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Abstract

We investigate a primal-dual (PD) method for

the saddle point problem (SPP) that uses a lin-

ear approximation of the primal function instead

of the standard proximal step, resulting in a lin-

earized PD (LPD) method. For convex-strongly

concave SPP, we observe that the LPD method

has a suboptimal dependence on the Lipschitz

constant of the primal function. To fix this is-

sue, we combine features of Accelerated Gradi-

ent Descent with the LPD method resulting in a

single-loop Accelerated Linearized Primal-Dual

(ALPD) method. ALPD method achieves the op-

timal gradient complexity when the SPP has a

semi-linear coupling function. We also present

an inexact ALPD method for SPPs with a general

nonlinear coupling function that maintains the

optimal gradient evaluations of the primal parts

and significantly improves the gradient evalua-

tions of the coupling term compared to the ALPD

method. We verify our findings with numerical

experiments.

1. Introduction

As a class of optimization problems, the min-max saddle

point problem (SPP) has attracted much attention in the

optimization and machine learning literature. The SPPs

contain many classical problems as a special case. E.g., we

can transform convex optimization problems with smooth

or nonsmooth objective functions into a min-max saddle

point form. One can extend this observation to nonsmooth

nonconvex problems relatively easily. Given their strong

modeling power, SPPs have extensive applications in (dis-

tributionally) robust optimization and adversarial learning.
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In this paper, we are interested in the following SPP

L(x, y) := min
x∈X

max
y∈Y

f(x) + ϕ(x, y)− g(y), (1)

where we refer to f , g and ϕ as the primal, dual and coupling

functions, respectively.

The broad applicability of the SPP model has resulted in

various algorithmic complexity studies in the literature. The

major focus was on the computationally tractable convex-

concave case, i.e., L(·, y) is convex in x for all y ∈ Y
and L(x, ·) is concave in y for all x ∈ X . In this setting,

maxy∈Y L(x, y) is a nonsmooth function in x. Accord-

ing to Nemirovski & Yudin (1983), subgradient descent

for a black-box nonsmooth convex function achieves an ϵ
optimality error in O( 1

ϵ2 ) subgradient evaluations. In a sem-

inal work, Nesterov (2005) exploited the max-form of the

problem to obtain a significantly improved gradient com-

plexity of O( 1ϵ ). This result broke the earlier established

complexity lower bounds and is popularly known as Nes-

terov’s smoothing technique. Nemirovski (2004) presented

an Extragradient method that performs one extra gradient

descent-ascent step in each iteration. This method can obtain

an ϵ error on the stronger gap function criterion (c.f. Defi-

nition 2.1) using O( 1ϵ ) gradient evaluations. Subsequently,

(Chambolle & Pock, 2011; 2016; Chen et al., 2014) showed

primal-dual (PD) type methods which remove the additional

gradient descent-ascent step and maintain an O( 1ϵ ) com-

plexity when ϕ is a bilinear coupling. Later, (Hamedani

& Aybat, 2021) extended it to the general convex-concave

coupling functions.

The PD methods in (Chambolle & Pock, 2011; Hamedani

& Aybat, 2021) assume that the proximal operators of f
and g are easy to evaluate. For the bilinear coupling term,

i.e., ϕ(x, y) = y⊤Ax, Condat (2013); Vu (2011) introduced

LPD method where they used the linear approximation of f
in a PD method and proved the convergence of its iterates

to saddle point. Chambolle & Pock (2016) considered the

same design and showed LPD method has the convergence

complexity of O(Lf+∥A∥
ϵ ), where Lf is the Lipschitz con-

stant of ∇f and ∥A∥ is the operator norm of A. Observing

that this dependence is not optimal in Lf , Chen et al. (2014)

proposed an accelerated PD method whose complexity is of

O(
√

Lf

ϵ + ∥A∥
ϵ ) which significantly reduces the impact of
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Lipschitz constant Lf on the complexity.

Chambolle & Pock (2011; 2016) also show that when f
is strongly convex with modulus µf > 0 and the coupling

term is bilinear, the LPD method exhibits a much smaller

complexity of O( ∥A∥√
µf ϵ

), while using the exact proximal

operators for f and g. Hamedani & Aybat (2021) extend

similar results for semi-linear couplings (linear in y only).

However, to our best knowledge, a few works study the

impact of linearization of f(x) when g(y) is strongly con-

vex with modulus µg > 0. Kovalev et al. (2022), showed

linear convergence under a restricted strong concavity-type

condition for a bilinear coupling function. Thekumpara-

mpil et al. (2019), introduced a three-loop algorithm called

Dual Implicit Accelerated Gradient (DIAG) where each it-

eration contains an implicit step in which an AGD is run.

Thekumparampil et al. (2022) proposed the first single-loop

optimal algorithm called Lifted Primal-Dual method for

SPPs under strong concavity. However, their analysis heav-

ily relies on the bilinear coupling function and it is unclear

whether it can be extended for nonlinear coupling.

The SPPs with strong concavity have a direct application

in the Nesterov’s smoothing framework: a nonsmooth con-

vex function maxy∈Y f(x)+ϕ(x, y) can be smoothened by

adding a strongly concave regularizer−g(y) resulting in (1).

Moreover, using appropriate Y and g, we obtain equivalent

formulations of a variety of (smoothened) penalty functions

used in constrained optimization. Assuming the exact proxi-

mal operator of objective f in such cases is quite impractical.

Hence, we need to study methods that can handle lineariza-

tion. We intend to make contributions to this setting, i.e.,

µg > 0 and f is linearized. See Table 1 for a comparison of

our work with the relevant literature.

1. Our first contribution is to observe the subtle but impor-

tant difference due to linearization. In particular, when f
is linearized, the case of µg > 0 is qualitatively ªharderº

than µf > 0. Hence, the LPD method exhibits a weaker

complexity of O(Lf

ϵ + ∥A∥√
µgϵ

) (c.f. Theorem 3.1 and 3.2).

2. A careful observation of the above complexity yields that

the LPD algorithm is unable to mitigate the impact of the

primal Lipschitz constant Lf when µg > 0. Hence, we seek

an algorithm that can accelerate convergence in the primal.

Moreover, we expand the scope of the problem to include

the general nonlinear couplings. To address both questions,

we imbibe elements of Nesterov’s Accelerated Gradient

Descent (AGD) in the PD method for general nonlinear

couplings, and propose a novel single-loop Accelerated Lin-

earized PD (ALPD) method (see Algorithm 2). We show

that (i) for the semi-linear coupling (linear in x-only), the

ALPD method exhibits the complexity of O(
√

Lf

ϵ ) which

significantly improves the dependence on Lf compared to

the LPD method1; (ii) for the general coupling, it exhibits

the complexity of O(
√

Lf

ϵ + Lxx

ϵ ) where Lxx is the Lips-

chitz constant of ∇xϕ(·, y).
3. To improve the above complexity in Lxx, we propose

an Inexact ALPD method. It is a two-loop algorithm that

solves a proximal problem using AGD in the inner loop

while the outer loop follows a ªconceptualº ALPD method.

The Inexact ALPD method obtains an ϵ-error in O(
√

Lf

ϵ )

evaluations of ∇f and Õ(
√
Lxx

ϵ3/4
) evaluations of ∇xϕ. Es-

sentially, this method maintains the optimal dependence of

the complexity on Lf and improves the dependence on Lxx.

4. We verify our findings using numerical experiments on

the penalty problems for linear and nonlinear constraints.

1.1. Related works

The SPPs are extensively studied in the literature due to

their broad applicability and strong modeling power. Here,

we provide a brief review of the most relevant first-order

methods that consider the issue of algorithmic complexity

for the SPPs.

Classical results: Nesterov (2005) reformulated a determin-

istic optimization problem into an SPP form and showed the

first optimally converging algorithm using the smoothing

framework. Subsequently, Nemirovski (2004) showed the

optimal convergence of the mirror-prox method (a gener-

alization of the extragradient method (Korpelevich, 1976))

for the variational inequality problem which contains the

nonlinear SPP as a special case. Separately, Nesterov (2007)

and Tseng (2008) provided two optimally converging algo-

rithms for the SPPs. This approach was further extended by

Monteiro & Svaiter (2010) in an HPE framework to relax

the bounded domain assumption. Nemirovski et al. (2009)

presented a mirror-descent type algorithm for the stochastic

SPP. Juditsky et al. (2011) proposed a stochastic version of

the mirror-prox method. Chen et al. (2017) incorporated a

multi-step acceleration scheme into the stochastic mirror-

prox to improve the convergence rate.

Bilinear case: While extragradient (or mirror-prox) re-

quired two ∇x,∇y evaluations in each iteration, the primal-

dual method of (Chambolle & Pock, 2011) required only one

such evaluation per iteration and maintained the same con-

vergence rate. Several variants of this method are proposed

in the literature for bilinear couplings. E.g., the linearization

of f is presented in (Chambolle & Pock, 2016), optimal

accelerated-version is introduced in (Chen et al., 2014), ran-

domized block-coordinate settings are considered in (Dang

& Lan, 2014; Zhu & Storkey, 2015; Yu et al., 2015; Zhang

& Lin, 2015).

Nonlinear coupling: For the nonlinear coupling term,

1See Remark 4.6 for similarity with (Hamedani & Aybat, 2021)
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Table 1: Comparison of our work. Gradient complexity is for obtaining an ϵ error in gap function.

Coupling Linearizing f Gradient Complexity

µf > 0 µg > 0
(Chambolle & Pock, 2011) bilinear No O( 1√

ϵ
) NA

(Chambolle & Pock, 2016) bilinear Yes O( 1√
ϵ
) NA

(Hamedani & Aybat, 2021) semi-linear No O( 1√
ϵ
) NA

(Thekumparampil et al., 2022) bilinear Yes NA O(
√

Lf

ϵ + ∥A∥√
µgϵ

)

LPD (Algorithm 1) bilinear Yes O( 1√
ϵ
) O(Lf

ϵ + ∥A∥√
µgϵ

)

ALPD (Algorithm 2)
semi-linear

Yes NA
O(
√

Lf+Lyy

ϵ +
Lxy√
µgϵ

)

general O(
√

Lf+Lyy

ϵ +
Lxy√
µgϵ

+ Lxx

ϵ )

Inexact ALPD (Algorithm 3) general Yes NA
For ∇f,∇yϕ : O(

√

Lf+Lyy

ϵ +
Lxy√
µgϵ

)

For ∇xϕ : O(
√

Lxx

√
Lf+L2

xy/µg

ϵ3/4
log( 1ϵ ))

Hamedani & Aybat (2021) proposed a primal-dual method

which can be seen as an extension of the original primal-dual

method. Its extension to a randomized block-coordinate ver-

sion was presented in (Hamedani et al., 2018). Another

variation of significant consequence is proposed in (Boob

et al., 2022b) for the stochastic smooth/nonsmooth function-

constrained optimization.

Strong convexity: To our best knowledge, the existing

works look at the strongly convex case (µf > 0). For the bi-

linear couplings, Chambolle & Pock (2011) shows a smaller

complexity of O( 1√
ϵ
). Hamedani & Aybat (2021) presents

the first accelerated convergence result for semi-linear cou-

pling (linear in y-only). Lin et al. (2020) proposed an inexact

accelerated proximal point algorithm which has a nested

three-loop structure and obtains an optimal complexity up

to a log3( 1ϵ ) factor. The problem of obtaining optimal rates

for general nonlinear couplings with single-loop algorithms

remains open.

2. Notation and Definitions

We use ∥·∥q and ∥·∥ to denote ℓq-norm and Euclidean norm

of any vector, respectively. ⟨·, ·⟩ stands for the standard

inner product of two vectors. For a general function h,

∇h expresses the gradient of h. ∇vh implies the partial

gradient of h with respect to variable v. We use [m] to

denote {1, . . . ,m}. For a compact set W , we define its

diameter DW := maxw′,w∈W ∥w′ − w∥/
√
2. We use z =

(x, y) as the combined variable defined on the set X ×
Y ≡ Z. We naturally extend this notation for z̄ = (x̄, ȳ),
zt = (xt, yt), z̄t = (x̄t, ȳt) and so on.

Problems setting. In problem (1), X ⊆ R
n and Y ⊆ R

m

are compact convex sets, f : X → R is a convex primal

function, g : Y → R is a convex dual function and ϕ(x, y) :
X × Y → R is a convex-concave coupling function, i.e.,

ϕ(·, y) is convex for all y ∈ Y and ϕ(x, ·) is concave for all

x ∈ X . The gap function defined below acts as a measure

of convergence.

Definition 2.1. For a point z̄ ∈ Z, we define its gap as

Gap(z̄) = max
z∈Z

Q(z̄, z).

where Q(z̄, z) := L(x̄, y)− L(x, ȳ).

It is easy to see that Gap(z̄) ≥ 0 and z⋆ ∈ Z is the saddle

point for (1) if and only if Gap(z⋆) = 0. Hence, we can

measure the quality of an approximate solution using the

Gap function.

Definition 2.2. For ϵ > 0, we say that z̄ ∈ Z is an ϵ-solution

of problem (1) if Gap(z̄) ≤ ϵ.

We call a function h : H → R to be strongly-convex with

modulus µh > 0 if it satisfies h(x′)−h(x)−⟨∇h(x), x′−
x⟩ ≥ µh

2 ∥x′ − x∥2 for all x′, x ∈ H

Throughout the paper, we make the following assumptions

on the general coupling function ϕ(x, y):

Assumption 2.3. We assume function ϕ(·, y) is Lxx-

smooth for all y ∈ Y , ϕ(x, ·) is Lyy-smooth for all x ∈ X
and ϕ is Lxy-smooth, i.e., ϕ satisfies the following relations,

respectively, for all x, x′ ∈ X, y, y′ ∈ Y :

∥∇xϕ(x
′, y)−∇xϕ(x, y)∥ ≤ Lxx∥x′ − x∥,

∥∇yϕ(x, y
′)−∇yϕ(x, y)∥ ≤ Lyy∥y′ − y∥,

∥∇yϕ(x
′, y)−∇yϕ(x, y)∥ ≤ Lxy∥x′ − x∥.

If all Lipschitz constants above are positive, then ϕ(x, y) is

a general nonlinear coupling function. If either Lxx = 0
or Lyy = 0, then the coupling function is linear in x or

y, respectively. We refer to these cases as the semi-linear

coupling. Lxx = Lyy = 0 implies a bilinear coupling.
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3. Technical overview - The LPD method

For the bilinear SPP, i.e., ϕ(x, y) = y⊤Ax, most PD meth-

ods use computationally expensive proximal operators of f
and g. This may be reasonable in some applications where g
is a regularizing function. However, that is not the case for f
which arises from the primal optimization. To overcome this

challenge, the linearized PD method (Chambolle & Pock,

2016) uses a linear approximation f(xt)+⟨∇f(xt), x−xt⟩
instead of evaluating a proximal operator. Algorithm 1 il-

lustrates a typical LPD method, where parameters τt and

ηt denote the step-sizes (or learning rates) in the dual and

primal updates, respectively. The momentum parameter θt
is used to generate an extrapolated sequence {x̃t} which

is then used for the accelerated update of the dual y (line

3). On the other hand, the method uses a simple gradient

descent step to update x (line 4). The algorithm outputs

an ergodic average after K iterations. Chambolle & Pock

(2016) showed an accelerated convergence of O( 1
K2 ) for

the strongly convex case (µf > 0, µg = 0). However, the

strongly concave case (µf = 0, µg > 0) is missing. Fur-

thermore, it is important to note that the two cases are not

symmetric since we are linearizing the primal function f .

A closer inspection shows that the two cases are quanti-

tatively different. Here, we present two contrasting (and

hence, somewhat surprising) results for the LPD method

for these cases. Theorem 3.1 considers µf > 0, and show

convergence rate of O( 1
K2 ) for the LPD method 2. How-

ever, the LPD method does not effectively handle the error

caused by the linearization of f when µg > 0 (see Theorem

3.2). Below, we state the step-size conditions required for

the analysis of the LPD method. See Appendix A for proofs

of all results in this section.

Step-size conditions for the LPD method: For t ≥ 2

γt+1(
1
ηt
− µf ) ≤ γt

ηt−1
, (2a)

γt+1

τt
≤ γt

(

µg +
1

τt−1

)

, (2b)

θt−1 = γt

γt+1
, (2c)

θt−1∥A∥2 ≤ ( 1
ηt−1
− Lf )

1
τt
. (2d)

Theorem 3.1. Assume that µf > 0, µg = 0 and set param-

eters {γt, θt, ηt, τt} as per the following:

γt =
t
2 +

Lf

µf
, θt−1 =

t/2+Lf/µf

(t+1)/2+Lf/µf
,

1
ηt

= µf
t+1
2 + Lf ,

1
τt

= 4∥A∥2

µf (t+1)/2 .
(3)

Then, we have

Gap(z̄K+1) ≤ 4
K(K+3+4Lf/µf )

[

(1 +
Lf

µf
)[

µf+Lf

2 ∥x− x1∥2

+ 4∥A∥2

2µf
∥y − y1∥2]

]

. (4)

2Though the result is similar to (Chambolle & Pock, 2016), the
step-size policy is significantly different.

Algorithm 1 Linearized PD (LPD) method

1: Initialize x̃1 = x1 ∈ X, y1 ∈ Y
2: for t = 1, . . . ,K do

3: yt+1 ← argmin
y∈Y
⟨−Ax̃t, y⟩+ g(y) + 1

2τt
∥y − yt∥2

4: xt+1 ← arg min
x∈X
⟨∇f(xt)+A⊤yt+1, x⟩+ 1

2ηt
∥x−

xt∥2
5: x̃t+1 ← xt+1 + θt(xt+1 − xt)
6: end for

7: return x̄K+1 ←
∑K

t=1
γt+1xt+1

∑K
t=1

γt+1

, ȳK ←
∑K

t=1
γt+1yt+1

∑K
t=1

γt+1

It is easy to see that the step-size policy (3) satisfies the

conditions in (2). Theorem 3.1 shows O( 1
K2 ) convergence

rate for Algorithm 1. It is also interesting to note that (3)

provides an explicit expression of the weights γt which

results in an explicit bound of Θ(K2) on
∑K

t=1γt for K ≥
1. This bound is usually shown implicitly and for only large

values of K in (Chambolle & Pock, 2011; 2016; Hamedani

& Aybat, 2021). For the semi-linear couplings, a similar

explicit policy is used in (Boob et al., 2022b).

In the second case (µf = 0, µg > 0), however, a step-

size approach similar to (3) is not applicable. The follow-

ing argument provides a rather mechanical intuition: To

have an accelerated convergence rate of O( 1
K2 ), we need

ΓK :=
∑K

t=1γt = Ω(K2) and hence γt needs to increase

linearly in t. In view of µf = 0, (2a) requires
γt+1

ηt
to be a de-

creasing sequence and we get γ2

η1
≥ γK+1

ηK
. Simultaneously,

to mitigate errors generated by linearization of f , we require
1
ηK
≥ Lf (see (2d)). These two relations and linearly in-

creasing nature of γt imply that 1
η1
≥ LfγK+1

γ2
= Ω(LfK).

This is problematic since the final convergence error of

the LPD method is of O( γ2

η1ΓK
) = O(Lf

K ), a weaker con-

vergence compared to O( 1
K2 ). This is not observed when

µf > 0 and µg = 0. Indeed in (3), we see that both γt and
1
ηt

are both increasing in t and still (2a) is satisfied.

The critical issue is that (2a) requires {γt+1

ηt
} to be a de-

creasing sequence when µf = 0. To provide a principled

solution to this problem, we modify (2a) to allow
γt+1

ηt
to

increase with t by a fixed amount (see (5)). This approach

requires a new step-size policy discussed below.

Modified step-size condition for the LPD method: Mod-

ify (2a) as follows while keeping (2b)-(2d) unchanged:

γt+1

ηt
− γt

ηt−1
≤ Lf (5)

Theorem 3.2. Suppose µg > 0, µf = 0 and set parameters

{γt, θt, ηt, τt} as per the following:

γt = t, 1
τt

= µg
t
2 ,

1
ηt

= 2∥A∥2

µg(t+1) + Lf , θt−1 = t
t+1 .

(6)
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Then, we have

Gap(z̄K+1) ≤
2D2

x∥A∥2/µg+D2
yµg

K2 +
2(K+1)LfD

2
x

K2 . (7)

Note that (6) satisfies the modified step-size condition (5)

and (2b)-(2d). From the result, it is clear that for the strongly

concave SPP (µg > 0), the convergence rate of the LPD

method is of O(∥A∥2

K2 +
Lf

K ) when f is linearized.

This result is in sharp contrast with Theorem 3.1 where

the convergence rate is of O( 1
K2 ). We already provided

a mechanical reasoning for the ineffectiveness of the LPD

method in reducing the impact of Lipschitz constant Lf . At

a broader design level, the algorithm itself is not accelerated

in the primal iterate. Indeed, it is simply a gradient descent

in the x-update (see Line 4 in Algorithm 1). This was not

a problem when f was strongly convex. However, when

only the dual is strongly-concave, one needs a stronger

acceleration in the primal to mitigate the errors caused by the

linearization of f . Hence, the rest of this paper is dedicated

to presenting the accelerated linearized PD algorithm and

its variant for obtaining more robust convergence results for

problem (1) when f is linearized and µg > 0.

4. The ALPD method for general φ

In addition to the primal acceleration mentioned in the ear-

lier section, we consider two more generalizations: (i) we

use the linear approximation for g instead of its proximal

operator to allow the use of complex dual functions, (ii) the

coupling function ϕ is a general nonlinear function.

To address the issues mentioned in Section 3 in the broader

settings above, we present the accelerated linearized primal-

dual (ALPD) method (see Algorithm 2). Here, we intro-

duce a new parameter β, which is motivated from a (three-

sequence) form of Nesterov’s AGD algorithm (Nesterov,

1983). If we set βt = 1 in Algorithm 2, then it is easy to

see that xt = xt and x̄t+1 = xt+1 for all t, and we imme-

diately recover the LPD method for the bilinear coupling

ϕ(x, y) = y⊤Ax. Hence, the ALPD method is a gener-

alization of the LPD method in two senses: (i) using the

parameter βt ≥ 1, we aim to put the AGD framework inside

the LPD and reduce the impact of Lf in the complexity, and

(ii) using a new sequence {vt} in place of {Ax̃t}, we allow

for the nonlinear coupling function ϕ.

The following lemma provides a useful recursive relation on

the primal-dual gap function of the iterates of Algorithm 2.

It is later used for bounding the gap function (see Definition

2.1). See Appendix B for proofs of all results in this section.

Lemma 4.1. Let z̄t+1 = (x̄t+1, ȳt+1) then:

βtQ(z̄t+1, z)− (βt − 1)Q(z̄t, z)

≤ 1
2ηt

[

∥x− xt∥2 − ∥x− xt+1∥2
]

Algorithm 2 Accelerated Linearized PD (ALPD) method

1: Initialize x̄1 = x0 = x1 ∈ X, ȳ1 = y0 = y1 ∈ Y
2: for t = 1, . . . ,K do

3: xt ← (1− β−1
t )x̄t + β−1

t xt

4: vt ← (1 + θt)∇yϕ(xt, yt)− θt∇yϕ(xt−1, yt−1)
5: yt+1 ← argmin

y∈Y
⟨−vt +∇g(yt), y⟩+ 1

2τt
∥y− yt∥2

6: xt+1 ← arg min
x∈X
⟨∇f(xt) + ∇xϕ(xt, yt+1), x⟩ +

1
2ηt
∥x− xt∥2

7: x̄t+1 = (1− β−1
t )x̄t + β−1

t xt+1

8: ȳt+1 = (1− β−1
t )ȳt + β−1

t yt+1

9: end for

10: return x̄K+1, ȳK+1

+
[(

1
2τt
− µg

2

)

∥y − yt∥2 − 1
2τt
∥y−yt+1∥2

]

−
(

1
2ηt
− Lf

2βt
− Lxx

2

)

∥xt − xt+1∥2

−
(

1
2τt
− Lg

2

)

1
2∥yt − yt+1∥2

+ [ϕ(xt+1, y)− ϕ(xt+1, yt+1)− ⟨ vt, y − yt+1⟩] (8)

Lemma 4.2 states a step-size condition for parameters

{βt, θt, γt, τt, ηt} and provides an upper bound on the

Gap(z̄K+1) where z̄K+1 is the output of the ALPD method.

Lemma 4.2. Suppose {βt, θt, γt, τt, ηt} satisfy

β1 = 1, βt+1 − 1 = βtθt+1,

θt =
γt−1

γt
, 0 ≤ θt ≤ τt−1

τt
,

1
2ηt
− Lf

2βt
− 2L2

xyτt ≥ Lxx

2 ,

1
4τt
− Lg

2 − 2L2
yyτt ≥ 0, (9)

then, we have

βKγKQ(z̄K+1, z) ≤ BK(z, z[K])

+ γK⟨∇yϕ(xK+1, yK+1)−∇yϕ(xK , yK), y − yK+1⟩

− γK

(

1
2ηK
− Lf

2βK
− Lxx

2

)

∥xK+1 − xK∥2

− γK

(

1
4τK
− Lg

2

)

∥yt − yK+1∥2, (10)

where

BK(z, z[K]) :=

K
∑

t=1

{ γt

2ηt
[∥x− xt∥2 − ∥x− xt+1∥2]

+ γt
(

1
2τt
− µg

2

)

∥y − yt∥2 − γt

2τt
∥y − yt+1∥2}.

A comparison of the ALPD step-size conditions in (9) with

the LPD (in (2)) shows that the impact of Lf can be miti-

gated using the parameter βt. Indeed, for the bilinear prob-

lems, i.e., Lxx = 0 and Lxy = ∥A∥, the fifth relation in (9)

reveals the necessity of condition 1
ηt
≥ Lf

βt
for the ALPD

method. Appropriate choice of βt, (say, increasing with t)
may allow us to increase ηt resulting in a stronger learning

rate. Besides, (2d) requires 1
ηt
≥ Lf and hence, no scope

5
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for improving the learning rate. Theorem 4.3 exhibits a

tangible upper bound on the Gap function that explicitly

shows the dependence of the convergence rate on βt.

Theorem 4.3. In addition to the assumptions in Lemma 4.2,

let the following condition hold for t ≥ 2:

γt(
1
τt
− µg) ≤ γt−1

τt−1
, γt

ηt
≤ γt−1

ηt−1
+ Lxx

2 (11)

Then, we have

Gap(z̄K+1) ≤
(

γ1

βKγKη1
+KLxx

βKγK

)

D2
X+ γ1

βKγKτ1
D2

Y . (12)

where D2
X and D2

Y are diameters of set X and Y .

4.1. Step-size policy for the ALPD method

Using the result of Theorem 4.3, we are ready to present

step-size policy for the ALPD method. We break our analy-

sis in two cases.

4.1.1. CASE 1: SEMI-LINEAR COUPLING WITH Lxx = 0

Theorem 4.4. Assume a semi-linear coupling function

ϕ(x, y) which is linear in x, i.e., Lxx = 0 and consider

the following choice of parameters for Algorithm 2:

γ1 = 1, γt =
t+1
2 +

2
√
2Lyy+2Lg

µg
, t ≥ 2,

θt =
γt−1

γt
, t ≥ 2

β1 = 1, βt+1 = 1 + θt+1βt,
ηt =

t+1
5Lf+16L2

xy/µg
,

1
τt

=
µgt
2 + 2

√
2Lyy + 2Lg.

(13)

Then we obtain the complexity of K = O(
√

Lf+Lyy

ϵ +
Lxy√
µgϵ

) for getting an ϵ-solution of (1).

Proof. Comparing the step-size policy in (13) with con-

ditions in (9) where Lxx = 0, it is easy to see that the

relations θt = γt−1

γt
, the recursive relation on βt and

1
4τt
− Lg

2 − 2L2
yyτt ≥ 0 are satisfied. Furthermore, since γt

is increasing and τt is decreasing, we have θt < 1 < τt−1

τt
.

It is straight-forward to see that {γt

ηt
} is a decreasing se-

quence. Besides, by choosing τt according to this step-size

policy, the first condition in (11) also holds. The proposition

below provides a bound on βt.

Proposition 4.5. Suppose we set the step-size parameters

according to (13) then βt+1 ∈ [ t+2
2 , t+ 1].

Using the above proposition, we verify the one remaining

condition of (9) with Lxx = 0:

1
2ηt
− Lf

2βt
− 2L2

xyτt

≥ 5Lf

2(t+1) −
Lf

2βt
+

16L2
xy

2µg(t+1) −
4L2

xy

µgt+4
√
2Lyy

≥ 0,

where the first inequality follows by replacing the values of

ηt, τt along with the fact that Lg ≥ 0, and the second in-

equality holds since βt ≥ t
2 ≥ t+1

5 and
16L2

xy

2µg(t+1) −
4L2

xy

µgt
≥

0 for t ≥ 1.

Using (12) in Theorem 4.3, we obtain the following upper

bound on the Gap:

Gap(z̄K+1) ≤ 1
βKγKη1

D2
X + 1

βKγKτ1
D2

Y . (14)

Note that since βt and γt are increasing at a linear rate, we

obtain the accelerated convergence rate of O(
Lf+Lyy

K2 +
L2

xy

µgK2 ) which is equivalent to the complexity of K =

O(
√

Lf+Lyy

ϵ +
Lxy√
µgϵ

) for getting an ϵ-solution.

Remark 4.6. (Hamedani & Aybat, 2021) is the only known

single-loop PD algorithm that shows accelerated conver-

gence when the coupling function is semi-linear with Lyy =
0 and µf > 0. We have a (reflected) result where µg > 0
and Lxx = 0. Even then, (Hamedani & Aybat, 2021) as-

sume f and g have proximal updates. Hence, they do not

need any additional acceleration of the ALPD method.

4.1.2. CASE 2: NONLINEAR COUPLING

Theorem 4.7. Consider an SPP with a general nonlinear

coupling function, i.e., Lxx > 0. Assuming the step-size

policy in (13) with the following single change in ηt as

ηt =
t+1

5Lf+16L2
xy/µg+(t+1)Lxx

,

we obtain the complexity of K = O(
√

Lf+Lyy

ϵ +
Lxy√
µgϵ

+
Lxx

ϵ ) for getting an ϵ-solution of (1).

Proof. It is easy to see that the mentioned step-size policy

satisfies the condition (9) in Lemma 4.2 (including fifth

relation in (9)). Furthermore, (11) is also satisfied. Thus,

using Theorem 4.3, we can establish the following upper

bound on the Gap function:

Gap(z̄K+1) ≤
(

γ1

βKγKη1
+ KLxx

βKγK

)

D2
X + γ1

βKγKτ1
D2

Y .

Consequently, the gradient complexity in this case is K =

O(
√

Lf+Lyy

ϵ +
Lxy√
µgϵ

+ Lxx

ϵ ).

Hence, though we get acceleration in terms of Lf , the con-

vergence rate in terms of Lxx is of O( 1
K ). This is similar

to the LPD case where the complexity had a weaker depen-

dence on Lf . ALPD method does accelerate on the primal

only term, i.e., Lf . However, accelerating the convergence

for the primal coupling term is still difficult. In light of

Remark 4.6, accelerating the class of PD methods for non-

linear coupling is a challenging open problem, even without

linearization.

6
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Algorithm 3 Inexact ALPD Method

1: Initialize x̄1 = x0 = x1 ∈ X, ȳ1 = y0 = y1 ∈ Y
2: for t = 1, . . . ,K do

3: xt ← (1− β−1
t )x̄t + β−1

t xt

4: vt ← (1 + θt)∇yϕ(xt, yt)− θt∇yϕ(xt−1, yt−1)
5: yt+1 ← argmin

y∈Y
⟨−vt +∇g(yt), y⟩+ 1

2τt
∥y− yt∥2

6: xt+1 is a δt-approximate solution of the problem:

min
x∈X
⟨∇f(xt), x⟩+ϕ(x, yt+1)+

1
2ηt
∥x−xt∥2 (15)

7: x̄t+1 ← (1− β−1
t )x̄t + β−1

t xt+1

8: ȳt+1 ← (1− β−1
t )ȳt + β−1

t yt+1

9: end for

10: return x̄K+1, ȳK+1

5. The Inexact ALPD method for general φ

This section proposes an Inexact ALPD method to improve

the complexity in Lxx. The linearization of ϕ(x, yt+1) in

the ALPD method generates errors that depend on Lxx. It

leads to a slow convergence rate when Lxx > 0. To fix this

issue, we use ϕ(x, yt+1) instead of its linearization in the

x-update (compare line 6 of Algorithms 2 and 3). However,

we cannot evaluate the proximal oracle of ϕ(·, y) efficiently.

To evaluate the truly representative computational effort for

this algorithm, we propose an inexact approach in the x-

update and perform a detailed analysis of the inner loop to

estimate the complexity bounds. The rest of this section is

dedicated to the complexity analysis of Algorithm 3 in the

outer loop and inner loop.

5.1. Complexity analysis of the Inexact ALPD method

Complexity analysis of the outer loop

Using a proximal oracle of ϕ(·, yt+1) in the x-update re-

moves the linearization errors that depend on Lxx. Hence,

the outer loop analysis reduces to Case 4.1.1. Consequently,

we have the following theorem.

Theorem 5.1. Suppose conditions in ((9), (11)) and the step-

size policy ((13)) hold, then we have the following upper

bound for the Gap function

Gap(z̄K+1) ≤ 1
βKγKη1

D2
X + 1

βKγKτ1
D2

Y

+
∑K

t=1
γtδt

βKγK
+

∑K
t=1

γt

√

4
1
ηt

δtD
2
X

βKγK
.

(16)

The above upper bound is similar to (14) with the addition

of the last two terms since we are using a δt-approximate

solution for (15). The detailed proof and analysis of the

inexact ALPD method is in Appendix C. We need to manage

the error caused by δt. Proposition 5.2 provides the required

condition to bound such errors.

Proposition 5.2. Suppose δt =
1
tc and the step-size policy

in 13 holds. Then by choosing c = 3.5,
∑K

t=1γtδt and
∑K

t=1γt
√

δt/ηt are bounded by a constant.

One important result of Proposition 5.2 is obtaining com-

plexity of ∇f , and ∇yϕ as the following corollary

Corollary 5.3. Suppose Proposition 5.2 holds for δt, then

we needO(
√

Lf+Lyy

ϵ +
Lxy√
µgϵ

) evaluations in∇f , and∇yϕ

to obtain an ϵ-solution of (1).

To compute the gradient complexity of∇xϕ and the impact

of the above choice of c, we perform the inner loop analysis

as below.

Complexity analysis of the inner loop

Theorem 5.4. The complexity of ∇xϕ evaluations is

O
(

c

√

Lxx

√

Lf + L2
xy/µg

1
ϵ3/4

log( 1ϵ )
)

Proof. We implement the AGD method ((Nesterov, 2003))

to solve the subproblem (15). Let kt denote the number

of AGD iterations for the t’th iteration in the outer loop.

Consequently, the complexity of ∇xϕ after K outer loop

iterations is
∑K

t=1 kt. The number of AGD iterations kt is

directly related to the choice of error δt. Nesterov (2003)

shows that for a L-smooth and µ-strongly convex function,

we need O(
√

L
µ log( 1ϵ )) AGD iterations to obtain an ϵ er-

ror on the optimality. Then, to obtain a δt error on the

optimality of (15), we need kt = O(
√
Lxxηt log(

1
δt
)) iter-

ations of the AGD method. Here, we used L = Lxx and

µ = 1
ηt

. Setting δt according to Proposition 5.2, we obtain

kt = O(√Lxxηt log(t
c)) or O(c√Lxxηt log(t)). Hence,

the total number of iterations of AGD for K outer iterations

(i.e., the number of gradients evaluations of∇xϕ) is

∑K
t=1kt =

∑K
t=1c
√
Lxxηt log(t)

=
∑K

t=1c
√

Lxx
t+1

5Lf+16L2
xy/µg

log(t)

≤ c
√

Lxx

5Lf+16L2
xy/µg

(K + 1)3/2 log(K + 1).

Using K = O(
√

Lf+L2
xy/µg

ϵ ), we obtain the result.

We immediately get the following corollary.

Corollary 5.5. Suppose Lxx, Lf , and L2
xy/µg are ofO(L),

then we need Õ( L
ϵ3/4

) evaluations of ∇xϕ to obtain an ϵ-
error in inexact ALPD.

The following remark is in order.

Remark 5.6. Observe the impact of c on the complexity of

∇xϕ is only of a constant factor. This happens since (15)

is a strongly convex problem. In view of Corollary 5.5 and

7
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K = O(
√

Lf+L2
xy/µg

ϵ ), inexact ALPD method exhibits

the gradient complexity of O(
√

Lf+Lyy

ϵ +
Lxy√
µgϵ

) for ∇f,
and ∇yϕ. Moreover, its gradient complexity for ∇xϕ is

of Õ( L
ϵ3/4

). In comparison, the ALPD method has O(Lϵ )
gradient complexity for ∇xϕ,∇yϕ and ∇f . The Inexact

ALPD method improves the complexity in∇xϕ, and obtains

the optimal complexity in ∇f as well as ∇yϕ.

6. Numerical Experiments

In this section, we perform numerical experiments to (i)

compare the performance of the LPD and ALPD algorithms

on the penalty problems with different settings; (ii) evaluate

the runtime performance of the step-size policies in Theo-

rem 3.1 and (Chambolle & Pock, 2016); (iii) compare the

ALPD and Inexact ALPD on penalty problems for nonlin-

ear constraints. All experiments are performed on 64-bit

Windows 10 with Intel i5-9500U @3.00GHz and 16GB

RAM.

6.1. ALPD vs. LPD

The ℓq-norm penalty problem with linear constraints is

min
x∈X

f(x) + ρ∥Ax− b∥q ≡ min
x∈X

max
∥y∥p≤1

f(x) + ρ⟨y,Ax− b⟩,

where ℓp-norm is the dual norm of ∥ · ∥q. The equivalence

of the dual formulation is well-known where 1/p+ 1/q =
1. We can get a smooth approximation of the nonsmooth

penalty term using Nesterov’s smoothing technique

min
x∈X

max
∥y∥p≤1

{f(x) + ρ⟨ y,Ax− b⟩ − µg

2 ∥y∥
2}, (17)

where parameter µg can be used to calibrate the smooth-

ness of the approximation. We set f(x) = 1
2x

⊤Qx+ c⊤x
as a convex quadratic function where Q ∈ R

n×n is a ran-

domly generated positive semidefinite matrix and c ∈ R
n

is a random vector. We also generate matrix A ∈ R
m×n

and b ∈ R
m randomly. For these experiments, we set the

penalty parameter ρ = 1 and m = n = 100. Appendix D

provides detailed information on the exact functions used

for the random number generation. We set Lf = 200 since

eigenvalues of Q are generated uniformly on [0, 200].

We implement two versions of the ALPD method. The

first method is implemented exactly as presented in Al-

gorithm 2. The second method uses a proximal opera-

tor of g as follows: line 5 of Algorithm 2 is replaced by

yt+1 = argminy∈Y ⟨−vt, y⟩ + g(y) + 1
2τt
∥y − yt∥2. We

make these changes (1) to measure the effect of using lin-

earization in g on the numerical performance of the ALPD

method, and (2) to perform a fair comparison with the LPD

method as it uses the more advantageous proximal operator

of g. We refer to this method as ALPD-prox-g. The step-

size policy for this version is similar to (13) with Lg = 0

50 60 70 80 90 100

# of iterations

0

0.1

0.2

0.3

0.4
ALPD-prox-g

LPD

ALPD

50 60 70 80 90 100

# of iterations

0.05

0.1

0.15

0.2

0.25
ALPD-prox-g

LPD

ALPD

50 55 60 65 70 75 80 85 90 95 100

# of iterations

0

0.2

0.4

0.6

0.8

1

ALPD-prox-g

LPD

ALPD

Figure 1: Comparison of the methods in terms of the mean

errors in primal (top left), dual (top right), and Gap function

(bottom) for 10 i.i.d. instances of 17 with p = q = 2.

since g is used exactly without linearization. We measure

the performance of the algorithms using three metrics: (1)

Gap function which is the standard metric used in the con-

vergence analysis, (2) Primal relative error ∥x̄t−x∗∥/∥x∗∥,
and (3) Dual relative error ∥ȳt − y∗∥/∥y∗∥. All algorithms

start at the same randomly generated initial point in the

domain X × Y . Figure 1 compares the three algorithms

in three metrics. Each plot is generated using the aver-

age performance of the algorithms on 10 instances of (17)

generated independently with identical distribution (i.i.d.

instances). We plot the metrics for the last 50 iterations to

focus on the major performance differences. Figure 1 shows

that when Lf = 200 (a large number), the LPD method

performs poorly compared to both versions of ALPD. More-

over, ALPD-prox-g gives a slight advantage over ALPD

which is expected. Note that in these experiments, we use

p = q = 2. In Appendix E), we provide a similar compari-

son for two settings of (17): q = 1 and q =∞.

6.2. ALPD vs. Inexact ALPD

In this subsection, we compare the performances of Al-

gorithms 2 and 3 on the penalty problem with nonlinear

constraints. We replace the linear constraints in the previous

case with quadratic constraints 1
2x

⊤Ajx+ b⊤j x− dj ≤ 0,
for all j ∈ [m] where Aj , bj and dj(> 0) are randomly

generated as in the previous experiment. The dual form of

the penalty functions on nonlinear constraints has Lxx > 0.

As we proved in Section 5.1, when Lxx > 0, Inexact ALPD

is superior to ALPD in terms of gradient complexity. To

verify our results, we run 10 i.i.d. instances of the nonlinear

penalty problem and plot the Gap function against the aver-

age run time of each algorithm. For the ALPD method, we

use the step-size policy in Section 4.1.2 and Inexact ALPD

method is employed as described in Algorithm 3. Moreover,

8
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we implement prox versions of both algorithms where we

use the proximal oracle of g instead of linearizing it. We

call these versions ALPD-prox-g and Inexact-ALPD-prox-g

respectively. Figure 2 illustrates the behavior of these al-

gorithms for 100-dimensional (n = 100) penalty problems

with 10 non-linear constraints (m = 10). We run the ALPD

method for 200 iterations and its inexact counterpart for

100 iterations. We can see that Inexact ALPD and Inex-

act ALPD-prox-g dominate the performance of ALPD and

ALPD-prox-g, respectively.

0 20 40 60 80 100 120 140

Run time (seconds)

0

20

40

60

80

100

120

ALPD-prox-g

ALPD

Inexact-ALPD-prox-g

Inexact ALPD

Figure 2: Comparison of the ALPD and inexact ALPD

method and their prox-g variants using the Gap function vs

run-time (seconds) plot for 10 i.i.d. instances.

6.3. LPD step-size policy comparison

As we mentioned in Section 3, both policies in (3) and

(Chambolle & Pock, 2016) give similar convergence rates

asymptotically. To make the numerical comparison, we use

the SPP in (17) with µg = 0. We set µf as the minimum

eigenvalue of the randomly generated matrix Q. Note that

µf > 0 almost surely. We run the LPD method for 10 i.i.d.

instances of this problem for each step-size policy. See Ap-

pendix F for the details of our numerical study. It seems that

the LPD method using step-size in (3) performs better than

(Chambolle & Pock, 2016). We conjecture the following

reason for this deviation in the performance: Chambolle &

Pock (2016) show that
∑K

t=1γt = Ω(K2) only for large

values of K whereas (3) defines γt = Θ(t) explicitly and

hence
∑K

t=1γt = Θ(K2) for all K ≥ 1. The quadratic

growth of
∑K

t=1 γt is important to obtain the accelerated

O( 1
K2 ) convergence rate. Hence, the step-size policy in (3)

seems to be performing well in our experiments.

7. Conclusion

We showed that the standard LPD methods do not mitigate

the impact of the linearization of the primal function for

convex-strongly-concave SPP. Therefore, we designed the

ALPD method which exhibits the optimal complexity for

the semi-linear coupling case. For the general nonlinear

coupling, we designed a two-loop Inexact ALPD method

that maintains the optimal gradient complexity of the primal

function and significantly improves the gradient complexity

of the coupling function. We verified our findings through

numerical experiments.
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Appendix

A. General Analysis of Algorithm 1 (LPD)

In this section, we state some technical results that are ultimately used for obtaining (2a)-(2d) and Theorems 3.1 and 3.2.

First, let us state two important lemmas that are utilized in the rest of the discussion especially when we want to construct

relations related to optimality points.

Lemma A.1. Let x⋆ be a δ-approximate solution of problem minx∈X{h(x) + λ
2 ∥x− x̂∥2} where h(x) is a convex function.

Then,

h(x⋆)− h(x) ≤λ
2

[

∥x− x̂∥2 − ∥x⋆ − x∥2 − ∥x⋆ − x̂∥2
]

+ δ +
√
2λδ∥x⋆ − x∥. (18)

This lemma is known as ºThree-pointº lemma and also can be stated for a strongly-convex function h with modulus µh as

below

h(x⋆)− h(x) ≤λ
2

[

∥x− x̂∥2 − ∥x⋆ − x∥2 − ∥x⋆ − x̂∥2
]

− µh

2 ∥x
⋆ − x∥2 + δ +

√
2λδ∥x⋆ − x∥. (19)

Note that the proof can be found in Lemma 7 of Boob et al. (2022a).

Lemma A.2. For point zt+1 = (xt+1, yt+1) ∈ Z in Algorithm 1, the primal-dual gap function is upper bounded as follows

Q(zt+1, z) ≤Lf

2 ∥xt+1 − xt∥2 − µf

2 ∥x− xt∥2 + ⟨∇f(xt), xt+1 − x⟩+ [g(yt+1)− g(y)] + ⟨Axt+1, y⟩ − ⟨Ax, yt+1⟩.
(20)

Proof. Since f is Lf -smooth, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+ Lf

2 ∥xt+1 − xt∥2

= f(xt) + ⟨∇f(xt), xt+1 − x⟩+ ⟨∇f(xt), x− xt⟩+ Lf

2 ∥xt+1 − xt∥2

≤ f(x) + ⟨∇f(xt), xt+1 − x⟩+ Lf

2 ∥xt+1 − xt∥2 − µf

2 ∥x− xt∥2.

Adding [g(yt+1)− g(y)] , and [⟨Axt+1, y⟩ − ⟨Ax, yt+1⟩] to the both sides leads to the (20).

We can elaborate on the upper bound by using the optimality conditions of yt+1 and xt+1 respectively. The following

theorem illustrates a useful upper bound for the weighted gap function for the LPD method.

Theorem A.3. if for t ≥ 2

γt+1(
1
ηt
− µf ) ≤ γt

ηt−1
, (21a)

γt+1

τt
≤ γt

(

µg +
1

τt−1

)

, (21b)

θt−1 = γt

γt+1
, (21c)

θt−1∥A∥2 ≤ ( 1
ηt−1
− Lf )

1
τt
. (21d)

then
K
∑

t=1

γt+1Q(zt+1, z) ≤ γ2

2 ( 1
η1
− µf )∥x− x1∥2 − γK+1

2ηK
∥x− xK+1∥2 + γ2

2τ1
∥y − y1∥2

− γK+1

2

(

µg +
1
τK
− ∥A∥2

1
ηK

−Lf

)

∥y − yK+1∥2,
(22)

and at optimality

γK+1

2

(

µg +
1
τK
− ∥A∥2

1
ηK

−Lf

)

∥y − yK+1∥2 ≤ γ2

2η1
∥x⋆ − x1∥2 + γ2

2τ1
∥y⋆ − y1∥2.

Proof. Using the optimality of yt+1 and Lemma A.1 where δ = 0 (note yt+1 is an exact solution.), we have

g(yt+1)− g(y) ≤ 1
2τt

(

∥y − yt∥2 − ∥yt+1 − yt∥2
)

− ( 1
2τt

+
µg

2 )∥y − yt+1∥2 + ⟨Ax̃t, yt+1 − y⟩. (23)
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Also, from the optimality of xt+1, we have the following

⟨∇f(xt), xt+1 − x⟩ ≤ 1
2ηt

(

∥x− xt∥2 − ∥xt+1 − xt∥2
)

− 1
2ηt
∥x− xt+1∥2 − ⟨A(xt+1 − x), yt+1⟩. (24)

From (20), (23) and (24), one can reconstruct the following upper bound on the gap function at one iteration

Q(zt+1, z) ≤
(

( 1
2ηt
− µf

2 )∥x− xt∥2 − 1
2ηt
∥x− xt+1∥2

)

− ( 1
2ηt
− Lf

2 )∥xt+1 − xt∥2 + 1
2τt

(

∥y − yt∥2 − ∥yt+1 − yt∥2
)

− ( 1
2τt

+
µg

2 )∥y − yt+1∥2 − ⟨A(xt+1 − x), yt+1⟩+ ⟨Ax̃t, yt+1 − y⟩+ ⟨Axt+1, y⟩ − ⟨Ax, yt+1⟩.
(25)

We can simplify the upper bound with respect to the inner products.

− ⟨A(xt+1 − x), yt+1⟩+ ⟨Ax̃t, yt+1 − y⟩+ ⟨Axt+1, y⟩ − ⟨Ax, yt+1⟩
= −⟨A(xt+1 − x), yt+1⟩+ ⟨A(xt + θt−1(xt − xt−1)), yt+1 − y⟩+ ⟨Axt+1, y⟩ − ⟨Ax, yt+1⟩
= −⟨Axt+1, yt+1⟩+ ⟨Ax, yt+1⟩+ ⟨Axt, yt+1⟩ − ⟨Axt, y⟩
+ θt−1⟨A(xt − xt−1), yt+1 − y⟩+ ⟨Axt+1, y⟩ − ⟨Ax, yt+1⟩

= −⟨Axt+1, yt+1⟩+ ⟨Axt, yt+1⟩ − ⟨Axt, y⟩+ θt−1⟨A(xt − xt−1), yt+1 − y⟩+ ⟨Axt+1, y⟩
= −⟨A(xt+1 − xt), yt+1 − y⟩+ θt−1⟨A(xt − xt−1), yt+1 − y⟩.

Also, we can write the above expression as follows

− ⟨A(xt+1 − xt), yt+1 − y⟩+ θt−1⟨A(xt − xt−1), yt+1 − y⟩
= −[⟨A(xt+1 − xt), yt+1 − y⟩ − θt−1⟨A(xt − xt−1), yt − y⟩+ θt−1⟨A(xt − xt−1), yt − yt+1⟩].

From (25), we can rewrite the upper bound for gap function as follows

Q(zt+1, z) ≤ ( 1
2ηt
− µf

2 )∥x− xt∥2 − 1
2ηt
∥x− xt+1∥2 + 1

2τt
∥y − yt∥2 − ( 1

2τt
+

µg

2 )∥y − yt+1∥2

− ⟨A(xt+1 − xt), yt+1 − y⟩+ θt−1⟨A(xt − xt−1), yt − y⟩
− 1

2τt
∥yt+1 − yt∥2 − ( 1

2ηt
− Lf

2 )∥xt+1 − xt∥2 − θt−1⟨A(xt − xt−1), yt − yt+1⟩.
(26)

Hence, multiplying both sides by γt+1 and summing up till K gives us an upper bound for the average gap function for

LPD. We have

K
∑

t=1

γt+1Q(zt+1, z) ≤
K
∑

t=1

γt+1[(
1

2ηt
− µf

2 )∥x− xt∥2 − 1
2ηt
∥x− xt+1∥2 + 1

2τt
∥y − yt∥2 − ( 1

2τt
+

µg

2 )∥y − yt+1∥2]

−
K
∑

t=1

γt+1[⟨A(xt+1 − xt), yt+1 − y⟩+ θt−1⟨A(xt − xt−1), yt − y⟩]

−
K
∑

t=1

γt+1[
1

2τt
∥yt+1 − yt∥2 + ( 1

2ηt
− Lf

2 )∥xt+1 − xt∥2 − θt−1⟨A(xt − xt−1), yt − yt+1⟩].

(27)

To simplify each summation in (27), let us start with the first one

K
∑

t=1

γt+1[(
1

2ηt
− µf

2 )∥x− xt∥2 − 1
2ηt
∥x− xt+1∥2 + 1

2τt
∥y − yt∥2 − ( 1

2τt
+

µg

2 )∥y − yt+1∥2] (28)

If we assume that for each t ≥ 2, we have (21a) and (21b), the above summation (28) is upper bounded by

≤γ2( 1
2η1
− µf

2 )∥x− x1∥2 − γK+1
1

2ηK
∥x− xK+1∥2 + γ2

1
2τ1
∥y − y1∥2 − γK+1(

1
2τK

+
µg

2 )∥y − yK+1∥2. (29)

For the second summation by assuming (21c) for t ≥ 2, we have

−
K
∑

t=1

γt+1[⟨A(xt+1 − xt), yt+1 − y⟩+ θt−1⟨A(xt − xt−1), yt − y⟩]

≤ γt+1∥A∥∥xK+1 − xK∥∥yK+1 − y∥.
(30)

12



Accelerated Primal-Dual Methods for Convex-Strongly-Concave Saddle Point Problems

For the third summation in (27), by assuming condition (21d), we have

−
K
∑

t=1

γt+1[
1

2τt
∥yt+1 − yt∥2 + ( 1

2ηt
− Lf

2 )∥xt+1 − xt∥2 − θt−1⟨A(xt − xt−1), yt − yt+1⟩]

≤ −
K
∑

t=2

[γt+1
1

2τt
∥yt+1 − yt∥2 + γt(

1
2ηt
− Lf

2 )∥xt − xt−1∥2

− γt+1θt−1∥A∥∥xt − xt−1∥∥yt+1 − yt∥]− γK+1(
1

2ηK
− Lf

2 )∥xK+1 − xK∥2

≤ −γK+1(
1

2ηK
− Lf

2 )∥xK+1 − xK∥2

(31)

Therefore, from (29), (30) and (31), one can reestablish (27) as

K
∑

t=1

γt+1Q(zt+1, z) ≤ γ2(
1

2η1
− µf

2 )∥x− x1∥2 − γK+1
1

2ηK
∥x− xK+1∥2 + γ2

1
2τ1
∥y − y1∥2

− γK+1(
1

2τK
+

µg

2 )∥y − yK+1∥2 − γK+1(
1

2ηK
− Lf

2 )∥xK+1 − xK∥2

+ γK+1∥A∥∥xK+1 − xK∥∥yK+1 − y∥.

(32)

Note that
∑K

t=1 γt+1Q(zt+1, z) can be rewritten since

−( 1
2τK

+
µg

2 )∥y − yK+1∥2 − ( 1
2ηK
− Lf

2 )∥xK+1 − xK∥2 + ∥A∥∥xK+1 − xK∥∥y − yK+1∥

≤ −
(

( 1
τK

+ µg)− ∥A∥2

1
ηK

−Lf

)

1
2∥y − yK+1∥2.

Note the above relation holds since

−( 1
2ηK
− Lf

2 )∥xK+1 − xK∥2 + ∥A∥∥xK+1 − xK∥∥y − yK+1∥ ≤ ∥A∥2

1
ηK

−Lf

1
2∥y − yK+1∥2.

Thus
K
∑

t=1

γt+1Q(zt+1, z) ≤ γ2

2 ( 1
η1
− µf )∥x− x1∥2 − γK+1

2ηK
∥x− xK+1∥2 + γ2

2τ1
∥y − y1∥2

− γK+1

2

(

µg +
1
τK
− ∥A∥2

1
ηK

−Lf

)

∥y − yK+1∥2.
(33)

Also, at z = z⋆, since the gap function is non-negative, we have

γK+1

2

(

µg +
1
τK
− ∥A∥2

1
ηK

−Lf

)

∥y − yK+1∥2 ≤ γ2

2 ( 1
η1
− µf )∥x− x1∥2 − γK+1

2ηK
∥x− xK+1∥2 + γ2

2τ1
∥y − y1∥2. (34)

As a consequence of Theorem A.3 and the convexity of Gap function, one can conclude the following

Gap(z̄K+1) ≤ 1
∑K

t=1
γt+1

[

γ2

2 ( 1
η1
− µf )∥x− x1∥2 − γK+1

2ηK
∥x− xK+1∥2 + γ2

2τ1
∥y − y1∥2

− γK+1

2

(

µg +
1
τK
− ∥A∥2

1
ηK

−Lf

)

∥y − yK+1∥2
]

.
(35)

Where z̄K+1 =
∑K

t=1
γt+1zt+1

∑K
t=1

γt+1

.

13



Accelerated Primal-Dual Methods for Convex-Strongly-Concave Saddle Point Problems

A.1. Proof of Theorem 3.1

Proof. As one can observe, the mentioned values as step-size policy parameters satisfy the required conditions (21a)-(21d).

Additionally, from (22) we know that

Gap(z̄K+1) ≤ 1
∑K

t=1
γt+1

[

γ2
1

2η1
∥x− x1∥2 + γ2

1
2τ1
∥y − y1∥2

]

,

By considering mentioned values in (3) for the parameters, the upper bound is

Gap(z̄K+1) ≤ 1
∑K

t=1

t+1
2 +

Lf

µf

[

(1 +
Lf

µf
)
µf+Lf

2 ∥x− x1∥2 + (1 +
Lf

µf
) 4∥A∥2

2µf
∥y − y1∥2

]

.

Thus

Gap(z̄t+1) ≤ 4

k(k+3+
4Lf

µf
)

[

(1 +
Lf

µf
)[

µf+Lf

2 ∥x− x1∥2 + 4∥A∥2

2µf
∥y − y1∥2]

]

.

A.2. Proof of Theorem 3.2

Proof. First, note that the chosen values in (6) for the algorithm parameters hold the conditions (21b)-(21d) and (5). From

the upper bound defined for the weighted gap function in (27) we know

K
∑

t=1

γt+1Q(zt+1, z) ≤
K
∑

t=1

γt+1[(
1

2ηt
− µf

2 )∥x− xt∥2 − 1
2ηt
∥x− xt+1∥2 + 1

2τt
∥y − yt∥2 − ( 1

2τt
+

µg

2 )∥y − yt+1∥2]

−
K
∑

t=1

γt+1[⟨A(xt+1 − xt), yt+1 − y⟩+ θt−1⟨A(xt − xt−1), yt − y⟩]

−
K
∑

t=1

γt+1[
1

2τt
∥yt+1 − yt∥2 + ( 1

2ηt
− Lf

2 )∥xt+1 − xt∥2 − θt−1⟨A(xt − xt−1), yt − yt+1⟩].

(36)

One can rewrite
∑K

t=1 γt+1[(
1

2ηt
− µf

2 )∥x− xt∥2 − 1
2ηt
∥x− xt+1∥2] as following

=γ2
∥x−x1∥2

2η1
+

K
∑

t=2

(γt+1

ηt
− γt

γt−1
)∥x−xt∥2

2 ,

From (5) ≤γ2

η1
D2

X + (K − 1)LfD
2
X .

(37)

Using the similar procedure we used in proving (22), and by the fact we showed in (35), Gap function at z̄K+1 has the

following upper bound

Gap(z̄K+1) ≤ 1
∑K

t=1
t+1

(

γ2

η1
D2

X + (K − 1)LfD
2
X + γ2

τ1
D2

Y

)

= 1
∑K

t=1
t+1

(

2∥A∥2

µg
D2

X + 2LfD
2
X + (K − 1)LfD

2
X + µgD

2
Y

)

.

Then

Gap(z̄K+1, z) ≤ 2
K2

(

2∥A∥2

µg
D2

X + (K + 1)LfD
2
X + µgD

2
Y

)

=
4D2

X∥A∥2/µg+D2
Y µg

K2 +
2(K+1)LfD

2
X

K2 .

B. General Analysis of Algorithm 2 (ALPD)

In this part, we focus on the proofs of the statements we mentioned in Algorithm 2. Moreover, we present a new proposition

(Proposition B.1) which is crucial in convergence analysis.
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B.1. Proof of Proposition 4.5

Proof. The approach we use here is induction. First, observe that β1 = 1 ∈ [ 12 , 1]. Now let us assume Proposition 4.5 is

true for βt which means t+1
2 ≤ βt ≤ t. Let us first verify the lower bound.

Induction hypothesis (βt ≤ t): By using step-size policy for βt+1 in (13) (βt+1 = 1+ θt+1βt), and the fact that θt+1 ≤ 1,

one can conclude that βt+1 ≤ t+ 1.

Induction hypothesis (βt ≥ t+1
2 ): Using the similar assumptions for verifying the upper bound, we have

βt+1 = 1 + θt+1βt

≥ 1 + t
t+1

t+1
2

then βt+1 ≥ 1 + t
2 = t+2

2 . Hence we proved that βt+1 ∈ [ t+2
2 , t+ 1].

B.2. Statement and proof of Proposition B.1

Proposition B.1 captures the impact of introducing {βt}t≥1 on errors incurred by linearizing f in more detail.

Proposition B.1. Let βt ≥ 1 then for all z ∈ Z, we have

βtQ(z̄t+1, z)− (βt − 1)Q(z̄t, z) ≤⟨∇f(xt), xt+1 − x⟩+ Lf

2βt
∥xt+1 − xt∥2

+ [g(yt+1)− g(y)] + [ϕ(xt+1, y)− ϕ(x, yt+1)].
(38)

Proof. From Algorithm 2, one can say x̄t+1 − xt = β−1
t

(

xt+1 − xt

)

. Using this observation and convexity of f , we have

βtf(x̄t+1) ≤ βtf(xt) + βt⟨∇f(xt), x̄t+1 − xt⟩+
βtLf

2 ∥x̄t+1 − xt∥2

= βtf(xt) + βt⟨∇f(xt), x̄t+1 − xt⟩+
Lf

2βt
∥xt+1 − xt∥2

= βtf(xt) + (βt − 1)⟨∇f(xt), x̄t − xt⟩+ ⟨∇f(xt), xt+1 − xt⟩+
Lf

2βt
∥xt+1 − xt∥2

= (βt − 1)
[

f(xt) + ⟨∇f(xt), x̄t − xt⟩
]

+
[

f(xt) + ⟨∇f(xt), x− xt⟩
]

+ ⟨∇f(xt), xt+1 − x⟩+ Lf

2βt
∥xt+1 − xt∥2

≤ (βt − 1)f(x̄t) + f(x) + ⟨∇f(xt), xt+1 − x⟩+ Lf

2βt
∥xt+1 − xt∥2.

Moreover, by convexity of g and definition of ȳt+1, we have

βtg(ȳt+1)− βtg(y) ≤(βt − 1)g(ȳt) + g(yt+1)− βtg(y)

= (βt − 1)[g(ȳt)− βtg(y)] + g(yt+1)− g(y).
(39)

Also, for the coupling function, we have

βt[ϕ(x̄t+1, y)− ϕ(x, ȳt+1)]− (βt − 1)[ϕ(x̄t, y)− ϕ(x, ȳt)]

= [βtϕ(x̄t+1, y)− (βt − 1)ϕ(x̄t, y)] + [−βtϕ(x, ȳt+1) + (βt − 1)ϕ(x, ȳt)].
(40)

For the first piece in the right hand side of the above inequality, we have

βtϕ(x̄t+1, y)− (βt − 1)ϕ(x̄t, y) ≤ ϕ(βtx̄t+1 − (βt − 1)x̄t, y)

= ϕ(xt+1, y).

Note that the above inequality is based on definition of xt+1 in Algorithm 2 and convexity of ϕ(·, y) for all y ∈ Y . Similarly

the second piece of (40) can be upper bounded as follows

−βtϕ(x, ȳt+1) + (βt − 1)ϕ(x, ȳt) ≤ −ϕ(x, yt+1),

From the definition of primal-dual gap function and the mentioned upper bounds for each terms, one can construct the

following inequality

βtQ(z̄t+1, z)− (βt − 1)Q(z̄t, z) ≤ ⟨∇f(xt), xt+1 − x⟩+ Lf

2βt
∥xt+1 − xt∥2

+ [g(yt+1)− g(y)] + ϕ(xt+1, y)− ϕ(x, yt+1).
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B.3. Proof of Lemma 4.1

Proof. Using the optimality of yt+1 and from LemmaA.1 for δ = 0, we have

⟨∇g(yt), yt+1 − y⟩ ≤ 1
2τt

[

∥y − yt∥2 − ∥y − yt+1∥2 − ∥yt − yt+1∥2
]

− ⟨ vt, y − yt+1⟩. (41)

Note that

⟨∇g(yt), yt+1 − y⟩ = ⟨∇g(yt), yt+1 − yt⟩+ ⟨∇g(yt), yt − y⟩.
From strong-convexity and smoothness of g, we know that

⟨∇g(yt), yt+1 − yt⟩ ≥ g(yt+1)− g(yt)− Lg

2 ∥yt − yt+1∥2,

and

⟨∇g(yt), yt − y⟩ ≥ g(yt)− g(y) +
µg

2 ∥y − yt∥2.
Adding these two inequities and with (41), we can obtain an upper bound on g(yt+1)− g(y)

g(yt+1)− g(y) ≤ 1
2

(

1
τt
− µg

)

∥y − yt∥2 − 1
2

(

1
τt
− Lg

)

∥yt − yt+1∥2 − 1
2τt
∥y − yt+1∥2 − ⟨ vt, y − yt+1⟩. (42)

Also, from the optimality of xt+1, we have

⟨∇f(xt), xt+1 − x⟩ ≤ 1
2ηt

[∥x− xt∥2 − ∥xt+1 − xt∥2 − ∥xt+1 − x∥2]− ⟨∇xϕ(xt, yt+1), xt+1 − x⟩. (43)

From Proposition B.1, (42)and (43), one can reconstruct the following upper bound for the gap function at one single

iteration

βtQ(z̄t+1, z)− (βt − 1)Q(z̄t, z) ≤ 1
2ηt
∥x− xt∥2 − 1

2ηt
∥x− xt+1∥2 −

(

1
2ηt
− Lf

2βt

)

∥xt − xt+1∥2

− 1
2τt
∥y−yt+1∥2 −

(

1
2τt
− Lg

2

)

∥yt − yt+1∥2 − ⟨ vt, y − yt+1⟩
− ⟨∇xϕ(xt, yt+1), xt+1 − x⟩+ ϕ(xt+1, y)− ϕ(x, yt+1) +

(

1
2τt
− µg

2

)

∥y − yt∥2.

Now, let us add and subtract ϕ(xt+1, yt+1) to the right hand side of above inequality, then

βtQ(z̄t+1, z)− (βt − 1)Q(z̄t, z) ≤ 1
2ηt
∥x− xt∥2 − 1

2ηt
∥x− xt+1∥2 −

(

1
2ηt
− Lf

2βt

)

∥xt − xt+1∥2

− 1
2τt
∥y−yt+1∥2 −

(

1
2τt
− Lg

2

)

∥yt − yt+1∥2 − ⟨ vt, y − yt+1⟩
− ⟨∇xϕ(xt, yt+1), xt+1 − x⟩+ ϕ(xt+1, y)− ϕ(xt+1, yt+1)

+ ϕ(xt+1, yt+1)− ϕ(x, yt+1) +
(

1
2τt
− µg

2

)

∥y − yt∥2.

By the Lxx of ϕ(·, y) for all y ∈ Y of ϕ one can say that

− ⟨∇xϕ(xt, yt+1), xt+1 − x⟩+ ϕ(xt+1, yt+1)− ϕ(x, yt+1)

≤ Lxx

2 ∥xt − xt+1∥2.
(44)

Based on these last two inequalities, one can immediately conclude (8).

B.4. Proof of Lemma 4.2

Proof. From Lemma 4.1, and concavity of ϕ in x, we have

ϕ(xt+1, y)− ϕ(xt+1, yt+1) ≤ ⟨∇yϕ(xt+1, yt+1), y − yt+1⟩.

Therefore, by the definition of vt in Algorithm 2, (8) and above inequality, we have

βtQ(z̄t+1, z)− (βt − 1)Q(z̄t, z) ≤ 1
2ηt
∥x− xt∥2 − 1

2ηt
∥x− xt+1∥2 +

(

1
2τt
− µg

2

)

∥y − yt∥2 − 1
2τt
∥y−yt+1∥2

−
(

1
2ηt
− Lf

2βt
− Lxx

2

)

∥xt − xt+1∥2 −
(

1
2τt
− Lg

2

)

∥yt − yt+1∥2

+ ⟨∇yϕ(xt+1, yt+1)−∇yϕ(xt, yt), y − yt+1⟩
− θt⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt−1), y − yt+1⟩.

(45)
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Notice that

− θt⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt−1), y − yt+1⟩
= −θt⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt−1), y − yt⟩ − θt⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt−1), yt − yt+1⟩.

Hence, the previous inequality can be written as

βtQ(z̄t+1, z)− (βt − 1)Q(z̄t, z) ≤ 1
2ηt
∥x− xt∥2 − 1

2ηt
∥x− xt+1∥2 −

(

1
2ηt
− Lf

2βt
− Lxx

2

)

∥xt − xt+1∥2

+
(

1
2τt
− µg

2

)

∥y − yt∥2 − 1
2τt
∥y−yt+1∥2 −

(

1
2τt
− Lg

2

)

1
2∥yt − yt+1∥2

+ ⟨∇yϕ(xt+1, yt+1)−∇yϕ(xt, yt), y − yt+1⟩
− θt⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt−1), y − yt⟩
− θt⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt−1), yt − yt+1⟩.

Now, by multiplying both sides by γt and letting θt =
γt−1

γt
, t ≥ 2, we have

βtγtQ(z̄t+1, z)− (βt − 1)γtQ(z̄t, z) ≤ γt

2ηt
∥x− xt∥2 − γt

2ηt
∥x− xt+1∥2 − γt

(

1
2ηt
− Lf

2βt
− Lxx

2

)

∥xt − xt+1∥2

+ γt
(

1
2τt
− µg

2

)

∥y − yt∥2 − γt

2τt
∥y−yt+1∥2 − γt

(

1
2τt
− Lg

2

)

1
2∥yt − yt+1∥2

+ γt⟨∇yϕ(xt+1, yt+1)−∇yϕ(xt, yt), y − yt+1⟩
− γt−1⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt−1), y − yt⟩
− γt−1⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt−1), yt − yt+1⟩.

(46)

The last inner product can be written as follows

− γt−1⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt−1), yt − yt+1⟩
= −γt−1⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt), yt − yt+1⟩ − γt−1⟨∇yϕ(xt−1, yt)−∇yϕ(xt−1, yt−1), yt − yt+1⟩
≤ γt−1∥∇yϕ(xt, yt)−∇yϕ(xt−1, yt)∥∥yt − yt+1∥+ γt−1∥∇yϕ(xt−1, yt)−∇yϕ(xt−1, yt−1)∥∥yt − yt+1∥
≤ Lxyγt−1∥xt − xt−1∥∥yt − yt+1∥+ Lyyγt−1∥yt − yt−1∥∥yt − yt+1∥.

Since 0 ≤ θt ≤ τt−1

τt
for each of norm multiplication, we have

Lxyγt−1∥xt − xt−1∥∥yt − yt+1∥

≤ 4L2
xyγ

2
t−1τt

2γt
∥xt − xt−1∥2 + γt

8τt
∥yt − yt+1∥2

≤ 4L2
xyγt−1τt−1

2 ∥xt − xt−1∥2 + γt

8τt
∥yt − yt+1∥2.

Similarly

Lyyγt−1∥yt − yt−1∥∥yt − yt+1∥

≤ 4L2
yyγ

2
t−1τt

2γt
∥yt − yt−1∥2 + γt

8τt
∥yt − yt+1∥2

≤ 4L2
yyγt−1τt−1

2 ∥yt − yt−1∥2 + γt

8τt
∥yt − yt+1∥2.

Using these results and combining it with (46) and βt+1 − 1 = βtθt+1, we have

βtγtQ(z̄t+1, z)− (βt − 1)γtQ(z̄t, z) ≤ γt

2ηt
∥x− xt∥2 − γt

2ηt
∥x− xt+1∥2 + γt

(

1
2τt
− µg

2

)

∥y − yt∥2 − γt

2τt
∥y − yt+1∥2

+ γt⟨∇yϕ(xt+1, yt+1)−∇yϕ(xt, yt), y − yt+1⟩
− γt−1⟨∇yϕ(xt, yt)−∇yϕ(xt−1, yt−1), y − yt⟩

− γt
(

1
2ηt
− Lf

2βt
− Lxx

2

)

∥xt − xt+1∥2 +
4L2

xyγt−1τt−1

2 ∥xt − xt−1∥2

− γt
(

1
4τt
− Lg

2

)

∥yt − yt+1∥2 +
4L2

yyγt−1τt−1

2 ∥yt − yt−1∥2.
(47)
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Applying (47) inductively and letting x0 = x1, β1 = 1, we conclude that

βKγKQ(z̄K+1, z) ≤ BK(z, z[K]) + γK⟨∇yϕ(xK+1, yK+1)−∇yϕ(xK , yK), y − yK+1⟩

− γK
(

1
2ηK
− Lf

2βK
− Lxx

2

)

∥xK − xK+1∥2 −
K−1
∑

t=1

γt
(

1
2ηt
− Lf

2βt
− Lxx

2 − 2L2
xyτt

)

∥xt − xt+1∥2

− γK
(

1
4τK
− Lg

2

)

∥yK − yK+1∥2 −
K−1
∑

t=1

γt
(

1
4τt
− Lg

2 − 2L2
yyτt

)

∥yt − yt+1∥2.

By assuming conditions in (9), one can observe that Lemma 4.2 holds.

B.5. Proof of Theorem 4.3

Proof.

BK(z, z[K]) =
γ1

η1

1
2∥x− x1∥2 −

K−1
∑

t=1

(

γt

ηt
− γt+1

ηt+1

)

1
2∥x− xt+1∥2 − γK

2ηK
∥x− xK+1∥2

+ γ1

2 ( 1
τ1
− µg)∥y − y1∥2 − γK

2τK
∥y − yK+1∥2 −

K−1
∑

t=1

(

γt

τt
− γt+1(

1
τt+1
− µg)

)

1
2∥y − yt+1∥2

≤
(

γ1

η1
+KLxx

)

D2
X + γ1

τ1
D2

Y − γK

2τK
∥y − yK+1∥2,

where the second last inequality stems from the new condition (11) and the assumption that γt

ηt
≤ γt−1

ηt−1
+ Lxx

2 .

Moreover, γK⟨∇yϕ(xK+1, yK+1)−∇yϕ(xK , yK), y − yK+1⟩ can be bounded as follows

γK⟨∇yϕ(xK+1, yK+1)−∇yϕ(xK , yK), y − yK+1⟩
= γK⟨∇yϕ(xK+1, yK+1)−∇yϕ(xK+1, yK), y − yK+1⟩+ γK⟨∇yϕ(xt+1, yt)−∇yϕ(xK , yK), y − yK+1⟩
≤ γKLyy∥yK − yK+1∥∥y − yK+1∥+ γKLxy∥xK − xK+1∥∥y − yK+1∥

≤ 2L2
yyγ

2
KτK

2γK
∥yK − yK+1∥2 + γK

4τK
∥y − yK+1∥2 +

2L2
xyγ

2
KτK

2γK
∥xK − xK+1∥2 + γK

4τK
∥y − yK+1∥2

≤ 2L2
yyγKτK

2 ∥yK − yK+1∥2 + γK

4τK
∥y − yK+1∥2 +

2L2
xyγKτK

2 ∥xK − xK+1∥2 + γK

4τK
∥y − yK+1∥2.

Then from Lemma 4.2, we have

βKγKQ(z̄K+1, z) ≤ BK(z, z[K]) + γK⟨∇yϕ(xK+1, yK+1)−∇yϕ(xK , yK), y − yK+1⟩

− γK

(

1
2ηK
− Lf

2βK
− Lxx

2

)

∥xK+1 − xK∥2 − γK

(

1
4τK
− Lg

2

)

∥yK − yK+1∥2

≤
(

γ1

η1
+ tLxx

)

D2
X + γ1

τ1
D2

Y − γK

2τK
∥y − yK+1∥2 + γK

2τK
∥y − yK+1∥2

− γK

(

1
2ηK
− Lf

2βK
− Lxx

2 − L2
xyτK

)

∥xK+1 − xK∥2 − γK
(

1
4τK
− Lg

2 − L2
yyτK

)

∥yK − yK+1∥2.

From the conditions of Lemma 4.2, we have

βKγKQ(z̄K+1, z) ≤
(

γ1

η1
+KLxx

)

D2
X + γ1

τ1
D2

Y . (48)

Dividing both sides by βKγK will give us (12).

C. General Analysis of Algorithm 3 (Inexact ALPD)

We provide this section to highlight the similarities and important differences between ALPD and inexact ALPD algorithms

in a mathematical setting. Lemma C.1 shows how the dependence on Lxx is alleviated in this approach.

Lemma C.1. let z̄t+1 = (x̄t+1, ȳt+1) and if

βtQ(z̄t+1, z)− (βt − 1)Q(z̄t, z) ≤ 1
2ηt
∥x− xt∥2 − 1

2ηt
∥x− xt+1∥2 −

(

1
2ηt
− Lf

2βt

)

∥xt − xt+1∥2

+
(

1
2τt
− µg

2

)

∥y − yt∥2 − 1
2τt
∥y−yt+1∥2 −

(

1
2τt

Lg

2

)

1
2∥yt − yt+1∥2

− ⟨ vt, y − yt+1⟩+ ϕ(xt+1, y)− ϕ(xt+1, yt+1) + δt +
√

2 1
ηt
δt∥xt+1 − x∥2.

(49)
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where δt denotes to using a δt-approximate inexact method in primal.

Proof. The approach we use to prove Lemma C.1 is similar to one we used in Lemma 4.1. The only difference is rooted

using the inexact method to find an δt-approximate solution for primal which is mentioned below

From the optimality of xt+1 using Lemma A.1, we have the following

⟨∇f(xt), xt+1 − x⟩ ≤ 1
2ηt
∥x− xt∥2 − 1

2ηt
∥xt+1 − xt∥2 − 1

2ηt
∥xt+1 − x∥2

− ϕ(xt+1, yt+1) + ϕ(x, yt+1) + δt +
√

2 1
ηt
δt∥xt+1 − x∥2.

(50)

Above inequality leads to the following change in (44) such that instead of using linear approximation of ϕ in x, we use the

exact coupling function. Particularly, (44) changes as

−ϕ(xt+1, yt+1) + ϕ(x, yt+1) + ϕ(xt+1, yt+1)− ϕ(x, yt+1) = 0. (51)

Observe that unlike the case in (44), we do not have any dependence on Lxx.

Lemma C.2. Suppose these conditions hold

β1 = 1, βt+1 − 1 = βtθt+1,

0 ≤ θt ≤ τt−1

τt

γt

ηt
≤ γt−1

ηt−1
,

γ1 = 1, θt =
γt−1

γt
, 1

2ηt
− Lf

2βt
− 2L2

xyτt ≥ 0,

1
4τt
− Lg

2 − 2L2
yyτt ≥ 0.

(52)

Then, the following inequality holds

βKγKQ(z̄K+1, z) ≤ BK(z, z[K]) + γK⟨∇yϕ(xK+1, yK+1)−∇yϕ(xK , yK), y − yK+1⟩

+
K
∑

t=1

γt

√

4 1
ηt
δtD

2
X − γK

(

1
2ηK
− Lf

2βK

)

∥xK+1 − xK∥2

− γK

(

1
4τK
− Lg

2

)

∥yt − yK+1∥2 +
K
∑

t=1

γtδt,

(53)

where BK(z, z[K]) is the following

BK(z, z[K]) =

K
∑

t=1

{ γt

2ηt
[∥x− xt∥2 − ∥x− xt+1∥2] + γt

(

1
2τt
− µg

2

)

∥y − yt∥2 − γt

2τt
∥y − yt+1∥2}.

Proof. The line of proof we follow in this lemma is the same as we used in proving Lemma 4.2. The only difference in

this case is having additional terms in the upper bound which are caused by using a δt-approximate solution in x. These

additional terms translate into
√

4 1
ηt
δtD

2
X and

∑K
t=1 γtδt.

C.1. Proof of Theorem 5.1

Proof. As we mentioned earlier, the upper bound for the Gap function can be obtained similar to the Section 4.1.1 where

Lxx is zero. Moreover, the errors caused by minimization step in (15) are added as
∑K

t=1
γtδt

βKγK
+

∑K
t=1

γt

√

4
1
ηt

δtD
2
X

βKγK

C.2. Proof of Proposition 5.2

Proof. Suppose δt = 1
tc and t is a linearly increasing sequence. Moreover step-size policy in 13 implies sequences γt

and 1
ηt

are linearly increasing and decreasing respectively. Since c = 3.5, two summations
∑K

t=1γtδt and
∑K

t=1γt
√

δt/ηt
become in order of O(1) and bounded by a constant.

19



Accelerated Primal-Dual Methods for Convex-Strongly-Concave Saddle Point Problems

D. Detailed process of problem generation in Section 6

D.1. Process of problem generation in Subsection 6.1

We take the primal objective function f(x) as a quadratic function of the form below

f(x) = 1
2x

⊤Qx+ c⊤x, (54)

where Q ∈ R
n×n is a positive semidefinite matrix and c ∈ R

n is a random vector with elements drawn from the standard

normal distribution. We set Q = Λ⊤DΛ where Λ ∈ R
n×n is a random orthonormal matrix and D ∈ R

n×n
+ is a diagonal

matrix whose elements are drawn from a uniform distribution between 0 and 200. To generate the orthonormal matrix Λ,

first, we generate a random matrix Λ̄ whose elements are drawn from the standard normal distribution. Then, we use the

MATLAB function orth(Λ̄) to return an orthonormal basis for the range of Λ̄. For generating the constraint set, we sample

the elements of A ∈ R
m×n and b ∈ R

m from a uniform distribution between 0 and 1. In this paper, we take n = m = 100
for each problem instance.

For the quadratic constraints, we generate randomized positive semidefinite matrices Aj , j ∈ [m] in a similar fashion as

matrix Q. Also, dj , j ∈ [m] are uniformly generated in [0, 1]. We keep dj’s positive to maintain the feasibility of quadratic

constraints (0 is always a feasible solution). For this case, we set m = 10

D.2. Process of problem generation in Subsection 6.3

The strongly-convex concave SPP is defined as below

L(x, y) := min
x∈X

max
y∈Y
{f(x) + ⟨ y,Ax− b⟩}. (55)

Where the primal objective function f(x) is defined as (54) and we generate data for this problem similar to the previous

section.

E. Comparison of ALPD and LPD on penalty problems with different norms

In this section, we compare the performance of penalty problems where the norms are not Euclidean anymore. The instances

are created similarly to Section D. Figures 3 and 4 show the performances of both versions of ALPD and LPD in terms of

gap function for the problem (17) when q =∞, p = 1 and q = 1, p =∞ respectively. To make a better comparison, we set

Lf to a sufficiently large number (Lf ≈ 200) and plot the last 50 iterates of algorithms. Similar to the penalty problem with

the Euclidean norm, ALPD has a better performance.

F. Comparing step-size policy for two LPD algorithms

Figure 5 compares the convergence rate of the Gap function between those two step-size policies for 10 i.i.d runs with 200

iterations in each run. Note that the value of Lf is controlled so that 200 iterations of LPD for each problem instance give a

satisfactory convergence result. As one can see, our step-size policy has an advantage in terms of having faster convergence.
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Figure 3: Comparison of the methods in terms of Gap

function for 10 i.i.d. replications with 100 iterations

in each replication for l∞-norm penalty problem.
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Figure 4: Comparison of the methods in terms of Gap

function for 10 i.i.d replications with 100 iterations

in each replication for l1-norm penalty problem.
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Figure 5: Comparison between the step-size policies of (3) (LPD-Thm 3.1) and Chambolle & Pock (2016) (LPD-Ch&Po)

for 10 i.i.d. problem instances. Both policies start from the same initial point. Note that LPD only records {x̄t+1}t≥1.
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