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ABSTRACT

Reinforcement learning (RL) has been extensively researched for
enhancing human-environment interactions in various human-
centric tasks, including e-learning and healthcare. Since deploying
and evaluating policies online are high-stakes in such tasks, off-
policy evaluation (OPE) is crucial for inducing effective policies. In
human-centric environments, however, OPE is challenging because
the underlying state is often unobservable, while only aggregate
rewards can be observed (students’ test scores or whether a pa-
tient is released from the hospital eventually). In this work, we
propose a human-centric OPE (HOPE) to handle partial observabil-
ity and aggregated rewards in such environments. Specifically, we
reconstruct immediate rewards from the aggregated rewards con-
sidering partial observability to estimate expected total returns.
We provide a theoretical bound for the proposed method, and we
have conducted extensive experiments in real-world human-centric
tasks, including sepsis treatments and an intelligent tutoring sys-
tem. Our approach reliably predicts the returns of different policies
and outperforms state-of-the-art benchmarks using both standard
validation methods and human-centric significance tests.
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1 INTRODUCTION

Off-policy evaluation (OPE) sits at the epicenter of offline Rein-
forcement Learning (RL) research [10, 24, 37, 52], which estimates
the performance of an RL-induced policy leveraging prior knowl-
edge obtained from historical data. OPE is especially important in
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human-centric environments where the execution of a bad policy
can be costly and dangerous. For example, in healthcare, an over-
estimated policy could be ineffective and even increase mortality
by wrong treatments. There are at least two main challenges for
OPE to work with human-centric environments. One is that the
underlying state of a human-centric environment is usually unob-
servable [7, 33], resulting in a partially observable Markov decision
process (POMDP). Specifically, the observations may not contain
sufficient information to fully reconstruct the underlying states.
For example, the population considered in the environment could
change over time, and their characteristics may be varied across
different cohorts. In e-learning, student backgrounds can vary from
semester to semester; similarly, in healthcare, patient demographics
can change in hospitals across different regions [27, 42]. The other
challenge is that only an aggregated (or delayed) reward can
be observed after a certain period of time, where all immediate re-
wards in between are often missing. The most appropriate rewards
in e-learning and healthcare are student learning performance and
patient outcomes, which are typically unavailable until the entire
trajectory is complete. This is due to the complex natures of both
learning and disease progression, which make it difficult to assess
students’ learning or patient health states moment by moment.
More importantly, many instructional or medical interventions that
boost short-term performance may not be effective over the long
term. Different from delayed rewards in classic mouse-in-the-maze
situations where agents receive insignificant rewards along the
path and a significant reward in the final goal state (the food), in
e-learning and healthcare, there are immediate rewards along the
way but they are often unobservable.

Prior OPE work [3, 16, 24, 37] have achieved outstanding perfor-
mance in simulated environments such as Mujoco [55]. However,
one may not be able to directly apply such methods toward human-
centric environments, since immediate rewards are missing and the
environment is partially observable. A possible way is assuming
the rewards are sparse that only indicate whether a task is com-
pleted partially or fully. Sparse rewards typically correspond to
the attainment of some particular tasks such as a robot attaining
designated waypoints which provide little feedback for immediate
steps [46]. In many human-centric tasks, interaction outcomes can
be gradually improved step-by-step and the immediate reward on



each step can be meaningful by itself. For example, students’ cogni-
tive outcomes and learning performance are gradually improved
during interaction with the intelligent tutor in college [34]. It has
been found that immediate rewards are more effective than sparse
rewards, toward evaluating decision outcomes [5]. Moreover, in
human-centric environments, policy performance may be corre-
lated with the horizon of the environment. For example, medical
interventions that have shown good short-term performance may
not be effective over the long-term [5]. Consequently, it is impor-
tant to reconstruct immediate rewards for OPE to work effectively
in human-centric environments.

On the other hand, prior evaluation metrics for OPE are gener-
ally error metrics (e.g., absolute error, rank correlations) proposed
by Fu et al. [12], Voloshin et al. [60], while human-centric research
often emphasizes the need for statistical significance test in empirical
study [20, 64]. For example, rank correlation summarizes the perfor-
mance of a set of policies’ relative rankings using averaged returns.
Statistical significance tests can tell how likely the relationship we
have found is due only to random chance across samples, and they
are commonly employed and easier to be interpreted by domain ex-
perts [20, 25]. The framework for validating OPE in human-centric
environments may need to be extended beyond error metrics.

In this work, we propose a human-centric OPE (HOPE) ap-
proach to tackle the two challenges above. Specifically, it first re-
constructs immediate rewards from the aggregated rewards. Then,
importance sampling is used to process the reconstructed rewards
and estimate expected total returns. Any existing OPE method
can be used jointly with the reconstructed rewards to estimate
expected returns. We validate HOPE on two typical real-world
human-centric tasks in healthcare and e-learning, i.e. sepsis treat-
ments and an intelligent tutoring system (ITS), and extend existing
validation frameworks with significance tests for human-centric
environments. To summarize, our work has at least three main
contributions:

o To the best of our knowledge, HOPE is the first OPE approach
that tackles both partial observability and aggregated rewards. We
also provide theoretical bound for HOPE.

o HOPE is extensively validated through real-world environ-
ments in real-world human-centric environments including e-learning
and healthcare. The results show that our approach outperforms
the state-of-the-art OPE approaches.

e We introduce significance tests on top of existing OPE valida-
tion frameworks, to facilitate comprehensive study and comparison
of OPE methods in human-centric environments.

2 RELATED WORK

In e-learning and healthcare, RL has been widely investigated to
learn policies from historical user interaction data [18, 39]. How-
ever, deploying and evaluating policies online are high stakes in
such domains, as a poor policy can be fatal to humans in health-
care. It’s thus crucial to propose effective OPE methods for human-
centric environments. OPE is used to evaluate the performance of a
target policy given historical data drawn from (alternative) behav-
ior policies. Classic methods, such as expected cumulative reward
(ECR) [51], have been employed in real-world applications such as
e-learning [9]. However, ECR is not statistically consistent, which

is a significant concern for high-stakes domains [33]. In practice,
researchers have found that selected policies based on ECR were
even not effective compared to random policies with real students
in terms of human-centric significant test [9, 48].

Various contemporary OPE methods have been proposed and
can be divided into three general categories [60]: 1) Inverse Propen-
sity Scoring (IPS) [10, 44]; 2) Direct Methods [24, 30, 31, 37, 57, 61];
3) Hybrid Methods [24, 52]. IPS has been widely investigated in
statistics [43] and RL [44], with the key idea to reweigh the rewards
in historical data using the importance ratio between § and . IPS
yields consistent estimates and it has several variations including
IS [44], WIS [44], PDIS [44], and PHWIS [10], etc. Direct Methods
directly estimate the value functions of the evaluation policy. For
example, FQE [30] is functionally a policy evaluation counterpart
to batch Q-learning. DualDICE [37] estimates the discounted sta-
tionary distribution ratios, which measure the likelihood that 7 will
experience the state-action pair normalized by the probability with
which the state-action pair appears in the off-policy data. Hybrid
Methods combine aspects of both IPS and direct methods. For ex-
ample, DR [24] is an unbiased estimator leveraging a direct method
to decrease the variance of the unbiased estimates produced by
IS. These OPEs have achieved desirable performance in simulated
environments. Recently, a few approaches have proposed OPE tar-
geting some real-world tasks such as robotic grasping [8, 17, 22, 40].
The proposed methods generally assume the rewards are observ-
able from the environment or sparse. It lacks investigation into the
effectiveness of applying the existing OPE methods in real-world
human-centric environments.

Recently, researchers have recognized the partial observability
of human-centric environment and proposed OPE for POMDPs [6,
50, 58]. They assume that the underlying states may not exist and
treat them as confounding for policy evaluation. For example, Ten-
nenholtz et al. propose a method for POMDP with unobserved
confounding and compare their method to IS in carefully-designed
synthetic environments [50]. The results show that their proposed
method can outperform IS under certain levels of confounding. In
practice, such as in our intelligent tutoring experiment with real
students, confounding is agnostic and unable to control, accompa-
nied by missing immediate rewards. Our goal is to utilize limited
observable information from real-world e-learning and healthcare
environments, and effectively estimate policy performance with
both partial observability and missing immediate rewards.

3 HUMAN-CENTRIC OPE (HOPE)

Problem Definition: We consider the human-centric environment
as a partially observable Markov decision process (POMDP),
which is a tuple (S, A, O, P, Q, R, y). The state space S is assumed
unknown. Moreover, A represents the action space, O is the obser-
vation space, and P defines transition dynamics from the current
state to the next states given an action. The observation model
plols) ~ Q is also assumed unknown. R is the immediate reward
function, and r; = R(st, a;) are the immediate rewards. y € (0,1]
is discount factor. Each episode has a finite horizon T. In general,
at time-step t, the agent is given an observation o; € O by the
environment, then chooses an action a; € A following some pol-
icy 7 : O — A. Then, the environment provides the immediate
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Figure 1: Illustration of reconstructing immediate rewards. First, the preliminary rewards are inferred from aggregated rewards.
Then, the immediate rewards on critical observations are calibrated by averaging from nearest neighbors.

reward r; and next observation o0;41. In human-centric tasks, it
is common that the immediate rewards r; are unknown for most
t € [1,T] in a trajectory. However, we assume that an aggregated
reward r; = Zzt'zt—W yi_t+W+1r,- is issued by the environment ev-
ery W steps, quantifying the summed immediate rewards obtained
between (t — W)-th and ¢-th steps.

Off-Policy Evaluation in POMDP: the goal of OPE under POMDP
is to estimate the expected total return over the target policy 7,
VT = E[Zthl y'~lr¢|a; ~ 7], using historical data collected over a
behavioral policy f # n deployed to the environment. Specifically,
the historical data D = {..., [..., (0z, az, 71, 0}), ]9, }{il consist of

a set of N trajectories, where each trajectory is denoted as r(®).

Figure 1 illustrates how HOPE addresses the two major challenges
of OPE in human-centric environments: partial observability and
aggregated rewards. Specifically, it first infers preliminary imme-
diate rewards from aggregated rewards (Step 1) , and reconstructs
immediate rewards r; using nearest neighbors from trajectories
D (Step 2), which takes into account the uncertainty introduced
by partial observability. The intuition of Step 2 follows findings
presented in previous research [15, 26, 62], where humans with
similar underlying states can present similar behaviors. Then, we
use a general method, weighted importance sampling, to process
the reconstructed rewards and estimate the expected total return
V7, since it is the most straightforward approach and can help
isolate the source of improvements brought in by the immediate
rewards reconstruction framework we propose.

3.1 Reconstruct Immediate Rewards via Nearest
Neighbors

In human-centric environments, immediate rewards are generally
not available, while the aggregated rewards themselves may not
provide full information that can be directly used to estimate the
expected total return of a target policy. Although prior works has
noted that estimating immediate rewards can provide useful infor-
mation toward training RL policies [5, 35], it has not be extensively
investigated in the context of OPE; since prior OPE works generally
assume immediate rewards are observable from the environment

or sparse. In many human-centric tasks, interaction outcomes can
be gradually improved step-by-step and each immediate reward on
each step can represent meaningful information by itself. Therefore,
we propose to reconstruct immediate rewards from historical data,
aiming to enrich the information provided for OPE.

In the OPE problem we consider, the underlying state is unob-
servable due to POMDP. And the aggregated rewards are assumed
to be obtained at the end of an episode following 7 = ZtT=1 vire,
with T being the horizon of the environment. In prior work, func-
tion approximation can be used to infer immediate rewards r; from
the aggregated rewards 7 [5]. Consequently, we first produce rough
per-step preliminarily reconstructed reward 7 taking as inputs ob-
servations and actions, 7 = f(os, a;|0), and trained toward, i.e.,

minl(®) = £ 1 - 3152 0
0 N = =1 ! .

We keep the objective straightforward and use a standard training
method in [4], so that the source of performance improvements can
be isolated. For conciseness, we refer to 7 as preliminary immedi-
ate rewards throughout the rest of the paper. In our experiments
described in Section 4.5, we compare it to treating the rewards as
sparse, and the results present the effectiveness of the preliminary
immediate rewards reconstruction procedure.

Consider that the mapping f : O X A — R learned above
may not perfectly reconstruct the immediate reward function R :
SXA — R, since the observation model p(o|s) and state space S are
both assumed unknown. Previous research have found that humans
with similar underlying state can be observed similar behaviors [62,
63], and some observations may provide critical information over
others [56]. We follow such intuitions and introduce a remedy that
uses 7y and its nearest neighbours, from trajectories that are similar
to each other, to reconstruct immediate rewards r; more accurately.

Specifically, to capture the information pertaining to the un-
derlying states, we define the reconstructed immediate reward 7;
considering both average rewards associated with neighboring
trajectories and observations that may provide more critical infor-
mation over others, by which we call critical observations, i.e.,

f+ = 1(or € O)F¢ + L(or ¢ Oy, (2



where O™ is the set of critical observations, 1(-) is indicator function.
We first introduce how to identify the critical observations. Given
that Q-functions, Q” (o, a), representing the expected return of tak-
ing action a at observation o, the difference of Q” between any two
actions (over the same o) can be used to quantify the magnitude of
the difference in the final outcomes. As a result, we choose to lever-
age such Q-difference toward determining critical observations for
OPE. A formal definition of a critical observation is given below.

DEFINITION 1 (CRITICAL OBSERVATION). In a discrete action POMDP,

observation o is a critical observation if there exists a constant h such
that the maximum difference of Q™ (o, a), a € A is greater than h, i.e.,

max_(Q"(0,a’) - Q"(0,a")) > h. ®)
a,a’eA
In Fig. 2, we illustrate how critical observations are identified
using the threshold h. The need of critical observations is further
justified by ablation study in Section 4.5.
a(0)

Denote 7, as the reconstructed immediate reward at time-step

-()

t on trajectory ). We define the averaged reward 7, associated

(@

with critical observation o, as an average of prehmmary immediate
rewards 7 that occur at neighboring events following

A= Z A, ()

where the summation is performed over all ri,) and K is the to-
tal number of nearest neighbours pertaining to the algorithm 1.
Specifically, we define that two trajectories are neighbors if they
have similar visitation distributions over the observation and action

spaces, following
d(r(i), T(k)) = similarity(o(i), o(k)) + similarity(a(i), a(k)) (5)

where the similarity of distributions can be calculated by some
measures such as Kullback-Leibler (KL) divergence [29]. Then we
define that two observations are neighbors if they are from two
neighboring trajectories, and share the most similar observations,
since the moment that sharing similar observations from the similar
trajectories may represent close underlying state of humans [62, 63].
To calculate similarity between two observations, one can use dis-
tance measures such as Euclidean. We can always find one and only
one neighboring observation on a given neighboring trajectory, by
breaking ties appropriately — such as selecting the earliest observa-
tion. Algorithm 1 summarizes how to find the K-nearest neighbors
of ogl). In our experiment, the proposed distance to find nearest
neighbors is compared to random selection in Section 4.5, and the
results show the superior performance of the proposed distance.

3.2 HOPE

Based on the proposed solutions regarding the challenges within
human-centric environment, we propose our human-centric OPE
(HOPE) by incorporating estimated immediate rewards with weighted
importance sampling (WIS). Let w; := HT _q7(ay )|0(1) )/ B(a (l)|o(l)) be
an importance weight, which is the probablhty of the first T steps
of 7 under the target policy, m, divided by its probability under
the behavior policy,  [44]. The estimated return of HOPE for an

Q(o, )

»
(0t+1, az) (0c41» as) (0,a) "

((')t, a;) (0, a4)
Figure 2: Identify critical observations based on the maxi-
mum difference of Q values. o; is a critical observation with
difference of Q greater than a threshold h.

Algorithm 1: Find K Nearest Neighbors of ogi).

Input: Historical data D, hyper-parameter K.

Begin:
1: Initialize an empty set Z;.

: for each trajectory ) e D do

Calculate the distance d(z{9), 7)) following (5).

: end for

: Arrange d(‘[(i), U )), J € N in non-decreasing order, take the
first K elements and find the corresponding trajectories as

[SAIE SIS I )

neighboring trajectories of V).
6 for each neighboring trajectory 7% of 7 do
7. for each observation o(l,c) e 7 do
8: Calculate the distance l;];, between o( ) and ogi).
9:  end for

100 Arrange Ikt € Tin non-decreasing order, take the first

tt/)
element and find the corresponding observation og,) as
neighboring observation ofogi).
i i oK)
11: Z; — Z; Uo,
2: end for
3: Return the set Z}.

_

target policy r is

N _
V7 (HOPE) = ——— > w; >y 17, (©)
i=1

wi l

i=1
We choose to use WIS here since it is the most straightforward ap-
proach. Moreover, this can help isolate the source of improvements
brought in by immediate rewards reconstruction framework we
propose. Prior work note that the lower variance of WIS may pro-
duce a larger reduction in expected square error than the additional
error incurred due to the bias compared to some unbiased OPE
such as importance sampling (IS) in practice [54]. Our real-world
experimental results in Section 4 further support this.
In general, the importance weight assumes that the support of
the evaluation policy 7 is a subset of the behavior policy , which
is enforced by Assumption 1 [53]:

AssumPTION 1. If7(alo) # 0, then f(alo) # 0, wherea € A,0 €
0.



Upper and Lower Bounds of HOPE. We define 8% as the event
where (%) is a neighbor of 70, Also, we define the counts of neigh-
11(5ik), where 1(-) is the indicator func-
1™

o

boring events as K = ZkN=1

tion. We then construct the nearest-neighbors matrix: M =
As The NXN matrix M'¥ can be computed from the data and be used
to compute the estimated immediate rewards for all observation-
action pairs using the following proposition.

PROPOSITION 1. For all transitions in the data, the estimated im-
mediate rewards for corresponding observation-action pairs are given
by

0 = > M = [Mu); )
t = = i
k

ProoF. A given reward on trajectory i at timestamp ¢, that aver-

aging over all rewards on trajectory j at timestamp ¢’ such that 6/ o

holds, can be written as % Z(j,t’):(S[i’ S M =M tt,
Therefore, assume u(o, a) is a function over the observat10n-act1on
space and u is the vector containing the quantity u; = u(o®, ad)
for every (0D, a9, the nearest-neighbor estimation of u(o®, o)y
is given by [Mu]; [19]. O

In the case of 7 € [Fyp, Fyp ], T € [F1p, Typ] according to Proposi-
tion 1. Denote the returns of trajectory 70 ag G(r(i)). Following [53],
. . T -1\
we also write G(z)) € [0,1] s.t. G(z{D) := W
note quantification of how good a trajectory 7¢) is Then the HOPE
(i) -1 WtG(T( >)
Z WlG(T ) Z— Then
1 Wi

the upper and lower bound of HOPE estimation can be calculated

using the following lemma, the proof of which is given in [53].

to de-

estimation is written by

LEmMMA 1. Let m and 8 be any policy such that Assumption 1 holds,
. n(as|os)
then for any constant integer m > 1, E[TT}Z, ﬁ(ailv:) [t ~p]=1.
From Lemma 1, with the number of samples increasing, the
denominator of HOPE tends towards n. HOPE estimator is bounded
within [0, 1], and so P OPE(ﬁ.’ B)=0and pHOPE(n p)=1forall =
and f, where p(r) = [ (7)|r ~ Bl.

Consistency of HOPE. We also show that HOPE is a consistent
estimator of p(r) if there is a single behavior policy (Theorem 1)
or if there are multiple behavior policies that satisfy a technical
requirement (Theorem 2), following work by [53].

THEOREM 1. If Assumption 1 holds and there is only one behavior
policy, then HOPE is a consistent estimator of p(r).

Proor. When there is only one behavior policy, HOPE estima-
N Z -1 Wi
ISy
merator and denominator by + « - Then the numerator is equal to
IS™, which is a consistent estimator of p(r) as proved in prior
work [44, 53]), thus the numerator converges almost surely to p().

For the denominator, by Lemma 1, we have that

G(z®
tion can be rewrote as (_T ) by multiplying both its nu-

E[ﬁ ”(a(l) |0(l))

—L L) =1 forallie[1,...,N]. )]
t=1 ﬁ(a(tl)|o(tl)

(@ 10l?)

Ba! (l (1))
[1,...,N], as there is only one behavior policy. By the Khintchine

strong law of large numbers [47], we have that
| NoT ,[(a(i)|ogi)) as.
NS ta ﬁ(a(l)|ogi))

By the property of almost sure convergence [23], HOPE converges
almost surely to p(r), and so HOPE is a consistent estimator of

p(r). o

Each term 17 -1 is identically distributed for each i €

©)

We also provide the proof for the consistency of HOPE when
there are multiple behavior policies.

THEOREM 2. If Assumption 1 holds and there exists a constant
€ > 0 such that fi(alo) > € foralli € {1,...,N} and (alo) where
n(alo) # 0, then HOPE is a consistent estimator of p(r) if there are
multiple behavior policies.

Proor. When there are multiple behavior policies, similar to the
proof of Theorem 1, the numerator is equal to IS”. The numerator
converges almost surely to p(rr). For the denominator, by Lemma 1

(N0

(@)o}” 1
t=1 ﬂ (a (l))l 1;1) = [0’ e_T]
and therefore has bounded variance. By the Kolmogorov strong law

of large numbers [47], we have that almost surely convergence 9
holds. Therefore, HOPE is a consistent estimator of p(r) if there
are multiple behavior policies. O

we have that Equation 8 holds. Each term [7.

4 EXPERIMENTS

We conduct experiments on two real-world human-centric tasks,
sepsis treatment, and intelligent tutoring, to validate our proposed
approach. Since our focus is the human-centric environments, we
don’t conduct experiments on control tasks such as D4RL [11].

4.1 Benchmarks

We use nine state-of-the-art benchmarks, which cover a variety
of approaches that have been explored for OPE: Four IPS methods,
including IS [44], WIS [44], Per-Decision IS ( PDIS) [44], and Per-
Horizon WIS (PHWIS) [10]. For PHWIS, we follow the PHWIS-
Behavior as in [10], as we assume the lengths of the trajectories
do not depend on the policy that is used to generate them. Two
direct methods, Fitted Q Evaluation (FQE) [30] and Dual stationary

DR WDR MAGIC HOPE

50.12
—
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50.08
20.06
200
<0.04 Il
£o.02

0.00

PDIS FQE

Figure 3: Average absolute error and standard deviation
from synthetic sepsis environment (y=0.99). IS, WIS, PHWIS,
DualDICE are unable to select the best policy.
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Figure 4: Spearman’s rank correlation coefficient across policies from real-world medical system (y=0.99). PHWIS is unable to
produce a meaningful result probably due to the highly varied lengths of trajectories.

DIstribution Correction Estimation (DualDICE) [37]. For FQE, as
in [30], we train a neural network to estimate the value of the
evaluation policy 7, by bootstrapping from Q(o’, a’). For DualDICE,
we use the open-sourced code in its original paper. Three hybrid
methods, including Doubly Robust (DR), Weighted DR (WDR) [52],
and MAGIC [52], which finds an optimal linear combination among
a set that varies the switch point between WDR and direct methods.
For MAGIC, we use the implementation of [60].

4.2 Validating OPE Performance

In this work, we use two types of procedures to validate the perfor-
mance of OPE methods. We use standard metrics including absolute
error, regret@1, and Spearman’s rank correlation coefficient [49]
that are commonly used in prior OPE approaches. Moreover, we use
the human-centric significance test to measure the statistical signif-
icance between the OPE-estimated returns across different policies.
For each evaluation policy, we use bootstrapping by episodes as
introduced in [21]. For e-learning, we also empirically evaluated
the induced policies. As for many human-centric tasks, one key
measurement for the RL-induced policy is whether they signifi-
cantly outperform the current expert policy [65]. Therefore, we
conduct a t-test over OPE estimations obtained from bootstrapping.
It measures whether there is a significant difference between the
mean value of OPE estimations on one policy against another.

4.3 Sepsis Treatment

Sepsis is the leading cause of mortality and the most expensive
condition associated with in-hospital stay [32]. Sepsis treatment is
a highly challenging problem and has raised tremendous investiga-
tion [13, 14, 39].

4.3.1 Synthetic Sepsis Environment. We use a sepsis model [41] in
the management of sepsis in ICU patients. Following the settings
from [38], the discrete observation space consists of a binary indi-
cator for diabetes, and four vital signs (heart rate, blood pressure,
oxygen concentration, glucose level) that take values in a subset of
{very_high, high, normal, low, very_low}. The simulated en-
vironment contains a total of 1440 observations, and 8 actions char-
acterized by assigning a binary value (0 or 1) toward each option
in {antibiotics, vasopressors, mechanical_ventilation}.

The simulation continues either until at most T = 5 (horizon) time
steps (0 rewards), death (-1 reward), or discharge (+1 reward). Pa-
tients are discharged when all vital signs are in the normal range
without treatment. Patients die if at least three vitals are out of
the normal range. We use the behavior policy and three evaluation
policies following [38]. Figure 3 shows that HOPE performs the
best in terms of average absolute error across evaluation policies.

4.3.2  Real-World Medical System. In our experiment, we use Elec-
tronic Health Records (EHRs) collected from a large hospital in
the United States with overall 221,700 visits patients over two
years. The observation space consists of 15 continuous sepsis-
related clinical attributes, including seven vital signs {HeartRate,
RespiratoryRate, PulseOx, SystolicBP, DiastolicBP, MAP,
Temperature} and eight lab analytes {Bands, BUN, Lactate,
Platelet, Creatinine, BiliRubin, WBC, FIO02}. The size of ac-
tion space is 4 with two binary treatment options over {antibiotic
_administration, oxygen_assistance}. Four stages of sepsis
are defined by the clinicians, and the rewards are set for each stage:
infection (+5), inflammation (+10), organ failure (+20), and septic
shock (£50). The designated negative rewards are given when a
patient enters the corresponding stage and positive rewards are
given back when the patient recovers from the stage. The collected
trajectories’ lengths range from 1 to 1160. We assume that the clin-
ical care team is well-trained with medical knowledge and follows
standard protocols in sepsis treatments, thus we learn the expert
policy as introduced in [5]. We train policies using Deep Q Network
(DON) [36] with varied hyperparameters and select five as evalua-
tion policies. As prior work in sepsis research [5, 28, 45] identifies
septic shock rate as an important criterion for learning policies,
we calculate Spearman’s rank correlation coeflicient between the
policies’ ranks using estimated values given by OPE and the actual
policies’ ranks in terms of septic shock rates.

Figure 4 shows the results of HOPE and benchmarks. The grey-
shaded columns represent the benchmark results, and the orange-
shaded columns represent the results from HOPE and its variations.
Overall, HOPE performs the best in terms of rank correlation. Inter-
estingly, we notice that IS and WIS outperform other benchmarks,
while they can be suffering from long-horizon in prior theoretical
work [31]. A possible reason is that both methods benefit more
from the reduction in expected error than the variance incurred



Problem Shortcuts

Given event A and B with p(A)=0.4, p(B)=0.5, and p(~A N ~B)=0.2. Determine p(A N B).

Variables Tutor  History

p(A) = 0.4

p(B) = 0.5

p(~AN~B) = 0.2 Please enter the equation for “The De Morgans Law on AUBY then press the Submit
p(ANB) = None button

P(AUB) = None****TARGET VARIABLE****
p(~(~AN~B)) = None

Equations Response

For p(AuB): The De Morgans Law on AUB
1) p(AUB) = p(A) + p(B) - p(ANB) For p(ANB): Addition Theorem for two
events:Aand B

suBMIT HELP. A CALCULATOR

Figure 5: Our ITS GUL The problem statement window (top)
presents the statement of the problem. The dialog window
(middle right) shows the message the tutor provides to the
students. Responses, e.g., writing an equation, are entered
in the response window (bottom right). Any variables and
equations generated through this process are shown on the
variable window (middle left) and equation window (bottom
left).

due to horizon under our real-world settings. Similar findings are
reported in some long-horizon environments [12].

4.4 Real-World Intelligent Tutor

Intelligent Tutoring Systems (ITSs) are computer systems that
mimic aspects of human tutors and have also been shown to be
successful [1, 2, 59]. They aim to provide instruction or feedback
to support students’ learning, which is an important application
of RL to improve students’ engagement and learning outcomes.
We use a web-based ITS which teaches computer science students
probability knowledge, covering ten major principles such as the
complement theorem. Students’ interaction logs are collected over
seven semesters of classroom studies (including 1,307 students)
in an undergraduate computer science course at a large public
university in the United States. Figure 5 shows the GUI of the tutor.

During tutoring, there are many factors that might determine
or indicate students’ learning state, but many of them are not well
understood by educators. Thus, to be conservative, we extract vari-
eties of attributes that might determine or indicate student learning
observations from student-system interaction logs. In sum, 142
attributes with both discrete and continuous values are extracted,
which can be categorized into the following five groups: (i) Auton-
omy (10 features): the amount of work done by the student, such
as the number of times the student restarted a problem; (ii) Tem-
poral Situation (29 features): the time-related information about
the work process, such as average time per step; (iii) Problem-
Solving (35 features): information about the current problem-
solving context, such as problem difficulty; (iv) Performance (57
features): information about the student’s performance during
problem-solving, such as percentage of correct entries; (v) Hints
(11 features): information about the student’s hint usage, such as
the total number of hints requested.

The agent will make 10 decisions: for each problem, the agent
will decide whether the student should solve the next problem, study
a solution provided by the tutor, or work together with the tutor to
solve the problem. The rewards are obtained after all problems are

accomplished, which is defined as the students’ normalized learning
gain calculated by the two test scores that students took before
and after the experiments [9], respectively. A total of four policies,
including three DQN-induced policies (denoted as 1, 2, 73) and
one expert policy (denoted as 7expert), are deployed to the ITS used
by students. The log data from students in the prior six semesters
are used to train policies and the following semester to test.

Figure 6 shows the results of comparing HOPE (the last row) with
the nine original OPE benchmarks (the top section of the left table)
using both standard validation methods and signed significance
tests for OPE. Overall, HOPE (the last row) outperforms all nine
benchmarks in terms of average absolute error (AAE, column 2),
regret@1 (column 3), and rank correlation (column 4). There is no
clear winner among the nine original OPE benchmarks.

Column 5 in Table 6 shows the best policy determined by each
OPE. While all nine original OPE benchmarks select other sub-
optimal policies as the best policy, HOPE is the only method that
successfully identifies 71 to be the best policy in the empirical study.
More importantly, while the nine original OPE benchmarks predict
that their selected best policy would significantly outperform the
Expert policy (column 6), the empirical results (the 7th/last column)
show no significant difference was found. The offline significance
test using HOPE, however, perfectly aligns with the empirical result,
that 7 is significantly different from the Expert policy in both OPE
t-test (column 6) and the empirical t-test (column 7).

4.5 Ablation Studies

For a better understanding of our proposed approach to tackle the
partial observability and missing immediate rewards in real-world
human-centric environments, we conduct three ablation studies:

(i) Sparse-HOPE. One variation of our proposed approach is as-
suming the preliminary rewards are sparse and calibrating immedi-
ate rewards via nearest neighbors, named Sparse-HOPE. Figure 4
and Figure 6 show that Sparse-HOPE can outperform all bench-
marks, except IS, in terms of rank correlation. In real-world intel-
ligent tutors, Sparse-HOPE outperforms all benchmarks in terms
of average absolute error and regret@1. Those indicate that our
proposed nearest-neighbors-based immediate rewards reconstruc-
tion is effective for estimating the return of a policy. On the other
hand, Sparse-HOPE performs worse than HOPE, which could indi-
cate the importance of considering rewards as aggregated and the
effectiveness of our preliminary rewards reconstruction.

(ii) Soft-HOPE. We define another variation of HOPE, named
Soft-HOPE, which assumes decisions made on any observation
could contribute equally to the final outcomes, i.e.

T
Sy SO o
t=1 k

Note that it performs neighbors-based estimation on all obser-
vations, as opposed to (6) which only estimates neighbors-based
immediate rewards on critical observations. Figure 4 shows that
Soft-HOPE outperforms all benchmarks from real-world medical
systems in terms of rank correlation, and from intelligent tutoring
in terms of average absolute error. However, it performs worse than
most benchmarks in terms of regret@1 and rank correlation from
intelligent tutoring. A possible reason is using averaged rewards

V7 (Soft-HOPE) = — 1 3w,
oft OPE)_ZN wi

i=1 Wi i=1



| Standard metrics

Human-centric significance test

OPE | AAE Regret@l Rank | #Best  OPE t-test (p) Empirical t-test (p)
IS 6.42 0.46 0.8 7) 7.071 (0.000) 0.612 (0.543)
WIS 0.22 0.46 0.2 m 17.081(0.000) 0.612 (0.543)
PDIS 6.42 0.46 08 | m 7.071 (0.000) 0.612 (0.543)
PHWIS 0.22 0.46 0.2 m  17.081(0.000) 0.612 (0.543)
FQE 0.10 0.46 08 | m  12.546(0.000) 0.612 (0.543)

DualDICE 0.33 N/A N/A | N/A N/A N/A

DR 18.5 0.60 08 | 73  4.893(0.000) 0.203 (0.840)
WDR 1.63 0.60 08 | m 8.344 (0.000) 0.203 (0.840)
MAGIC 973 0.60 06 | m  20.750 (0.000) 0.203 (0.840)
Sparse-HOPE | 0.06 0.00 04 | #f 10.518(0.000)  2.011(0.040)
Soft-HOPE | 0.07 0.00 08 | = 1.332 (0.186) 2.011 (0.040)
Rand-HOPE | 0.10 0.00 08 | #¥  6.902(0.000) 2.011 (0.040)
HOPE 0.03  0.00 08 | =z} 11.670(0.000)  2.011(0.040)

Reward
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Figure 6: Validating OPE performance (left) and empirical results (right) from real-world intelligent tutoring (y = 0.9). Left:
Standard metrics include average absolute error (AAE), regret@1, and Spearman’s rank correlation coefficient (Rank). The
best results on each metric are bolded. Human-centric significance test results include the best policy selected by OPE, offline
significance test with bootstrapping on the best policy selected by OPE and expert policy, and empirical significance test on
these two policies, at the level of p < 0.05. The OPE significance test that aligns with the empirical test is bolded. DualDICE
estimates the performance of all policies equally, thus its rank-related results are unavailable. Right: Ground-truth rewards for
four policies. 1 receives the highest average reward and is the only policy that differs significantly from 7exper (p = 0.04), as

indicated by the asterisk.

on all observations could introduce noise to OPE and weaken its
estimation of ranking. Moreover, it performs worse than HOPE
from both environments, which indicates that our defined critical
observations can help extract meaningful information for OPE.

(iii) Rand-HOPE. The third variation of our proposed approach is
randomly selecting neighbors instead of using our defined distance
for immediate rewards reconstruction, which we call Rand-HOPE.
We repeat Rank-HOPE 100 times and report average results. Figure 4
and Figure 6 show that Rand-HOPE outperforms all benchmarks in
both real-world environments. A possible reason is that inferring
preliminary immediate rewards can provide much more useful
information than sparse rewards, thus even randomly averaged
rewards would perform better than using sparse rewards. Rand-
HOPE performs worse than HOPE, which indicates that our defined
distance is more accurate to reconstruct immediate rewards for OPE
in e-learning and healthcare.

Moreover, in real-world intelligent tutoring, HOPE and its three
variations, are the only methods that successfully select the best
policy. Table 1 further shows the mean and standard error on poli-
cies 71 and 7expers estimated by HOPE-related methods. HOPE
achieves the best estimation that is closest to ground truth.

5 CONCLUSION & SOCIAL IMPACT

In this work, we proposed an approach, HOPE, for OPE in real-world
human-centric environments with partial observability and aggre-
gated rewards. It first inferred preliminary immediate rewards from
historical observations, then used nearest neighbor methods to fully
reconstruct immediate rewards. We also introduced critical obser-
vations, that can impact final outcomes of a trajectory over others,

1 Meanyge Texpert Mean. e
Sparse-HOPE 0.094.40.01 0.005+0.00
Soft-HOPE 0.021+0.00 0.004.+0.00
Rand-HOPE 0.140+0.02 -0.02340.02
HOPE 0.176+0.01 0.008.0.00
Empirical result ~ 0.1671¢.02 0.054+0.06

Table 1: Mean and standard error with bootstrapping on poli-
cies 71 and 7expert from real-world intelligent tutoring. HOPE
achieves the best estimation on both policies.

to enrich provided information for OPE. We conducted extensive
real-world experiments with two challenging tasks for OPE, sepsis
treatment and intelligent tutoring, using both standard validations
and human-centric significance tests to validate OPE. The results
showed that HOPE outperformed state-of-the-art benchmarks in
both applications. A part of our methodology leverages WIS, which
may introduce variance to estimations. We kept it straightforward
such that the performance can be easily isolated. In the future, WIS
can be replaced with DR or DICE for reduced variance.

All real-world data were obtained anonymously through an ex-
empt IRB-approved protocol and were scored using established
rubrics. No demographic data or class grades were collected. All
data were shared within the research group under IRB, and were de-
identified and automatically processed for labeling. This research
seeks to remove societal harms that come from lower engagement
and retention of students who need more personalized interventions
and developing more robust medical interventions for patients.
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