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Abstract

We address the challenge of getting efficient yet accurate recognition systems with
limited labels. While recognition models improve with model size and amount
of data, many specialized applications of computer vision have severe resource
constraints both during training and inference. Transfer learning is an effective
solution for training with few labels, however often at the expense of a compu-
tationally costly fine-tuning of large base models. We propose to mitigate this
unpleasant trade-off between compute and accuracy via semi-supervised cross-
domain distillation from a set of diverse source models. Initially, we show how to
use task similarity metrics to select a single suitable source model to distill from,
and that a good selection process is imperative for good downstream performance
of a target model. We dub this approach DISTILLNEAREST. Though effective,
DISTILLNEAREST assumes a single source model matches the target task, which is
not always the case. To alleviate this, we propose a weighted multi-source distilla-
tion method to distill multiple source models trained on different domains weighted
by their relevance for the target task into a single efficient model (named DISTILL-
WEIGHTED). Our methods need no access to source data, and merely need features
and pseudo-labels of the source models. When the goal is accurate recognition
under computational constraints, both DISTILLNEAREST and DISTILLWEIGHTED
approaches outperform both transfer learning from strong ImageNet initializations
as well as state-of-the-art semi-supervised techniques such as FixMatch. Averaged
over 8 diverse target tasks our multi-source method outperforms the baselines by
5.6%-points and 4.5%-points, respectively.

1 Introduction

Recognition models get more accurate the larger they are and the more data they are trained on
[22, 37, 47]. This is a problem for many applications of interest in medicine (e.g. X-ray analysis)
or science (e.g. satellite-image analysis) where both labeled training data, as well as computational
resources needed to train such large models, are lacking.

The challenge of limited labeled data can potentially be alleviated by fine-tuning large-scale “founda-
tion models” [13, 22, 47]. However, fine-tuning is computationally expensive, especially when one
looks at foundation models with billions of parameters [13]. Unfortunately, all evidence suggests that
larger foundation models perform better at fine-tuning [22, 47]. This leaves downstream applications
the unpleasant trade-off of expensive computational hardware for fine-tuning large models, or inaccu-
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Figure 1: Average test accuracy over five tar-
get tasks with different methods for weighting
source models for distillation. Our methods out-
perform the baselines and transfer learning from
ImageNet. See Section 5.3 for details.

Figure 2: Average test accuracy over the 8 target
tasks vs. compute requirements for a single for-
ward pass at inference. Using DISTILLNEAREST
with an efficient target architecture outperforms
(or is comparable to) fine-tuning larger models.

rate results from smaller models. Motivated by this challenge, we ask can we train accurate models
on tight data and compute budgets without fine-tuning large foundation models?

To set the scene, we assume the existence of a diverse set (both in architecture and task) of pre-trained
source models (or foundation models). We do not have the resources to fine-tune these models, but
we assume we can perform inference on these models and extract features, e.g. through APIs on
cloud services [8, 35]. For the target task, we assume that labeled data is very limited, but unlabeled
data is available. We then propose a simple and effective strategy for building an accurate model
for the target task: DISTILLNEAREST. Concretely, we first compute a measure of “task similarity”
between our target task and each source model and rank the source models accordingly. Then we
pseudo-label the unlabeled data using the most similar source model. These pseudo-labels may not
even be in the same label space as the target task, but we conjecture that due to the similarity between
the source and target tasks, the pseudo-labels will still group the target data points in a task-relevant
manner. Finally, we train the target model using the pseudo-labels and the available ground truth
labeled data. This allows us to bypass the large computations required to fine-tune source models and
directly work on the target model. At the same time, we get to effectively use the knowledge of the
large source model even if it is trained on a different task.

DISTILLNEAREST assumes that a single best source model exists. But for some target tasks, we
might need to combine multiple source models to achieve a sufficiently diverse representation to
distill. We, therefore, propose an extension of our approach that distills multiple (diverse) source
models trained on different domains, weighted by their relevance for the target task. This extension
obtains even further improvements on our target performance (see Figure 1). We dub this method
DISTILLWEIGHTED.

We summarize our contributions as follows:

• We train more than 200 models across a diverse set of source and target tasks using single-source
distillation, and extensively show that the choice of source model is imperative for the predictive
performance of the target model. To the best of our knowledge, no previous work has addressed
how to efficiently select a teacher model for (cross-domain) distillation.

• We find that task similarity metrics correlate well with predictive performance and can be used to
efficiently select and weight source models for single- and multi-source distillation without access
to any source data.

• We show that our approaches yield the best accuracy on multiple target tasks under compute and
data constraints. We compare our DISTILLNEAREST and DISTILLWEIGHTED methods to two
baselines (transfer learning and FixMatch), as well as the naı̈ve case of DISTILLWEIGHTED with
equal weighting (called DISTILLEQUAL), among others. Averaged over 8 diverse datasets, our
DISTILLWEIGHTED outperforms the baselines with at least 4.5% and in particular 17.5% on
CUB200.
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Figure 3: We propose to weigh a set of S source models, Ms = hs � �s, by using task similarity
metrics to estimate the alignment of each source model with the particular target task using a small
probe set of labeled data, Dp

⌧ . Since the task similarity metrics are independent of feature dimension,
we can utilize source models of any architecture and from any source task. We show that by choosing
the weighting, ↵1, . . . ,↵S , this way we are able to improve performance over transfer from ImageNet
and training with FixMatch amongst others (see e.g. Table 1 and Figure 4).

2 Related Work

Knowledge Distillation One key aspect of our problem is to figure out how to compress single or
multiple large foundation models into an efficient target model. A common approach is knowledge
distillation [5, 18] where an efficient student model is trained to mimic the output of a larger teacher
model. However, most single-teacher [3, 10, 11, 28, 30] or multi-teacher knowledge distillation
[16, 27, 38, 45] research focuses on the closed set setup, where the teacher(s) and the student both
attempts to tackle the same task. To the best of our knowledge, compressing models specializing
in various tasks different from the target task has rarely been explored in the literature. Our paper
explores this setup and illustrates that carefully distilling source models trained on different tasks can
bring forth efficient yet accurate models.

Semi-Supervised Learning and Transfer Given our target tasks are specified in a semi-supervised
setting, it is customary to review methods for semi-supervised learning (SSL). The key to SSL
approaches is how to effectively propagate label information from a small labeled dataset to a
large unlabeled dataset. Along this vein, methods such as pseudo-labeling/self-training [25, 43] or
consistency regularization [7, 36, 39] have shown remarkable results in reducing deep networks
dependencies on large labeled datasets via unlabeled data. However, most SSL approaches focus on
training models from scratch without considering the availability of pre-trained models. Given the
increasing availability of large pre-trained models [31, 42], recent work has started exploring the
intersection between transfer learning and SSL [1, 20, 34]. However, most of these works focus on
how to transfer from a single pre-trained model to the target task. Our paper, however, explores an
even more practical setup: how to transfer from multiple pre-trained models to a downstream task
where in-domain unlabeled data are available. In principle, we could combine our approach with a
lot of previous work on SSL to (potentially) gain even larger improvements, but to keep our method
simple we leave such exploration to future work and focus on how to better utilize an available set of
pre-trained models.

Multi-Source Domain Adaptation Our setup also bears a resemblance with multi-source domain
adaptation (MSDA) [32] in which the goal is to create a target model by leveraging multiple source
models. However, MSDA methods often assume the source and target models share the same label
space to perform domain alignment. We do not make such an assumption and in fact, focus on the
case where the label space of source and target tasks have minimal to no overlap. Besides, a lot of the
MSDA approaches [32, 44, 48, 49] rely on the availability of source data or the fact that the source
and target tasks share the same model architecture to build domain invariant features. Given the
discrepancy in assumptions between MSDA and our setup, we do not consider any methods from this
line of work as baselines.
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Figure 4: Test accuracy for distillation with each dot representing single-source distillation from
different source models. The colors represent the task similarity for the source models (from small to
large; ). We include the performance from fine-tuning ImageNet ( ), DISTILLNEAREST; i.e.
distillation of the highest ranked source model (I) as well as DISTILLEQUAL (J), and DISTILL-
WEIGHTED(p) where weights are proportional to task similarity with power p = 1 (J), and p = 12

(J), respectively. The numbers in parentheses at the bottom are Spearman correlations between the
task similarity and test accuracy for single-source distillation.

Transfer Learning From Multiple Sources Transfer learning from multiple different pre-trained
models has been explored in different setups. Bolya et al. [9] focuses on how to select a single good
pre-trained model to use as a model initialization whereas we explore how to distill an efficient model
from the pre-trained models (i.e. our target architecture could be different from those of the source
models). Agostinelli et al. [4] focuses on how to select a subset of pre-trained models to construct an
(fine-tuned) ensemble, whereas we focus on creating a single model. Li et al. [26] focuses on creating
a generalist representation by equally distilling multiple pre-trained models using proxy/source data
(which often requires high-capacity models) whereas our goal is to construct an efficient specialist
model using the target data. All these works have indicated the importance of exploring how to best
leverage a large collection of pre-trained models but due to differences in setup and assumptions, we
do not (and could not) compare to them.

Task Similarity / Transferability Metrics A key insight of our approach is to leverage the similarity
between the target and source tasks to compare and weigh different pre-trained source models
during distillation. Characterizing tasks (or similarities between tasks) is an open research question
with various successes. A common approach is to embed tasks into a common vector space and
characterize similarities in said space. Representative research along this line of work include
Achille et al. [2], Peng et al. [33], Wallace et al. [41]. Another related line of work investigates
transferability metrics [6, 9, 14, 15, 29, 40]. After all, one of the biggest use cases of task similarities
is to predict how well a model transfers to new tasks. Since it is not our intention to define new task
similarity/transferability metrics for distillation, we use already established metrics that capture the
similarity between source representations and one-hot labels to weigh the source models. Under
this purview, metrics that characterize similarities between features such as CKA [12, 23] and
transferability metrics based on features [9, 14] suffice.

3 Problem Setting

The aim of this paper is to train an accurate model for a given target task, subject to limited labeled
data and computational constraints (e.g. limited compute resources). Formally, we assume that our
target task is specified via a small labeled training set Dl

⌧ . Furthermore, we assume (a) the availability
of a set of unlabeled data, Du

⌧ , associated with the target task, and (b) the ability to perform inference
on a set S = {Ms}Ss=1 of S different source models, Ms, trained on various source tasks different
from the target task, We emphasize that we have no access to any source data which could be practical
due to storage, privacy, and computational constraints. Neither do we need full access to the source
models provided we can perform inference on the models anywise (e.g. through an API).

We assume that the architecture of the target model, M⌧ , must be chosen to meet any applicable
computational constraints. This can imply that no suitable target architecture is available in the set of
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source models S , making classical transfer learning impossible. For simplicity, we restrict our models
(regardless of source or target) to classification models that can be parameterized as M = h � �; the
feature extractor � embeds input x into a feature representation, and the classifier head, h, maps the
feature �(x) into predicted conditional class probabilities, P (y | x).

4 Cross-Task Distillation for Constructing Efficient Models from
Foundation Models

To construct an efficient model, we propose to distill large foundation models. Along this vein, we
propose two variants: (a) DISTILLNEAREST that distills the single nearest source model (Section
4.1) and (b) DISTILLWEIGHTED that distills a weighted collection of source models (Section 4.2).

4.1 DISTILLNEAREST

To construct a single efficient target model, DISTILLNEAREST undergoes two steps sequentially:
(a) selecting an appropriate source model and (b) distilling the knowledge from the selected source
model into the target model. For ease of exposition, we start by explaining the distillation process
and then discuss how to select an appropriate source model.

Distilling a selected source model. Given a selected source model Ms, the target model M⌧ =

h⌧ � �⌧ is trained by minimizing a weighted sum of two loss functions,

Lsingle
def
= �Llabeled

+ (1� �)Ldistill
s , (1)

where � 2 [0, 1]. The first loss function is the standard supervised objective over the labeled data,

Llabeled def
=

1

|Dl
⌧ |

X

(xi,yi)2Dl
⌧

`CE (h⌧ (�⌧ (xi)),yi) , (2)

where `CE(·, ·) is the cross-entropy loss. The second loss function is a distillation loss over the
unlabeled data,

Ldistill
s

def
=

1

|Du
⌧ |

X

xi2Du
⌧

`CE (hs
⌧ (�⌧ (xi)),Ms(xi))) . (3)

Note, the source and target tasks do not share the same label space so we introduce an additional
classifier head, hs

⌧ , which maps the features from the target task feature extractor, �⌧ , to the label
space of the source task. This additional classifier head, hs

⌧ , is discarded after training and only the
target classifier head, h⌧ , is used for inference.

In principle, we could add additional semi-supervised losses, such as the FixMatch loss [36] to
propagate label information from the labeled set to the unlabeled set for better performance, but
this would add additional hyperparameters and entangle the effect of our methods. We leave such
explorations to future work.

Selecting the nearest source model for distillation. Selecting a source model for distillation is an
under-explored problem. Given the recent success of using task similarity metrics [9] for selecting
foundation models for fine-tuning, we conjecture that high similarities between a source model and
the target task could indicate better performance of the distilled model (we verify this in Section
5.2). However, quantifying similarities between tasks/models is an open research question with
various successes [2, 29]. For simplicity, we pick our similarity based on one simple intuition: target
examples with identical labels should have similar source representations and vice versa. Along this
vein, the recently introduced metric, PARC [9] fits the bill.

For convenience, we briefly review PARC. Given a small labeled probe set Dp
⌧ = {(xi,yi)}ni=1 ✓ Dl

⌧
and a source representation of interest �s, PARC first constructs two distance matrices D�s , DY

based on the Pearson correlations between every pair of examples in the probe set;

D�s = 1� pearson({�s(xi)}ni=1),

DY = 1� pearson({yi}ni=1).
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MobileNetV3
(0.24 GFLOPs)

IN+Transfer X - 92.4 42.8 47.3 97.4 81.6 37.3 75.9 62.6 67.2
IN+FixMatch X X 93.5 41.9 38.5 98.1 82.6 42.8 83.4 65.8 68.3
DISTILLRANDOMSELECTION X X 89.6 46.5 46.6 97.4 81.8 39.0 79.4 61.9 67.8
(Ours) DISTILLNEAREST X X 92.0 59.6 46.8 97.4 81.0 47.4 81.9 71.3 72.2
DISTILLEQUAL X X 90.8 53.5 45.7 97.5 81.5 41.4 82.1 62.1 69.3
DISTILLRANDOMWEIGHTS X X 87.9 44.9 46.9 97.8 81.6 39.6 80.2 59.2 67.3
(Ours) DISTILLWEIGHTED X X 92.0 60.0 47.7 97.6 82.2 48.3 84.4 69.9 72.8

AlexNet
(0.71 GFLOPs)

IN+Transfer X - 85.0 18.4 46.2 91.9 67.8 13.0 50.9 29.1 50.3
Fine-tune Selected Source X - 88.0 30.4 42.9 89.8 74.5 17.9 66.8 41.3 56.5

GoogLeNet
(1.51 GFLOPs)

IN+Transfer X - 91.8 42.8 41.4 96.8 80.5 36.5 84.8 65.9 67.6
Fine-tune Selected Source X - 91.6 61.2 48.6 96.9 78.3 33.0 87.8 71.8 71.2

ResNet-18
(1.83 GFLOPs)

IN+Transfer X - 92.2 37.8 45.2 96.6 80.2 34.0 80.2 58.2 65.6
Fine-tune Selected Source X - 91.3 58.2 46.4 97.0 75.8 35.4 80.7 69.3 69.3

ResNet-50
(4.14 GFLOPs)

IN+Transfer X - 92.9 42.0 43.4 96.8 79.9 39.9 83.3 65.9 68.0
Fine-tune Selected Source X - 93.0 70.8 43.9 97.2 81.3 47.4 84.8 79.3 74.7

Table 1: Cross-task distillation compared to baselines. MobileNetV3 models (target architecture)
trained with our methods are highly competitive with baseline methods on MobileNetV3 as well as
baseline methods for more demanding model architectures (source architectures: Alexnet, GoogLeNet,
ResNet-18, ResNet-50). We highlight the top 3 methods, which comply with compute requirements
(i.e. MobileNetV3) for each target task by bold, underline, and italic, respectively. We also indicate
the target data used by different methods.

PARC is computed as the Spearman correlation between the lower triangles of the distance matrices;

PARC(�s, Y ) = spear ({D�s [i, j]}i<j , {DY [i, j]}i<j) .

Intuitively, PARC quantifies the similarity of representations by comparing the (dis)similarity struc-
tures of examples within different feature spaces: if two representations are similar, then (dis)similar
examples in one feature space should stay (dis)similar in the other feature space. In Figure 4 and 5
we show that ranking source models by PARC correlates well with test accuracy and that selecting an
appropriate source model can yield significant improvements.

4.2 DISTILLWEIGHTED

Above, DISTILLNEAREST assumes a single optimal source model exists for the target task, but what
if no single source model aligns well with our target task? To alleviate this issue, we propose to
distill multiple source models, weighted according to their similarities with the target tasks. In the
following, we explain our weighted distillation objective and how the weights are constructed. Figure
3 is a schematic depiction of the approach DISTILLWEIGHTED.

Weighted objective for distilling multiple sources. Given a set of source models S = {Ms}Ss=1,
we modify the distillation loss of (1) with a weighted sum of multiple distillation losses (one for each
source model):

Lmulti
def
= �Llabeled

+ (1� �)
SX

s=1

↵sLdistill
s , (4)

where �,↵1, . . . ,↵S 2 [0, 1] (Llabeled and Ldistill
s are as defined in (2) and (3), respectively). Here ↵s

is the relative weight assigned to each source model such that
PS

s=1 ↵s = 1. Once again, we could
add additional semi-supervised losses, such as the FixMatch loss, but to ensure simplicity, we leave
such explorations for future research.

Task similarity weighting of source models Simply assigning equal weight to all source models
is sub-optimal (e.g. weighing source models trained on ImageNet and Chest X-ray equally might not
be optimal for recognizing birds). As such, we propose to compute the source weight ↵s from a task
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similarity metric between the s-th source model and the target task. In particular, let es be such a
similarity metric, then we compute the source weights {↵i}i2[S] as

↵i =
epiPS
s=1 e

p
s

, where ej = max(0, ej) (5)

for j = 1, . . . , S. Here p is a hyperparameter to re-scale the distribution of the weights. Larger p
assigns more weight to the most similar source models, while p = 0 corresponds to equal weights
for all models (denoted DISTILLEQUAL), and p ! 1 assigns all weight to the most similar source
model (i.e. DISTILLNEAREST). When relevant, we use the notation DISTILLWEIGHTED(p) to
indicate the choice of p.

Scalability For DISTILLWEIGHTED to be feasible, compared to DISTILLNEAREST, we need to
ensure that the training procedure scales well with the size of S. Since the computation of the
weights {↵s}Ss=1 is based on the small probe set and is almost identical to the selection procedure
for DISTILLNEAREST this is a negligible step. When training the target model, we merely require
one forward pass on the unlabeled target dataset with each source model (to obtain pseudo-labels) as
well as training of a one-layer classifier head per source model, both of which are cheap compared to
the full training procedure of the target model. Nonetheless, one could employ a pre-selection of the
top-k source models with the largest task similarity, thereby reducing the number of classifier heads
and forward passes required. However, doing so introduces another hyperparameter, k, (i.e. how
many models to use) complicating the analysis. Moreover, since large p induces such pre-selection in
a soft manner, we leave it to future research to determine how to select the appropriate k.

5 Experiments and Results

5.1 Experimental Setup

Benchmark. Despite our methods being designed with the interest of using large vision models
(that are potentially only available for inference), such a setting is intractable for our research. Thus,
to allow for controlled experimentation we restrict our source models to a more tractable scale. In
particular, we modify an existing transfer learning benchmark: Scalable Diverse Model Selection by
[9], and use the publicly available models to construct a set of source models for each target task.
Thus, we consider a set consisting of 28 models: 4 architectures (AlexNet, GoogLeNet, ResNet-
18, and ResNet-50 [17, 24]) trained on 7 different source tasks (CIFAR-10, Caltech101, CUB200,
NABird, Oxford Pets, Stanford Dogs, and VOC2007). For the target tasks, we consider 8 different
tasks covering various image domains (Natural images: CIFAR-10, CUB200, NABird, Oxford Pets,
Stanford Dogs; X-ray: ChestX; Skin Lesion Images: ISIC; Satellite Images: EuroSAT). We carefully
remove any source models associated with a particular target task, if such exists, in order to avoid
information leakage between source and target tasks (see also supplementary materials for further
considerations). For the target architecture, we use MobileNetV3 [19] due to its low computational
requirements compared to any of the source models. We refer the reader to the supplementary
material for further details on implementation.

Baselines. We consider a set of different baselines: based on ImageNet initializations we con-
sider IN+TRANSFER (fine-tunes ImageNet representations using only the labeled data), and
IN+FIXMATCH [36] (fine-tunes the ImageNet representation using labeled and unlabeled data),
and based on source model initializations we fine-tune the highest-ranked source model of each
source architecture. To show the importance of using the right source model(s) to distill, we also
compare DISTILLNEAREST to DISTILLRANDOMSELECTION which is the average of distilling from
a randomly selected source, and for comparison to DISTILLWEIGHTED we also construct distilled
models using the multi-source objective (4) with a random weight (DISTILLRANDOMWEIGHTS) and
equal weights (DISTILLEQUAL). For ease of exposition, we present results for DISTILLNEAREST
(Section 5.2) and DISTILLWEIGHTED (Section 5.3) in separate sections.

5.2 Results for DISTILLNEAREST

We compare DISTILLNEAREST with the baselines in Table 1 and Figure 4. Our observations are as
follows.
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Distillation with the right source model is better than fine-tuning from ImageNet. We ob-
serve that within the same target architecture (MobileNetv3), simply fine-tuning ImageNet rep-
resentations (IN+TRANSFER) is less optimal than distilling from the most similar single model
(DISTILLNEAREST). In fact, for fine-grained datasets such as CUB200, NABird, Oxford Pets, and
Stanford Dogs, we observe that distilling from an appropriate source model (DISTILLNEAREST)
could yield much better performance than fine-tuning from a generalist ImageNet representation.
More surprisingly, even with the aid of unlabeled data, models fine-tuned from ImageNet representa-
tions using a label propagation style approach (IN+FIXMATCH) still underperform distillation-based
methods by at least 3.9% on average. These observations indicate the importance of selecting the
right source model for transfer/distillation.

Distilling to efficient architecture could be better than fine-tuning larger models. In Table 1, we
include the performance when fine-tuning larger architectures trained on ImageNet (IN+TRANSFER)
and the source model (of the same architecture) most similar to each target task selected using
PARC (FINE-TUNE SELECTED SOURCE). A few observations are immediate: (a) our choice of
task similarity metric is effective for transfer; across all 4 architectures, we observe at least 4%
improvement over simple fine-tuning from ImageNet, which validates the results by Bolya et al.
[9], and (b) with the aid of unlabeled data and distillation, the computationally efficient architecture
MobileNetV3 can outperform larger architectures fine-tuned on labeled data from the target task (i.e.
AlexNet, GoogLeNet, ResNet-18). Although underperforming fine-tuning a ResNet-50 initialized
with the most similar ResNet-50 source model by a mere average of 2.5%-points (FINE-TUNE
SELECTED SOURCE), using a ResNet-50 would require 17.5⇥ more computations during inference
to achieve such improvements.

5.2.1 Task Similarity Metrics for DISTILLNEAREST

One key component of DISTILLNEAREST is to select the source model to perform cross-task
distillation on using task similarity metrics. Despite many many existing metrics for quantifying task
similarities, their effectiveness for distillation remains unclear. Given the myriads of metrics, we
restrict our focus to metrics that can capture similarities between a source representation of a target
example and its one-hot label representation. Along this vein, two questions arise: which metric to
use for comparing representations, and which representations from a source model should be used to
represent a target example?

For the first question, we look into multiple metrics in the literature that compares various represen-
tations: CKA [12], RSA [14], and PARC [9]. For the second question, we look into the common
representations from a source model: the features � and the probabilistic outputs h � �.

To establish the effectiveness of our choice of similarity metric, we report the Spearman correlation
between the task similarities and the test accuracy of the distilled models in Table 2. We see that
features from the source models can better capture the correlation between the source models and
the test accuracy of the distilled models, than the probabilistic pseudo-labels. In addition, we also
see a much higher correlation among natural tasks (compared to specialized tasks such as ChestX,
EuroSAT, and ISIC) which suggests that our choice of task similarity is effective at selecting similar
tasks. Besides, we also observe a higher correlation when using PARC compared to the other metrics,
thus validating our choice of using PARC as the default metric.

To further establish the effectiveness of our metrics to rank various source models, we compute
the relative test accuracy between the top-3 models most similar to the target task and the top-3
best models after distillation (see Table 3). Again, we observe that all three metrics are capable of
ranking affinity between source models, but ranking the models with PARC outperforms the other
two metrics.

5.3 Results for DISTILLWEIGHTED

From Table 1, we observe that DISTILLWEIGHTED compares favorably to DISTILLNEAREST, thus
the conclusions for DISTILLNEAREST translates to DISTILLWEIGHTED. Yet, one particular task,
Oxford Pets, is worth more attention. On Oxford Pets (classification of different breeds of cats and
dogs), we observe that distilling from multiple weighted sources (DISTILLWEIGHTED) is much better
than distilling from the single most similar source (DISTILLNEAREST), which is a ResNet-18 trained
on Caltech101 (that can recognize concepts such as Dalmatian dog, spotted cats, etc.). Although the
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do CKA 0.72 0.62 0.23 0.39 -0.04 0.31 0.69 0.11 0.38
PARC 0.79 0.79 0.02 0.17 0.06 0.48 0.72 0.54 0.45
RSA 0.82 0.31 -0.11 0.30 0.10 -0.03 0.65 0.38 0.30

Fe
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e CKA 0.82 0.39 0.36 0.21 -0.04 0.47 0.69 0.55 0.43

PARC 0.84 0.84 0.18 0.42 -0.14 0.81 0.81 0.84 0.58
RSA 0.86 0.81 0.03 0.38 0.03 0.28 0.89 0.85 0.52

Table 2: Spearman correlation between test accuracy after all possible single-source distillations and
task similarities associated with the source models. Generally feature representations correlate better
with distillation performance compared to pseudo-label representations.
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Table 3: Relative accuracy of top-3 single-source distilled models selected by task similarity over
the average of the 3 actual best models. We compute the average test accuracy of the top-3 highest
ranked target models and divide it by the average of the 3 actually best-performing target models.

most similar source model contains relevant information for recognizing different breeds of dogs
and cats, it might not contain all relevant knowledge from the set of source models that could be
conducive to recognizing all visual concepts in Oxford Pets. In fact, we observe that the second most
similar model is a GoogLeNet model trained on Stanford Dogs to recognize more dog breeds than
the most similar source model (but incapable of recognizing cats). In this case, DISTILLWEIGHTED
allows aggregation of knowledge from multiple sources and can effectively combine knowledge from

Figure 5: Test accuracy of single-source distilla-
tion and raw task similarity score using PARC
on the feature representations. The scores are
on different scales for different tasks, but almost
all tasks have a positive correlation between test
accuracy and task similarity.

Figure 6: Improvement over IN+TRANSFER.
Here • is the average improvement over all eight
target tasks and • represents the performance
on a target task. Note, p = 0 corresponds to
DISTILLEQUAL, and p = 1 corresponds to
DISTILLNEAREST.
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different source models for a more accurate target model than distillation from a single source. This
suggests that under certain conditions such as high heterogeneity in data, distilling from multiple
source models can outperform distilling a single best source model.

5.3.1 Task Similarity Metrics for Weighing Sources

We have established that our task similarity metric can capture the correlation between the source
model representations and the test accuracy of the distilled models. However, it is not a priori
clear that weighing source models based on the ranking of their affinity to the target task would
yield better performance for multi-source distillation. As such, we investigate alternative choices of
weighing schemes for a subset of 5 target tasks (CUB200, EuroSAT, ISIC, Oxford Pets, Stanford
Dogs): INVERSE (weights are inversely proportional to task similarity), DISTILLRANDOMWEIGHTS
(weights are sampled uniformly on a 4-simplex), DISTILLRANDOMSELECTION (randomly selecting
a single source model), and DISTILLEQUAL (equal weights for all models).

Through Figure 1, we find that distilling from a single or set of source models ranked using the
similarity metric is much more effective than distilling from source models that are weighted randomly
or equally (DISTILLRANDOMWEIGHTS or DISTILLEQUAL). In addition, the fact that INVERSE
underperforms IN+TRANSFER on average suggests that it is crucial to follow the ranking induced
by the similarity metrics when distilling the sources and that the metric ranks both the most similar
source models and the least similar source models appropriately.

5.3.2 Effect of p

Our task similarity metrics give a good ranking of which source models to select for distillation but
it is unclear whether the similarity score could be used directly without any post-processing. To
investigate, we visualize the relationship between the test accuracy of the models distilled from a
single source and our task similarity. From Figure 5, it is clear that the distribution of task similarities
depends on the target task, which motivates our normalization scheme.

In addition, it is not apriori clear that the weights should scale linearly with the similarity scores.
Thus, we investigate the effect of the rescaling factor, p, for constructing the weights. In Figure 6,
we see that although no rescaling (p = 1) outperforms equal weighting, it is less optimal than e.g.
p = 12 (our default). This suggests that task similarity and good weights have a monotonic, but
non-linear relationship.

5.4 Additional Ablations and Analyses

Due to space constraints, we include additional ablations and analyses in the supplementary materials.
We summarize the main findings as follows.

ResNet-50 as target model. Averaged over 8 tasks, DISTILLWEIGHTED outperforms both
IN+TRANSFER and DISTILLEQUAL by 5.6% and 3.8%, respectively. Also, compared to Ima-
geNet initialization, using DISTILLWEIGHTED with the most similar ResNet-50 source model as
target model initialization improves accuracy by 1.0%.

Improvements on VTAB. DISTILLWEIGHTED outperforms IN+TRANSFER averaged over the
Natural and Specialized tasks of VTAB, by 5.1% and 0.8%, respectively. DISTILLNEAREST
outperform by 4.8% and 0.6%, respectively.

Fewer labels. DISTILLWEIGHTED and DISTILLNEAREST outperform IN+TRANSFER (by 6.8%
and 4.4%, respectively) under a setup with even fewer labeled samples.

Additional analysis of task similarity metrics. We consider additional correlation metrics and
top-k relative accuracies of the selected models — all supporting the usefulness of task similarity to
weigh and select source models.

6 Conclusion

We investigate the use of diverse source models to obtain efficient and accurate models for visual
recognition with limited labeled data. In particular, we propose to distill multiple diverse source
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models from different domains weighted by their relevance to the target task without access to
any source data. We show that under computational constraints and averaged over a diverse set
of target tasks, our methods outperform both transfer learning from ImageNet initializations and
state-of-the-art semi-supervised techniques.
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A Additional Ablations and Analyses

We present additional results and implementation details in the supplementary. To avoid confusion,
we use the same set of index numbers as in the main text to refer to the tables and figures. Please find
Tables 1-3 and Figures 1-6 in the main text.

A.1 Results on VTAB

We report the results of our VTAB [46] experiment in Table 4. On VTAB, We find that both
DISTILLWEIGHTED and DISTILLNEAREST distillation outperform IN+TRANSFER on each of the

Natural tasks. Particularly, DISTILLWEIGHTED outperforms IN+TRANSFER with 13.9%-points
on CIFAR-10 and 10.6%-points on Sun397 and averaged across Natural DISTILLWEIGHTED
outperforms IN+TRANSFER with 5.1%-points. Average over Specialized both DISTILLWEIGHTED
and DISTILLNEAREST outperform IN+TRANSFER, although with a small margin. Finally, averaged
over Structured IN+TRANSFER outperforms our methods, but due to the nature of these tasks, we
do not expect source models to transfer well to these tasks.1 Yet, we still obtain the best accuracy on
DMLab, dSpr-Loc, and sNORB-Azimuth.
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IN+Transfer 88.1 47.0 57.4 85.8 82.8 75.3 27.8 66.3 81.0 95.0 80.0 72.7 82.2 73.1 55.9 43.6 75.7 18.7 58.6 21.2 46.0 49.1 62.4
DISTILLWEIGHTED 88.6 60.9 62.4 86.1 84.4 79.0 38.4 71.4 80.6 95.9 83.3 72.2 83.0 57.4 45.6 44.6 67.7 27.4 44.9 23.9 38.2 43.7 62.2
DISTILLNEAREST 88.9 59.5 61.9 86.2 84.5 79.5 37.6 71.1 80.5 95.8 83.2 71.7 82.8 60.5 45.4 45.2 67.9 20.8 40.6 24.2 36.5 42.6 61.6

Table 4: Top-1 accuracy by dataset in VTAB. The accuracy for each task is in grey, and the average
accuracy for each category of tasks is in black. Note, the Mean is the average across all tasks, not
categories. The largest value in each column is marked in bold. Here DISTILLWEIGHTED is with
p = 9.

A.2 Relative accuracy of single-source distillation

Similarly to Table 3, we extend our evaluation of how well the task similarity selects the best source
models for single-source distillation. We report the ratio between the average test accuracy of the
top-k target models ranked using the task similarity and the average test accuracy for the actual top-k
target models found after the fact in Table 5, Table 6, and Table 7 for k = 1, k = 3, and k = 5,
respectively.

We find that generally, using task similarity on feature representations rather than the corresponding
pseudo-labels yields better rankings, but also that PARC shows very little difference between features
and pseudo-labels for all considered k 2 {1, 3, 5}.

Relative accuracy over all k. The relative accuracy measure reported above is sensitive to k and
the actual accuracy values of the models. I.e. if a metric flips the order of the best and second best
model when there is a notable performance gap between the two models, the relative accuracy for
k = 1 will be low, and we might be mistaken to believe the metric is not working well. However,
the metric might rank every model for k > 2 perfectly correct, and since we typically utilize the
full set of source models, the initial mistake should not be detrimental to the selection of the task
similarity metric. Thus, in Figure 7 we plot the relative accuracy for each task similarity metric and
all k 2 {1, . . . , S}. We find that while PARC on feature representations is outperformed by both
PARC and CKA on pseudo-labels for k < 3, PARC on feature representations outperforms all the
other metrics for k � 3. In particular, from Table 8 we have that on average over all k < S, PARC,
performs the best.

1The Structured tasks are mainly (ordinal) regression tasks transformed into classification tasks, and thus
it seems reasonable to expect very general features (such as those from an ImageNet pre-trained model) to
generalize better to such constructed tasks than specialized source models.
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Table 5: Relative accuracy of top-1 single-source distilled target model selected by task similarity
over the best model found in hindsight. We compute the test accuracy of the highest-ranked target
model (ranked by some task similarity) and divide this by the test accuracy of the best-performing
target model.
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RSA 100.0 77.7 96.5 99.7 98.5 87.2 98.6 97.6 94.5

Fe
at

ur
e CKA 100.0 95.6 97.0 99.8 99.0 93.3 100.0 96.4 97.6

PARC 100.0 100.0 97.8 99.7 98.3 100.0 97.1 98.5 98.9
RSA 100.0 100.0 96.7 99.8 98.9 94.9 98.9 98.8 98.5

Table 6: (Identical to Table 3) Relative accuracy of top-3 single-source distilled target models selected
by task similarity over the average of the 3 best models found in hindsight. We compute the average
test accuracy of the top-3 highest ranked target models and divide this average by the average test
accuracy of the 3 best-performing target models.
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do CKA 99.3 98.7 98.3 99.7 99.0 92.9 99.2 98.4 98.2
PARC 99.7 100.0 96.7 99.7 98.9 94.5 99.4 98.4 98.4
RSA 99.7 83.2 97.6 99.8 99.0 84.9 99.2 92.8 94.5

Fe
at

ur
e CKA 99.7 97.4 97.7 99.8 98.9 96.5 99.2 97.8 98.4

PARC 99.7 100.0 97.9 99.8 99.1 99.7 97.5 99.7 99.2
RSA 99.7 99.7 97.9 99.8 99.2 97.9 98.9 99.7 99.1

Table 7: Relative accuracy of top-5 single-source distilled target models selected by task similarity
over the average of the 5 best models found in hindsight. We compute the results analogously to
Table 6 with k = 5.

CKA PARC RSA

Pseudo 0.985 0.990 0.974
Feature 0.986 0.993 0.991

Table 8: The mean relative accuracy, across all k, for each metric in Figure 7. The average is
bounded in (0, 1], and 1 corresponds to perfect ordering by task similarity. We find that using feature
representations consistently outperforms pseudo-labels and that for both feature representations and
pseudo-labels PARC performs the best.

15



Figure 7: Relative accuracy of top-k single-source distilled target models selected by task similarity
over the average of the top-k actual best target models found in hindsight. If the ordering by task
similarity were perfectly correct, the relative accuracy would be 1 for all k. See Table 8 for the
average of each metric across all k.
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IN+Transfer 92.4 42.8 47.3 97.4 81.6 37.3 75.9 62.6 67.2
IN+FixMatch 93.5 41.9 38.5 98.1 82.6 42.8 83.4 65.8 68.3

DISTILLEQUAL 90.8 53.5 45.7 97.5 81.5 41.4 82.1 62.1 69.3
DISTILLWEIGHTED(1) 91.1 55.6 46.5 97.9 81.5 42.5 83.3 64.4 70.3
DISTILLWEIGHTED(3) 91.6 57.7 46.5 97.7 82.3 44.5 84.6 67.4 71.6
DISTILLWEIGHTED(6) 91.8 59.0 46.7 97.5 82.5 46.7 84.7 69.1 72.3
DISTILLWEIGHTED(9) 92.0 59.6 46.8 97.6 82.4 47.6 84.5 69.5 72.5
DISTILLWEIGHTED(12) 92.0 60.0 47.7 97.6 82.2 48.3 84.4 69.9 72.8
DISTILLWEIGHTED(15) 92.6 60.3 46.7 97.5 81.7 48.2 83.9 70.2 72.6
DISTILLNEAREST 92.0 59.6 46.8 97.4 81.0 47.4 81.9 71.3 72.2

Table 9: Test accuracy of DISTILLWEIGHTED with various choices of p, compared to the baseline
methods of IN+TRANSFER and IN+FIXMATCH. We highlight the largest value for each target task
in bold, and the results are also visualized in Figure 6.

A.3 Ablation of p for DISTILLWEIGHTED

We report the values associated with Figure 6 for each target task and all considered choices of p in
Table 9.

A.4 DISTILLWEIGHTED with ResNet-50 as target architecture

In the main part of the article, we consider the computationally constrained setting, where some
compute budget restricts the possible size of our target model. Thus, we use MobileNetV3 models as
target models throughout the main paper. However, in Table 10 we remove the computational budget
and allow the target model to be of any architecture, and particularly we use a ResNet-50 as the target
model.

We compare DISTILLWEIGHTED (with p = 0 and p = 12) initialized with either ImageNet pre-
trained weights or the weights of the highest ranked ResNet-50 source model to IN+TRANSFER
and FINE-TUNE SELECTED SOURCE. We find that DISTILLWEIGHTED initialized from ImageNet
outperforms IN+TRANSFER on average for both equal weighting and p = 12, but underperforms
FINE-TUNE SELECTED SOURCE for both p. However, since FINE-TUNE SELECTED SOURCE is
initialized from well-selected source model weights, the comparison is not entirely fair. Thus, we also
consider the case where we initialize the target model for DISTILLWEIGHTED with the weights of
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IN+Transfer ImageNet 92.9 42.0 43.4 96.8 79.9 39.9 83.3 65.9 68.0
Fine-tune Source Source 93.0 70.8 43.9 97.2 81.3 47.4 84.8 79.3 74.7

DISTILLEQUAL ImageNet 87.8 57.3 46.1 97.0 78.9 42.4 84.1 64.5 69.8
DISTILLWEIGHTED(12) ImageNet 91.5 64.5 45.4 97.0 78.9 49.8 87.1 74.2 73.6

DISTILLEQUAL Source 87.5 68.8 45.5 97.4 81.2 43.2 81.9 65.1 71.3
DISTILLWEIGHTED(12) Source 91.6 70.0 47.6 97.0 80.8 50.0 85.7 73.8 74.6

Table 10: DISTILLWEIGHTED with ResNet-50 as target model architecture. We compare fine-tuning
of the highest ranked source model [9] with DISTILLWEIGHTED to both ImageNet-initialized target
models and target models initialized from the highest ranked ResNet-50 source model. For p = 12,
DISTILLWEIGHTED performs on par with fine-tuning the selected source model. The largest value
for each target task is in bold.

the highest ranked ResNet-50 source model, and find that for p = 12 DISTILLWEIGHTED performs
on par with FINE-TUNE SELECTED SOURCE.

A.5 Normalization of task similarity for source model weighting

We propose to choose the weights ↵ = (↵1, . . . ,↵S) as

↵i =
epiPS
s=1 e

p
s

, where ej = 1(ej>0) ej

for j = 1, . . . , S, and es is the task similarity for source model Ms, evaluated on the target task,
normalized to satisfy es 2 [0, 1] with min-max normalization over all es. Here, the hyperparameter,
p can be used to increase/decrease the relative weight on the highest ranked source models, with the
extremes p = 0 and p ! 1 corresponding to equal weight and single-source distillation, respectively.
An alternative way to obtain our normalization is to use the softmax function on the task similarities,

↵i =
exp

�
ei
T

�
PS

s=1 exp
�
es
T

� .

This does not require clipping the task similarity at 0, and with the temperature, T , we can adjust
the relative weight on particular source models. Here, large T flattens the weights, and T ! 1
corresponds to an equal weighting of all source models, while small T increases the weight on
the highest-ranked source models. Quantitatively, the two normalization methods can yield similar
transformations with appropriate choices of p and T - see Figure 8.

A.6 Smaller amount of labeled data

We now repeat the experiment of the main paper across the 8 target datasets with a reduced amount
of labeled samples. Here, we reduce the number of labeled samples to 5% (rather than 20%) of
the training set and report the accuracy in Table 11. We find a similar pattern as observed in the
main experiment, where DISTILLWEIGHTED distillation on average outperforms IN+TRANSFER
irrespective of the choice of p. For p = 9 DISTILLWEIGHTED outperforms IN+TRANSFER by 6.8%-
point on average and in particular 15.5%-points on CUB200, whereas the only loss in performance is
on ChestX with a drop of 0.9%-point.

A.7 Different Measures of Correlation

In order to evaluate the quality of a task similarity metric to estimate the performance of a target model
after distillation, we consider the correlation between the computed metric and the actual observed
performance after distillation. However, since we have no reason to believe that the relationship
is linear, we consider the Spearman correlation in the main paper. However, for completeness of
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Figure 8: Transformation of weights for various choices of power (left) or softmax temperature
(right). Here S is the number of source models, and we consider equidistantly distributed normalized
metrics.
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IN+Transfer 88.0 16.8 43.5 94.8 73.9 14.4 55.0 38.9 53.2

DISTILLWEIGHTED(1) 88.1 29.2 42.3 95.9 76.3 20.5 66.6 42.1 57.6
DISTILLWEIGHTED(9) 90.2 32.3 42.6 95.9 76.7 24.8 68.2 49.0 60.0
DISTILLNEAREST 87.2 31.4 39.7 95.1 75.4 24.0 58.9 49.7 57.7

Table 11: Distillation on the eight target tasks with only 5% labeled samples per task. Again, we
compare to the baseline of IN+TRANSFER. The largest value for each target task is in bold.

exposition, we report Pearson correlation and Kendall’s Tau in Table 12 and Table 13, respectively. For
both these correlation measures, the overall conclusions are the same: Using feature representations
is preferable to pseudo-labels, and PARC generally outperforms both CKA and RSA, albeit not by
much over CKA.
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do CKA 0.62 0.85 0.07 0.30 -0.06 0.33 0.67 0.21 0.37
PARC 0.75 0.74 -0.03 0.27 -0.00 0.36 0.63 0.51 0.40
RSA 0.75 0.13 -0.07 0.38 0.04 -0.09 0.66 0.40 0.27

Fe
at

ur
e CKA 0.84 0.60 0.39 0.29 0.00 0.30 0.71 0.54 0.46

PARC 0.86 0.73 0.17 0.46 -0.06 0.58 0.77 0.78 0.54
RSA 0.90 0.85 0.07 0.45 0.04 0.27 0.87 0.83 0.54

Table 12: Pearson correlation between test accuracy after all possible single-source distillations and
task similarity associated with the source models. Similar to Table 2.

A.8 Choice of Task Similarity Metrics

Recently, multiple measures intended to estimate the transferability of a source model have been
proposed. However, despite the very recently published Multi-Source Leep (MS-LEEP) and Ensemble
Leep (E-Leep) no task similarity metric considers the estimation over multiple models at once [4].
Thus, we consider each source model separately and compute the metrics independent of other source
models. This has the added benefit of reducing the number of metric computations required as we do
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do CKA 0.51 0.46 0.16 0.28 -0.05 0.24 0.49 0.07 0.27
PARC 0.61 0.64 0.01 0.12 0.02 0.36 0.54 0.39 0.34
RSA 0.62 0.17 -0.07 0.22 0.08 -0.01 0.48 0.29 0.22

Fe
at

ur
e CKA 0.67 0.34 0.25 0.14 -0.05 0.40 0.50 0.38 0.33

PARC 0.69 0.67 0.14 0.31 -0.10 0.65 0.62 0.67 0.46
RSA 0.72 0.65 0.02 0.28 0.02 0.19 0.72 0.67 0.41

Table 13: Kendall Tau correlation between test accuracy after all possible single-source distillations
and task similarity associated with the source models. Similar to Table 2.

not need to compute the task similarity for all possible combinations of n models from S possible
(i.e.

�n
S

�
), which grows fast with S.

Assume X 2 RN⇥dX and Y 2 RN⇥dY , and that Kij = k(xi,xj) for and Lij = l(yi,yj) where
k, and l are two (similarity) kernels as well as xi,xj and yi,yj are rows of X and Y, respectively.
Then we have that CKA is defined as

⇢CKA(X,Y)
def
=

HSIC(K,L)p
HSIC(K,K)HSIC(L,L)

,

where K,L 2 RN⇥N and HSIC is the Hilbert-Schmidt Independence Criterion,

HSIC(K,L)
def
=

1

(N � 1)2
tr (KHNLHN ) , with

HN
def
= IN � 1

N
11

|.

In particular, if both k and l are linear kernels, then

⇢CKA(X,Y) =
kY|

Xk2F
kX|XkF kY|YkF

,

where k·kF is the Frobenius norm. We use the linear kernel throughout this paper and refer to Cortes
et al. [12] for additional details on CKA.

For RSA, we consider the dissimilarity matrices given by

Kij
def
= 1� pearson(xi,xj) and

Lij
def
= 1� pearson(yi,yj),

where X and Y are assumed normalized to have mean 0 and variance 1. We then compute RSA as
the Spearman correlation between the lower triangles of K and L,

⇢RSA(X,Y)
def
= spearman ({Kij | i < j}, {Lij | i < j}) .

For additional details on RSA, we refer the reader to Dwivedi and Roig [14]. While Bolya et al. [9]
introduces PARC alongside a heuristic and feature reduction, the PARC metric is almost identical to
RSA. However, RSA was introduced to compute similarities between two sets of representations,
and PARC was aimed at computing similarities between a set of representations and a set of labels
associated with the dataset. Thus, in our use of PARC, it merely differs from RSA in the lack of
normalization of Y, which is assumed to be one-hot encoded vectors of class labels from the probe
dataset.

B Experimental Details

In the following, we provide some experimental details.
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B.1 Main Experiments

Unless otherwise mentioned, we use SGD with a learning rate of 0.01, weight decay of 0.0001,
batch size of 128, and loss weighting of � = 0.8. We initialize our target models with the
ImageNet pre-trained weights available in torchvision (https://pytorch.org/vision/
stable/models) and consider 28 fine-tuned models from Bolya et al. [9] publicly available
at github.com/dbolya/parc as our set of source models. The source models consist of each
of the architectures (AlexNet, GoogLeNet, ResNet-18, and ResNet-50) trained on CIFAR-10, Cal-
tech101, CUB200, NABird, Oxford Pets, Stanford Dogs, and VOC2007. Note, we always exclude
any source model trained on the particular target task, thus effectively reducing the number of source
models for some target tasks. For FixMatch we use a batch size of 128 (with a 1:1 ratio of labeled to
unlabeled samples for each batch) and fix the confidence threshold at 0.95 and the temperature at 1.
We keep the loss weighting between the supervised loss and the unlabeled FixMatch loss at � = 0.8.

B.2 VTAB Experiments

For each VTAB experiment, we consider the full training set (as introduced in Zhai et al. [46])
as the unlabeled set, Du

⌧ , and the VTAB-1K subset as the labeled set, Dl
⌧ . We use the Pytorch

implementation from Jia et al. [21] available at github.com/KMnP/vpt.

We use SGD with a learning rate of 0.005, weight decay of 0.0001, batch size of 128 equally
split in 64 labeled and unlabeled samples, and loss weighting of � = 0.9. We train our models
for 100 epochs, where we define one epoch as the number of steps required to traverse the set of
unlabeled target data, Du

⌧ when using semi-supervised methods, or merely as the number of steps to
traverse the labeled set, Dl

⌧ , for supervised transfer methods. We initialize our target models with
the BiT-M ResNet-50x1 model fine-tuned on ILSVRC-2012 from BiT [22] publicly available at
github.com/google-research/big_transfer.

We consider the 19 BiT-M ResNet-50x1 models fine-tuned on the VTAB-1K target tasks from
Kolesnikov et al. [22] as the set of source models. We always exclude the source model associated
with the target task from the set of source models, and thus effectively have 18 source models
available for each target task in VTAB. We use the PARC metric on the source model features to
compute the source weighting, but also only use the top-5 highest-ranked source models to reduce
the computational costs of training. Furthermore, we use p = 9 for DISTILLWEIGHTED.

C Domain gap between source tasks, targets tasks and ImageNet

As is evident from Figure 4 and Table 1, both DISTILLNEAREST and DISTILLWEIGHTED do not
yield notable improvements on e.g. ChestX and ISIC, but yield significant improvements on e.g.
CUB200 and Oxford Pets. Notably, for the latter target tasks there are semantically similar source
tasks present in our set of source models, while this is not true for the former target tasks. Hence,
as one would expect, the availability of a source model trained on source tasks similar to the target
tasks is important for cross-domain distillation to work well, which is expected to be true for both
DISTILLNEAREST and DISTILLWEIGHTED. Indeed, the task similarity metrics considered in this
paper all aim at measuring alignment between tasks, and if the alignment between source and target
tasks is small, we do not expect to gain much from distillation. This is affirmed by our experiments
in e.g. Table 1.

C.1 A note on potential data overlap between source and target tasks

Whenever any type of transfer learning is applied, including using ImageNet initializations, we (often
implicitly) assume that the model we transfer from has not been trained on any data from the target
test set. Although this assumption is often satisfied in practice due to domain gaps between the
source and target task, utilizing initializations trained on e.g. ImageNet can potentially violate the
assumption. This is due to the fact that ImageNet and many other modern publicly available datasets
are gathered from various public websites and overlaps between samples in different datasets might
occur.

Thus, it is natural to question whether the observed improvements are due to methodological advances
or information leakage between source and target tasks. To ensure our advancements are valid we
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carefully remove any source model associated with the target task from the set of source models,
S. However, information leakage might still appear if e.g. there are identical samples in the
target dataset and the source dataset or ImageNet. Despite large overlaps being improbable, it has
been shown that there e.g. is a minor overlap (of at least 43 samples) between the training set of
ImageNet and the test set of CUB200 (see e.g. https://gist.github.com/arunmallya/
a6889f151483dcb348fa70523cb4f578). However, since the test set of CUB200 consists of
5794 samples, the presence of such a minor overlap should not affect the true performance of a model
much.

In our experiments, we consistently compare our target models (initialized with ImageNet weights) to
either identically initialized target models or source models initialized with either ImageNet weights
or with weights from a source task. Hence, any potential gain from information leakage between
ImageNet and a target task would bias both our results and the baselines, and thereby not affect our
overall results. Furthermore, while an overlap between a source and target task might unfairly benefit
the performance of our methods compared to IN+TRANSFER and IN+FIXMATCH, such an overlap
would likely benefit the fine-tuned source models even more making this baseline even harder to
outperform (see e.g. Figure 2 and Table 1). Thus, our results should be at most as biased as the
baselines.
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