Accelerated Primal-Dual Methods for
Convex-Strongly-Concave Saddle Point Problems

Mohammad Khalafi' Digvijay Boob '

Abstract

We investigate a primal-dual (PD) method for
the saddle point problem (SPP) that uses a lin-
ear approximation of the primal function instead
of the standard proximal step, resulting in a lin-
earized PD (LPD) method. For convex-strongly
concave SPP, we observe that the LPD method
has a suboptimal dependence on the Lipschitz
constant of the primal function. To fix this is-
sue, we combine features of Accelerated Gradi-
ent Descent with the LPD method resulting in a
single-loop Accelerated Linearized Primal-Dual
(ALPD) method. ALPD method achieves the op-
timal gradient complexity when the SPP has a
semi-linear coupling function. We also present
an inexact ALPD method for SPPs with a general
nonlinear coupling function that maintains the
optimal gradient evaluations of the primal parts
and significantly improves the gradient evalua-
tions of the coupling term compared to the ALPD
method. We verify our findings with numerical
experiments.

1. Introduction

As a class of optimization problems, the min-max saddle
point problem (SPP) has attracted much attention in the
optimization and machine learning literature. The SPPs
contain many classical problems as a special case. E.g., we
can transform convex optimization problems with smooth
or nonsmooth objective functions into a min-max saddle
point form. One can extend this observation to nonsmooth
nonconvex problems relatively easily. Given their strong
modeling power, SPPs have extensive applications in (dis-
tributionally) robust optimization and adversarial learning.
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In this paper, we are interested in the following SPP
L = mi ; - 1
(7, y) == minmax f(z) + é(z,y) —9(¥), (D)

where we refer to f, g and ¢ as the primal, dual and coupling
functions, respectively.

The broad applicability of the SPP model has resulted in
various algorithmic complexity studies in the literature. The
major focus was on the computationally tractable convex-
concave case, i.e., L(-,y) is convex in z for all y € YV
and L(x,-) is concave in y for all z € X. In this setting,
maxycy L£(z,y) is a nonsmooth function in z. Accord-
ing to Nemirovski & Yudin (1983), subgradient descent
for a black-box nonsmooth convex function achieves an e
optimality error in C’)(e%) subgradient evaluations. In a sem-
inal work, Nesterov (2005) exploited the max-form of the
problem to obtain a significantly improved gradient com-
plexity of O(1). This result broke the earlier established
complexity lower bounds and is popularly known as Nes-
terov’s smoothing technique. Nemirovski (2004) presented
an Extragradient method that performs one extra gradient
descent-ascent step in each iteration. This method can obtain
an € error on the stronger gap function criterion (c.f. Defi-
nition 2.1) using O(%) gradient evaluations. Subsequently,
(Chambolle & Pock, 2011; 2016; Chen et al., 2014) showed
primal-dual (PD) type methods which remove the additional
gradient descent-ascent step and maintain an O(%) com-
plexity when ¢ is a bilinear coupling. Later, (Hamedani
& Aybat, 2021) extended it to the general convex-concave
coupling functions.

The PD methods in (Chambolle & Pock, 2011; Hamedani
& Aybat, 2021) assume that the proximal operators of f
and g are easy to evaluate. For the bilinear coupling term,
ie., ¢(z,y) =y Az, Condat (2013); Vu (2011) introduced
LPD method where they used the linear approximation of f
in a PD method and proved the convergence of its iterates
to saddle point. Chambolle & Pock (2016) considered the
same design and showed LPD method has the convergence
complexity of (’)(Lf%w), where L is the Lipschitz con-
stant of V f and || A|| is the operator norm of A. Observing
that this dependence is not optimal in L ¢, Chen et al. (2014)
proposed an accelerated PD method whose complexity is of

O(4/ % + ”—‘3”) which significantly reduces the impact of
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Lipschitz constant Ly on the complexity.

Chambolle & Pock (2011; 2016) also show that when f
is strongly convex with modulus y1y > 0 and the coupling
term is bilinear, the LPD method exhibits a much smaller
complexity of O \%Ll), while using the exact proximal
operators for f and g. Hamedani & Aybat (2021) extend
similar results for semi-linear couplings (linear in y only).

However, to our best knowledge, a few works study the
impact of linearization of f(x) when g(y) is strongly con-
vex with modulus p1; > 0. Kovalev et al. (2022), showed
linear convergence under a restricted strong concavity-type
condition for a bilinear coupling function. Thekumpara-
mpil et al. (2019), introduced a three-loop algorithm called
Dual Implicit Accelerated Gradient (DIAG) where each it-
eration contains an implicit step in which an AGD is run.
Thekumparampil et al. (2022) proposed the first single-loop
optimal algorithm called Lifted Primal-Dual method for
SPPs under strong concavity. However, their analysis heav-
ily relies on the bilinear coupling function and it is unclear
whether it can be extended for nonlinear coupling.

The SPPs with strong concavity have a direct application
in the Nesterov’s smoothing framework: a nonsmooth con-
vex function maxyey f(z)+ ¢(z, y) can be smoothened by
adding a strongly concave regularizer —g(y) resulting in (1).
Moreover, using appropriate Y and g, we obtain equivalent
formulations of a variety of (smoothened) penalty functions
used in constrained optimization. Assuming the exact proxi-
mal operator of objective f in such cases is quite impractical.
Hence, we need to study methods that can handle lineariza-
tion. We intend to make contributions to this setting, i.e.,
g > 0and f is linearized. See Table 1 for a comparison of
our work with the relevant literature.

1. Our first contribution is to observe the subtle but impor-
tant difference due to linearization. In particular, when f
is linearized, the case of g, > 0 is qualitatively “harder”
than iy > 0. Hence, the LPD method exhibits a weaker

complexity of O(% + \u%”e) (c.f. Theorem 3.1 and 3.2).

2. A careful observation of the above complexity yields that
the LPD algorithm is unable to mitigate the impact of the
primal Lipschitz constant Ly when 11, > 0. Hence, we seek
an algorithm that can accelerate convergence in the primal.
Moreover, we expand the scope of the problem to include
the general nonlinear couplings. To address both questions,
we imbibe elements of Nesterov’s Accelerated Gradient
Descent (AGD) in the PD method for general nonlinear
couplings, and propose a novel single-loop Accelerated Lin-
earized PD (ALPD) method (see Algorithm 2). We show
that (i) for the semi-linear coupling (linear in z-only), the

ALPD method exhibits the complexity of O(y/ %) which

€

significantly improves the dependence on Ly compared to

the LPD method'; (ii) for the general coupling, it exhibits
the complexity of O( % + %) where L, is the Lips-
chitz constant of V,¢(-,y).

3. To improve the above complexity in L,,, we propose
an Inexact ALPD method. It is a two-loop algorithm that

solves a proximal problem using AGD in the inner loop
while the outer loop follows a “conceptual” ALPD method.

The Inexact ALPD method obtains an e-error in O(1/ %)

evaluations of V f and O( V;/T) evaluations of V ¢. Es-
sentially, this method maintains the optimal dependence of
the complexity on L and improves the dependence on L.

4. We verify our findings using numerical experiments on
the penalty problems for linear and nonlinear constraints.

1.1. Related works

The SPPs are extensively studied in the literature due to
their broad applicability and strong modeling power. Here,
we provide a brief review of the most relevant first-order
methods that consider the issue of algorithmic complexity
for the SPPs.

Classical results: Nesterov (2005) reformulated a determin-
istic optimization problem into an SPP form and showed the
first optimally converging algorithm using the smoothing
framework. Subsequently, Nemirovski (2004) showed the
optimal convergence of the mirror-prox method (a gener-
alization of the extragradient method (Korpelevich, 1976))
for the variational inequality problem which contains the
nonlinear SPP as a special case. Separately, Nesterov (2007)
and Tseng (2008) provided two optimally converging algo-
rithms for the SPPs. This approach was further extended by
Monteiro & Svaiter (2010) in an HPE framework to relax
the bounded domain assumption. Nemirovski et al. (2009)
presented a mirror-descent type algorithm for the stochastic
SPP. Juditsky et al. (2011) proposed a stochastic version of
the mirror-prox method. Chen et al. (2017) incorporated a
multi-step acceleration scheme into the stochastic mirror-
prox to improve the convergence rate.

Bilinear case: While extragradient (or mirror-prox) re-
quired two V, V,, evaluations in each iteration, the primal-
dual method of (Chambolle & Pock, 2011) required only one
such evaluation per iteration and maintained the same con-
vergence rate. Several variants of this method are proposed
in the literature for bilinear couplings. E.g., the linearization
of f is presented in (Chambolle & Pock, 2016), optimal
accelerated-version is introduced in (Chen et al., 2014), ran-
domized block-coordinate settings are considered in (Dang
& Lan, 2014; Zhu & Storkey, 2015; Yu et al., 2015; Zhang
& Lin, 2015).

Nonlinear coupling: For the nonlinear coupling term,

'See Remark 4.6 for similarity with (Hamedani & Aybat, 2021)
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Table 1: Comparison of our work. Gradient complexity is for obtaining an € error in gap function.

Coupling | Linearizing f Gradient Complexity
pwr >0 g >0
(Chambolle & Pock, 2011) bilinear No O(ﬁ) NA
(Chambolle & Pock, 2016) bilinear Yes O(==) NA
(Hamedani & Aybat, 2021) | semi-linear No (’)(ﬁ)
(Thekumparampil et al., 2022) | bilinear Yes NA \/ Lr 4 ”A”
LPD (Algorithm 1) bilinear Yes 0(2) o + jé)
o L f+L
ALPD (Algorithm 2) semi-linear Yes NA o( \/ F)
Ly+L
general (9(\/ % \/u? az )
. Lf +Lyy Ty
Inexact ALPD (Algorithm 3) general Yes NA For V[, Vy: O(\/ + v Mgf)
\/Luwr/Ts+L2 [ 1tg
For V,¢: O( Eg‘j:r e/t log(%))

Hamedani & Aybat (2021) proposed a primal-dual method
which can be seen as an extension of the original primal-dual
method. Its extension to a randomized block-coordinate ver-
sion was presented in (Hamedani et al., 2018). Another
variation of significant consequence is proposed in (Boob
et al., 2022b) for the stochastic smooth/nonsmooth function-
constrained optimization.

Strong convexity: To our best knowledge, the existing
works look at the strongly convex case (y1y > 0). For the bi-
linear couplings, Chambolle & Pock (2011) shows a smaller
complexity of O(ﬁ) Hamedani & Aybat (2021) presents
the first accelerated convergence result for semi-linear cou-
pling (linear in y-only). Lin et al. (2020) proposed an inexact
accelerated proximal point algorithm which has a nested
three- loop structure and obtains an optimal complexity up
to a log® ( ) factor. The problem of obtaining optimal rates
for general nonlinear couplings with single-loop algorithms
remains open.

2. Notation and Definitions

We use || - || and || - || to denote £,-norm and Euclidean norm
of any vector, respectively. (-,-) stands for the standard
inner product of two vectors. For a general function h,
Vh expresses the gradient of h. V,h implies the partial
gradient of h with respect to variable v. We use [m] to
denote {1,...,m}. For a compact set W, we define its
diameter Dyy := max, ,ew |[w' — w|/v2. We use z =
(z,y) as the combined variable defined on the set X X
Y = Z. We naturally extend this notation for z = (Z, §),
2t = (ﬂft, yt)7 Zt = (jft, gt) and so on.

Problems setting. In problem (1), X C R” and Y C R™
are compact convex sets, f : X — R is a convex primal
function, g : Y — R is a convex dual function and ¢(z, y) :
X xY — Ris a convex-concave coupling function, i.e.,

¢(-,y) is convex for all y € Y and ¢(x, -) is concave for all
x € X. The gap function defined below acts as a measure
of convergence.

Definition 2.1. For a point Z € Z, we define its gap as

Gap(z) = max Q(z, 2).
where Q(Z, z) := L(Z,y) — L(x, 7).

It is easy to see that Gap(z) > 0 and z* € Z is the saddle
point for (1) if and only if Gap(z*) = 0. Hence, we can
measure the quality of an approximate solution using the
Gap function.

Definition 2.2. For € > 0, we say that Z € Z is an e-solution
of problem (1) if Gap(z) < e

We call a function h : H — R to be strongly-convex with
modulus pp, > 0if it satisfies h(z') — h(x) — ( Vh(z), 2’ —
z) > B2’ — z||? forall o’,2 € H

Throughout the paper, we make the following assumptions
on the general coupling function ¢(z, y):

Assumption 2.3. We assume function ¢(-,y) is Lgq-
smooth forall y € Y, ¢(x, ) is Ly,-smooth for all z € X
and ¢ is L,-smooth, i.e., ¢ satisfies the following relations,
respectively, forall z, 2’ € X, y,9' € Y

||va:¢(x/7y) - vx(b(xay)H S Lwﬂinl - .TH,
[Vyo(z,y') — Vyo(x,y)|| < Lyylly" — vl
[Vyo(a',y) — Vyo(z,y)|| < Laylla" — z]|.

If all Lipschitz constants above are positive, then ¢(x, y) is
a general nonlinear coupling function. If either L,, = 0
or L, = 0, then the coupling function is linear in x or
vy, respectively. We refer to these cases as the semi-linear
coupling. L, = L, = 0 implies a bilinear coupling.
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3. Technical overview - The LPD method

For the bilinear SPP, i.e., ¢(x,y) = y ' Az, most PD meth-
ods use computationally expensive proximal operators of f
and g. This may be reasonable in some applications where g
is a regularizing function. However, that is not the case for f
which arises from the primal optimization. To overcome this
challenge, the linearized PD method (Chambolle & Pock,
2016) uses a linear approximation f(x;)+(V f(xt), x—x¢)
instead of evaluating a proximal operator. Algorithm 1 il-
lustrates a typical LPD method, where parameters 7; and
1¢ denote the step-sizes (or learning rates) in the dual and
primal updates, respectively. The momentum parameter 0,
is used to generate an extrapolated sequence {Z;} which
is then used for the accelerated update of the dual y (line
3). On the other hand, the method uses a simple gradient
descent step to update = (line 4). The algorithm outputs
an ergodic average after K iterations. Chambolle & Pock
(2016) showed an accelerated convergence of O (%) for
the strongly convex case (py > 0, 1y = 0). However, the
strongly concave case (piy = 0, 1, > 0) is missing. Fur-
thermore, it is important to note that the two cases are not
symmetric since we are linearizing the primal function f.
A closer inspection shows that the two cases are quanti-
tatively different. Here, we present two contrasting (and
hence, somewhat surprising) results for the LPD method
for these cases. Theorem 3.1 considers yiy > 0, and show
convergence rate of O(42z) for the LPD method 2. How-
ever, the LPD method does not effectively handle the error
caused by the linearization of f when 11, > 0 (see Theorem
3.2). Below, we state the step-size conditions required for
the analysis of the LPD method. See Appendix A for proofs
of all results in this section.

Step-size conditions for the LPD method: For ¢t > 2

Yerr (o — pgp) < 2 (2a)
<y (g +5), @)
—
Opr = 2, (20)
bl A2 < (G — Ly)L. 2d)

Theorem 3.1. Assume that j1y > 0, 1y = 0 and set param-
eters {t, 0y, m, 7} as per the following:

_t L _ t/24Ly¢/p
A A
1 _ o, thl 1 _4lAp®
we =M T Li o= e
Then, we have
_ L 4L
Gap(Zx+1) < grreraiar; i L1+ 75 e — o2
4)|A))2
+ 2y — )] @)

2Though the result is similar to (Chambolle & Pock, 2016), the
step-size policy is significantly different.

Algorithm 1 Linearized PD (LPD) method
1: Initialize v, =21 € X, 1 €Y
2: fort=1,..., K do
3 e argmin A y) +9(y) + 5 ly - ve

I

R arggr&i;(l(Vf(zt)wLATytH,x)+%thf
xt||2

5: ‘%t+1 — Ty —+ Qt(le — (Et)

6: end for

K
E:t:1 Yt+1Yt+1
K
Do Y1

K
Do YeH1Tegl -

7: return T — —
K+1 S et y YK

It is easy to see that the step-size policy (3) satisfies the
conditions in (2). Theorem 3.1 shows O(%) convergence
rate for Algorithm 1. It is also interesting to note that (3)
provides an explicit expression of the weiihts ~¢+ which
results in an explicit bound of ©(K?) on >,y for K >
1. This bound is usually shown implicitly and for only large
values of K in (Chambolle & Pock, 2011; 2016; Hamedani
& Aybat, 2021). For the semi-linear couplings, a similar
explicit policy is used in (Boob et al., 2022b).

In the second case (uy = 0,uy > 0), however, a step-
size approach similar to (3) is not applicable. The follow-
ing argument provides a rather mechanical intuition: To
have an accelerated convergence rate of (’)(%), we need

Ik := Zthlfyt = (K?) and hence 7; needs to increase
linearly in ¢. In view of py = 0, (2a) requires 7;’;1 to be a de-

creasing sequence and we get lf > W—; Sirﬂultaneously,
to mitigate errors generated by linearization of f, we require
niK > Ly (see (2d)). These two relations and linearly in-
creasing nature of 7y; imply that 77% > % = Q(LsK).
This is problematic since the final convergence error of

the LPD method is of O(mWI?K) = O(%) a weaker con-

vergence compared to (9(%) This is not observed when
py > 0and pg = 0. Indeed in (3), we see that both ; and
i are both increasing in ¢ and still (2a) is satisfied.

The critical issue is that (2a) requires {7} to be a de-
creasing sequence when py = 0. To provide a principled
solution to this problem, we modify (2a) to allow %—tl to
increase with ¢ by a fixed amount (see (5)). This approach
requires a new step-size policy discussed below.

Modified step-size condition for the LPD method: Mod-
ify (2a) as follows while keeping (2b)-(2d) unchanged:

e+l Ve
T T =L )

Theorem 3.2. Suppose g > 0, pp = 0 and set parameters
{Ve, 04, M0, T} as per the following:

1 t

Ve =1t = gy,

1 2||A|? (6)
_ AR g =t

Nt Hg(t+1)
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Then, we have

_ 2D2||A|?/pug+D2 2(K+1)L; D2
GGP(ZK+1)S I Hlél:g yHa + ( +K)2f . (7)

Note that (6) satisfies the modified step-size condition (5)
and (2b)-(2d). From the result, it is clear that for the strongly
concave SPP (ug > O) the convergence rate of the LPD

method is of O(* = |A“ K L) when f is linearized.

This result is in sharp contrast with Theorem 3.1 where
the convergence rate is of (’)(%) We already provided
a mechanical reasoning for the ineffectiveness of the LPD
method in reducing the impact of Lipschitz constant L. At
a broader design level, the algorithm itself is not accelerated
in the primal iterate. Indeed, it is simply a gradient descent
in the z-update (see Line 4 in Algorithm 1). This was not
a problem when f was strongly convex. However, when
only the dual is strongly-concave, one needs a stronger
acceleration in the primal to mitigate the errors caused by the
linearization of f. Hence, the rest of this paper is dedicated
to presenting the accelerated linearized PD algorithm and
its variant for obtaining more robust convergence results for
problem (1) when f is linearized and p, > 0.

4. The ALPD method for general ¢

In addition to the primal acceleration mentioned in the ear-
lier section, we consider two more generalizations: (i) we
use the linear approximation for g instead of its proximal
operator to allow the use of complex dual functions, (ii) the
coupling function ¢ is a general nonlinear function.

To address the issues mentioned in Section 3 in the broader
settings above, we present the accelerated linearized primal-
dual (ALPD) method (see Algorithm 2). Here, we intro-
duce a new parameter (3, which is motivated from a (three-
sequence) form of Nesterov’s AGD algorithm (Nesterov,
1983). If we set B; = 1 in Algorithm 2, then it is easy to
see that z, = z; and T4 = x4 for all ¢, and we imme-
diately recover the LPD method for the bilinear coupling
é(x,y) = y' Az. Hence, the ALPD method is a gener-
alization of the LPD method in two senses: (i) using the
parameter 3, > 1, we aim to put the AGD framework inside
the LPD and reduce the impact of L in the complexity, and
(i) using a new sequence {v; } in place of { Az}, we allow
for the nonlinear coupling function ¢.

The following lemma provides a useful recursive relation on
the primal-dual gap function of the iterates of Algorithm 2.
It is later used for bounding the gap function (see Definition
2.1). See Appendix B for proofs of all results in this section.

Lemma 4.1. Let Zt41 = ('ft-‘rla ?jt—i—l) then:

BtQ(zﬂ-l, z2) = (B — 1)Q(%, 2)

< gy [l = 2el* = |z — 211 |]

Algorithm 2 Accelerated Linearized PD (ALPD) method

1: Initialize 71 = 2o =21 € X, 1 =yo=y1 €Y

2: fort=1,...,.K do

3: (1 - 5t Nz + B

4: Ut — (1 +0)Vyo(we, yt) — 0:Vyd(wi-1,Y1-1)

5t yer 4 argmin(—ve + V() y) + 5y — el
6

wm — argmi;;(W(&t) + Voo (@4, yi11), ) +

2l — o ?

70 Ty = (1= By DT+ By Mo
8 1= (1—B; i+ B v
9: end for

10: return Tg 41, Y +1

+ [(% {)Hy yt”2 2TtHy Yir1l] ]
L.
o (Tih - ﬁ - 5T)||33t — @1 |?
L
- (%n - 751)%”% - yt+1||2
+ (D41, y) = O(@rs1, yer1) — (Ve y —g1)] (8)

Lemma 4.2 states a step-size condition for parameters
{Bt, 0,7+, 7t,m:} and provides an upper bound on the
Gap(Zx 4+1) where Zk 41 is the output of the ALPD method.

Lemma 4.2. Suppose {ft, ¢, i, T, nt } satisfy

Br=1, Bes1 — 1 = Bibis1,

I Tt—1
6, = % : 0<0, <=t

1 2 L
Tm—m 2L ’Tt>

-2l >0, ©))

ATy

)

then, we have

Br Yk Q(ZK+1,2) < Br (2, 2(k])

+ 9 (Vyd(Tr11,Yx+1) — Vyd(Tr,YK), Y — Yr+1)
L, L,
— i (3 — 3 — 5% lowc — 2l
L
— i (7 = %) o — i |, (10)
where
Bk Z{zm Iz — 2|® = ||z — 241 ||°]

I” -

+7t(2n —E)ly —we 2=y — Yera|*}

A comparison of the ALPD step-size conditions in (9) with
the LPD (in (2)) shows that the impact of L, can be miti-
gated using the parameter Bt. Indeed, for the bilinear prob-
lems, i.e., L, = 0and L

reveals the necessity of cond1t10n — > L for the ALPD
method. Appropriate choice of 3, (say, 1ncreasmg with t)
may allow us to increase 7); resulting in a stronger learning
rate. Besides, (2d) requires % > L and hence, no scope
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for improving the learning rate. Theorem 4.3 exhibits a
tangible upper bound on the Gap function that explicitly
shows the dependence of the convergence rate on f3;.

Theorem 4.3. In addition to the assumptions in Lemma 4.2,
let the following condition hold for t > 2:

ol ot— Lo
Nlm —hg) S 21, LS Ity R (1)

Then, we have

Gap(ZK'H) Jrﬁk K)DX+13KVKT DY (12)

(/31(’7;(?71

where D3 and D3 are diameters of set X and Y .

4.1. Step-size policy for the ALPD method

Using the result of Theorem 4.3, we are ready to present
step-size policy for the ALPD method. We break our analy-
sis in two cases.

4.1.1. CASE 1: SEMI-LINEAR COUPLING WITH L, =0

Theorem 4.4. Assume a semi-linear coupling function
o¢(x,y) which is linear in x, i.e., Ly, = 0 and consider
the following choice of parameters for Algorithm 2:

v =1, ryt—t+1+2\f2[‘Z7y+2L9’ t>2,
9 — 7t 1 t > 2 g
t Yt -
Br=1, PBiy1=1+015, (13)
t+1

"t = BL;¥16L2 Ju,°
L=ty ovor,, +2L,.

Tt

Then we obtain the complexity of K = O(4/ Lf+L” +

%)for getting an e-solution of (1).

Proof. Comparing the step-size policy in (13) with con-
ditions in (9) where L., = 0, it is easy to see that the

relations 9t = 7;;1, the recursive relation on (3; and

4; 2L321y7t > 0 are satisfied. Furthermore, since v,
is 1ncreas1ng and 7, is decreasing, we have 6, < 1 < ™=,
It is straight-forward to see that {J} is a decreasmg Se-
quence. Besides, by choosing 7; according to this step-size
policy, the first condition in (11) also holds. The proposition

below provides a bound on f3;.
Proposition 4.5. Suppose we set the step-size parameters
according to (13) then 11 € [L52,t +1].

Using the above proposition, we verify the one remaining
condition of (9) with L., = 0:

1 2
21 Q,Bt 2L Tt
2 2
5Ly Ly 16Ly, 4L, 0
=20+ 280 " 2pg(EHD)  pgt4av2L,, =

where the first inequality follows by replacing the values of
¢, T¢ along with the fact that L, > 0, and the second in-

. . b t+1 16L2 412
equality holds since 8, > 5 > “T= and Wtfi) -tz
g g9
O0fort > 1.

Using (12) in Theorem 4.3, we obtain the following upper
bound on the Gap:

Gap(Zx+1) < Fra DX + g D= (19)

Note that since (5; and ~y; are increasing at a linear rate, we

obtain the accelerated convergence rate of O(Lf tluw |
2

MLwa2) which is equivalent to the complexity of K =
9

O(4/ Lf+L“’ + \/7) for getting an e-solution. O

Remark 4.6. (Hamedani & Aybat, 2021) is the only known
single-loop PD algorithm that shows accelerated conver-
gence when the coupling function is semi-linear with L, =
0 and ;1 > 0. We have a (reflected) result where py > 0
and L, = 0. Even then, (Hamedani & Aybat, 2021) as-
sume f and g have proximal updates. Hence, they do not
need any additional acceleration of the ALPD method.

4.1.2. CASE 2: NONLINEAR COUPLING

Theorem 4.7. Consider an SPP with a general nonlinear
coupling function, i.e., L,, > 0. Assuming the step-size
policy in (13) with the following single change in 1 as

_ t+1
It = SL;416L2, Jpg+ (1) Lug ?

we obtain the complexity of K = O( Lf+L

LET ) for getting an e-solution of (1).

vy + 171/ Jr

Vg€

Proof. 1t is easy to see that the mentioned step-size policy
satisfies the condition (9) in Lemma 4.2 (including fifth
relation in (9)). Furthermore, (11) is also satisfied. Thus,
using Theorem 4.3, we can establish the following upper
bound on the Gap function:

Gap(ZK+1) (ﬁK’YKm + ,BK K)DX + ﬁK’YKTl DY

Consequently, the gradient complexity in this case is K =

Oy Lt 4 L Ty Lae) O

Hence, though we get acceleration in terms of L, the con-
vergence rate in terms of L, is of O(+). This is similar
to the LPD case where the complexity had a weaker depen-
dence on Ly. ALPD method does accelerate on the primal
only term, i.e., L ;. However, accelerating the convergence
for the primal coupling term is still difficult. In light of
Remark 4.6, accelerating the class of PD methods for non-

linear coupling is a challenging open problem, even without
linearization.
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Algorithm 3 Inexact ALPD Method

1: Initialize 71 = 2o =21 € X, 1 =yo=y1 €Y

2: fort=1,...,.K do

3: (1 - 5t N+ B

4: Ut — (1 +0)Vyo(we, yt) — 0:Vyd(wi-1,Y1-1)

5t yery 4 argmin(—ve + V(). y) + 5 ly — el
6

T4 1S a §z-approximate solution of the problem:

min(Vf(z,), »

min >+¢($,yt+1)+ﬁ||x—$t”2 (15)

7: Tip1 < (1 - ﬁt_ ).ft + ﬁt_ll‘t_H
8 Y1 (L= B0+ By 'y
9: end for

10: return Tr 41, Yr+1

5. The Inexact ALPD method for general ¢

This section proposes an Inexact ALPD method to improve
the complexity in L. The linearization of ¢(z,y¢11) in
the ALPD method generates errors that depend on L. It
leads to a slow convergence rate when L,, > 0. To fix this
issue, we use ¢(x, y;+1) instead of its linearization in the
z-update (compare line 6 of Algorithms 2 and 3). However,
we cannot evaluate the proximal oracle of ¢(-, y) efficiently.
To evaluate the truly representative computational effort for
this algorithm, we propose an inexact approach in the z-
update and perform a detailed analysis of the inner loop to
estimate the complexity bounds. The rest of this section is
dedicated to the complexity analysis of Algorithm 3 in the
outer loop and inner loop.

5.1. Complexity analysis of the Inexact ALPD method

Complexity analysis of the outer loop

Using a proximal oracle of ¢(-,y:+1) in the z-update re-
moves the linearization errors that depend on L,,.. Hence,
the outer loop analysis reduces to Case 4.1.1. Consequently,
we have the following theorem.

Theorem 5.1. Suppose conditions in ((9), (11)) and the step-
size policy ((13)) hold, then we have the following upper
bound for the Gap function

= 1 2 1 2
Gap(ZK+1) SBK'YK"']I D + BrYKT1 Dy
K 1 2 (16)
+ S e 2= 477t 9:Dx
BrYK BrYK

The above upper bound is similar to (14) with the addition
of the last two terms since we are using a §;-approximate
solution for (15). The detailed proof and analysis of the
inexact ALPD method is in Appendix C. We need to manage
the error caused by §;. Proposition 5.2 provides the required
condition to bound such errors.

Proposition 5.2. Suppose §; = -+ and the step size policy
in 13 holds. Then by chooszng c = 3.5, Zt:ﬂt‘st and
ZtK: 17¢\/ 0t/ are bounded by a constant.

One important result of Proposition 5.2 is obtaining com-
plexity of V f, and V¢ as the following corollary

Corollary 5.3. Suppose Proposition 5.2 holds for d,, then
we need O(4/ LerL“’ + \/%) evaluations in'V f, and V ;¢

to obtain an e- solutton of (1).

To compute the gradient complexity of V¢ and the impact
of the above choice of ¢, we perform the inner loop analysis
as below.

Complexity analysis of the inner loop

Theorem 5.4. The complexity of V,¢ evaluations is

o<c\/Lm. Ly + 12, /11y log(1)

Proof. We implement the AGD method ((Nesterov, 2003))
to solve the subproblem (15). Let k; denote the number
of AGD iterations for the ¢’th iteration in the outer loop.
Consequently, the complexity of V¢ after K outer loop
iterations is Zf: 1 k¢. The number of AGD iterations k; is
directly related to the choice of error §;. Nesterov (2003)
shows that for a L-smooth and p-strongly convex function,
we need O(

ror on the optimality. Then, to obtain a §; error on the

optimality of (15), we need k; = O(v/ Lyt log(%)) iter-
ations of the AGD method. Here, we used L = L, and
w= % Setting d; according to Proposition 5.2, we obtain

ki = O(V/Lyzntlog(t)) or O(c/L.n:log(t)). Hence,
the total number of iterations of AGD for K outer iterations
(i.e., the number of gradients evaluations of V,¢) is

K K
D1kt = D16V Lagni log(t)
K 1
- Zt=1c\/Lm5Lf+f§W log(t)

S ¢y 5Lf+1L§fgy/7g (K +1)*?log(K +1).
72
Using K = O(y/ M), we obtain the result. O

We immediately get the following corollary.

Corollary 5.5. Suppose Ly, Ly, and L2y//¢g are of O(L),

then we need O( 3/4) evaluations of V¢ to obtain an e-
error in inexact ALPD

\/Z log(1)) AGD iterations to obtain an ¢ er-
o €

The following remark is in order.

Remark 5.6. Observe the impact of ¢ on the complexity of
V¢ is only of a constant factor. This happens since (15)
is a strongly convex problem. In view of Corollary 5.5 and
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2
K = Oy M), inexact ALPD method exhibits

the gradient complexity of O(4/ % + ;%) for Vf,
and V,¢. Moreover, its gradient complexity for V¢ is
of @(63%) In comparison, the ALPD method has O(%£)
gradient complexity for V,¢, V¢ and V f. The Inexact
ALPD method improves the complexity in V¢, and obtains
the optimal complexity in V f as well as V¢.

6. Numerical Experiments

In this section, we perform numerical experiments to (i)
compare the performance of the LPD and ALPD algorithms
on the penalty problems with different settings; (ii) evaluate
the runtime performance of the step-size policies in Theo-
rem 3.1 and (Chambolle & Pock, 2016); (iii) compare the
ALPD and Inexact ALPD on penalty problems for nonlin-
ear constraints. All experiments are performed on 64-bit
Windows 10 with Intel i5-9500U @3.00GHz and 16GB
RAM.

6.1. ALPD vs. LPD

The /,-norm penalty problem with linear constraints is

Héi)l(l f(z) + pl|Az — b]|; = min max f(z) + ply, Az — b),

z€X |lyllp<1

where £,,-norm is the dual norm of || - ||4. The equivalence
of the dual formulation is well-known where 1/p + 1/q =
1. We can get a smooth approximation of the nonsmooth
penalty term using Nesterov’s smoothing technique
. B |[,,12

min ||Iyﬂf§1{f(”3) +p(y, Az = b) = FylI*}, a7
where parameter i, can be used to calibrate the smooth-
ness of the approximation. We set f(z) = 1z'Qz +c¢'x
as a convex quadratic function where ) € R™*" is a ran-
domly generated positive semidefinite matrix and ¢ € R"
is a random vector. We also generate matrix A € R™*"
and b € R™ randomly. For these experiments, we set the
penalty parameter p = 1 and m = n = 100. Appendix D
provides detailed information on the exact functions used
for the random number generation. We set Ly = 200 since
eigenvalues of @ are generated uniformly on [0, 200].

We implement two versions of the ALPD method. The
first method is implemented exactly as presented in Al-
gorithm 2. The second method uses a proximal opera-
tor of g as follows: line 5 of Algorithm 2 is replaced by

Yrr1 = argmingey (—vg,y) + 9(y) + 5y — ell*. We
make these changes (1) to measure the effect of using lin-
earization in g on the numerical performance of the ALPD
method, and (2) to perform a fair comparison with the LPD
method as it uses the more advantageous proximal operator
of g. We refer to this method as ALPD-prox-g. The step-

size policy for this version is similar to (13) with L, = 0

ALPD-prox-g ALPD-prox-g
LPD LPD
03 ALPD 0.2 ALPD

G l= <=
|02 | [’5015

s= e

o 0.1

0 0.05
50 60 70 80 920 100 50 60 70 80 20 100

# of iterations # of iterations

0.8

—
1

~— 06

ALPD-prox-g | 7|
LPD
@ 045 ALPD

0
50 55 60 65 70 75 80 85 90 95 100

# of iterations

Figure 1: Comparison of the methods in terms of the mean
errors in primal (top left), dual (top right), and Gap function
(bottom) for 10 i.i.d. instances of 17 withp = ¢ = 2.

since g is used exactly without linearization. We measure
the performance of the algorithms using three metrics: (1)
Gap function which is the standard metric used in the con-
vergence analysis, (2) Primal relative error ||Z; — z*||/||z*]|,
and (3) Dual relative error ||g: — y*||/||y*||. All algorithms
start at the same randomly generated initial point in the
domain X x Y. Figure 1 compares the three algorithms
in three metrics. Each plot is generated using the aver-
age performance of the algorithms on 10 instances of (17)
generated independently with identical distribution (i.i.d.
instances). We plot the metrics for the last 50 iterations to
focus on the major performance differences. Figure 1 shows
that when L; = 200 (a large number), the LPD method
performs poorly compared to both versions of ALPD. More-
over, ALPD-prox-g gives a slight advantage over ALPD
which is expected. Note that in these experiments, we use
p = q = 2. In Appendix E), we provide a similar compari-
son for two settings of (17): ¢ = 1 and ¢ = oc.

6.2. ALPD vs. Inexact ALPD

In this subsection, we compare the performances of Al-
gorithms 2 and 3 on the penalty problem with nonlinear
constraints. We replace the linear constraints in the previous
case with quadratic constraints %zTij + b;-ros —d; <0,
for all j € [m] where A;,b; and d;(> 0) are randomly
generated as in the previous experiment. The dual form of
the penalty functions on nonlinear constraints has L, > 0.
As we proved in Section 5.1, when L, > 0, Inexact ALPD
is superior to ALPD in terms of gradient complexity. To
verify our results, we run 10 i.i.d. instances of the nonlinear
penalty problem and plot the Gap function against the aver-
age run time of each algorithm. For the ALPD method, we
use the step-size policy in Section 4.1.2 and Inexact ALPD
method is employed as described in Algorithm 3. Moreover,
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we implement prox versions of both algorithms where we
use the proximal oracle of g instead of linearizing it. We
call these versions ALPD-prox-g and Inexact-ALPD-prox-g
respectively. Figure 2 illustrates the behavior of these al-
gorithms for 100-dimensional (n = 100) penalty problems
with 10 non-linear constraints (m = 10). We run the ALPD
method for 200 iterations and its inexact counterpart for
100 iterations. We can see that Inexact ALPD and Inex-
act ALPD-prox-g dominate the performance of ALPD and
ALPD-prox-g, respectively.

120

ALPD-prox-g
ALPD

100 [* Inexact-ALPD-prox-g | -
= = =Inexact ALPD

80

60 [

Gap(z)

a0+

20 -

0 20 40 60 80 100 120 140
Run time (seconds)

Figure 2: Comparison of the ALPD and inexact ALPD
method and their prox-g variants using the Gap function vs
run-time (seconds) plot for 10 i.i.d. instances.

6.3. LPD step-size policy comparison

As we mentioned in Section 3, both policies in (3) and
(Chambolle & Pock, 2016) give similar convergence rates
asymptotically. To make the numerical comparison, we use
the SPP in (17) with ;14 = 0. We set piy as the minimum
eigenvalue of the randomly generated matrix (). Note that
ty > 0 almost surely. We run the LPD method for 10 i.i.d.
instances of this problem for each step-size policy. See Ap-
pendix F for the details of our numerical study. It seems that
the LPD method using step-size in (3) performs better than
(Chambolle & Pock, 2016). We conjecture the following
reason for this deviation in the performance: Chambolle &
Pock (2016) show that 3°1° 4, = Q(K?2) only for large
values of K whereas (3) defines v; = O(¢) explicitly and
hence Y"1, v; = ©O(K?) for all K > 1. The quadratic
growth of Zt[{: 1 7t is important to obtain the accelerated
O(%) convergence rate. Hence, the step-size policy in (3)
seems to be performing well in our experiments.

7. Conclusion

We showed that the standard LPD methods do not mitigate
the impact of the linearization of the primal function for
convex-strongly-concave SPP. Therefore, we designed the
ALPD method which exhibits the optimal complexity for
the semi-linear coupling case. For the general nonlinear

coupling, we designed a two-loop Inexact ALPD method
that maintains the optimal gradient complexity of the primal
function and significantly improves the gradient complexity
of the coupling function. We verified our findings through
numerical experiments.
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Appendix
A. General Analysis of Algorithm 1 (LPD)

In this section, we state some technical results that are ultimately used for obtaining (2a)-(2d) and Theorems 3.1 and 3.2.
First, let us state two important lemmas that are utilized in the rest of the discussion especially when we want to construct
relations related to optimality points.

Lemma A.1. Let z* be a §-approximate solution of problem min, ¢ x {h(z) + 5 ||z — £||*} where h(z) is a convex function.
Then,
h(z*) = h(z) <3 [lle = 2l* — a* = 2* = |la* = &|*] + 6 + V2Aé]|a* — =] (18)

This lemma is known as ”Three-point” lemma and also can be stated for a strongly-convex function h with modulus iy, as
below

h(z*) = h(@) <3 [lle = 2l]* = 2" —2]* - [la* — 2|*] = G ]la* — 2] + 6 + V220|2* — 2]]. (19)

Note that the proof can be found in Lemma 7 of Boob et al. (2022a).
Lemma A.2. For point z¢11 = (T41, Ye+1) € Z in Algorithm 1, the primal-dual gap function is upper bounded as follows

Q(2e41,2) < Nwigr — l? — B |lw — zo|? + (VF (@), 21 — ) + [9Ws1) — 9@)] + (Azeir,y) — ( Az, yera).

(20)
Proof. Since f is L¢-smooth, we have
F@isn) < fl@) + (Vf (@), mea1 — 2) + B wers — z?
= flae) + (VF(@e), zep1 — &) + (Vf(ze), @ — 24) + B |z — ze?
< f(@) + (V). mp1 — @) + B wegr — 2| — B |2 — 2%
Adding [g(yt+1) — 9(v)] , and [{ Azty1,y) — ( Az, ys41)] to the both sides leads to the (20). O

We can elaborate on the upper bound by using the optimality conditions of y;41 and x;y, respectively. The following
theorem illustrates a useful upper bound for the weighted gap function for the LPD method.

Theorem A.3. iffort > 2

(& = pp) < 2, 21a)
2 <, (ug + Tt:) : (21b)
-
(975,1 = Sy (21C)
bl AP < (1 - L)L 1)
then
> 1n1Qzii1,2) < B — pp)lle — | = B | — wien|® + 22 Iy — v |1?
t=1 (22)
1 Al?
g g+ - by
NK f
and at optimality

A 2
<ug+ L —““) ly = yical® < 22 llo* — | + 22 [ly* — .
NK

Proof. Using the optimality of 311 and Lemma A.1 where 6 = 0 (note y;1 is an exact solution.), we have
9(es1) = 9(v) <gm (ly = vel? = llyerr = vell*) = (o5 + By = vera [I” + (AT, o1 — v)- (23)

11
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Also, from the optimality of x;1, we have the following
(V@) w1 =) < g (o= @el” = 2 — 2]1?) = g e = 2o |* = (A(zesr — @), gera)- (24)

From (20), (23) and (24), one can reconstruct the following upper bound on the gap function at one iteration

L
Qetn,2) < (5 = )lla = wull® = & lle = weal?) = (G = S0)llwers = @l + 55 (ly = well® = lyesr — well?)
- (% + )y = v |12 = (A@esr — 2),ye41) + (AT g1 — y) + (A, y) — (A, yega).
(25)
We can simplify the upper bound with respect to the inner products.
—(A®@e41 — 2),Ye41) + (AT, Y1 — Y) + (Aze11,y) — (A2, Y1)
—(A(@ip1 — ), yey1) + (A@e + 01 (2 — 20-1)), Y1 — ) + (Azey1,y) — (A2, Y1)
—(Azep1,ye1) + (Az, Y1) + (Aze, yer) — (Aze, y)
+ 01 ( Az — 24-1), ysr1 — ¥) + (A2, y) — (AT, ye41)
—(Az11, Y1) + (Az, ye1) — (Aze, y) + 01 (AT — 1), Y1 — Y) + (ATi41,9)
= —(A@t41 — 2), Yer1 —y) + 01 (A — 2e-1), Y1 — ¥)-
Also, we can write the above expression as follows
— (A(@ir1 — 1), Ye1 — ) + 01 (AT — Te-1), Y1 — )
= —[(A(@es1 — @), yer1 — y) — 1 (Alze — 2e-1), 9 — y) + 01 (A@e — 24-1), Yyt — Yet1)]-
From (25), we can rewrite the upper bound for gap function as follows
Q(zt41,2) < (g7 = )llz = 2e|® = g lle = zenl® + 25 ly — well® — (5 + 50)lly — yer |
- <A($t+1 = @) Yea1 = Y) + 01 (Alzy — 2-1), 90 — ) (26)

L,
gT, llyesrr — 3/t||2 - (Tiu - 7‘#)||33t+1 - JL‘t||2 =01 (ATt — T4-1), Yt — Yer1)-

Hence, multiplying both sides by ~;4; and summing up till K gives us an upper bound for the average gap function for
LPD. We have

2 — 2zl + 5=l — vl — (55 + )y — v %]

K K
Z%+1Q(2t+1; Z’YtJrl % - /;—f)Hx —a||” - zm

t=1

- Z%H[(A(xtﬂ —21), Y1 — ) + O (Al — 1),y — )]

K
- Z%H[%ﬁ“ytﬂ - yt||2 + (27:% - Tf)||$t+1 - $t|| =01 (A — 24-1), Yt — Ye41))-
t=1
(27
To simplify each summation in (27), let us start with the first one
Z%H[(ﬁ — )l — 2 - a7l — o+ 5=y — vell? = (5 + 59y — yesa ] (28)
If we assume that for each ¢ > 2, we have (21a) and (21b), the above summation (28) is upper bounded by
<Yo(g = e — 21 )? =g llT = 2ra|? F 2o 1y — w1lP = v (g + 50y — v 1. (29)
For the second summation by assuming (21c) for ¢ > 2, we have
= (A — 20, 01 — 9) + 01 (Al — 21), v — ) (30)

<yl Az 1 — zx lllyx+1 — Y-

12
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For the third summation in (27), by assuming condition (21d), we have

K
=Y vrila e — well® + (55 — O zepr — mell® = 0oy ( Ae — 2-1), 9e — Yeg1)]
t=1
K
< - [%+1ﬁ|\yt+1 — ye||? +%(271n - 7’)”% — x|
t=2
L
—Yer10e-1 | Allllze = e lllyesr = vell] = Y1 (gir = S lors1 — 2 ?

L
< —’7K+1(27%K — )llers1 — x|
Therefore, from (29), (30) and (31), one can reestablish (27) as

D 101Q(ze41,2) < va(zh — E)le — mlP — v g 12 — 2 |® + 05 Iy — v
— V&1 (g + Y =y = v (g — ke — ekl

+yrrllAllzr = zrlllyr+r =yl

Note that Zfi 1 Ye+1Q (241, 2) can be rewritten since

1

L
—(ome + )y —yrall? = (g = Plarsr — 2l + [Alllzxs — 2xlllly — yral

A 2
<- (( + 11g) - ") Sy = yaca |

Nk

Note the above relation holds since

L
7]K

~(gm = i —ax|® + [ Alllexr - xllly — yr |l <

Thus

D 1@z, 2) < B — pp)lle — a1 = Bl — wxcn | + 92 ly — wl?

A 2
- L{gﬂ (Hg + % o 1|_|Lf> lly — yK+1||2'

NK

Also, at z = z*, since the gap function is non-negative, we have

NK

A 2
(ug + A - ") ly = yrcal® < 2 (E = pp)llz — 2l = B2z — o |® + 22 My —

As a consequence of Theorem A.3 and the convexity of Gap function, one can conclude the following

Gap(zx+1) < serbo [ B (5 —np)llo — o1l = B2 lle —wacn |2 + 32y — v
A
— 15 (Hng L - 7l H > ly — yr+1l?
nK Ly

K
Doteg Vi1Ze41

Where Zg 11 = SR
t=1

13

3

(32)

(33)

(34)

(35)
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A.1. Proof of Theorem 3.1

Proof. As one can observe, the mentioned values as step-size policy parameters satisfy the required conditions (21a)-(21d).
Additionally, from (22) we know that

Gap(zk+1) < TK

1 1 2 1 2
m[%rm”x_flu + 25 ly —will?],

By considering mentioned values in (3) for the parameters, the upper bound is

_ L +L 4| A2
Gap(zx1) < — g (L 7 25— | + (1 ) 5y — w1
=12 Tus
Thus
- 4 Lyyips+Ly 2 AlAPy,, .2
Gap(zus1) < 3+&)[<1+M>[ o — |2 + AL 1y — ] %]

A.2. Proof of Theorem 3.2

Proof. First, note that the chosen values in (6) for the algorithm parameters hold the conditions (21b)-(21d) and (5). From
the upper bound defined for the weighted gap function in (27) we know

K
D r1Q(zer1,2) Z%+1 — e —zl® = g e — wen I + 5 ly — well* = (5 + 59y — e ]
t=1 t=1

- Z%+1[<A(mt+1 —3), Y41 — ) + O (Alze — 2e1), ye — )

K
= vl e — wl® + (5 = B lwers — 2> = 01 (Al — ze1), 11 — vrg))-
t=1
(36)
One can rewrite Zt 1 %+1[(% Bl — || — 2m |z — z¢11]|%] as following
Hw o || "Yt+1 _ Hw*w *
2m + Z 'thl 2t ’ (37)

From (5) S;%DX + (K — 1)LfDX.

Using the similar procedure we used in proving (22), and by the fact we showed in (35), Gap function at Zx; has the
following upper bound

Gap(2k+1) ﬁ(m D% + (K — 1)LfD§< +2D7)

A

Then
2
Gap(zx11,2) < 7 (LALD + (K + 1)L D% + 1y DY )

— 4D§(HAH /Hg+Dyl¢g +

2(K+1)LyD%
K? :

B. General Analysis of Algorithm 2 (ALPD)

In this part, we focus on the proofs of the statements we mentioned in Algorithm 2. Moreover, we present a new proposition
(Proposition B.1) which is crucial in convergence analysis.

14
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B.1. Proof of Proposition 4.5

Proof. The approach we use here is induction. First, observe that 31 =1 € [%7 1]. Now let us assume Proposition 4.5 is
true for 3; which means % < B¢ < t. Let us first verify the lower bound.

Induction hypothesis (3; < t): By using step-size policy for 841 in (13) (Bt+1 = 1 + 64410:), and the fact that ;1 < 1,
one can conclude that 5,11 <t + 1.

Induction hypothesis (3; > %)z Using the similar assumptions for verifying the upper bound, we have

Bit1 =1+ 0115

t+1
> 1+ 77t

then B; 11 > 1+ % = % Hence we proved that 3,11 € [%,t +1]. O

B.2. Statement and proof of Proposition B.1

Proposition B.1 captures the impact of introducing {3, };>1 on errors incurred by linearizing f in more detail.
Proposition B.1. Let 5; > 1 then for all z € Z, we have

BiQ(Zi41,2) — (Bt — VQ(Z, 2) <(V (), Tp41 — ) + 2%”17“1 —¢)?
+[9Wir1) — 9W)] + [d(wi11,y) — d(, yeq1)]-

(38)

Proof. From Algorithm 2, one can say Z¢+1 — 2, = 8; ' (2441 — 7). Using this observation and convexity of f, we have

Bef(Tey1) < Bef(zy) + Be(V f(zy), Te1 — 2y) + %”Et+1 — x|
= Bif (@) + B VI (), Bor — m) + g lweys — ol
= Buf(2,) + (Be = D(V (@), T — ) + (VS (@) o1 — ) + 5 |2 — e
= (Be = D[f(z) +(Vf2) e — )] + [flay) +(Vzy),z —zy)]
+(Vf(zy), w441 — ) + Tﬁt||$t+1 — ||
< Be = Df(@) + f(@) + (Vf(zy), 2041 —2) + Q%Hl“tﬂ — .
Moreover, by convexity of g and definition of ¥, ;, we have

Big(Fer1) — Beg(y) <(Be — 1)g(9e) + 9(yev1) — Brg(v) (39)
= (B: — D]g(@:) — Beg(W)] + 9(ye+1) — 9(y).

Also, for the coupling function, we have

Bilo(Te+1,Y) — (@, Ges1)] — (Be — D)[B(Tr, y) — (2, 5t)]
= [Be0(Zt11,y) — (Bt — V)o(Zt, y)| + [ Bed(x, Yes1) + (Be — 1)d(z, )]

For the first piece in the right hand side of the above inequality, we have
Bid(Zt11,y) — (Be — 1)d(Zr, y) < d(BiZi1 — (B — 1)T4, y)
= ¢(Tt41,Y)-

Note that the above inequality is based on definition of ;1 in Algorithm 2 and convexity of ¢(-, y) for all y € Y. Similarly
the second piece of (40) can be upper bounded as follows

—Bid(2, Yr1) + (B = )o(@,5t) < =@, yi41),

From the definition of primal-dual gap function and the mentioned upper bounds for each terms, one can construct the
following inequality

BiQ(Zi+1,2) — (Br — 1)Q(z1,2) <V f(zy), Te41 — x) + %||$t+1 — z||?
+[9(yt+1) — 9] + d(Tey1,y) — d(2, Yir1)-

(40)

15
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B.3. Proof of Lemma 4.1

Proof. Using the optimality of y;,1 and from LemmaA.1 for 6 = 0, we have

I?

(Vg(ye), yer1 —y) S% [y = well®> = 1y — yesr I = llye — yer 1°] = (ves y — waga)- (41

Note that
(Va(ye), 1 —y) = (VaWe), yerr — ye) +(Va(ye), v —y)-

From strong-convexity and smoothness of g, we know that

L
(Vo) yerr = ye) = 9(ee1) = 9(ve) — Fllye — e |1,
and
(Va(e),ye —y) > g(ye) — 9(y) + 5 lly — yel|.
Adding these two inequities and with (41), we can obtain an upper bound on ¢(y:+1) — g(v)

9(yer1) —g(y) < %( — pg)lly — well* = %(*— L) llye — yesal” — 27—t ly — w1 l® = (e, y — Yeg1)- (42)

Also, from the optimality of x4, we have

(V) zee — ) Sqpllle = 2el® = 2 — 2e® = 2o — 2)?] = (Vb (@, g1, 2241 — ). (43)

From Proposition B.1, (42)and (43), one can reconstruct the following upper bound for the gap function at one single
iteration

_ _ L
BiQ(Zt+1,2) = (B = DQ(21,2) < gy llw — x|l = g o — zen|” = (5 — o) lze — e |12

- Tn‘ly*yt+1||2 - (% - *)Hyt Yer1ll? — (v, Y — Yrg1)
—(Vad(Te, Y1), Teg1 — ) + P21, Y) — O(2,Yi41) + (% - %) ly — yt||2-
Now, let us add and subtract ¢(x+41, y4+1) to the right hand side of above inequality, then

BiQ(zr41,2) — (B = NQ(21,2) < g-llv = 24l* = = llw — | = (55 = ) 1o — w2
- TnHy—yt+1H2 - (217, - *)Hyt yt+1||2 —(v6,Y — Yir1)
—(Vad(@t, yet1), Tep1 — ) + ¢(@e41,Y) — ¢(@e41, Yes1)
+ ¢(Tey1, yer1) — O(T, Yer1) + (% — )y - yell.

By the L., of ¢(-,y) forall y € Y of ¢ one can say that

— (Vo d(Te, Y1), Teg1 — @) + (@41, Yeg1) — (T, Yeg1)

(44)
< Bl — x|
Based on these last two inequalities, one can immediately conclude (8). O
B.4. Proof of Lemma 4.2
Proof. From Lemma 4.1, and concavity of ¢ in x, we have
A(wig1,y) — d(@ir1,yev1) < (Vyd(Tes1, Yer1), ¥ — Yir1)-
Therefore, by the definition of v; in Algorithm 2, (8) and above inequality, we have
BiQ(Zi41,2) — (B — 1Q(%, 2) < 27], & — ¢ ]|* — gm & — 2| + (% - 79)”1/ yell* = 27, Y-y ll?
L
(ﬁ - Tﬁft - L”)th — $t+1||2 (% - *)Hyt yt+1|| 45)

+ (Vyd(@ii1,Ye41) — Voo (@, Yt), ¥ — Yey1)
—0:(Vyd(xt,yt) — Vyd(Te—1,Yt-1),¥ — Yet1)-

16
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Notice that

0:(Vyd(@e, yt) — Vyd(Te—1,Yt-1), Y — Yt+1)
= —0:(Vyo(re,yt) — Vyd(@t—1,Y1-1), Y — Yt) — O Vyd(@t, yt) — Vyd(@r—1,Yt—1), Yt — Yt41)-
Hence, the previous inequality can be written as

_ _ L
BiQ(Ze41,2) = (B = DQ(21,2) < gp-llw — @l” = g lle — 2o |? = (5 — 2 — 521zt — 2|

+ (5 = 5)lly — wel® = S ly—venl® — (55 — %) $llve — vera|?
+ (Vyd(@es1, Y1) — Vyd (e, y1), ¥ — Y1)

- 9t< Vyd)(xt’ yt) - Vyd)(xtfl» Yi—1),Y — yt>

= 0u(Vyd(@e, yt) — Vyd(Ti—1,Yt-1), Yt — Ye41)-

Now, by multiplying both sides by ; and letting 6; = %, t > 2, we have

_ L
BeyQ(Ze41,2) — (B = D1eQ (21, 2) < gl — wl|® = 2|l — wora |* = ve (g — 2 — 582 e — e |
L
+’Yt(27 =2 ly — wel® - 2= |ly- Yo || — %(% =) e = yea I
+ 9 Vyd(@t1, ye41) — Vyd(t,Yt), ¥ — Yet1)
— Y1 (Vyo(@e, y¢) = Vyd(@i—1,y0-1),y — Ye)
- ’yt71<vy¢(xt7 yt) - Vy¢(93t717 ytfl)v Yt — yt+1>~

(46)
The last inner product can be written as follows
- ’7t71<vy¢($ta yt) - Vy¢($t717 yt71)7 Yt — yt+1>
= —Y-1{Vy@(@1, Y1) — Vyd(xe—1,9), Yt — Y1) — Ve—1(Vyd(Ti—1,y) — Vyd(Tr—1,Y1—1), Yt — Yet1)
< Y-1lIVyd(@e, yt) — Vo @1, ye) [lye — yer1ll + ve-11Vy@(@i—1,91) — Vyd(zi—1, ye—1) | lye — ye41ll
< Loyyi—1llwe — we—allllye — yea | + Lyyve—allye — ve—1llllve — yesall-
Since 0 < 0; < ”T—;l for each of norm multiplication, we have
Layve-1llze — zea||lye — yega |
4L3 i
< =T gy — [P 4 2y — yen |
AL i a7
< =l — e P+ 2 e — v |1
Similarly
Lyy'ytleyt — Y1l lye — Y1l
AL vi T
< %”yt v l® + & -y — Yer
4172
< =T e — yeall® + 2 llye — vera |l
Using these results and combining it with (46) and 8,11 — 1 = 3:6:41, we have
B1Q(Ze11,2) = (B — D1eQ (21, 2) < gl — ael|® = |l — woia I” +ve (55 — 50y — well® = 251y — e |12
+ ’Yt( y¢(xt+17 yt+1) - y¢(93t7 yt)v Yy— yt+1>
= Ye-1(Vyd(xt,yt) — Vyd(T—1,Ye-1), ¥ — Ys)
L AL2 Ny T
ez — 28 — B85 lwe — @ P+ =T oy — 2 |
L 4172
- 7t(4ft Tg)Hyt - yt+1H2 + MH% yt71||2-
47)

17



Accelerated Primal-Dual Methods for Convex-Strongly-Concave Saddle Point Problems

Applying (47) inductively and letting zg = x1, 81 = 1, we conclude that

BrYkQ(ZK+1,2) < Br(2, 2k)) + 7 (Vyd(Tr 41, Yk +1) — V@ (@K, YK ), Y — Yk +1)
K-1

VK (3 — 2= — e )lok — wr | — Z Yelmy — o — 55— 2L, m) o — s |
t=1
=k (e = Bk =yl = D0 el = 5 = 205, 70) lye = e |

By assuming conditions in (9), one can observe that Lemma 4.2 holds. O

B.5. Proof of Theorem 4.3

Proof.
K-1
Bic(z2) = Bdlle —anllP = Y0 (3 = 282 ) dlle - avpa® = o — o
t=1
K-1
B E = ly =l = F = el = 3 (2 =Gy — 1) 3y - e P
t=1

< (B + KLew) DX + 2DY — 25 |ly — yrea |,

where the second last inequality stems from the new condition (11) and the assumption that 'Y' < :Z 1 + %

Moreover, Y ( Vyd(Tx+1,Yr+1) — Vy@(2K, YK ), ¥ — Yi+1) can be bounded as follows
Y Vyd(rri1,yr41) — Vyo(Zr, YK ), Y — YK +1)
=Y (Vyd(Tr11,Yx+1) = Vyd(Tr11,YK), ¥ — Yx+1) + Y (Vyd(@e1,U) — Vyd(Tr, YK ), Y — Y1)
< v Lyyllyx — yrlllly — yxall + & Loyl — xalllly — v

2L3 Vi 212 ~%.7
< = lyk =y 2y -y P+ = ok = aral® A+ 25y = yreall?
2Lyy’YKTK 2L7 y'YKTK

IA

lyx — yr41)® + 2 el — yr+l® + ok — xxial® + 2 ey — yr+1|*.
Then from Lemma 4.2, we have

Br Yk Q(ZK11,2) < Br (2, 2(k]) + Y (Vyd (T 1, Yx11) — Vyd(TK, UK ), Y — YK 41)

- VK (27},{ — ot - Lf) zrs1 — 2k | = v (ﬁ - *) lyx — yrcsal?
< (Zf +tLyy) D% + %DY — 22 |ly - yr+1l® + 2 ey — yr+1l®
— VK (271%( — o — 1= - LmyTK) lercr —xcll? = i (g — % = Lyyme) lyx — v |1
From the conditions of Lemma 4.2, we have
BrVkQ(ZK41,2) < (% + KL,;) D% + %D% (48)
Dividing both sides by SBxvx will give us (12). O

C. General Analysis of Algorithm 3 (Inexact ALPD)

We provide this section to highlight the similarities and important differences between ALPD and inexact ALPD algorithms
in a mathematical setting. Lemma C.1 shows how the dependence on L, is alleviated in this approach.

Lemma C.1. let Z; 1 = (T441,Teq1) and if
_ L
BiQ(Ze11,2) — (B = DQ(Z, 2) < gy llo — @el|* — gy llo = e |? = (55 — 25) lze — 2o ||
Ly
+ (% — )y - yell* — QT, ly—yeall® — (% 5) 51y — yer? (49)

— (v Y = Yer1) + 0(@er1,y) = d(@er1, Year) + 0 + /250 weqr — z||.

18
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where §; denotes to using a §-approximate inexact method in primal.

Proof. The approach we use to prove Lemma C.1 is similar to one we used in Lemma 4.1. The only difference is rooted
using the inexact method to find an J,-approximate solution for primal which is mentioned below

From the optimality of z;,; using Lemma A.1, we have the following

(Vf(z,), 2441 —2) < %Hm - xt||2 |Te41 — fftHz |Te 41 — xH

Qn, | 27], |

¢(xt+17yt+1) ¢(x7yt+1) 525 2 ! 5t||mt+1 l'”z
Nt

Above inequality leads to the following change in (44) such that instead of using linear approximation of ¢ in z, we use the
exact coupling function. Particularly, (44) changes as

—O(Te41, Y1) + O, Ye1) + O(@e41, Ye+1) — O(@, Y1) = 0. (5D
Observe that unlike the case in (44), we do not have any dependence on L. O

Lemma C.2. Suppose these conditions hold

fr=1, PBr1—1=Bibii1,
Tt—1 Jt Ft—1
0<f <™=t 2 <

Ne — Me—1’ (52)
=1, 6 =22 L2912 5 >0,
1 L 2
o — 5 — 2Ly, >0.
Then, the following inequality holds
BrVkQ(ZK 11,2) < Br (2, 2(k)) + YR Vyd(Tr 11, YK 1) — VyO(TK, YK), Y — YK 1)
K
+ 3w AE 6Dk — i (5 = 5 ) lwwcsn — kP
— (53)

— VK (ﬁ - 7") lye — yrall* + Z%ét,

where Bk (z, 2(k]) is the following

(2, 2(x]) Z{zm |z — 9'3t|\2 — ||z — $t+1||2] +%(ﬁ - %)Hy - ?Jt||2 gﬂ “ly — yt+1|| e

Proof. The line of proof we follow in this lemma is the same as we used in proving Lemma 4.2. The only difference in
this case is having additional terms in the upper bound which are caused by using a d;-approximate solution in z. These

- . 1 K
additional terms translate into , /4a6tD§< and D, Y0y L]

C.1. Proof of Theorem 5.1

Proof. As we mentioned earlier, the upper bound for the Gap function can be obtained similar to the Section 4.1.1 where

L, is zero. Moreover, the errors caused by minimization step in (15) are added as ==L + ' O
BrVK BrVK

C.2. Proof of Proposition 5.2

Proof Suppose J; = - and ¢ is a linearly increasing sequence. Moreover step-size policy in 13 implies sequences Ve

and are linearly i 1ncreasmg and decreasing respectively. Since ¢ = 3.5, two summations Zt 17t9¢ and Zt e TRVAYAI
become in order of O(1) and bounded by a constant. O
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D. Detailed process of problem generation in Section 6
D.1. Process of problem generation in Subsection 6.1

We take the primal objective function f(x) as a quadratic function of the form below
_1.T T
flz) =352 Qz+c =, (54)

where () € R™*" is a positive semidefinite matrix and ¢ € R" is a random vector with elements drawn from the standard
normal distribution. We set Q = AT DA where A € R"*" is a random orthonormal matrix and D € R’ ™™ is a diagonal
matrix whose elements are drawn from a uniform distribution between 0 and 200. To generate the orthonormal matrix A,
first, we generate a random matrix A whose elements are drawn from the standard normal distribution. Then, we use the
MATLARB function orth(A) to return an orthonormal basis for the range of A. For generating the constraint set, we sample
the elements of A € R”™*™ and b € R™ from a uniform distribution between 0 and 1. In this paper, we take n = m = 100
for each problem instance.

For the quadratic constraints, we generate randomized positive semidefinite matrices A;, j € [m] in a similar fashion as
matrix Q. Also, dj, j € [m] are uniformly generated in [0, 1]. We keep d;’s positive to maintain the feasibility of quadratic
constraints (0 is always a feasible solution). For this case, we set m = 10

D.2. Process of problem generation in Subsection 6.3

The strongly-convex concave SPP is defined as below

L = mi Az —b)}. 55
(2, y) == minmax{f(z) + (y, Az — b)} (55)
Where the primal objective function f(z) is defined as (54) and we generate data for this problem similar to the previous
section.

E. Comparison of ALPD and LPD on penalty problems with different norms

In this section, we compare the performance of penalty problems where the norms are not Euclidean anymore. The instances
are created similarly to Section D. Figures 3 and 4 show the performances of both versions of ALPD and LPD in terms of
gap function for the problem (17) when ¢ = co,p = 1 and ¢ = 1, p = oo respectively. To make a better comparison, we set
L to a sufficiently large number (L ~ 200) and plot the last 50 iterates of algorithms. Similar to the penalty problem with
the Euclidean norm, ALPD has a better performance.

F. Comparing step-size policy for two LPD algorithms

Figure 5 compares the convergence rate of the Gap function between those two step-size policies for 10 i.i.d runs with 200
iterations in each run. Note that the value of Ly is controlled so that 200 iterations of LPD for each problem instance give a
satisfactory convergence result. As one can see, our step-size policy has an advantage in terms of having faster convergence.
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0.3 T T 1 T T T
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Figure 3: Comparison of the methods in terms of Gap Figure 4: Comparison of the methods in terms of Gap
function for 10 i.i.d. replications with 100 iterations function for 10 i.i.d replications with 100 iterations
in each replication for {*°-norm penalty problem. in each replication for /*-norm penalty problem.

10!

LPD-Ch&Po
LPD-Thm 3.1

10°

Gap(z)

102

0 20 40 60 80 100 120 140 160 180 200
# of iterations

Figure 5: Comparison between the step-size policies of (3) (LPD-Thm 3.1) and Chambolle & Pock (2016) (LPD-Ch&Po)
for 10 i.i.d. problem instances. Both policies start from the same initial point. Note that LPD only records {Z;41}¢>1.
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