in XAI
—students’ attitude toward learning within an IPA (which we will
refer to as learning attitude from now on). Our second contribution
is that, to the best of our knowledge, this is the first empirical study
exploring the effectiveness of delivering real-time personalized expla-
nations. Previous studies have shown the need for personalization
by providing non-personalized explanations to users and analyzing
their perceptions based on different traits [16, 31, 41, 45, 54]. Some
XAI research has begun to address this need, such as designing
personalized explanations for a music recommender system [38],
tailored to traits identified as relevant in prior studies [41, 42]. How-
ever, these personalized explanations were only tested on users
with higher or lower levels of the targeted traits rather than in
real-time interactions. In contrast, our system predicts users’ learn-
ing attitudes in real-time and personalizes the explanations of its
individualized pedagogical interventions for each user.

To investigate the effectiveness of personalizing explanations for
a pedagogical action/decision to student learning attitude, we ex-
tend an existing IPA —called Pyrenees [1, 3-5], that helps students
make decisions on how to learn from a pool of available probability
problems [26, 27]. In Pyrenees, students first make some pedagogi-
cal decisions on whether to solve the next problem by themselves,
in collaboration with the IPA, or look at the problem solution as
a worked-out example. Although the student makes the decisions,
Pyrenees uses Hierarchical Reinforcement Learning [53] or expert-
designed rules to offer suggestions on the decision based on how
the current student is progressing through the available problems.

Our personalized explanations are generated based on students’
attitudes toward learning since prior research has shown that this
plays a crucial role in students’ motivation [2, 7, 8], engagement
in class [11], confidence [33], and even perception of or retention
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of the material [47]. For example, an individual’s attitude toward
learning is essential when it comes to determining how well he or
she will perform in math [36, 47], physics [23], or other scientific
fields, such as microbiology [18]. Here, we define learning attitudes
by extending our prior work where Inverse Reinforcement Learning
(IRL) was applied to student-IPA logs to infer learning intentions
[58]. We further extended Pyrenees by incorporating a deep learn-
ing classifier to predict students’ learning attitudes in real time,
generating personalized explanations with our predictions.

We evaluate personalized explanations in a formal user study
comparing an IPA that intervenes and explains (Intervene-Explain)
against one that intervenes without explaining (Intervene-Only),
and one with no intervention (StuChoice). Results show that person-
alized explanations significantly improve students’ learning gains
over the other two, demonstrating their crucial role in improving
learning. The paper is organized as follows: Section 2 describes
related work; Sections 3, 4 and 5 presents Pyrenees as well as the
real-time classifier and personalized explanations; Section 6 de-
scribes the experiment setup; Section 7 shows our results and 8
present results and conclusion, ethics, and impact of our work.

2 RELATED WORK

Much of the research on XAI for end-users is in the field of recom-
mender systems. Studies have shown that individual differences,
such as users’ levels of neuroticism and decision-making style,
can impact preferences for different types of explanations [31]. In
online dating platforms, men tend to focus on their preferences
more than women; users with “choosy posts” benefit more from
reciprocal explanations [30]. Research also shows that personality
affects preferences for movie recommendations and corresponding
explanations [10]. In the context of a music recommender system,
the need for cognition (a trait that measures one’s appreciation for
effortful cognitive activities [14]) [41] as well as musical sophisti-
cation and openness (one of the personality traits in the Big-Five
Factor Model [21], which measures the breadth and complexity of
an individual’s mental and experiential life) [42] have a significant
impact on explanation effectiveness.

Beyond recommender systems, explanations of Al agents’ sug-
gestions for playing online games are only valid for users with low
game ability [54]. Research has investigated the impact of individual
differences such as the need for cognition, reading proficiency, and
conscientiousness (another personality trait in the Big-Five Factor
Model [21]) on the effectiveness of explanations for Al-driven hints
generated by IPAs [16]. Most evidence generated is not personal-
ized, and minimal results exist on the effectiveness of personalizing
Al explanations to user differences. Some papers mention person-
alized explanations but refer to explaining the actions of the AI
rather than the accompanying explanations [10, 31, 56]. In contrast,
in our work, the explanations are personalized; the same system
action/decision may be explained differently to different users.

The Open Learner Model (OLM) [15] increases IPA transparency
by showing students a current assessment of their abilities. Al-
though there is evidence of OLM improving learning [35, 49], self-
perception [49], and facilitating more trust between the student
and the IPA [37], it remains unclear how this might be applied to
enhance the interpretability and explainability of IPA. An attempt
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was made by [9], where explanations were added to an OLM, but
they are essentially textual rephrases of the OLM assessment.
Closer to our objectives, the work by [16] and [53] explored
providing explanations for IPA decisions derived by Reinforcement
Learning. The explanations given to the students were short sen-
tences focused on the high-level benefits of the activity. The study
offered preliminary evidence showing students saved time and
gained more autonomy within the IPA. This suggests that students
may benefit from knowing the high-level motivation regarding ped-
agogical decisions [51]. However, neither of these works provides
personalized explanations [16, 53]. In this work, explanations go be-
yond OLM or high-level motivations to convey a more fine-grained
understanding of why the IPA’s suggestion is helpful for that par-
ticular student and how the underlying AI derived the decision.

3 PYRENEES

Pyrenees is a web-based IPA that teaches ten probability princi-
ples (e.g., Addition Theorem and Bayes’ Theorem) [3, 4, 6]. During
training, twelve problems are shown in a fixed sequence, allow-
ing students to practice by choosing to solve it alone (PS), solving
it collaboratively with the IPA (CPS), or seeing the solution as a
worked-out example (WE). Students work through the problem
step-by-step, define variables, type equations, etc. If PS is chosen,
the IPA asks questions to elicit the next step’s answer from the stu-
dent; if CPS is chosen, the IPA chooses to elicit or tell the answer; if
WE are chosen, the IPA tells the answer. The IPA provides feedback
with a short message or hints if the student gives a wrong answer.
Hints can also be requested by clicking a button, which is organized
in an increasingly specific order, where the last message shows the
student exactly what to do.

To prevent decision fatigue [48], students make 10 problem-level
decisions on whether to present the next problem as a WE, a PS,
or CPS. The IPA challenges students’ decisions at selected times
and presents them with a choice. This decision process is based on
an Expert-designed policy, or Deep RL [53]. Our work uses offline,
off-policy Deep Hierarchical RL to induce policies from a historical
dataset containing 1,148 students’ interaction logs collected over 6
semesters using the same IPA, procedure, materials, and problems.
The components for RL induction are defined as follows:

State: From the student-system interaction logs, 142 features were
extracted to represent the student learning state, which can be cat-
egorized into five groups: Autonomy (10 features): the amount
of work done by a student, such as several elicits since the last
tell; Temporal (29 features): time-related information about the
student’s behavior, such as the average time per step; Problem-
Solving (35 features): information about the current problem-solving
context, such as problem difficulty; Performance (57 features):
information about the student’s performance so far, such as the per-
centage of correct entries; Hints (11 features): information about
the student’s hint usage, such as the total number of hints requested.

Action: Our IPA makes problem and step-level decisions; there
are two possible actions at the step level (elicit/tell) and three at
the problem level (WE/PS/CPS).

Reward: We used Normalized Learning Gain (NLG) as a delayed re-
ward, which measures students’ learning gain regardless of their ini-
tial competence [1, 4, 7, 26, 27]. NLG is calculated as postiest_pretest

Vi-pretest
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where the max score is 1 for both the pre-test and post-test. Our
Deep RL aims to induce policies for maximizing learning gains.
The original explanations in Pyrenees were designed to convey
the benefit of taking the suggested pedagogical actions, based
on research in learning science and cognitive science. For example,
viewing examples is beneficial for learning new content [39, 40],
and thus an explanation for WE would state “The Al agent thinks
you should view this problem as a Worked Example to learn how
some new rules work.” Furthermore, in our original explanations, a
simple action-based explanation for another WE would state: “The
Al agent thinks you would benefit from viewing this problem as
a Worked Example to save time.” Similarly, if the policy decision
was that the following problem should be a PS, the message would
state something like: “The Al agent thinks you should solve this
problem yourself to improve learning.” In this work, we expanded
these explanations by personalizing them to the student’s learning
attitude in an effort to further improve their learning. We introduce
our real-time learning attitude classifier in the following Section 4.

4 LEARNING ATTITUDE CLASSIFIER

Our personalized explanations were tailored to each student’s learn-
ing attitudes. To infer their attitudes, we leverage our prior Inverse
Reinforcement Learning (IRL) research in [58]. Specifically, the
central idea is to frame the problem of determining students’ learn-
ing attitudes as inferring their reward function from their demon-
strated behavior or decision trajectories (i.e., their pedagogical
decision-making history) through IRL.

To do so, we formalize the student’s sequential decision process
as a Markov Decision Process (MDP). An MDP describes a stochas-
tic control process using a tuple < S, A, R, T,y >. In the context of
IPA, states S are often represented by vectors composed of relevant
learning environment features, such as the percentage of correct
attempts a student has made so far and so on. Actions A are the
possible pedagogical decisions, such as WE, PS, or CPS. The transi-
tion probability T can be estimated from training data. y € [0, 1)
denotes a discount factor for future rewards. Since we don’t know
the student’s reward function R, the task of IRL can be described as
a stochastic control process where we have MDP\R =< S, A, T,y >
together with some demonstrated trajectories 7. More specifically,
the students’ demonstrated decision trajectories can be represented
as s; — aisy — as--- Sy — an. Here s; — a;jsi4+1 indicates that at
the ith moment, the student was in some learning state called s;, a
pedagogical decision referred to as a; was carried out and that led
the student to be in the new learning state represented by sj1.

We apply IRL to their decision-making trajectories to infer stu-
dents’ learning attitudes to learn their reward function. Formally,
we denote the input N demonstrated trajectoriesas 7~ = {1, ..., N}
and each trajectory is composed of a set of state-action pairs:
& ={(s1,a1), (s2, a2), ...}. The assumption here is that students would
make pedagogical decisions to maximize their expected long-term
reward function. Once the reward function is learned, any RL or
Deep RL method can further induce the strategy followed by 7.
Typically, IRL approaches are designed to model data assuming
all trajectories have a single reward function. However, students
may have different learning attitudes; some may want to finish the
training on the IPA as fast as possible, while others may wish to
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learn as much as possible. To account for this heterogeneity, we
employed Expectation-Maximization IRL (EM-IRL) proposed in [58]
to extract heterogeneous learning attitudes.

Our training dataset consists of 127 students who each spent an
average of 2 hours on Pyrenees and completed around 400 steps,
using the same IPA and following the same procedures, materials,
and problems. States: The same 142 state features were leveraged,
and K-means clustering was applied to each feature category to
generate discrete states. The number of states for each category was
determined by selecting the elbow of errors in the clustering results:
Autonomy (3), Temporal (4), Problem-Solving (3), Performance (4),
and Hints (3), resulting in 432 discrete states in total. Transition
probabilities were estimated based on these discrete states using all
available data. Actions: Students can make pedagogical decisions
at both the step and problem level, such as problem-solving or
worked-out examples. By using EM-IRL on the training dataset,
three types of learning attitudes were identified: (1) Learning-
oriented: students learn as much material as is possible regardless
of the time that is spent; (2) Efficient-oriented: students efficiently
learn significant amounts of the material but spend less time than
their “Learning-oriented” peers; (3) No-learning: students spent
less time and also failed to learn the material.

We leverage Long Short-Term Memory (LSTM) [25] to predict
students’ learning attitudes. LSTM is capable of memorizing tem-
poral dependencies over a long period and has shown extensive
prospects in a variety of sequential labeling applications, such as
climate changes, healthcare, and traffic monitoring [34][29][28].
This work uses LSTMs to incorporate the previous hidden state as
input for each subsequent step; this mechanism allows for accu-
mulating memory and modeling dynamic information, specifically
capturing student learning events over time.

Since students are likely to change their learning attitudes while
training, we developed an online LSTM-based early prediction
model to classify students’ learning attitudes in real-time on each
problem. For the mth problem, our LSTM classifier will leverage
trajectories of the student’s interactions with the system up to the
end of the (m — 1) problem as input to predict their learning
attitude before they make a pedagogical decision. Note that for all
students, no decision was made for the first (m = 1) and 8th (m = 8)
problems; thus, all students make ten pedagogical decisions.

As shown in Figure 1, 5-fold cross-validation results found that
by only using decision-making history from the first problem, the
early prediction accuracy was 0.67 and the AUC was 0.77 for m = 2.
The LSTM’s early prediction performance on the ten problems im-
proved with an accuracy of 0.79 and AUC of 0.89 for m = 3. The
AUC performance was above 0.89 until the last problem, m = 12.
Thus, we use LSTM models to predict their learning attitude start-
ing from m = 3 to ensure accurate early predictions. In subsequent
problems, our classifier relies on the students’ interactive logs to
predict their learning attitude. If an intervention is required, per-
sonalized explanations will be provided based on their predicted
learning attitude. By conducting the early prediction before each
problem, the student’s attitude towards learning can be monitored
so that the personalized explanations provided remain relevant to
the student. The inspirations behind the design of our personalized
explanations are shown next in Section 5.
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Figure 1: 5-fold cross-validation results plotted against the
number of past problems used in the learning classifier’s in-
put. As the number of historical data increases, the classifier’s
performance improves in predicting the student’s learning
attitude. Based on this plot, we used interaction data from
the past three problems to predict the learning attitude to
achieve early prediction and performance.

5 EXPLAINING THE IPA
5.1 What is an Explanation and How to Explain

People have social expectations when they evaluate the quality of
an explanation [24]. Evidence suggests people anthropomorphize
artificial agents [19] and naturally expect explanations given by ar-
tificial agents to comply with our social norms on what constitutes
a quality explanation [44]. We drew inspiration from the social
sciences to develop our personalized explanations by following
Miller’s work [44]. According to Miller, explanations are expected
to be contrastive in that they employ counterfactual cases [44]. In
other words, people do not simply ask why some event happened,
but rather, they ask why that occurred instead of some other event.
Research exploring the need for XAI in IPAs supports students’
desire for explanations answering why more often than how [50].

In our framework, explanations are provided to a student when
the IPA intervenes. Therefore, our IPA’s explanations are written
where the counterfactual or the instead of is assumed to be the
student’s choice, and the explanation is answering why the stu-
dent should follow the IPA’s pedagogical intervention. It should be
noted our explanations are selected —meaning they do not contain
all causes as humans rarely ever find this beneficial [55]; further,
they do not contain probabilities as evidence suggests probabilities
or statistical relationships are unfulfilling [44]. In essence, our ex-
planations are in the form of “Why did event A happen instead
of event B?”, which requires an explanation appropriate for this
why-question. Miller states these questions are some of the most
challenging to produce explanations for, as they require counter-
factual, associative, and interventionist reasoning [44].

5.2 Designing Our Explanations

To answer this why-question in the IPA setting, we take a step
towards personalizing explanations according to the student’s atti-
tude towards learning, and to the best of our knowledge, there is no
existing published research outlining such an initiative. Although
providing explanations to users can be a “double-edged sword” [20]
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—as they are sometimes unwanted or not beneficial [12, 13, 20] —it
remains imperative that pedagogical interventions and explana-
tions are highly individualized and personalized to a student’s need
since a negative impact on students’ learning could potentially be
long-lasting [16]. Furthermore, in light of the evidence that sug-
gests XAI in IPAs may help to promote trust in the system [17]
and may achieve an overall positive effect on a student’s learning
[16], we propose to personalize our explanations according to the
student’s attitude towards learning to improve their learning gain.
However, since interfering with the student’s autonomy (i.e., the
student’s pedagogical decision) may be an autonomy-suppressive
teaching behavior according to Self-Determination Theory [8], per-
sonalized explanations should possess intention behind why we are
interfering with the student’s decision —hence our prediction of
their learning attitude; in this sense, our personalized explanations
promote an autonomy-supportive teacher behavior by fostering rele-
vance to the individual student. These personalized explanations
were written per Overton’s definition for a why-question expla-
nation [46], which consists of two components: (1) the explanans
and (2) the explanandum. The explanans is an answer to the why-
question whereas the explanandum is the presupposition (e.g., the
givens or context within which the explanation is contained). Thus,
the general structure of our explanans is: <what the student should
do> and <why> where the student’s choice or learning attitude are
examples of the explanandum or presupposition.

5.3 Personalizing Explanations to Students

In Pyrenees , there are two interaction levels: (1) problem-level; (2)
step-level. At the problem level, Pyrenees will show the student a
problem description and ask the student if they want: (1) to review a
worked example (WE), (2) solve it alone (PS), or (3) to collaborate on
the problem together (CPS). The second level of decision-making,
called step-level, occurs only if the student chose to collaborate on
a given problem. A step is a brief amount of work done to solve
the problem, such as applying a probability principle. If the student
belongs to an interactive policy, the IPA will intervene if the student
makes a sub-optimal pedagogical decision during a critical moment.
The personalized explanation is given based on the student’s initial
decision, the suggested decision of the IPA, and the student’s learn-
ing attitude as predicted by the LSTM classifier. Table 1 provides
examples of such personalized explanations, detailing the student’s
initial decision (1% column), the IPA’s suggested approach (2"?

3rd

column), and the predicted student learning attitude (3"“ column).

6 EXPERIMENT SETUP

Participants: Pyrenees was given to students as a homework as-
signment in an undergraduate Computer Science class in the Fall
of 2021. Students were told to complete the study in one week and
will be graded based on demonstrated effort rather than learning
performance. 180 students were randomly assigned into three con-
ditions: Intervene-Only (N = 74), Intervene-Explain (N = 43) and
StuChoice (N = 63). It is important to note that the difference in
size among the conditions is because we prioritized having a suffi-
cient number of participants in the Intervene-Only and StuChoice
conditions to perform a meaningful analysis. Due to preparation for
final exams and the length of study, 151 students completed the
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Table 1: A small sample of personalized explanations regarding student’s & IPA’s choice, and the student’s learning attitude on
problem-level decision-making. Bold text shows how the explanation is tailored to the student’s learning attitude.

Student IPA Attitude Explanation
Learning- “You should solve this problem by yourself to reinforce your knowledge since it
WE PS . . . . »
oriented is a good exercise for applying what you have learned:
Efficient- “You should solve this problem yourself, as the difficulty level of this problem is just
oriented right for you. By doing so, you will learn more efficiently.”
CPS PS Learning- “Make sure you solve this problem by yourself to further consolidate your knowl-
oriented edge, as this problem is at the right level of difficulty for your current knowledge.”
Efficient- “This one you should solve yourself since you need to practice your knowledge so
oriented that you can complete the training efficiently”
No-learning “We will solve this problem together since we are good on time and you will
WE CPS learn more this way.”
Learning- “This time, let us work together to solve the problem to improve your learning
oriented outcome given how far you have come and the problem’s difficulty”
Efficient- “Let’s solve this problem together based on your performance so far and its difficulty
oriented level so that you can learn more effectively later.”
Learning- “Let me show you how to solve this problem because my solution will be more
PS WE . . LD .
oriented efficient and it will benefit your learning outcomes.”
Efficient- “Let me show you how to solve the next problem (based on the time you have already
oriented spent so far) that will make your training experience efficient and on time. ”

study; the completion rate between conditions was insignificant
according to the Chi-square test: y?(2,180) = 3.2929, p = .193.
Experiment procedure & grading: The entire experiment pro-
cedure is given as a homework assignment and must be completed
independently. It consists of four stages following the strict order:

(1) Textbook: Students read about the ten probability principles
and review examples. The textbook is shown online.

(2) Pre-test: Students’ took a pretest consisting of fourteen prob-
lems: ten single-principle problems, one for each probability
theorem being taught, and four multiple-principle problems.
Each problem requires a detailed step-by-step solution, with
the final answer provided separately. No feedback was given
to their answers, students were not allowed to return to ear-
lier problems, and the textbook was unavailable during the
pretest; the same applied to the post-test.

(3) Training with the IPA: Students worked through the same
twelve problems in the same order with Pyrenees . The steps
to solve each problem ranged from twenty to fifty and in-
cluded variable definitions, principle applications, and equa-
tion solving. The experimental conditions only differed in
intervention with/out personalized explanations.

(4) Post-test: Contains fourteen isomorphic problems (ten sin-
gle and four multiple-principle) from the pre-test and six
new multiple-principle problems designed to be significantly
more challenging.

All tests were double-blind graded by two experienced graders, and
normalized to [0, 1] for comparison purposes.

7 RESULTS

7.1 Learning Performance

We evaluate the effectiveness of the personalized interventions in
both learning performance and time on task (namely, time students

spent working through the twelve problems in Pyrenees ) because
there is often a trade-off between these measures. As introduced
earlier in Section 3, learning performance is measured with Nor-
malized Learning Gain (NLG), which measures a student’s learning
gain irrespective of their incoming competence.

NLG is defined as £2S/Lesiopretest

V1-pretest
score for both pre- and post-test. We compute two different types of

learning gains, one that involves the pretest and only the isomorphic
questions in the post-test (isomorphic [or Iso] NLG from now on)
and one that involves the pre-test and all the questions in the post-
tests, including the six much more difficult ones (NLG from now
on). Time on task was derived from the Pyrenees logs, where every
click students made on the interface included a timestamp. These
interactive student-system logs were used for our Deep RL policy
and real-time learning attitude prediction.

For our subsequent statistical analysis, six students were ex-
cluded (four from StuChoice and two from Intervene-Explain) due
to receiving a perfect performance in the pretest to accommodate
for the ceiling effect of our learning metrics. Additionally, three
students with isomorphic NLG scores greater than three standard
deviations from the mean were removed (one from StuChoice and
two from Intervene-Only), as they represent extreme outlier stu-
dents who did not pay attention to or engage with the IPA. The
final group sizes were Intervene-Only (N = 56), Intervene-Explain
(N = 39) and StuChoice (N = 49).

Table 2 shows the mean and standard deviation (SD) of students’
learning gains as well as time on task in hours (h). We find no
significant differences among the conditions’ pretest scores (the
2nd column): Welch’s F(2,91.426) = .364, p = .696, indicating that
students started with similar knowledge. We then compare the
learning gains of the three conditions. According to Shapiro-Wilk’s
test, Iso NLGs and NLG scores were not normally distributed, and

, where 1 is the maximum
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Table 2: Mean (SD) of learning performance and time on task.

Condition | Pre | IsoPost | Post | IsoNLG | NLG | Time (h)
Intervene-Explain | 731 (.149) | .814 (.149) | .729 (175) | .136 (271) | -.037 (316) | 1.659 (467)
Intervene-Only [ .767 (185) | 792 (.149) | 701 (.160) | -.065 (453) | -290 (529) | 1.776 (.925)
StuChoice 753 (195) | 763 (:201) | .689 (:217) | -.024 (328) | -.193 (362) | 1.933 (817)

concerning Levene’s test for equality of variances, variances were
homogeneous. Since the normality assumption is invalid and sam-
ple sizes are unequal, a non-parametric statistical test —the Kruskal-
Wallis H test —was conducted to compare the medians as it does
not assume an underlying normal distribution. If H test results were
significant, pairwise comparisons were performed using Dunn’s
procedure with Bonferroni adjustments to control for Type I errors.
Comparison of Iso-NLG Scores: A significant difference was
found in Iso NLGs’ medians across conditions: H test’s y?(2) =
8.731, p = .013. Dunn’s procedure with Bonferroni adjustments
revealed Intervene-Explain significantly outperformed StuChoice
(p = .023) as well as Intervene-Only (p = .031), where the difference
between the latter two was insignificant (p = 1.0).

These results suggest personalized explanations improved stu-

dents’ ability to learn principles needed to solve similar problems in
the pre-test and post-test using Pyrenees . The students in Intervene-
Explain were the only ones that improved from the pre-test to
the post-test, as verified by a pair-sampled t-test (¢(38) = 3.834,
p < .001). In contrast, there was no statistically significant im-
provement from the pre-test to the post-test for the other two:
£(48) = .436, p = .665 for StuChoice, and ¢(53) = 1.550, p = .127
for Intervene-Only.
Comparison of NLG Scores: Median NLGs across the three condi-
tions differed significantly: H test’s y?(2) = 7.244, p = .027. Dunn’s
procedure with Bonferroni adjustments found significant differ-
ences between Intervene-Explain and Intervene-Only (p = .039)
and a marginal difference between Intervene-Explain and StuChoice
(p = .071). The difference in medians between StuChoice and
Intervene-Only is insignificant (p = 1.0). These results suggest that
personalized explanations were compelling even in complex prob-
lems, with students performing better than those in the Intervene-
Only condition. Although the performance difference between the
explanation and no-intervention conditions is insignificant, the
trend still favors the explanation condition.

To summarize, explanations personalized to a student’s learning
attitude enhanced student learning compared to the StuChoice or
Intervene-Only conditions. Notably, this increase in learning is not
related to students taking more time to solve the twelve practice
problems with the IPA since we found no significant difference
in time of task across the conditions (last column of Table 2) per
a Welch’s ANOVA: Welch’s F(2,91.022) = 1.983, p = .144, with a
trend showing students in the Intervene-Explain condition taking
the least amount of time.

7.2 Personality Traits Analysis

Here, we investigate whether the effectiveness of personalized
explanations delivered by Pyrenees might be modulated by any
personality traits in the Big-Five personality model [21]. Table 3
lists the five traits and their definition. The measures for these traits

were obtained by asking our study participants to fill out an op-
tional Ten-Item Personality Inventory (TIPI) survey afterward [22].
The response rate for our optional survey was 95.83%, with only
three students from StuChoice and three students from Intervene-
Only choosing not to participate, leaving us with Intervene-Explain
(N = 39), Intervene-Only (N = 53), and StuChoice (N = 46). A
one-way ANCOVA was performed for each personality trait, with
that trait as a co-variate, experimental condition as a factor, and
NLG as the dependent variable. The ANCOVAs returned signif-
icant interaction effects between conditions and the personality
traits: extraversion (F(2,134) = 3.111, p = .048, partial 172 =.044),
agreeableness (F(2,134) = 3.305, p = .040, partial 2 = .047) and
neuroticism (F(2,134) = 3.103, p = .048, partial 5> = .044). These
interaction effects are illustrated in Figure 2, where users are di-
vided into low and high groups for each trait based on a median
split of their corresponding TIPI values. Visual inspection of Fig-
ure 2 confirms that, for all three personality traits, students in
Intervene-Explain show higher NLGs overall than the others. Pair-
wise comparisons reveal interesting trends summarized in Table
4, indicating the significant impact of personalized explanations
on students with different levels of the three personality traits, as
measured by Cohen’s d effect size.

(a) Extraversion: Figure 2a shows students’ NLGs for Low
vs. High extraversion across the three conditions. Pairwise
comparisons show a significant difference only within the
High extraversion group, where Intervene-Explain signifi-
cantly outperforms Intervene-Only (p = .018 and d = 0.739),
with no significant difference between the StuChoice and
Intervene-Only.

Agreeableness: Figure 2b shows students’ NLGs for Low
vs. High agreeableness across the three conditions. Pairwise
comparisons show a significant difference only within the
Low Agreeableness group, where Intervene-Explain signifi-
cantly outperforms both StuChoice (p = .019 and d = 0.714)
and Intervene-Only (p = .043 and d = 0.652), with no signif-
icant difference between these latter two.

Neuroticism: In Figure 2c shows students’ NLGs for Low vs.
High neuroticism across the three conditions. Pairwise com-
parisons show a significant difference only within the Low
neuroticism group, where Intervene-Explain significantly
outperformed both Intervene-Only (N = 26) and StuChoice
(N = 25), p = .006 (d = 0.964) and p = .041 (d = .770).

(b

=

(c

~

In terms of implication for further personalization of the Pyre-
nees explanations tailored to student learning attitude, these results
indicate that the current personalized explanations are most effec-
tive for students with Low agreeableness, Low Neuroticism, and
High Extroversion. Since they don’t seem to harm the other groups,
one could say that there is no need to consider student personality
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Table 3: Five user characteristics and their definitions according to the “Big Five” personality dimensions [52].

User Characteristic | Definition

Agreeableness An agreeable person is fundamentally generous, sympathetic to others, and eager to help them.

Conscientiousness Refers to self-control and the active process of planning, organizing, and carrying out tasks.

Extraversion Includes traits such as sociability, assertiveness, activity, and talkativeness.

Neuroticism General tendency to experience negative effects such as fear, sadness, embarrassment, anger, guilt, and disgust.

Openness Openness to Experience includes active imagination, aesthetic sensitivity, attentiveness to inner feelings, a
preference for variety, intellectual curiosity, and independence of judgment.

m Intervene-Explain  ® Intervene-Only  m StuChoice

050 000

000 050
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-.100

NLG
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-.200 -.200
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(a) Extraversion

(b) Agreeableness

High Low High

(c) Neuroticism

Figure 2: Interaction effect between level of user characteristic (low and high) and condition on students’ NLG.

Table 4: The most effective pedagogical strategy for students based on their identified personalities, preferring Student Choice

when no significant differences are found.

Personality Trait ‘ Group ‘ Comparison ‘ Conclusion
Ext . Low No significance -
xlraversion High Intervene-Explain > Intervene-Only Do not provide Intervene-Only
Low | Intervene-Explain > Intervene-Only, StuChoice | Provide Intervene & Explain
Agreeableness . .
High No significance -
.. Low | Intervene-Explain > StuChoice, Intervene-Only | Provide Intervene & Explain
Neuroticism . L
High No significance -

when delivering the attitude-based explanations; they should be
delivered to everyone since they help some students and don’t hurt
others. However, this hypothesis should be verified empirically with
further studies and more data to ensure that the lack of significant
effects in some comparisons is not due to a lack of power.

8 DISCUSSION, ETHICS & BROADER IMPACTS

This work investigates the effectiveness of providing real-time per-
sonalized explanations to students based on their learning attitudes.
Using an EM-IRL algorithm to determine learning attitudes and
an LSTM model for real-time predictions, our personalized expla-
nations are generated based on the student’s decision, the IPA’s
suggestion, and the predicted attitude. Results show that Intervene-
Explain outperforms Intervene-Only and StuChoice in terms of Iso
NLG and NLG. Our findings suggest that providing personalized
explanations according to students’ attitudes toward learning can
enhance learning and generalization. The data used in this study
were anonymously obtained through an IRB-approved protocol
and scored against test cases. No demographic data or grades were

collected. This research focuses on providing XAI for end-users; it
is worth noting that interpreting XAl is not always clear, and the
models used here may not always be accurate.
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