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Abstract. From the United States’ Health Insurance Portability and
Accountability Act (HIPAA) to the European Union’s General Data
Protection Regulation (GDPR), there has been an increased focus on in-
dividual data privacy protection. Because multiple enforcement agencies
(such as legal entities and external governing bodies) have jurisdiction
over data governance, it is possible for the same data value to be subject
to multiple (and potentially conflicting) policies. As a result, managing
and enforcing all applicable legal requirements has become a complex
task. In this paper, we present a comprehensive overview of the steps
to integrating data retention and purging into a database management
system (DBMS). We describe the changes necessary at each step of the
data lifecycle management, the minimum functionality that any DBMS
(relational or NoSQL) must support, and the guarantees provided by
this system. Our proposed solution is 1) completely transparent from
the perspective of the DBMS user; 2) requires only a minimal amount
of tuning by the database administrator; 3) imposes a negligible perfor-
mance overhead and a modest storage overhead; and 4) automates the
enforcement of both retention and purging policies in the database.
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1 Introduction

Organizations are subject to a variety of data management rules for how data
must be archived, preserved, or destroyed. As new legislation is passed, these re-
quirements are becoming more expansive and more strictly enforced. For exam-
ple, Europe’s General Data Protection Regulation (GDPR) privacy rules extend
to organizations with customers in Europe (even when the organization is based
outside of Europe). Organizations that fail to adhere to these policies risk their
customers’ privacy and are subject to potentially large fines. Thus, databases
must incorporate the features and functionality necessary to remain compliant.

For purposes of this paper, we define policy as the set of rules an organization
must follow with respect to data preservation and destruction. These policies can
be the result of internal requirements, other business partners, or government
agency mandates. Failure to comply with these policies could result in large
fines, a loss of customers, and an irrecoverable breach of customer data privacy.
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Although current industry tools (see Section 2) offer some important data
governance capabilities, database management systems (DBMS) must be up-
dated to support compliance in data storage. DBMSes do not currently include
native retention or purging functionality that can be applied at record level.
Google, Amazon, Oracle, and IBM all offer various object-storage compliance
functionality for their remote storage. These all use date-criteria for defining
policies timelines, but none of these offer tuple, cell, or value based policy en-
forcement in a database. Instead, objects are placed into “buckets” and policies
are applied at the bucket-level. Because databases contain intermixed records
which are subject to different policies, applying the policy at the bucket level
risks non-compliance with one policy at the cost of another.

However, DBMS storage (relational or NoSQL) is much more complex and
fine-grain, representing the data at individual record and value level. Currently,
with respect to databases, organizations are forced to create ad-hoc solutions to
meet policy compliance requirements; these solutions are typically developed by
either re-purposing other existing tool functionality or manually performing the
steps to enforce compliance.

Governance policies depend on multiple factors and can be surprisingly com-
plex. The Office of the National Coordinator for Health Information Technol-
ogy provides a summary overview with examples for how many states in the
United States have their own requirements for retaining and destroying health-
care data [30]: Oregon requires hospitals to retain all records for 10 years after
the date of the last discharge; Hawaii requires the full medical record history to
be retained for 7 years after the last data entry. Adding to the complexity, the
data of minors and adults can be governed by different policies. For example, in
North Carolina, hospitals are required to retain adult patients data for 11 years
following discharge, while the data of patients who are minors (at the time of
record creation) must be retained until the patient’s 30*" birthday. Thus, the
policy expiration must reference patient’s date of birth, with different rows or
columns of a database table governed by different requirements.

Adding to the complexity, database administrators must consider the pos-
sible conflict between multiple requirements (e.g., retention versus destruction
of the same data item). For example, GDPR’s Article 17 requires that an or-
ganization purge personal data “the personal data are no longer necessary in
relation to the purposes for which they were collected [5]”, but if the same data
item was pertinent to an impending or an ongoing lawsuit, an organization must
retain the data until it is no longer required to be retained (i.e., the lawsuit has
been resolved). Therefore, any organization relying on manual solutions for their
compliance must consider the high labor cost of enforcing compliance.

1.1 System Overview

Ataulla et al. [9] first proposed the idea of defining data governance policies
through a SQL query (see Section 4.1) as a first step towards native DBMS pol-
icy support. Scope et al. [27] proposed leveraging DBMS triggers (natively sup-
ported by all major database vendors) and revising the backup process to support
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Fig. 1. Data lifecycle workflow changes in a DBMS to support data purging policies.
Retention policies will use triggers and defined policies to retain data in an additional
customerArchive table

policy-based data purging. Scope et al. [26] also prototyped the same strategy
in the context of NoSQL (MongoDB) databases. In this paper, we present and
evaluate an end-to-end approach to offer a native support for data governance
(retention and purging) in relational and NoSQL DBMSes.

Figure 1 summarizes the integration of our data purging mechanism steps
into a DBMS (retention mechanism details are not pictured). Policies are defined
with database queries, SQL or NoSQL, such as “rows inserted into a customer
table must be retained for a duration of 5 years”. Each inserted (or updated)
row is checked by a trigger against applicable purging policies, if any. The values
covered by purging requirement are encrypted with a corresponding policy-based
key, and inserted into the customerShadow table (an encrypted counterpart copy
of the original customer table).

The customerShadow table is backed up instead of backing up the customer
table, to enable “remote” erasure by destroying the corresponding key upon pol-
icy expiration. In order to fully satisfy purging requirements, the database must
also securely delete encryption keys from backups [22]. Towards that end, the en-
cryption key table is backed up separately with an independent storage service,
to ensure that keys are expunged upon expiration. The encryption key table is
itself encrypted to minimize the impact of a potential data breach. However,
we note that the mechanisms described here are not designed to be a security
solution but are a governance compliance mechanism. Thus, if the encryption
keys were somehow compromised (or inadvertently copied), this framework can
re-create a new encryption key table (and underlying keys) and re-encrypt the
backups and shadow tables. This would not address the data theft, but once all
of the data is encrypted with new keys, it would restore data storage compliance.

Our corresponding retention mechanism (not pictured in Figure 1) checks
deleted rows for values that are currently protected by retention policy. Such
values are stored in an archive table and purged through the same means (see
Section 4.1).

In sum, the contributions in this paper are:
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— Defining the current state of privacy compliance functionality in databases

— Outline an external encryption key management system that guarantees data
retention compliance in a DBMS

— Implementing the proposed framework for both relational and NoSQL JSON
databases and evaluating the performance for daily use, backups, and re-
stores

2 Related Work

Kamara and Lauter [16] concluded that using cryptography can improve pri-
vacy protections when using remote storage. Furthermore, their research has
shown that erasing an encryption key can be a means to rendering remote data
irrecoverable. We leverage cryptographic erasure mechanism to remotely purge
database values to ensure data privacy purging compliance. Kamara and Lauter’s
work does not discuss how to manage encryption keys or to apply them at a fine-
grained level necessary for compliance.

Reardon et al. provided a extensive overview of secure deletion [22]. The
authors defined three user-level approaches to secure deletion: 1) execute a secure
delete feature on the physical medium 2) overwrite the data before unlinking
or 3) unlink the data to the OS and fill the empty capacity of the physical
device’s storage. Their methods require the ability to directly interact with the
physical storage device, which may not be possible for all database backups.
Offline backups (e.g., backup tapes in a warehouse) are still subject to purging
and retention policies. Thus, destroying (either physically or with a complete
deletion wipe) an entire backup to guarantee purging compliance, the destruction
would come with sacrificing retention compliance.

Scope et al. [27] presented a generalized data purging workflow which sup-
ports “remote” destruction of expired data (e.g., inaccessible records stored in a
backup) in a relational database via cryptographic erasure. Encryption keys are
chosen based on the purging duration and policy; values not subject to purging
are stored without encryption. When the purge criteria has been met, the cor-
responding encryption key is deleted, rendering all encrypted data permanently
irrecoverable (i.e., purged). Additionally, research was conducted on only purg-
ing compliance in NoSQL JSON databases [26]. Neither paper addressed how to
guarantee retention compliance while implementing purging functionality.

Scope et al. [25] later expanded the previous work to incorporate function-
ality that simultaneously considered both retention and purging policies. Al-
though these papers did leverage encryption, they did not provide a framework
to manage the encryption keys (i.e., how to store the encryption key backups).
Additionally, this paper focused exclusively on relational databases. This pa-
per aims to incorporate a compliant approach for managing the encryption keys
(regardless of the database logical layout, including both relational and NoSQL).

On the industry side, Amazon S3 offers an object life-cycle management
tool [8]. S3 is file-based and lacks the granularity to fully support retention and
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purging at the individual tuple level. Furthermore, NoSQL stores (e.g., Mon-
goDB evaluated in this paper) also require a value-level granularity to implement
data governance policies.

Google Cloud Platform (GCP) offers a similar tool to Amazon S3 by sup-
porting file-level compliance [3]. GCP’s Bucket Lock offers a retention solution
which guarantees all files are protected until the retention lock has expired.
Conversely, GCP’s Object Lifecycle Management tool uses rules which trigger
an automated deletion of files. Overall, real-world retention and purging poli-
cies require fine-grain destruction and retention of data which is currently not
supported by current industry tools.

3 Data Governance and Compliance

Business Records are the units for organizational rules and requirements
for data management. United States federal law refers to a business record
broadly as any “memorandum, writing, entry, print, representation or combi-
nation thereof, of any act, transaction, occurrence, or event [that is] kept or
recorded [by any] business institution, member of a profession or calling, or any
department or agency of government [...] in the regular course of business or
activity” [31]. In other words, business records describe any interaction or trans-
action resulting in new data.

Policy is any formally established rule for organizations. Policies can orig-
inate from a variety of sources such as legislation or as a byproduct of a court
ruling. Companies may also establish their own internal data retention policies to
protect confidential data. In practice, database administrators work with domain
experts and sometimes with legal counsel to define business records and reten-
tion requirements based on the written policy. Policies can use a combination of
time and external events as the criteria for data retention and destruction.

Retention is the preservation of all data subject to a policy. Retention
requirements supersede the requirement to destroy data.

Purging is the permanent and irreversible destruction of data in a business
record [15]. A business record purge can be accomplished by physically destroy-
ing the device, fully erasing all data on the device, or encrypting and erasing
the decryption key (although the ciphertext still exists, destroying the decryp-
tion key makes it irrecoverable). If any part of a business record’s data remains
recoverable or accessible, then the data purge is not considered successful. If a
purging policy overlaps with a retention policy, the data must not be purged
until after all retention policies have expired.

Problem Statement: All encryption used by this framework is deployed
with the intention of facilitating compliance and not for security purposes. Thus,
all security considerations are beyond the scope of this paper. Additionally, data
processing compliance (i.e., only using customer data where consent has been
given for processing) is beyond the scope of this paper. Our goal is to implement
automated retention and purging policy enforcement procedures during database
transactions, backups, and restores, agnostic of DBMS logical layout.
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4 System Overview

In this section, we describe our system that offers a comprehensive support for
data governance policy compliance in DBMSes. We first describe the components
that were previously proposed and then discuss changes and new components
introduced as part of this paper. In this paper, we use the term table to refer to
both a relational database table and a collection in JSON NoSQL database.

4.1 Background

The policies are defined using SQL or NoSQL queries (the idea originally pio-
neered by Ataullah et al. [9]). Therefore, the database could return the rows and
columns that were subject to any particular policy by executing the correspond-
ing query. For example, the following SQL query expresses a policy to retain all
data from the tables customerPayment and orderShipping minimally 90 days
after the payment date.

SELECT * FROM customerPayment NATURAL JOIN orderShipping
WHERE DATEDIFF(day, orderShipping.paymentDate,
date_part(’day’, CURRENT_DATE)) < 90;

Each table containing data subject to retention rule has a corresponding
shadow archive table. The shadow archive table stores data which was deleted
(i.e., no longer needed by users) but that is protected by retention policy (for
some duration or indefinitely). Similarly, each table with data subject to a purg-
ing rule has a corresponding shadow table. For records subject to purging, the
record’s values are encrypted, before a copy of the record is placed into the
shadow tables; data not subject to purging is copied into shadow table in its
original form. The shadow tables replace the original tables in backup; they also
contain columns that provide a mapping to the corresponding encryption key.

For all defined policies, we store encryption keys and corresponding policies
in the policyOverview table; the DDL (using Postgres) for the policyOverview
table can be found below. The policyOverview table contains the date on which
each key will be purged. Purging the key would purge all corresponding en-
crypted values across all of the shadow tables and shadow archive tables.

CREATE TABLE public.policyOverview (
policyid integer NOT NULL,
policy character varying(50),
expirationDate date,
encryptionkey character varying(50));

Whenever a user executes an INSERT, DELETE, or UPDATE, the framework de-
termines if any of the data is subject to a retention or purging policy. Because
retention takes priority over purging, data which is subject to both must be
retained until the retention policy requirements have been met. During a re-
store, the shadow tables are restored and then loaded into the user-facing tables
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(e.g., customer is loaded from customerShadow). The data for which has not
been purged (i.e., encryption key is still available) is decrypted. If the encryption
key has been deleted due to a purging requirement, the values are restored as
a NULL. For relational databases, if the primary key of a tuple cannot be restored,
the entire tuple is deleted. With JSON NoSQL databases, when a key has been
purged, all associated values are not restored.

One of the major challenges to guaranteeing compliance is the problem of
handling encryption keys. Backing up the keys would interfere with being able
to purge data (because database backups cannot be edited to selectively remove
data). Scope et al. [27] proposed storing the encryption keys in a separate linked
database to reliably support purging. However, the question of how to manage
encryption keys was not considered in prior work.

4.2 Leveraging External or Third Party Servers

In order to successfully apply cryptographic erasure, we must guarantee that
the deleted encryption keys have been irrecoverably erased. Otherwise, deleted
encryption keys may be restored from a backup and decrypt purged data. Many
industry tools (e.g., AWS S3) provide the ability to automatically “expire” ob-
jects at the file granularity, but any external storage which provides automated
file-level time-based erasure would satisfy the requirements of this framework.
We propose using such a system for automatic deletion of files to purge encryp-
tion keys (based on expiration date).

Because this framework depends on using external servers to backup the
encryption keys, there is a risk of a server outage. The ability to access encryption
keys is only needed during a restore of the policyOverview table (which would
only occur during a database restore). Therefore, if restores are not common,
the risk would be minimal and acceptable.

In instances where restores are common and must not be delayed or where
high availability of backups is required, leveraging multiple external servers can
be used for storing the encryption key backups in parallel. AWS, Google, and
IBM all offer file-level automatic deletion at a set time [8,3,4].

4.3 Encryption Keys During the Backup and Restore Process

During the creation of the standard database backups, our framework leverages
backup scripts to create the backup of the encryption keys and automatically
uploads them to the external server(s) designated (using whichever scheduler an
organization deploys, e.g., CRON job). These backup scripts must be revised to
first upload the encryption keys to the third-party servers before executing the
database backup procedure. Keys which have already been uploaded and have
their automatic deletion criteria set do not need to be re-uploaded again. In our
policyOverview table, we store the date at which an encryption key was up-
loaded to prevent it from being redundantly re-uploaded during future backups.
Thus, only newly created keys would require being backed up in addition to the
standard database backup procedure.



8 N. Scope et al.

Because the policyOverview table is not backed up with the other tables,
this framework requires some capability to backup individual table/collection
spaces. In instances where an encryption key’s purged date has passed, we can
assume that the corresponding key has been automatically deleted (due to the
system automatically removing the file based to the expiration date). All re-
maining encryption keys which have not been purged are downloaded from the
remote server and used to decrypt their associated business records (using the
original framework outlined by Scope et al. in [25]) during the restore process.
Once restored, our framework moves the records which are either not encrypted
or for which a decryption key is still available from the shadow tables into the
active tables.

4.4 NoSQL Process Considerations

Although the functionality in this framework remains consistent between a re-
lational database and a NoSQL JSON database, there are some additional fac-
tors to consider. For purposes of this discussion, we use terminology and com-
mands from Postgres and MongoDB. When generating backups for a relational
database, using a pg_dump command targeting the shadow tables guarantees that
neither the unencrypted data nor the encryption keys is placed into standard
backups (which would prohibit the keys from being purged). With MongoDB,
we leverage collections during backups to limit the backup to only the shadow
collections (using the command mongodump).

Any NoSQL JSON database which uses this framework must support trig-
gers. Only MongoDB Atlas (the cloud version) offers trigger functionality, while
the local (free) version of MongoDB does not currently support triggers.

With relational databases, during the restore, any tuple with a purged pri-
mary key is removed from the table. In NoSQL JSON databases this translates
into removing all values when a corresponding key has been purged. If a subset
of the values of a key have been purged, instead of NULLing out the keys, we
simply remove the value from the corresponding key-value.

Although in Postgres we leverage PGP_SYM_ENCRYPT (a default supported
module) to apply encryption, in MongoDB we utilize the ClientEncryption
functionality found within the Explicit Encryption framework. Our proposed
framework requires any database to support some level of encryption function-
ality which can be incorporated into a trigger.

5 Experiments

We implemented and evaluated a prototype of our framework with the active
tables in Figure 2. This schema reflects only the tables needed for the policies
that we define and does not show all tables in the database schema. In practice,
we expect most policies to cover data in one or two tables/collections. Other
tables which do not directly apply to a policy will not impact policy-enforcing
performance. We demonstrate that our approach can be implemented without
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customerPayment orderShipping
customeriD < customeriD
creditCard orderlD
zipCode shippingAddress
paymentDate
shippingDate

Fig. 2. Tables used in our policy definitions and experimental evaluation

changing the original (user-facing) database schema and by extending backup
procedures using only natively available DBMS backup functionality.

5.1 Experimental Setup

Hardware: We used a server with dual Intel Xeon E5645, each with 6 physical
cores and Hyper Threading enabled, 64GB of ram, and an SSD for storage. The
server was running CentOS 8 Stream x86_64 with Kernel Virtual Machine [17]
(KVM) as the hypervisor software. We used two Virtual Machines (VMs) to
carry out the experiments; since a majority of database interactions operate
in a client-server model, we deployed two independent VMs to represent client
and server. Both VMs were built with CentOS 8 Stream x86_64, Postgres 14.5,
MongoDB 4.1, 1 x vNIC and a 25GB QEMU copy-on-write [6] (QCOW?2) file
on an SSD. The client VM has 4GB of RAM and 4 vCPUs and the server
VM was allocated 8GB of RAM and 4 vCPUs. QCOW?2 file was partitioned
into: 350MB/boot, 2GB swap space, with the remaining storage used for the /
partition, using standard partitioning and ext4 file system. Only these two VMs
were running on the hypervisor to minimize runtime fluctuations.

Policies and Keys: We created one retention and one purging policy; both
policies covered all columns in tables from Figure 2. We then generated 30,000
business records which approximately equally fell under 1) neither policy, 2) only
the retention policy, 3) only the purging policy, or 4) both policies.

In Section 5.2, we evaluate framework performance overhead using a real-
world simulated query workload on a local database. We use synthetic data and
the additional generated encryption keys (total of 21 encryption keys) in our ex-
periments. In Section 5.3 we analyze the performance overhead of our framework
during the backup and restore of a relational and NoSQL database. Our exper-
iments confirmed the framework enforces retention and purging compliance.

5.2 Query Overhead Imposed by the Framework

Relational databases: SELECTs do not incur any retention or purging overhead
in our framework. Because real-world data warehouse workloads are typically
90% SELECTs [14], in practice the compliance overhead would apply a relatively
small fraction of queries. To mirror data warehouse workloads reported by Hsu
et al. [14], our query workload consisted of 9,000 (90%) SELECT queries, 700 (7%)
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Fig. 3. Overhead of our framework during a simulated query workload

UPDATE queries, and 300 (3%) DELETE queries. Because our framework runs the
same process for UPDATES and INSERTs, we use UPDATEs for performance evaluation.

In order to measure the runtime overhead, we ran an identical query workload
on two identical databases, one with our framework enabled and one without any
additions. Different types of queries were mixed in randomly in our workload;
we measured the elapsed time after each 1,000 query transactions. We manu-
ally verified that the the encryption keys and archival processes were correctly
applied to the data after running the simulated workload. The overall overhead
distribution can be seen in Figure 3. On average, our proposed framework had
a 2% overhead compared to the database without the compliance framework.

Our workload replicates the average expected query distribution observed by
Hsu et al. [14]. In practice, the overhead will depend on the policy sizes, the
frequency which queries trigger a policy action, and the types of queries run.
The evaluation of each of the such factors is beyond the scope of this paper.

The closest related research conducted by Ataullah et al. [9] uses triggers to
determine whether or not an UPDATE or DELETE would violate a retention policy.
In instances where a query would result in non-compliance, the query is blocked.
Thus, both our framework and the research by Ataullah et al. require a trigger
initiating and the code required to determine whether or not a query would
result in a compliance violation. We have a small overhead of archiving data
compared to their solution of blocking a query; this results in the trade-off of
not having to adjust queries at the cost of automatic archiving overheads.

NoSQL databases: In this paper, we focus on evaluating local (non-cloud)
databases to minimize the number of factors outside of our control that may
affect performance. MongoDB only supports triggers in a cloud-based version;
thus we do not evaluate the query overhead performance in this paper. Scope et
al. [26] verified the functionality of using triggers and cryptographic erasure to
support purging in MongoDB Atlas (cloud-based version of MongoDB).

5.3 Backup and Restore Overhead Imposed by the Framework

In this experiment, we evaluate the cost of backing up and restoring the encryp-
tion keys for our framework. We discuss the overhead cost of backing up a single
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File Relational NoSQL JSON
Full Database 64,011,016 149,151,434
Single Encryption Key File 2,810 3,437
Separate Encryption Key (21 Files) 72-73 165

Table 1. Backup and Restore File Sizes (in bytes)

key file (i.e., the policyOverview table) versus backing up each key indepen-
dently, in addition to executing a full backup/restore from a local file. We use
the encryption keys and data described in Section 5.2 (where 21 encryption keys
were generated). Table 1 summarizes the file sizes in this experiment.

This experiment evaluates the additional overhead cost of backing up the
encryption keys to an external server. To measure the upper-bound overhead of
our framework, we disabled key caching during the restore.

Relational Backup and Restore: We ran 10 backups with and without our
framework enabled to evaluate the overhead cost of backing up a single key
file (i.e., backing up the entire encryption key table as a single file) and all 21
encryption keys independently. The observed overheads of these backups are
shown in Figures 4 and 5 (with the storage costs outlined in Table 1). For the
single key file backup, the performance overhead was 72%, and for backing up
the individual 21 keys the overhead was 100%.

We then evaluated the cost of restoring a relational database, introducing
the additional step of restoring of the encryption keys from an external server.
Figure 6 presents the overhead of restoring a single file, while Figure 7 shows
the overhead of restoring all 21 keys. For a single key file, the average restore
overhead was approximately 105%. For the full restore of individual 21 keys, the
overhead was 92%.

NoSQL Backup and Restore: To verify our framework backup and restore
works with a NoSQL JSON logical layout, we performed the same evaluation
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(using the same data in NoSQL JSON collections) with a local MongoDB. Thus,
the shadow collections are backed up using standard MongoDB backup proce-
dures (mongodump) and our encryptionKeys collection is backed up to external
servers. As with the relational database, we evaluate the overhead for backing
up and restoring a single encryption key file as well as for separately backing up
and restoring all of the keys generated during our analysis of the overhead.
Figures 8 and 9 provide an overview of the overhead incurred by backing up
the encryption keys in MongoDB. The average overhead of a single key file was
105%, and for backing up all of the 21 keys separately was 115%. Figures 10
and 11 summarize the overhead impact of the framework on the restore process.
Our framework adds a 107% overhead to restoring a single key file from a remote
server; when restoring each key independently, the overhead is increased to 114%.

5.4 External Backup and Restore Performance Considerations

As the industry moves to the cloud environment, the backup and restore process
can be influenced by a number of factors, including the internet connection
speed, hypervisor load, or disk type. In our experiments, we used an external
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Fig. 10. NoSQL 1-file restore overhead Fig. 11. NoSQL 21-file restore overhead

server offsite from our university as described in Section 5.1. We also used a NAS
appliance that was located within the University, so the server and NAS are
roughly 60 miles apart. The network connection from the server to the Internet
is 1Gbps symmetrical and the NAS appliance also has a 1Gbps symmetrical
connection. However, due to the nature of the Internet the speed for which these
files were uploaded or downloaded can fluctuate based on Internet congestion.
Moreover, the number of files that are uploaded or downloaded can influence the
duration of the transfer as well as the load of the NAS device.

We use a simple server running KVM, but a cloud service would introduce
additional complexity. For example, AWS offers different tiers, some tiers share
the hypervisors resources while other tiers are dedicated. Larger organizations
with dedicated on-premise hardware running this framework may be able to
leverage their existing architecture resulting in a lower overhead percent. Fur-
thermore, a higher ratio of business records to encryption keys will result in a
smaller overhead during backup and restore.

Almost all modern file-transfer services require authentication (which is part
of AAA [7]), and our SFTP connection authentication incurred a time cost. In
other words, uploading the keys to a separate external server requires additional
time even if the volume of the data remains the same. Moreover, the authenti-
cation time for a connection could vary based on a multitude of factors ranging
from the load of the target server to the load and response time of the au-
thentication service. Thus, the performance of backup and restore processes can
fluctuate based on a multitude of factors outside of the control of our framework
and systems.

6 Discussion

6.1 Third Party Server Vendor Considerations

For cryptographic erasure to fully satisfy purging requirements, all pertinent
encryption keys must be rendered irreversibly irrecoverable. Many remote stor-
age options do not offer the ability to implement a Secure Deletion process on
specific files. Amazon’s documentation [1,33] states, “When an object is deleted
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from Amazon S3, removal of the mapping from the public name to the object
starts immediately [...] Once the mapping is removed, there is no external access
to the deleted object. That storage area is then made available only for write
operations and the data is overwritten by newly stored data [...] AWS Backup
randomizes its deletions within 8 hours following recovery point expiration to
maintain performance.”

GCP takes a similar approach [3,2], where the documentation states “[the]
Google backup cycle is designed to expire deleted data within data center back-
ups within six months of the deletion request. Deletion may occur sooner depend-
ing on the level of data replication and the timing of Google’s ongoing backup
cycles [...] After the data is marked for deletion, an internal recovery period of
up to 30 days may apply depending on the service or deletion request.”

Thus, the secure deletion guarantees provided would depend on the vendor.
If one were to use an “in-house” external server for encryption key storage, a
guaranteed secure deletion could be implemented. Organizations must balance
these considerations to decide between a vendor or an in-house service.

6.2 Managing the Size of the Archive Tables

Although this framework supports the restoration of all archived data, in prac-
tice, many organizations may choose to limit the amount of data in the archive
outside of backups. Because data in the archive is not expected to be used regu-
larly (otherwise it would not be in an archive), many organizations may not want
to use their high performance storage on data which is not frequently accessed.
Thus, this framework supports a parameter which limits the restore of data from
the archive backups during the restore process to a specified time range.

With larger databases, we would consider partitioning the archive tables to
enable more efficient deletions. For example, we could partition tables on a policy
date field and make a new partition every month. Before we drop the month that
has expired, we would export it to a non-proprietary format for easy retrieval
at a later date. When keeping records for 104 years, it is simpler to recover
the data in a non-proprietary format since versions of software, hardware, and
operating systems change over the years. Many organizations use CSV, JSON,
XML, or even HDF5 file formats for long term software-independent storage.

6.3 Reclaiming Unused Storage Space

After marking the data for deletion, databases will flag the row for for dele-
tion without actually purging the data from disk; in the case of an UPDATE, the
database operation will often mark the old row for deletion and insert a new
(updated) row. In that case, the row’s pre-update data will still exist in the un-
derlying database pages. This old data remains on disk until the RDBMS reuses
the tablespace space or a reorganization of the tablespace purges the old data
from database storage [18]. The challenge with management or purging such
deleted data are due to DBMSes not providing tools or mechanisms to monitor
or modify their internal storage.
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6.4 Concerns with Forensically Recoverable Data

Deleted data that still remains on a storage medium but is no longer referenced
by a file system or a DBMS can still be reconstructed using a variety of foren-
sic methods (e.g., [34,35,10,24]). Although this paper addresses how to manage
encryption keys used for purging data across backups, we consider forensically
recoverable data to be beyond the scope of this paper. Lenard et al. [18] analyzed
how various types of databases and their defrag options are able to remove the
surviving deleted data from backups. We therefore recommend regularly running
a defrag on a database to expedite the process of clearing out deleted data from
database pages, particularly before these pages are placed in a backup.

There are data sanitization techniques that seek to destroy deleted data so
that it can no longer be forensically reconstructed. Although Lenard et al. [18,19]
investigated the data left forensically recoverable in different parts of database
system and Wagner et al. [36] developed the API to interact with low-level
database storage, there are currently no solutions available to sanitize database
storage. Most research and tools for data sanitization involve overwriting blocks
at the disk level (e.g., [13,12,11,23]) and cannot overwrite individual database
records. SQLite is the only DBMS that supports data sanitization with the
secure_delete setting [28], which is disabled by default due to a negative impact
on performance. If enabled, secure_delete explicitly overwrites deleted data
with zeros. Stahlberg et al. presented a similar method for MySQL [29].

Although the laws do not explicitly detail the technical steps of compre-
hensive data destruction, this level of data destruction is typically described by
individual organizations or government agencies (e.g., NSA [21], NIST [20], or
IRS [32]). Data sanitization is a problem that we consider to be outside the
scope for this paper; our encryption protects data covered by purging policies,
even from forensic recovery, but a more general data sanitization approach may
compliment the work in this paper.

7 Conclusion

Data management research must continue to address and refine the support
for database compliance functionality with respect to customer privacy. Al-
though some research has begun to address current shortcomings, an increas-
ing proliferation of new rules, requirements, and complexity will result in in-
creased compliance pressures. Current purging and retention compliance sup-
port is limited to either coarse-grained (i.e., file-level) applications or does not
consider both retention and purging simultaneously when enforcing compliance
policies. Fine-grained compliance functionality must be researched and imple-
mented in database systems to automatically enforce compliance. This paper
outlines a comprehensive compliance support framework that implements reten-
tion and purging support throughout databases and their backups; our experi-
ments demonstrate that our framework can guarantee compliance requirements
with an acceptable performance overhead and with minimal additional infras-
tructure requirements.
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