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ABSTRACT
Reinforcement learning (RL) has been extensively researched for

enhancing human-environment interactions in various human-

centric tasks, including e-learning and healthcare. Since deploying

and evaluating policies online are high-stakes in such tasks, off-

policy evaluation (OPE) is crucial for inducing effective policies. In

human-centric environments, however, OPE is challenging because

the underlying state is often unobservable, while only aggregate

rewards can be observed (students’ test scores or whether a pa-

tient is released from the hospital eventually). In this work, we

propose a human-centric OPE (HOPE) to handle partial observabil-

ity and aggregated rewards in such environments. Specifically, we

reconstruct immediate rewards from the aggregated rewards con-

sidering partial observability to estimate expected total returns.

We provide a theoretical bound for the proposed method, and we

have conducted extensive experiments in real-world human-centric

tasks, including sepsis treatments and an intelligent tutoring sys-

tem. Our approach reliably predicts the returns of different policies

and outperforms state-of-the-art benchmarks using both standard

validation methods and human-centric significance tests.
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1 INTRODUCTION
Off-policy evaluation (OPE) sits at the epicenter of offline Rein-

forcement Learning (RL) research [10, 24, 37, 52], which estimates

the performance of an RL-induced policy leveraging prior knowl-

edge obtained from historical data. OPE is especially important in
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human-centric environments where the execution of a bad policy

can be costly and dangerous. For example, in healthcare, an over-

estimated policy could be ineffective and even increase mortality

by wrong treatments. There are at least two main challenges for
OPE to work with human-centric environments. One is that the

underlying state of a human-centric environment is usually unob-
servable [7, 33], resulting in a partially observable Markov decision

process (POMDP). Specifically, the observations may not contain

sufficient information to fully reconstruct the underlying states.

For example, the population considered in the environment could

change over time, and their characteristics may be varied across

different cohorts. In e-learning, student backgrounds can vary from

semester to semester; similarly, in healthcare, patient demographics

can change in hospitals across different regions [27, 42]. The other
challenge is that only an aggregated (or delayed) reward can
be observed after a certain period of time, where all immediate re-

wards in between are often missing. The most appropriate rewards

in e-learning and healthcare are student learning performance and

patient outcomes, which are typically unavailable until the entire

trajectory is complete. This is due to the complex natures of both

learning and disease progression, which make it difficult to assess

students’ learning or patient health states moment by moment.

More importantly, many instructional or medical interventions that

boost short-term performance may not be effective over the long

term. Different from delayed rewards in classic mouse-in-the-maze

situations where agents receive insignificant rewards along the

path and a significant reward in the final goal state (the food), in

e-learning and healthcare, there are immediate rewards along the

way but they are often unobservable.
Prior OPE work [3, 16, 24, 37] have achieved outstanding perfor-

mance in simulated environments such as Mujoco [55]. However,

one may not be able to directly apply such methods toward human-

centric environments, since immediate rewards are missing and the

environment is partially observable. A possible way is assuming

the rewards are sparse that only indicate whether a task is com-

pleted partially or fully. Sparse rewards typically correspond to

the attainment of some particular tasks such as a robot attaining

designated waypoints which provide little feedback for immediate

steps [46]. In many human-centric tasks, interaction outcomes can

be gradually improved step-by-step and the immediate reward on



each step can be meaningful by itself. For example, students’ cogni-

tive outcomes and learning performance are gradually improved

during interaction with the intelligent tutor in college [34]. It has

been found that immediate rewards are more effective than sparse

rewards, toward evaluating decision outcomes [5]. Moreover, in

human-centric environments, policy performance may be corre-

lated with the horizon of the environment. For example, medical

interventions that have shown good short-term performance may

not be effective over the long-term [5]. Consequently, it is impor-

tant to reconstruct immediate rewards for OPE to work effectively

in human-centric environments.

On the other hand, prior evaluation metrics for OPE are gener-

ally error metrics (e.g., absolute error, rank correlations) proposed

by Fu et al. [12], Voloshin et al. [60], while human-centric research

often emphasizes the need for statistical significance test in empirical
study [20, 64]. For example, rank correlation summarizes the perfor-

mance of a set of policies’ relative rankings using averaged returns.

Statistical significance tests can tell how likely the relationship we

have found is due only to random chance across samples, and they

are commonly employed and easier to be interpreted by domain ex-

perts [20, 25]. The framework for validating OPE in human-centric

environments may need to be extended beyond error metrics.

In this work, we propose a human-centric OPE (HOPE) ap-
proach to tackle the two challenges above. Specifically, it first re-

constructs immediate rewards from the aggregated rewards. Then,

importance sampling is used to process the reconstructed rewards

and estimate expected total returns. Any existing OPE method

can be used jointly with the reconstructed rewards to estimate

expected returns. We validate HOPE on two typical real-world

human-centric tasks in healthcare and e-learning, i.e. sepsis treat-
ments and an intelligent tutoring system (ITS), and extend existing

validation frameworks with significance tests for human-centric

environments. To summarize, our work has at least three main

contributions:

• To the best of our knowledge, HOPE is the first OPE approach

that tackles both partial observability and aggregated rewards. We

also provide theoretical bound for HOPE.

• HOPE is extensively validated through real-world environ-

ments in real-world human-centric environments including e-learning

and healthcare. The results show that our approach outperforms

the state-of-the-art OPE approaches.

•We introduce significance tests on top of existing OPE valida-

tion frameworks, to facilitate comprehensive study and comparison

of OPE methods in human-centric environments.

2 RELATED WORK
In e-learning and healthcare, RL has been widely investigated to

learn policies from historical user interaction data [18, 39]. How-

ever, deploying and evaluating policies online are high stakes in

such domains, as a poor policy can be fatal to humans in health-

care. It’s thus crucial to propose effective OPE methods for human-

centric environments. OPE is used to evaluate the performance of a

target policy given historical data drawn from (alternative) behav-
ior policies. Classic methods, such as expected cumulative reward

(ECR) [51], have been employed in real-world applications such as

e-learning [9]. However, ECR is not statistically consistent, which

is a significant concern for high-stakes domains [33]. In practice,

researchers have found that selected policies based on ECR were

even not effective compared to random policies with real students

in terms of human-centric significant test [9, 48].

Various contemporary OPE methods have been proposed and

can be divided into three general categories [60]: 1) Inverse Propen-

sity Scoring (IPS) [10, 44]; 2) Direct Methods [24, 30, 31, 37, 57, 61];

3) Hybrid Methods [24, 52]. IPS has been widely investigated in

statistics [43] and RL [44], with the key idea to reweigh the rewards

in historical data using the importance ratio between 𝛽 and 𝜋 . IPS

yields consistent estimates and it has several variations including

IS [44], WIS [44], PDIS [44], and PHWIS [10], etc. Direct Methods

directly estimate the value functions of the evaluation policy. For

example, FQE [30] is functionally a policy evaluation counterpart

to batch Q-learning. DualDICE [37] estimates the discounted sta-

tionary distribution ratios, which measure the likelihood that 𝜋 will

experience the state-action pair normalized by the probability with

which the state-action pair appears in the off-policy data. Hybrid

Methods combine aspects of both IPS and direct methods. For ex-

ample, DR [24] is an unbiased estimator leveraging a direct method

to decrease the variance of the unbiased estimates produced by

IS. These OPEs have achieved desirable performance in simulated

environments. Recently, a few approaches have proposed OPE tar-

geting some real-world tasks such as robotic grasping [8, 17, 22, 40].

The proposed methods generally assume the rewards are observ-

able from the environment or sparse. It lacks investigation into the

effectiveness of applying the existing OPE methods in real-world

human-centric environments.

Recently, researchers have recognized the partial observability

of human-centric environment and proposed OPE for POMDPs [6,

50, 58]. They assume that the underlying states may not exist and

treat them as confounding for policy evaluation. For example, Ten-

nenholtz et al. propose a method for POMDP with unobserved

confounding and compare their method to IS in carefully-designed

synthetic environments [50]. The results show that their proposed

method can outperform IS under certain levels of confounding. In

practice, such as in our intelligent tutoring experiment with real

students, confounding is agnostic and unable to control, accompa-

nied by missing immediate rewards. Our goal is to utilize limited

observable information from real-world e-learning and healthcare

environments, and effectively estimate policy performance with

both partial observability and missing immediate rewards.

3 HUMAN-CENTRIC OPE (HOPE)
ProblemDefinition:We consider the human-centric environment

as a partially observable Markov decision process (POMDP),
which is a tuple (S,A,O,P,Ω, 𝑅,𝛾 ). The state space S is assumed

unknown. Moreover, A represents the action space, 𝑂 is the obser-

vation space, and P defines transition dynamics from the current

state to the next states given an action. The observation model

𝑝(𝑜 |𝑠) ∼ Ω is also assumed unknown. 𝑅 is the immediate reward

function, and 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 ) are the immediate rewards. 𝛾 ∈ (0, 1]

is discount factor. Each episode has a finite horizon 𝑇 . In general,

at time-step 𝑡 , the agent is given an observation 𝑜𝑡 ∈ O by the

environment, then chooses an action 𝑎𝑡 ∈ A following some pol-

icy 𝜋 : O → A. Then, the environment provides the immediate
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Figure 1: Illustration of reconstructing immediate rewards. First, the preliminary rewards are inferred from aggregated rewards.
Then, the immediate rewards on critical observations are calibrated by averaging from nearest neighbors.

reward 𝑟𝑡 and next observation 𝑜𝑡+1. In human-centric tasks, it

is common that the immediate rewards 𝑟𝑡 are unknown for most

𝑡 ∈ [1,𝑇 ] in a trajectory. However, we assume that an aggregated

reward 𝑟𝑡 =
∑𝑡
𝑖=𝑡−𝑊 𝛾𝑖−𝑡+𝑊 +1𝑟𝑖 is issued by the environment ev-

ery𝑊 steps, quantifying the summed immediate rewards obtained

between (𝑡 −𝑊 )-th and 𝑡-th steps.

Off-Policy Evaluation in POMDP: the goal of OPE under POMDP

is to estimate the expected total return over the target policy 𝜋 ,
𝑉 𝜋 = E[

∑𝑇
𝑡=1

𝛾𝑡−1𝑟𝑡 |𝑎𝑡 ∼ 𝜋], using historical data collected over a

behavioral policy 𝛽 ̸= 𝜋 deployed to the environment. Specifically,

the historical data D = {..., [..., (𝑜𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑜 ′𝑡 ), ...](𝑖), ...}𝑁𝑖=1 consist of
a set of 𝑁 trajectories, where each trajectory is denoted as 𝜏 (𝑖).

Figure 1 illustrates how HOPE addresses the two major challenges

of OPE in human-centric environments: partial observability and

aggregated rewards. Specifically, it first infers preliminary imme-

diate rewards from aggregated rewards (Step 1) , and reconstructs

immediate rewards 𝑟𝑡 using nearest neighbors from trajectories

D (Step 2), which takes into account the uncertainty introduced

by partial observability. The intuition of Step 2 follows findings

presented in previous research [15, 26, 62], where humans with

similar underlying states can present similar behaviors. Then, we

use a general method, weighted importance sampling, to process

the reconstructed rewards and estimate the expected total return

𝑉 𝜋 , since it is the most straightforward approach and can help

isolate the source of improvements brought in by the immediate

rewards reconstruction framework we propose.

3.1 Reconstruct Immediate Rewards via Nearest
Neighbors

In human-centric environments, immediate rewards are generally

not available, while the aggregated rewards themselves may not

provide full information that can be directly used to estimate the

expected total return of a target policy. Although prior works has

noted that estimating immediate rewards can provide useful infor-

mation toward training RL policies [5, 35], it has not be extensively

investigated in the context of OPE; since prior OPE works generally

assume immediate rewards are observable from the environment

or sparse. In many human-centric tasks, interaction outcomes can

be gradually improved step-by-step and each immediate reward on

each step can represent meaningful information by itself. Therefore,

we propose to reconstruct immediate rewards from historical data,

aiming to enrich the information provided for OPE.

In the OPE problem we consider, the underlying state is unob-

servable due to POMDP. And the aggregated rewards are assumed

to be obtained at the end of an episode following 𝑟 =

∑𝑇
𝑡=1

𝛾𝑡𝑟𝑡 ,

with 𝑇 being the horizon of the environment. In prior work, func-

tion approximation can be used to infer immediate rewards 𝑟𝑡 from

the aggregated rewards 𝑟 [5]. Consequently, we first produce rough

per-step preliminarily reconstructed reward 𝑟 taking as inputs ob-

servations and actions, 𝑟 = 𝑓 (𝑜𝑡 , 𝑎𝑡 |𝜃 ), and trained toward, i.e.,

min

𝜃
𝑙 (𝜃 ) =

1

𝑁

𝑁∑︁
𝑖=1

(𝑟 −
𝑇∑︁
𝑡=1

𝛾𝑡−1𝑟 )2 . (1)

We keep the objective straightforward and use a standard training

method in [4], so that the source of performance improvements can

be isolated. For conciseness, we refer to 𝑟 as preliminary immedi-
ate rewards throughout the rest of the paper. In our experiments

described in Section 4.5, we compare it to treating the rewards as

sparse, and the results present the effectiveness of the preliminary

immediate rewards reconstruction procedure.

Consider that the mapping 𝑓 : O × A → R learned above

may not perfectly reconstruct the immediate reward function 𝑅 :

S×A → R, since the observationmodel 𝑝(𝑜 |𝑠) and state spaceS are

both assumed unknown. Previous research have found that humans

with similar underlying state can be observed similar behaviors [62,

63], and some observations may provide critical information over

others [56]. We follow such intuitions and introduce a remedy that

uses 𝑟𝑡 and its nearest neighbours, from trajectories that are similar

to each other, to reconstruct immediate rewards 𝑟𝑡 more accurately.

Specifically, to capture the information pertaining to the un-

derlying states, we define the reconstructed immediate reward 𝑟𝑡
considering both average rewards associated with neighboring

trajectories and observations that may provide more critical infor-

mation over others, by which we call critical observations, i.e.,

𝑟𝑡 = 1(𝑜𝑡 ∈ 𝑂∗)𝑟𝑡 + 1(𝑜𝑡 /∈ 𝑂∗)𝑟𝑡 , (2)



where𝑂∗ is the set of critical observations, 1(·) is indicator function.
We first introduce how to identify the critical observations. Given

that 𝑄-functions, 𝑄𝜋 (𝑜, 𝑎), representing the expected return of tak-

ing action 𝑎 at observation 𝑜 , the difference of𝑄𝜋 between any two

actions (over the same 𝑜) can be used to quantify the magnitude of

the difference in the final outcomes. As a result, we choose to lever-

age such 𝑄-difference toward determining critical observations for

OPE. A formal definition of a critical observation is given below.

Definition 1 (CriticalObservation). In a discrete action POMDP,
observation 𝑜 is a critical observation if there exists a constant ℎ such
that the maximum difference of𝑄𝜋 (𝑜, 𝑎), 𝑎 ∈ A is greater than ℎ, i.e.,

max

𝑎′,𝑎′′∈A
(𝑄𝜋 (𝑜, 𝑎′) −𝑄𝜋 (𝑜, 𝑎′′)) > ℎ. (3)

In Fig. 2, we illustrate how critical observations are identified

using the threshold ℎ. The need of critical observations is further

justified by ablation study in Section 4.5.

Denote 𝑟
(𝑖)
𝑡 as the reconstructed immediate reward at time-step

𝑡 on trajectory 𝜏 (𝑖). We define the averaged reward 𝑟
(𝑖)
𝑡 associated

with critical observation𝑜
(𝑖)
𝑡 as an average of preliminary immediate

rewards 𝑟 that occur at neighboring events following

𝑟
(𝑖)
𝑡 =

1

𝐾

∑︁
𝑘

𝑟
(𝑘)

𝑡 ′ , (4)

where the summation is performed over all 𝑟
(𝑘)

𝑡 ′ and 𝐾 is the to-

tal number of nearest neighbours pertaining to the algorithm 1.

Specifically, we define that two trajectories are neighbors if they

have similar visitation distributions over the observation and action

spaces, following

𝑑(𝜏 (𝑖), 𝜏 (𝑘)) = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑜 (𝑖), 𝑜 (𝑘)) + 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎(𝑖), 𝑎(𝑘)) (5)

where the similarity of distributions can be calculated by some

measures such as Kullback-Leibler (KL) divergence [29]. Then we

define that two observations are neighbors if they are from two

neighboring trajectories, and share the most similar observations,

since the moment that sharing similar observations from the similar

trajectories may represent close underlying state of humans [62, 63].

To calculate similarity between two observations, one can use dis-

tance measures such as Euclidean. We can always find one and only

one neighboring observation on a given neighboring trajectory, by

breaking ties appropriately – such as selecting the earliest observa-

tion. Algorithm 1 summarizes how to find the K-nearest neighbors

of 𝑜
(𝑖)
𝑡 . In our experiment, the proposed distance to find nearest

neighbors is compared to random selection in Section 4.5, and the

results show the superior performance of the proposed distance.

3.2 HOPE
Based on the proposed solutions regarding the challenges within

human-centric environment, we propose our human-centric OPE
(HOPE) by incorporating estimated immediate rewardswithweighted

importance sampling (WIS). Let𝑤𝑖 := Π
𝑇
𝑡=1
𝜋 (𝑎

(𝑖)
𝑡 |𝑜

(𝑖)
𝑡 )/𝛽(𝑎

(𝑖)
𝑡 |𝑜

(𝑖)
𝑡 ) be

an importance weight, which is the probability of the first 𝑇 steps

of 𝜏 (𝑖) under the target policy, 𝜋 , divided by its probability under

the behavior policy, 𝛽 [44]. The estimated return of HOPE for an

Figure 2: Identify critical observations based on the maxi-
mum difference of 𝑄 values. 𝑜𝑡 is a critical observation with
difference of 𝑄 greater than a threshold ℎ.

Algorithm 1: Find K Nearest Neighbors of 𝑜
(𝑖)
𝑡 .

Input: Historical data D, hyper-parameter 𝐾 .

Begin:
1: Initialize an empty set 𝑍 𝑖𝑡 .

2: for each trajectory 𝜏 (𝑗 ) ∈ D do
3: Calculate the distance 𝑑(𝜏 (𝑖), 𝜏 (𝑗 )) following (5).

4: end for
5: Arrange 𝑑(𝜏 (𝑖), 𝜏 (𝑗 )), 𝑗 ∈ 𝑁 in non-decreasing order, take the

first 𝐾 elements and find the corresponding trajectories as

neighboring trajectories of 𝜏 (𝑖).
6: for each neighboring trajectory 𝜏 (𝑘) of 𝜏 (𝑖) do
7: for each observation 𝑜

(𝑘)

𝑡 ′ ∈ 𝜏
(𝑘) do

8: Calculate the distance 𝑙𝑖𝑘
𝑡𝑡 ′ between 𝑜

(𝑘)

𝑡 ′ and 𝑜
(𝑖)
𝑡 .

9: end for
10: Arrange 𝑙𝑖𝑘

𝑡𝑡 ′, 𝑡
′ ∈ 𝑇 in non-decreasing order, take the first

element and find the corresponding observation 𝑜
(𝑘)

𝑡 ′ as

neighboring observation of 𝑜 (𝑖)𝑡 .

11: 𝑍 𝑖𝑡 ← 𝑍 𝑖𝑡 ∪ 𝑜
(𝑘)

𝑡 ′
12: end for
13: Return the set 𝑍 𝑖𝑡 .

target policy 𝜋 is

𝑉 𝜋 (HOPE) =
1∑𝑁

𝑖=1
𝑤𝑖

𝑁∑︁
𝑖=1

𝑤𝑖

𝑇∑︁
𝑡=1

𝛾𝑡−1𝑟 (𝑖)𝑡 , (6)

We choose to use WIS here since it is the most straightforward ap-

proach. Moreover, this can help isolate the source of improvements

brought in by immediate rewards reconstruction framework we

propose. Prior work note that the lower variance of WIS may pro-

duce a larger reduction in expected square error than the additional

error incurred due to the bias compared to some unbiased OPE

such as importance sampling (IS) in practice [54]. Our real-world

experimental results in Section 4 further support this.

In general, the importance weight assumes that the support of

the evaluation policy 𝜋 is a subset of the behavior policy 𝛽 , which

is enforced by Assumption 1 [53]:

Assumption 1. If 𝜋 (𝑎 |𝑜) ̸= 0, then 𝛽(𝑎 |𝑜) ̸= 0, where 𝑎 ∈ A, 𝑜 ∈
O.



Upper and Lower Bounds of HOPE. We define 𝛿𝑖𝑘 as the event

where 𝜏 (𝑘) is a neighbor of 𝜏 (𝑖). Also, we define the counts of neigh-

boring events as 𝐾 =

∑𝑁
𝑘=1

1(𝛿𝑖𝑘 ), where 1(·) is the indicator func-

tion. We then construct the nearest-neighbors matrix:𝑀𝑖𝑘
=
1(𝛿𝑖𝑘 )
𝐾

.

As The𝑁×𝑁 matrix𝑀𝑖𝑘
can be computed from the data and be used

to compute the estimated immediate rewards for all observation-

action pairs using the following proposition.

Proposition 1. For all transitions in the data, the estimated im-
mediate rewards for corresponding observation-action pairs are given
by

𝑟
(𝑖)
𝑡 =

∑︁
𝑘

𝑀𝑖𝑘 ≡ [Mu]𝑖 (7)

Proof. A given reward on trajectory 𝑖 at timestamp 𝑡 , that aver-

aging over all rewards on trajectory 𝑗 at timestamp 𝑡 ′ such that 𝛿
𝑖 𝑗

𝑡𝑡 ′

holds, can be written as
1

𝐾

∑
(𝑗,𝑡 ′):𝛿𝑖 𝑗

𝑡𝑡′
=

∑
𝑗,𝑡 ′

1(𝛿
𝑖 𝑗

𝑡𝑡′ )
𝐾

=

∑
𝑗,𝑡 ′ 𝑀

𝑖 𝑗

𝑡𝑡 ′ .

Therefore, assume 𝑢(𝑜, 𝑎) is a function over the observation-action

space and u is the vector containing the quantity 𝑢𝑖 = 𝑢(𝑜
(𝑖), 𝑎(𝑖))

for every (𝑜 (𝑖), 𝑎(𝑖)), the nearest-neighbor estimation of 𝑢(𝑜 (𝑖), 𝑎(𝑖))

is given by [Mu]𝑖 [19]. □

In the case of 𝑟 ∈ [𝑟𝑙𝑏 , 𝑟𝑢𝑏], 𝑟 ∈ [𝑟𝑙𝑏 , 𝑟𝑢𝑏] according to Proposi-

tion 1. Denote the returns of trajectory 𝜏 (𝑖) as𝐺(𝜏 (𝑖)). Following [53],

we also write 𝐺(𝜏 (𝑖)) ∈ [0, 1] s.t. 𝐺(𝜏 (𝑖)) :=
(

∑𝑇
𝑡=1
𝛾𝑡−1𝑟 (𝑖)𝑡 )−𝐺𝑙𝑏

𝐺𝑢𝑏−𝐺𝑙𝑏
to de-

note quantification of how good a trajectory 𝜏 (𝑖) is. Then the HOPE

estimation is written by
1∑𝑁

𝑛=1
𝑤𝑖

∑𝑁
𝑖=1

𝑤𝑖𝐺(𝜏
(𝑖)
) =

∑𝑁
𝑖=1
𝑤𝑖𝐺 (𝜏 (𝑖))∑𝑁
𝑖=1
𝑤𝑖

. Then

the upper and lower bound of HOPE estimation can be calculated

using the following lemma, the proof of which is given in [53].

Lemma 1. Let 𝜋 and 𝛽 be any policy such that Assumption 1 holds,
then for any constant integer𝑚 ≥ 1, E[

∏𝑚
𝑡=1

𝜋 (𝑎𝑡 |𝑜𝑡 )
𝛽(𝑎𝑡 |𝑜𝑡 ) |𝜏 ∼ 𝛽] = 1.

From Lemma 1, with the number of samples increasing, the

denominator of HOPE tends towards 𝑛. HOPE estimator is bounded

within [0, 1], and so 𝜌𝐻𝑂𝑃𝐸
𝑙𝑏

(𝜋, 𝛽) = 0 and 𝜌𝐻𝑂𝑃𝐸
𝑢𝑏

(𝜋, 𝛽) = 1 for all 𝜋

and 𝛽 , where 𝜌(𝜋 ) = E[𝐺(𝜏)|𝜏 ∼ 𝛽].

Consistency of HOPE. We also show that HOPE is a consistent

estimator of 𝜌(𝜋 ) if there is a single behavior policy (Theorem 1)
or if there are multiple behavior policies that satisfy a technical

requirement (Theorem 2), following work by [53].

Theorem 1. If Assumption 1 holds and there is only one behavior
policy, then HOPE is a consistent estimator of 𝜌(𝜋 ).

Proof. When there is only one behavior policy, HOPE estima-

tion can be rewrote as

1

𝑁

∑𝑁
𝑖=1
𝑤𝑖𝐺 (𝜏 (𝑖))

1

𝑁

∑𝑁
𝑖=1
𝑤𝑖

by multiplying both its nu-

merator and denominator by
1

𝑁
. Then the numerator is equal to

𝐼𝑆𝜋 , which is a consistent estimator of 𝜌(𝜋 ) as proved in prior

work [44, 53]), thus the numerator converges almost surely to 𝜌(𝜋 ).

For the denominator, by Lemma 1, we have that

E[
𝑇∏
𝑡=1

𝜋 (𝑎
(𝑖)
𝑡 |𝑜

(𝑖)
𝑡 )

𝛽(𝑎
(𝑖)
𝑡 |𝑜

(𝑖)
𝑡

)] = 1, for all 𝑖 ∈ [1, . . . , 𝑁 ]. (8)

Each term

∏𝑇
𝑡=1

𝜋 (𝑎
(𝑖)
𝑡 |𝑜

(𝑖)
𝑡 )

𝛽(𝑎
(𝑖)
𝑡 |𝑜

(𝑖)
𝑡 )

is identically distributed for each 𝑖 ∈
[1, . . . , 𝑁 ], as there is only one behavior policy. By the Khintchine

strong law of large numbers [47], we have that

1

𝑁

𝑁∑︁
𝑖=1

𝑇∏
𝑡=1

𝜋 (𝑎
(𝑖)
𝑡 |𝑜

(𝑖)
𝑡 )

𝛽(𝑎
(𝑖)
𝑡 |𝑜

(𝑖)
𝑡 )

a.s.−−→ 1. (9)

By the property of almost sure convergence [23], HOPE converges

almost surely to 𝜌(𝜋 ), and so HOPE is a consistent estimator of

𝜌(𝜋 ). □

We also provide the proof for the consistency of HOPE when

there are multiple behavior policies.

Theorem 2. If Assumption 1 holds and there exists a constant
𝜖 > 0 such that 𝛽𝑖 (𝑎 |𝑜) ≥ 𝜖 for all 𝑖 ∈ {1, . . . , 𝑁 } and (𝑎 |𝑜) where
𝜋 (𝑎 |𝑜) ̸= 0, then HOPE is a consistent estimator of 𝜌(𝜋 ) if there are
multiple behavior policies.

Proof. When there are multiple behavior policies, similar to the

proof of Theorem 1, the numerator is equal to 𝐼𝑆𝜋 . The numerator

converges almost surely to 𝜌(𝜋 ). For the denominator, by Lemma 1

we have that Equation 8 holds. Each term

∏𝑇
𝑡=1

𝜋 (𝑎
(𝑖)
𝑡 ) |𝑜 (𝑖)𝑡

𝛽𝑖 (𝑎
(𝑖)
𝑡 ) |𝑜 (𝑖)𝑡

∈ [0, 1

𝜖𝑇
]

and therefore has bounded variance. By the Kolmogorov strong law

of large numbers [47], we have that almost surely convergence 9

holds. Therefore, HOPE is a consistent estimator of 𝜌(𝜋 ) if there

are multiple behavior policies. □

4 EXPERIMENTS
We conduct experiments on two real-world human-centric tasks,

sepsis treatment, and intelligent tutoring, to validate our proposed

approach. Since our focus is the human-centric environments, we

don’t conduct experiments on control tasks such as D4RL [11].

4.1 Benchmarks
We use nine state-of-the-art benchmarks, which cover a variety

of approaches that have been explored for OPE: Four IPS methods,
including IS [44], WIS [44], Per-Decision IS ( PDIS) [44], and Per-

Horizon WIS (PHWIS) [10]. For PHWIS, we follow the PHWIS-

Behavior as in [10], as we assume the lengths of the trajectories

do not depend on the policy that is used to generate them. Two
direct methods, Fitted Q Evaluation (FQE) [30] and Dual stationary

Figure 3: Average absolute error and standard deviation
from synthetic sepsis environment (𝛾=0.99). IS, WIS, PHWIS,
DualDICE are unable to select the best policy.



Figure 4: Spearman’s rank correlation coefficient across policies from real-world medical system (𝛾=0.99). PHWIS is unable to
produce a meaningful result probably due to the highly varied lengths of trajectories.

DIstribution Correction Estimation (DualDICE) [37]. For FQE, as

in [30], we train a neural network to estimate the value of the

evaluation policy 𝜋𝑒 by bootstrapping from𝑄(𝑜 ′, 𝑎′). For DualDICE,
we use the open-sourced code in its original paper. Three hybrid
methods, including Doubly Robust (DR), Weighted DR (WDR) [52],

and MAGIC [52], which finds an optimal linear combination among

a set that varies the switch point between WDR and direct methods.

For MAGIC, we use the implementation of [60].

4.2 Validating OPE Performance
In this work, we use two types of procedures to validate the perfor-

mance of OPE methods. We use standard metrics including absolute

error, regret@1, and Spearman’s rank correlation coefficient [49]

that are commonly used in prior OPE approaches. Moreover, we use

the human-centric significance test to measure the statistical signif-
icance between the OPE-estimated returns across different policies.

For each evaluation policy, we use bootstrapping by episodes as

introduced in [21]. For e-learning, we also empirically evaluated

the induced policies. As for many human-centric tasks, one key

measurement for the RL-induced policy is whether they signifi-

cantly outperform the current expert policy [65]. Therefore, we

conduct a t-test over OPE estimations obtained from bootstrapping.

It measures whether there is a significant difference between the

mean value of OPE estimations on one policy against another.

4.3 Sepsis Treatment
Sepsis is the leading cause of mortality and the most expensive

condition associated with in-hospital stay [32]. Sepsis treatment is

a highly challenging problem and has raised tremendous investiga-

tion [13, 14, 39].

4.3.1 Synthetic Sepsis Environment. We use a sepsis model [41] in

the management of sepsis in ICU patients. Following the settings

from [38], the discrete observation space consists of a binary indi-

cator for diabetes, and four vital signs (heart rate, blood pressure,

oxygen concentration, glucose level) that take values in a subset of

{very_high, high, normal, low, very_low}. The simulated en-

vironment contains a total of 1440 observations, and 8 actions char-

acterized by assigning a binary value (0 or 1) toward each option

in {antibiotics, vasopressors, mechanical_ventilation}.

The simulation continues either until at most T = 5 (horizon) time

steps (0 rewards), death (-1 reward), or discharge (+1 reward). Pa-

tients are discharged when all vital signs are in the normal range

without treatment. Patients die if at least three vitals are out of

the normal range. We use the behavior policy and three evaluation

policies following [38]. Figure 3 shows that HOPE performs the

best in terms of average absolute error across evaluation policies.

4.3.2 Real-World Medical System. In our experiment, we use Elec-

tronic Health Records (EHRs) collected from a large hospital in

the United States with overall 221,700 visits patients over two

years. The observation space consists of 15 continuous sepsis-

related clinical attributes, including seven vital signs {HeartRate,
RespiratoryRate, PulseOx, SystolicBP, DiastolicBP, MAP,
Temperature} and eight lab analytes {Bands, BUN, Lactate,
Platelet, Creatinine, BiliRubin, WBC, FIO2}. The size of ac-
tion space is 4 with two binary treatment options over {antibiotic
_administration, oxygen_assistance}. Four stages of sepsis
are defined by the clinicians, and the rewards are set for each stage:

infection (±5), inflammation (±10), organ failure (±20), and septic

shock (±50). The designated negative rewards are given when a

patient enters the corresponding stage and positive rewards are

given back when the patient recovers from the stage. The collected

trajectories’ lengths range from 1 to 1160. We assume that the clin-

ical care team is well-trained with medical knowledge and follows

standard protocols in sepsis treatments, thus we learn the expert

policy as introduced in [5]. We train policies using Deep Q Network

(DQN) [36] with varied hyperparameters and select five as evalua-

tion policies. As prior work in sepsis research [5, 28, 45] identifies

septic shock rate as an important criterion for learning policies,

we calculate Spearman’s rank correlation coefficient between the

policies’ ranks using estimated values given by OPE and the actual

policies’ ranks in terms of septic shock rates.

Figure 4 shows the results of HOPE and benchmarks. The grey-

shaded columns represent the benchmark results, and the orange-

shaded columns represent the results from HOPE and its variations.

Overall, HOPE performs the best in terms of rank correlation. Inter-

estingly, we notice that IS and WIS outperform other benchmarks,

while they can be suffering from long-horizon in prior theoretical

work [31]. A possible reason is that both methods benefit more

from the reduction in expected error than the variance incurred



Figure 5: Our ITS GUI. The problem statement window (top)
presents the statement of the problem. The dialog window
(middle right) shows the message the tutor provides to the
students. Responses, e.g., writing an equation, are entered
in the response window (bottom right). Any variables and
equations generated through this process are shown on the
variable window (middle left) and equation window (bottom
left).

due to horizon under our real-world settings. Similar findings are

reported in some long-horizon environments [12].

4.4 Real-World Intelligent Tutor
Intelligent Tutoring Systems (ITSs) are computer systems that

mimic aspects of human tutors and have also been shown to be

successful [1, 2, 59]. They aim to provide instruction or feedback

to support students’ learning, which is an important application

of RL to improve students’ engagement and learning outcomes.

We use a web-based ITS which teaches computer science students

probability knowledge, covering ten major principles such as the

complement theorem. Students’ interaction logs are collected over

seven semesters of classroom studies (including 1,307 students)

in an undergraduate computer science course at a large public

university in the United States. Figure 5 shows the GUI of the tutor.

During tutoring, there are many factors that might determine

or indicate students’ learning state, but many of them are not well

understood by educators. Thus, to be conservative, we extract vari-

eties of attributes that might determine or indicate student learning

observations from student-system interaction logs. In sum, 142

attributes with both discrete and continuous values are extracted,

which can be categorized into the following five groups: (i) Auton-
omy (10 features): the amount of work done by the student, such

as the number of times the student restarted a problem; (ii) Tem-
poral Situation (29 features): the time-related information about

the work process, such as average time per step; (iii) Problem-
Solving (35 features): information about the current problem-

solving context, such as problem difficulty; (iv) Performance (57
features): information about the student’s performance during

problem-solving, such as percentage of correct entries; (v) Hints
(11 features): information about the student’s hint usage, such as

the total number of hints requested.

The agent will make 10 decisions: for each problem, the agent

will decide whether the student should solve the next problem, study
a solution provided by the tutor, or work together with the tutor to

solve the problem. The rewards are obtained after all problems are

accomplished, which is defined as the students’ normalized learning

gain calculated by the two test scores that students took before

and after the experiments [9], respectively. A total of four policies,

including three DQN-induced policies (denoted as 𝜋1, 𝜋2, 𝜋3) and

one expert policy (denoted as 𝜋𝑒𝑥𝑝𝑒𝑟𝑡 ), are deployed to the ITS used

by students. The log data from students in the prior six semesters

are used to train policies and the following semester to test.

Figure 6 shows the results of comparing HOPE (the last row) with

the nine original OPE benchmarks (the top section of the left table)

using both standard validation methods and signed significance

tests for OPE. Overall, HOPE (the last row) outperforms all nine

benchmarks in terms of average absolute error (AAE, column 2),

regret@1 (column 3), and rank correlation (column 4). There is no

clear winner among the nine original OPE benchmarks.

Column 5 in Table 6 shows the best policy determined by each

OPE. While all nine original OPE benchmarks select other sub-

optimal policies as the best policy, HOPE is the only method that

successfully identifies 𝜋1 to be the best policy in the empirical study.

More importantly, while the nine original OPE benchmarks predict

that their selected best policy would significantly outperform the

Expert policy (column 6), the empirical results (the 7th/last column)

show no significant difference was found. The offline significance

test using HOPE, however, perfectly aligns with the empirical result,

that 𝜋1 is significantly different from the Expert policy in both OPE

t-test (column 6) and the empirical t-test (column 7).

4.5 Ablation Studies
For a better understanding of our proposed approach to tackle the

partial observability and missing immediate rewards in real-world

human-centric environments, we conduct three ablation studies:

(i) Sparse-HOPE. One variation of our proposed approach is as-

suming the preliminary rewards are sparse and calibrating immedi-

ate rewards via nearest neighbors, named Sparse-HOPE. Figure 4

and Figure 6 show that Sparse-HOPE can outperform all bench-

marks, except IS, in terms of rank correlation. In real-world intel-

ligent tutors, Sparse-HOPE outperforms all benchmarks in terms

of average absolute error and regret@1. Those indicate that our

proposed nearest-neighbors-based immediate rewards reconstruc-

tion is effective for estimating the return of a policy. On the other

hand, Sparse-HOPE performs worse than HOPE, which could indi-

cate the importance of considering rewards as aggregated and the

effectiveness of our preliminary rewards reconstruction.

(ii) Soft-HOPE. We define another variation of HOPE, named

Soft-HOPE, which assumes decisions made on any observation

could contribute equally to the final outcomes, i.e.

𝑉 𝜋 (Soft-HOPE) =
1∑𝑁

𝑖=1
𝑤𝑖

𝑁∑︁
𝑖=1

𝑤𝑖

𝑇∑︁
𝑡=1

𝛾𝑡−1(
1

𝐾

∑︁
𝑘

𝑟
(𝑘)

𝑡 ′ ). (10)

Note that it performs neighbors-based estimation on all obser-

vations, as opposed to (6) which only estimates neighbors-based

immediate rewards on critical observations. Figure 4 shows that

Soft-HOPE outperforms all benchmarks from real-world medical

systems in terms of rank correlation, and from intelligent tutoring

in terms of average absolute error. However, it performs worse than

most benchmarks in terms of regret@1 and rank correlation from

intelligent tutoring. A possible reason is using averaged rewards



*

Figure 6: Validating OPE performance (left) and empirical results (right) from real-world intelligent tutoring (𝛾 = 0.9). Left:
Standard metrics include average absolute error (AAE), regret@1, and Spearman’s rank correlation coefficient (Rank). The
best results on each metric are bolded. Human-centric significance test results include the best policy selected by OPE, offline
significance test with bootstrapping on the best policy selected by OPE and expert policy, and empirical significance test on
these two policies, at the level of 𝑝 < 0.05. The OPE significance test that aligns with the empirical test is bolded. DualDICE
estimates the performance of all policies equally, thus its rank-related results are unavailable. Right: Ground-truth rewards for
four policies. 𝜋1 receives the highest average reward and is the only policy that differs significantly from 𝜋𝑒𝑥𝑝𝑒𝑟𝑡 (𝑝 = 0.04), as
indicated by the asterisk.

on all observations could introduce noise to OPE and weaken its

estimation of ranking. Moreover, it performs worse than HOPE

from both environments, which indicates that our defined critical

observations can help extract meaningful information for OPE.

(iii) Rand-HOPE. The third variation of our proposed approach is

randomly selecting neighbors instead of using our defined distance

for immediate rewards reconstruction, which we call Rand-HOPE.

We repeat Rank-HOPE 100 times and report average results. Figure 4

and Figure 6 show that Rand-HOPE outperforms all benchmarks in

both real-world environments. A possible reason is that inferring

preliminary immediate rewards can provide much more useful

information than sparse rewards, thus even randomly averaged

rewards would perform better than using sparse rewards. Rand-

HOPE performs worse than HOPE, which indicates that our defined

distance is more accurate to reconstruct immediate rewards for OPE

in e-learning and healthcare.

Moreover, in real-world intelligent tutoring, HOPE and its three

variations, are the only methods that successfully select the best

policy. Table 1 further shows the mean and standard error on poli-

cies 𝜋1 and 𝜋𝑒𝑥𝑝𝑒𝑟𝑡 estimated by HOPE-related methods. HOPE

achieves the best estimation that is closest to ground truth.

5 CONCLUSION & SOCIAL IMPACT
In this work, we proposed an approach,HOPE, for OPE in real-world
human-centric environments with partial observability and aggre-

gated rewards. It first inferred preliminary immediate rewards from

historical observations, then used nearest neighbor methods to fully

reconstruct immediate rewards. We also introduced critical obser-

vations, that can impact final outcomes of a trajectory over others,

𝜋1 Mean±𝑠𝑒 𝜋𝑒𝑥𝑝𝑒𝑟𝑡 Mean±𝑠𝑒

Sparse-HOPE 0.094±0.01 0.005±0.00
Soft-HOPE 0.021±0.00 0.004±0.00
Rand-HOPE 0.140±0.02 -0.023±0.02

HOPE 0.176±0.01 0.008±0.00

Empirical result 0.167±0.02 0.054±0.06

Table 1: Mean and standard error with bootstrapping on poli-
cies𝜋1 and𝜋𝑒𝑥𝑝𝑒𝑟𝑡 from real-world intelligent tutoring.HOPE
achieves the best estimation on both policies.

to enrich provided information for OPE. We conducted extensive

real-world experiments with two challenging tasks for OPE, sepsis

treatment and intelligent tutoring, using both standard validations

and human-centric significance tests to validate OPE. The results

showed that HOPE outperformed state-of-the-art benchmarks in

both applications. A part of our methodology leverages WIS, which

may introduce variance to estimations. We kept it straightforward

such that the performance can be easily isolated. In the future, WIS

can be replaced with DR or DICE for reduced variance.

All real-world data were obtained anonymously through an ex-

empt IRB-approved protocol and were scored using established

rubrics. No demographic data or class grades were collected. All

data were shared within the research group under IRB, and were de-

identified and automatically processed for labeling. This research

seeks to remove societal harms that come from lower engagement

and retention of studentswho needmore personalized interventions

and developing more robust medical interventions for patients.
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