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Abstract

Bayesian inference allows the transparent communication and systematic updating of

model uncertainty as new data become available. When applied to material flow anal-

ysis (MFA), however, Bayesian inference is undermined by the difficulty of defining

proper priors for the MFA parameters and quantifying the noise in the collected data.

We start to address these issues by first deriving and implementing an expert elici-

tation procedure suitable for generating MFA parameter priors. Second, we propose

to learn the data noise concurrent with the parametric uncertainty. These methods

are demonstrated using a case study on the 2012 US steel flow. Eight experts are

interviewed to elicit distributions on steel flowuncertainty fromrawmaterials to inter-

mediate goods. The experts’ distributions are combined and weighted according to

the expertise demonstrated in response to seeding questions. These aggregated distri-

butions form our model parameters’ informative priors. Sensible, weakly informative

priors are adopted for learning the data noise. Bayesian inference is then performed to

update the parametric and data noise uncertainty given MFA data collected from the

United States Geological Survey and the World Steel Association. The results show a

reduction in MFA parametric uncertainty when incorporating the collected data. Only

a modest reduction in data noise uncertainty was observed using 2012 data; however,

greater reductions were achieved when using data from multiple years in the infer-

ence. These methods generate transparent MFA and data noise uncertainties learned

from data rather than pre-assumed data noise levels, providing amore robust basis for

decision-making that affects the system.
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1 INTRODUCTION

Material flow analysis (MFA) is a foundational tool of industrial ecology research and characterizes how a given material is transported and trans-

formed through a supply chain.MFAs are key to identifying potential resource efficiency improvements (e.g., increased recycling), and to evaluating

theupstreamanddownstreamsystem impacts of local interventions; for example, the potential to reduce greenhouse gas (GHG) emissions released
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duringmaterial production by improving downstreammanufacturing process yields (Cullen&Cooper, 2022).MFAs have been used to help set envi-

ronmental policies and goals by national governments (e.g., justifying Japan’s reduce, reuse, and recycling laws), local governments (e.g., remedial

action taken against toxic releases into New York City harbor), and companies (e.g., Toyota’s corporate MFA was used to set company goals for

emissions and recycling) (Graedel, 2019). The proliferation of MFA, however, is hindered by at least two major challenges. First is the long timeline

for creating and updating detailedMFAs, currently taking months or even years. Second is the lack of uncertainty quantification (UQ) in mostMFA

results. The data onmass flows collected to conduct anMFAare often incomplete, noisy, conflicting, and out-of-date. Poor data quality necessitates

data reconciliation, and alongside data sparsity, is at the root ofMFAuncertainty.Without UQ,MFA results provide limited insight into the impacts,

risks, and unintended consequences of system interventions. It is increasingly accepted that UQ must be included in MFA results if they are to be

meaningful and able to support informed decision- and policy-making (Graedel, 2019; Schwab&Rechberger, 2018). Bayesianmethods help address

these challenges of UQ and laboriousness inMFA, as explained below.

1.1 Previous work on data reconciliation and Bayesian inference in MFA

AnMFApractitionermust createmass-balanced networks fromunbalanced data.Manual reconciliation is common, as used inCullen et al.’s seminal

work on global steel and aluminum flows (Cullen & Allwood, 2013; Cullen et al., 2012). This requires the practitioner to use his or her judg-

ment to adjust the data to achieve mass balance. Otherwise, more formal approaches to MFA data reconciliation include (non)linear least squares

optimization (Kopec et al., 2016; Zhu et al., 2019; Cencic, 2016) and Bayesian inference (Gottschalk et al., 2010; Lupton &Allwood, 2018).

The popular “STAN” open-source software performs MFA least squares data reconciliation and uses error propagation to quantify the uncer-

tainty in the final mass flow results if the collected data are input into the software as probability distributions (Cencic, 2016). However, defining

these distributions is troublesome given theMFA data being collected are rarely recordedwith uncertainty information (Cencic, 2016). Elsewhere,

Meylan et al. (2017) investigate the reliability of MFA results by either assigning reliability indicators to the collected data or by observing the

degree of adjustment that the collected data undergo during the reconciliation process. A lower degree of data adjustment reflects fewer data

conflicts and hints at higher reliability (Meylan et al., 2017) but suchmetrics do not quantify the uncertainty in theMFA flow parameters.

Bayesian inference is a probabilistic approach to uncertainty quantification that can be used to reconcileMFAdata by adjusting theMFAvariable

estimates based on combining prior knowledge with collected material flow data (Jaynes, 2003; Probability Theory: The Logic of Science, 2008;

Berger, 1985; Von Toussaint, 2011). The prior information is typically a combination of fact-based knowledge with subjective impressions based

on experience (Moyé, 2008). The prior belief about an MFA variable, such as the mass flow between two processes in a factory, is expressed as a

probability density function (PDF); for example, a Gaussian PDF could be used to represent a prior belief that a mass flow is expected to be 10 t

with a variance of 1 t2. MFA data are subsequently collected and the “noise” in the collected data—for example, due to the error in a mass sensor

reading—is also expressed as PDFs. In Bayesian inference, the collected MFA data are combined with the priors to generate an updated posterior

belief, represented as updated conditional PDFs.

Bayesian inference presents several benefits forMFAdata reconciliation. First, it allows a rigorous quantification of result uncertainty (not prox-

ies) via theprobability and statistics formalism, and allows flexible probability distributions able to capture high-order non-Gaussian and correlation

effects. For example, the prior knowledge of an MFA variable might be best represented as a uniform rather than normal distribution if nothing is

known other than the upper and lower bounds on the variable; that is, with no knowledge to favor a higher probability region. Second, Bayesian

inference is particularly applicable to MFA because it is well suited to handling sparse and noisy data, and can incorporate multiple data streams

simultaneously. Third, compared with other approaches such as Gaussian error propagation (Bader et al., 2011), the Bayesian framework provides

a natural entryway to inject domain knowledge, such as by using historical data or opinions from subject matter experts to form the prior distri-

bution of the MFA variables (Wang & Romagnoli, 2003). Bayesian inference can also be “chained” together, to perform sequential learning that

iteratively assimilates new data as they become available. Even when little data is available, the Bayesian approach can provide a practitioner with

anMFAwith associated uncertainties.

Bayesian inferencewas first used inMFA in 2010 byGottschalk et al. (2010) to study nano-TiO2 mass flows. They formed uniform and triangular

prior distributions centered on values of historical data and performed Bayesian inference using a Metropolis sampling algorithm with simulated

instead of measured data. In 2018, Lupton and Allwood (2018) introduced additional MFA prior forms (e.g., Dirichlet priors) and conducted a case

study on deriving the global steel flow. Their case study highlights some of the challenges of applying Bayesian inference toMFA:

∙ Assigning proper and rigorously justified prior distributions. Lupton and Allwood’s steel flow analysis (Lupton & Allwood, 2018) used previous

results fromCullen et al. (2012) as the basis of their priors. However, historical datamay not be always available and evenwhen it is (and deemed

relevant) it remains unclear how to form a probability distribution that properly reflects the uncertainty. Assuming a prior variance without

justification can introduce bias to the posterior results. Alternatively, non-informative or weakly informative priors may be used; for example,

assigning a wide uniform PDF for amass flow between 0 and 200Mt. However, they will likely requiremoreMFA data to be collected in order to

decrease uncertainty to desirable levels.
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DONG ET AL. 1107

F IGURE 1 A graphical representation of anmaterial flow analysis network structure.

∙ Assigning noise to collectedMFA data. MFA relevant data are typically published without accompanying uncertainty information; for example,

no error bars are given for the commodity mass flow data reported by the U.N. Comtrade Database (United Nations Comtrade Database, 2012)

or from trade associations such as theWorld Steel Association (World Steel, 2012).

How then tomodel the data noise?Assumptions canbemade; for example, Lupton andAllwood (2018) assume thedata noise in their collected

data follows a Gaussian distribution with a standard deviation equal to 10% of the observed value. Such assumptions can introduce bias into the

final posteriorMFA results and provide a false sense of confidence if the assumed noise overestimates the data quality.

Elsewhere, there are qualitativemethods to categorize data into uncertainty levels based on features such as the perceived data source qual-

ity and specificity (Bonnin et al., 2013), and semi-quantitative approaches such as using a pedigree matrix or confidence score (Lloyd & Ries,

2007; Zhu et al., 2019) which translates an uncertainty level into a probability distribution or numerical value. However, the strict quantitative

identification of MFA data noise has been lacking so far (Nga et al., 2014). The Bayesian framework offers the opportunity to quantify and learn

the data noise.

1.2 Scope and structure of this article

This paper explores how to: (a) Form informative prior distributions forMFA variables by eliciting information from industrial experts, and (b) Learn

the data noise from collected data by incorporating data noise as random variables for inference. In Section 2, we first introduce theMFA problem

mathematically using the conservation of mass principle (Section 2.1) and then formulate Bayesian inference for learning MFA model parameters

and the collected data noise (Section 2.2). The two crucial components needed for solving a Bayesian inference problem—the likelihood and prior—

are then presented in Sections 2.3 and 2.4, respectively. In particular, Section 2.4 reviews existingmethods for expert elicitation and discusses their

use for the MFA framework. In Section 3, we apply these methods to derive the US steel flow for 2012. Finally, in Section 4 we discuss the lessons

learned from the case study.

2 FORMULATION

2.1 A mathematical representation of MFA

AnMFA can be represented via a directed graph as shown in Figure 1. The nodes of the graph (indexed by 1,2,… , np) represent different processes,

products, or locations. Each directed edge connecting two nodes represents themass flow of material from one process to another.

At the core ofMFA is the conservation ofmass, which requires the totalmass ofmaterial flows into each node (total input) to equal the totalmass

of material flows out of each node (total output). We denote the total input (equivalently, total output) flow for node i by zi. The flow along an edge

out of node i (e.g., to node j) is then equal to 𝜙ijzi, where 𝜙ij ∈ [0,1] is the allocation fraction of node i’s total outflow going into node j (𝜙ij = 0 if there

is no flow from node i to node j). Hence,

np∑
i=1

𝜙ijzi = zj. (1)

Furthermore, for each node, its output allocation fractions need to sum to unity:

np∑
j=1

𝜙ij = 1. (2)
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1108 DONG ET AL.

We recommend working with the allocation fractions (𝜙ij) as model parameters instead of working directly with the mass flow values due to

the increased ease of performing the calculations. The allocation fractions offer a convenient method of expressing and allowing the mass bal-

ance relationships for the entire MFA to be assembled into a linear system as proposed by Gottschalk et al. (2010). For instance, the mass balance

equations for the simpleMFA shown in Figure 1 can be expressed as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

−𝜙13 0 1 0 0 0 0 0 0

−𝜙14 −𝜙24 0 1 0 0 0 0 0

0 −𝜙25 0 0 1 0 0 0 0

0 0 −𝜙36 −𝜙46 0 1 0 0 0

0 0 0 −𝜙47 0 0 1 0 0

0 0 0 −𝜙48 0 0 0 1 0

0 0 0 0 −𝜙59 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝕀−ΦT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5
z6
z7
z8
z9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏟⏟

z

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
q2
0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏟⏟

q

(3)

where inEquation (3), 𝕀 is thenp × np identitymatrix,Φ ∈ ℝnp×np is the adjacencymatrixwhereentries are the allocation fractions𝜙ij, z ∈ ℝnp depicts

all the nodal mass flows, and q ∈ ℝnp represents the external inflows to the network. The material inflows (qi) originate from outside the network.

For example, a material inflow to the US aluminummaterial flow network could be imports of aluminum billet.

For a scenario with givenΦ and q, we can compute themodel prediction for all nodal mass flows via:

z = (𝕀 − ΦT )−1q. (4)

Subsequently, from the values of {z,Φ, q}, other common MFA quantities of interest (QoIs) can be predicted, such as mass flows for each edge

(𝜙ijzi), and sums, products, and ratios of mass flows. We express these QoIs as a function, G(𝜙, q), where 𝜙 denotes a flattened vector containing all

𝜙ij’s.

2.2 Bayesian parameter inference

Given an MFA model, the set of all unknown MFA parameters of interest 𝜃 ∈ ℝn𝜃 and the collected data y ∈ ℝny are treated as random variables

and associated with a joint PDF p(𝜃, y). Here, we use 𝜃 to denote allMFAmodel parameters we are interested to learn, which may encompass 𝜙, q,

𝜎, as well as other parameters; y is the flattened set of collected and noisy MFA data records that correspond to the model prediction QoIs G(𝜙, q).

Bayes’ rule then directly follows from the axioms of probability, stating:

p(𝜃|y) = p(𝜃, y)
p(y)

=
p(y|𝜃)p(𝜃)

p(y)
, (5)

where p(𝜃) is the prior PDF representing the initial belief in theMFAparameters 𝜃 before having collected any data; p(y|𝜃) is the likelihood PDF (see

Section 2.3); p(𝜃|y) is the posterior PDF representing the updated belief in the MFA parameters 𝜃 after having collected the data y; and p(y) is the

model evidence (marginal likelihood) and acts as a normalizing constant for the posterior PDF. Performing Bayesian parameter inference entails

computing or characterizing the posterior p(𝜃|y) while accessing the likelihood and prior.

2.3 Modeling the likelihood p(y|𝜽)

The likelihood computes the probability of having collected MFA data y if the model parameters had the value equal to 𝜃; that is, it provides a

probabilistic measure on themismatch between observation y andmodel predictionG(𝜙, q). There aremanyways in which the collected data ymay

relate toG(𝜙, q). For example, the discrepancymay be viewed as an additive noise:

yk = Gk(𝜙, q) + 𝜖k, (6)

where k indicates the kth data component. Equation (6) is appropriate for MFA data where the error is insensitive to the scale of the measure-

ment; for example, in the case of a mass sensor which has a sensitivity of± 10 g across its measurement range. However, oftentimes the data error

increases with the scale of themeasurement and can bemodeled as a relative noise in the form:

yk = Gk(𝜙, q)(1 + 𝜖k). (7)
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DONG ET AL. 1109

In either case, modeling the noise 𝜖k as a Gaussian centered around zero is a sensible assumption describing our belief that the distribution

of noise should typically be symmetric around zero without biasing to a particular direction. For its standard deviation 𝜎k , we do not presume its

magnitude andwill instead learn these values from the data. In the absence of information to the contrary, the noise associatedwith different pieces

of data can be modeled as independent. Therefore, if adopting the relative error form in Equation (7) and with the unknown model parameters

𝜃 = {q,𝜙,𝜎}, the likelihood PDF is:

p(y|𝜃) = p𝜖

(
y

G(𝜙, q)
− 1

)
=

ny∏
k=1

1√
2𝜋𝜎k

exp

⎧⎪⎨⎪⎩
−

(
yk

Gk (𝜙,q)
− 1

)2

2𝜎2k

⎫⎪⎬⎪⎭
. (8)

2.4 Expert prior elicitation for MFA

The goal of expert prior elicitation is to extract pertinent knowledge for 𝜃 from subject matter experts in a form that can used as a proper Bayesian

prior PDF. There are two main challenges in expert prior elicitation. An expert does not typically have a preexisting quantification of her belief

in the form of a PDF (Winkler, 1967). Therefore, the first challenge is how to elicit and synthesize a single expert’s knowledge into a “quantified

belief prior” (Winkler, 1967). Next, when there are multiple experts available, it is desirable to utilize all their opinions to have the prior capture

the full diversity of background knowledge. However, Bayesian inference requires a single PDF for a parameter as the prior rather than multiple

distributions from several experts. The second challenge is, therefore, how to combine and weight the beliefs of multiple experts into a single prior

for eachMFA variable of interest.

Expert prior elicitation has been widely applied in medicine (Azzolina et al., 2021) and has been used in environmental assessments to forecast

future wind energy costs (Wiser et al., 2016) and regional climate change (Dessai et al., 2018). There has been some preliminary work on expert

elicitation inMFA:Montangero and Belevi (2007) use expert elicitation to describe the uncertainty regarding the flow of nitrogen and phosphorus

in a septic tank. In their work, multiple experts provide uncertainty information as quantiles and their opinions are combined using equal weights.

Elsewhere, Mathieux and Brissaud (2010) conduct expert elicitation to understand where aluminum is being used in commercial vehicles. In their

work, experts are brought together to determine collectively a single distribution for each estimate. In this work, we examinemethods for eliciting,

weighting, and aggregatingmultiple experts’ beliefs under the Bayesian framework.

2.4.1 Eliciting a prior from an expert

Prior elicitation is typically performed using surveys conducted either remotely (e.g., by mail or online), in-person, or via a hybrid format where the

expert is assisted by telephone or video conference (Johnson et al., 2010). While the variable of interest 𝜃 can be multivariate (e.g., a joint distribu-

tion on all the allocation fractions leaving a node), eliciting multi-dimensional PDFs directly is very challenging; therefore, multivariate elicitation

typically involves eliciting and then combining univariate marginal distributions (Daneshkhah & Oakley, 2010; O’Hagan et al., 2006). The common

methods to elicit univariate PDFs are either a variable interval method or a fixed interval method (O’Hagan et al., 2006; Oakley, 2010). In a vari-

able interval method, the expert provides estimates of the quantiles; for example, estimate a and b such that ℙ(𝜃 ≤ a) = 0.25, ℙ(a < 𝜃 ≤ b) = 0.5,

and ℙ(b > 𝜃) = 0.25 (Murphy &Winkler, 1974; Garthwaite et al., 2005). In fixed interval methods, the expert estimates the probability of 𝜃 within

given fixed intervals (e.g., estimate ℙ(a < 𝜃 ≤ b) for some given a and b) (O’Hagan, 1998). While it is unclear which set of methods yield more accu-

rate representations of the expert’s true belief (Abbas’ findings contradicting those ofMurphy andWinkler (Abbas et al., 2008; Murphy &Winkler,

1974)) it does appear that participants find the fixed intervalmethod easier to complete (Abbas et al., 2008). Given thatmanyMFA industry experts

might be unfamiliar with statistical concepts such as quantiles, we recommend using the fixed interval method forMFA prior elicitation where pos-

sible; for example, for eliciting allocation fractions (𝜙) which are bounded within [0,1]. Elsewhere, when eliciting external inflows (q) or data noise

parameters (𝜎k), there is no upper bound a priori so that it is appropriate to either ask the expert to specify an upper bound before defining the

intervals used in the fixed interval method or else use a variable interval method (see Supporting Information Section 1).

2.4.2 Prior aggregation from multiple experts

The typical methods for combining multiple experts’ knowledge into a single proper prior PDF are behavioral aggregation and mathematical

aggregation (O’Hagan et al., 2006) (see Supporting Information Section 2.4).

Behavioral aggregation

Experts collaborate to define agreed upon priors (O’Hagan et al., 2006). Thus, very “informed” experts have the chance to share their knowledge.

However, it can be difficult to find a common time when all the experts are available and there are potential issues with strong personalities
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1110 DONG ET AL.

F IGURE 2 Linear versus logarithmic pooling of two equal weight elicited priors for an allocation fraction (𝜙). In general, the logarithmic pool
result is more “concentrated” than the linear pool result (O’Hagan et al., 2006).

dominating the decision-making (O’Hagan et al., 2006), the risk of overconfidence in the group (Gigone & Hastie, 1993), some experts conceal-

ing their true views (Plous, 1993; Sniezek, 1992), group polarisation (Plous, 1993; Sniezek, 1992), and individuals with unique information being

ineffective at sharing (Stasser & Titus, 1985). Therefore, methods such as the Delphi method (Linstone & Turoff, 1975; Rowe &Wright, 1999) and

its variants (Degroot, 1974; Delbecq et al., 1986) have been proposed where direct interaction between the experts is restricted to prompt the

experts to explain their views rather than relying on reputation or personality (O’Hagan et al., 2006); for example, experts may share their views

anonymously, adjust their views based on the received information, and iterate until convergence on a distribution.

Mathematical aggregation

A distribution is elicited from each of the ne experts independently, yielding ne PDFs {p1(𝜃),… , pne (𝜃)}. An aggregated PDF p(𝜃) is then calculated

using either linear or logarithmic pooling (O’Hagan et al., 2006; Genest & Zidek, 1986; Clemen &Winkler, 1999):

(linear) p(𝜃) =
ne∑
𝓁=1

w𝓁p𝓁(𝜃), (logarithmic) p(𝜃) =
1
Z

ne∏
𝓁=1

p𝓁(𝜃)w𝓁 , (9)

wherew𝓁 is theweight associatedwith expert 𝓁, and Z is a normalization constant. In logarithmic pooling, the resulting prior p(𝜃) = 0whenever any

of the experts believe p𝓁(𝜃) = 0. In contrast, the prior generated by linear pooling includes any value considered plausible by any of the experts and

is thereforemore conservative in terms of not ruling out experts’ beliefs (see Figure 2).

Equal weights could be assigned to all experts such thatw𝓁 = 1∕ne; however, it is often desirable to allocate greater weighting tomore informed

experts, typically using either social networkweighting ormethods requiring questions on seeding variables, also referred to as seeding questions from

hereon. Social networkweighting usually assigns weights based on each expert’s number of citations (Cooke et al., 2008) or a consensus among the

experts on whose opinion should receive the most weight (Aspinall & Cooke, 2011). Such methods have been criticized for often excluding experts

with predominately industry rather than academic experience and for resulting in prior PDFs with low accuracy (Cooke et al., 2008; Aspinall &

Cooke, 2011; Colson & Cooke, 2018). Seeding questions assess each expert’s expertise by comparing the experts’ responses to collected seeding

variable observations. One seeding variable example for a steel MFA study might be on the fraction of US pig iron consumed in Indiana within a

certain time period. The experts’ responses are compared to the observations froma credible source (e.g., USGS). Typically, Cooke’smethod (Cooke,

1991) (summarized in Figure 3) is used to convert expert seeding question responses to expert weights where, for expert 𝓁, the weightw𝓁 ∝ C𝓁K𝓁
with C𝓁 being the calibration score and K𝓁 the information score. The calibration score measures the accuracy of the expert’s responses, and the

information score penalizes experts weakly informative (i.e., unsure) responses that approach the uniform distribution across the support. The

Kullback–Leibler (KL) divergence is used in calculating both scores. The KL divergence is a measure of how two PDFs differ. It is non-symmetric

and non-negative with a KL divergence being zero between two identical distributions, and a larger KL divergence implying a greater difference

between two distributions (Kullback, 1997). For discrete variable X taking values in {1,2,… , m}, and two probability mass functions P(x) = px and

Q(x) = qx , the KL divergence fromQ to P is given as:

DKL(P||Q) = m∑
i=1

pi ln
(
pi
qi

)
. (10)
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DONG ET AL. 1111

F IGURE 3 (a) Each expert’s information score K𝓁 is calculated as the Kullback–Leibler (KL) divergence from the expert’s elicited histogram to
the uniform distribution averaged across all seeding question responses. (b) Each expert’s calibration score C𝓁 is calculated by first counting the
number (fraction) of actual observations of the seeding questions in each inter-quantile interval across all seeding question responses from an
expert, then computing the KL divergence from the ideal expert’s inter-quantile interval probabilities to the empirical expert’s inter-quantile
interval probabilities, and lastly obtaining the likelihood ratio statistic with the corresponding p-value (i.e.,ℙ(𝜒2

3
> 2.479) in the above example)

being the calibration score.

Each expert’s information scoreK𝓁 is calculated as theKL divergence from the expert’s elicited distribution to the uniformdistribution, averaged

across all the seeding questions (see Figure 3a). In order to calculate an expert’s calibration score C𝓁, each response to the seeding questions from

expert 𝓁 is split into inter-quantile intervals. Typically, four inter-quantile intervals (three degrees of freedom) are adopted with a corresponding

probability vectorQ = {0.05,0.45,0.45,0.05}. Each seeding variable observation is then compared to the inter-quantile intervals derived from the

expert’s response; for example, the USGS records that 34.9% of US pig iron was consumed in Indiana from 2002 to 2016, falling into the 50%–95%

interval of the response from expert 𝓁 shown in Figure 3b. Then, let P𝓁 = {p1, p2, p3, p4} denote the fraction of all n seeding variable observations

that fall into each of the four intervals elicited from expert 𝓁. Cooke (1991) states that for a well-informed “ideal” expert (i.e., where seeding vari-

able observations appear as independently drawn fromadistribution consistentwith the expert’s quantiles) then P𝓁 tends toQ, andDKL(P||Q) tends
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1112 DONG ET AL.

to zero. Cooke defines the calibration score C𝓁 as the probability that a random variable following a Chi-square distribution (with three degrees of

freedom if using four inter-quantile intervals) is greater than the likelihood ratio statistic (2 × n × DKL(P||Q)), see Figure 3b; therefore, if expert 𝓁’s
knowledge differs from the seeding variable observations to a large extent, the associated KL divergence would be high and C𝓁 becomes small.

While not discussed previously, we believe that Cooke’s method of calculating C𝓁 is only appropriate when there is uncertainty in the seeding vari-

able observation (see Supporting Information Section 2.5 for a detailed discussion). Eggstaff et al. (2014) state that there is no definitive minimum

number of seeding questions; however, Cooke suggests that 8–10 seeding questions are sufficient for a substantial improvement compared to

assigning equal weights (Cooke, 1991).

Once the expert weights are computed, they can then be used to carry out the mathematical aggregation in Equation (9) to complete the

prior construction.

2.5 Distributions for modeling the MFA priors

The next step is fitting the histograms elicited from the MFA experts to a family of parameterized PDFs. The distribution and corresponding

hyperparameters are typically fitted and selected via a least squares procedure (McBride et al., 2012; R Core Team, 2017).

2.5.1 Distributions for allocation fraction priors

Lupton andAllwood (2018) proposed using aDirichlet distribution as the prior for the allocation fractions {𝜙S,d1 ,… ,𝜙S,dS } from source node S, ensur-

ing that all the allocation fractions remain in [0,1] and sum to unity. The Dirichlet PDF for 𝜙S,d1 ,… ,𝜙S,dS given hyperparameters 𝛼D = {𝛼d1 ,… ,𝛼dS }

is

p(𝜙S,d1 ,… ,𝜙S,dS |𝛼D) = Γ
(∑dS

i=d1
𝛼i

)
∏dS

j=d1
Γ(𝛼j)

dS∏
k=d1

𝜙
𝛼k−1
S,k (11)

and for each 𝜙S,i, its marginal PDF follows a Beta distribution characterized by

p(𝜙S,i|𝛼D) = Γ
(∑dS

j=d1
𝛼j

)
Γ(𝛼i)Γ

(∑
k≠i 𝛼k

)𝜙𝛼i−1S,i (1 − 𝜙S,i)
(
∑

l≠i 𝛼l)−1. (12)

Another benefit of using a Dirichlet distribution is that eliciting each marginal distribution on 𝜙S,i (Equation 12) from an expert is sufficient to

fully construct the Dirichlet joint distribution (Equation 11) (O’Hagan et al., 2006). After eliciting each marginal histogram of 𝜙S,i from the experts,

we fit for the optimal Dirichlet hyperparameters 𝛼∗D byminimizing the squared differences between the probability of each Beta marginal that cor-

responds to theDirichlet joint distribution and themarginalweighted histogramswith nb intervals from the experts, summedacross all dS allocation

fractions emanating from a source node S (Zapata-Vázquez et al., 2014):

𝛼∗ = argmin
𝛼

dS∑
ds=d1

nb∑
i=1

[
F(𝜃ds,i+1|𝛼) − F(𝜃ds,i|𝛼) − ℙ(𝜃ds,i)

]2
, (13)

where F is the Beta CDF.

Other methods exist that may also be used tomodel the allocation fraction priors (Lupton &Allwood, 2018; Gelman et al., 1996). Softmax trans-

formations offer extra flexibility compared to using Dirichlet priors; for example, they can incorporate a strong belief that 𝜙S,d1 = 𝜙S,d2 while the

relationship betweenother allocation fractions is unknown.However, the increased complexity of the procedure complicates the elicitationprocess

because, for example, the CDF in Equation (13) cannot be evaluated in a closed form.

2.5.2 Distributions for data noise parameter priors 𝜎k

Since 𝜎k is the standard deviation of Gaussian distributed 𝜖k , the prior must take positive support; that is, p(𝜎k < 0) = 0. A common choice of prior

for the standard deviation of aGaussian distribution is the inverse gammadistribution,which enables an analytical evaluation of the posteriorwhen

the measured data is linear in the parameters of interest (Gelman, 2006). However, the inverse gamma and other commonly used positive support

distributions such as the log-normal distribution place negligible probability of 𝜎 at regions close to zero, greatly reducing the possibility that the
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DONG ET AL. 1113

MFA data is of high quality. We believe that generally inMFA there should be a moderate probability that the collected data is clean and high qual-

ity. Consequently, other prior distributions that place non-negligible probability at regions close to zero should be considered. Such distributions

include the half-Cauchy distribution, uniform distribution, and truncated normal distribution.

2.5.3 Distributions for mass inflow priors q

Themass inflows q to thenetworkmust bepositive. Therefore, uniformand truncatednormal distributions canbeused.When there is little informa-

tion about q, theupperbound canbe set to a large value for bothdistributions. Alternatively, both thehalf-Cauchyand truncatednormal distribution

can be usedwithout an upper bound, and set such that the shape of p(q) is close to being flat.

Section 3 of the Supporting Information reviews the properties of different PDFs to aid selection of prior PDFs for data noise and mass

inflow priors.

2.6 Posterior sampling

Once the prior and likelihood are established, the Bayesian inference problem can be solved as stated in Equation (5), updating our knowledge

about ourmodel parameters through the posterior distribution. Attempting to compute the posterior PDFwould entail evaluating the denominator

(model evidence) in Bayes’ rule: p(y) = ∫ p(y|𝜃)p(𝜃) d𝜃, a task that is generally intractable to perform even numerically except for very low (e.g.,< 3)

dimensions of 𝜃. Instead of computing the PDF, a major alternative strategy is to generate samples of 𝜃 from the posterior distribution. To that end,

Markov Chain Monte Carlo (MCMC) algorithms (Gilks et al., 1996; Andrieu et al., 2003; Robert & Casella, 2004; Brooks et al., 2011) have become

the predominantmethods for computational Bayes inmoderate 𝜃 dimensions (e.g., up to∼ 100), which iterates aMarkov chain to generate samples

that are consistent with the targeted posterior distribution. The more scalable MCMC methods include Hamiltonian Monte Carlo (HMC)-based

samplers such as the No-U-Turn (NUTs) algorithm, which explore the parameter space efficiently leveraging the posterior gradient and Hamilto-

nian energy principles (Betancourt, 2018). However, HMC suffers from divergence in its time integration step when encountering neighborhoods

of high posterior curvature (Betancourt, 2018; Livingstone et al., 2016); this difficulty was indeed observed in our study when incorporating the

data noise parameters 𝜎 into the Bayesian inference. Therefore, we opt to use sequential Monte Carlo (SMC) (Doucet et al., 2001) to sample the

posterior,which is basedon the idea of iteratively re-weighing the samples using a tempered likelihood [p(y|𝜃)]𝛽 at each stagewhere𝛽 is a tempering

parameter that gradually increases from 0 to 1.We describe the SMC algorithm in Supporting Information Section 5.

3 CASE STUDY ON THE US STEEL FLOW

The advances in the Bayesian inference approach to MFA discussed above are tested by mapping the US annual flow of steel, where we take the

MFA network structure from Zhu et al.’s (2019) analysis of US steel flows in 2014. The case study demonstrates rigorous prior development based

on expert elicitation and Bayesian inference to produce the posterior uncertainty for the MFA collected data noise and MFA flow parameters. All

the data and code used in this case study are available online (see the Supporting Information).

In this case study, the parameters requiring prior formulation are the allocation fractions (𝜙), the external inputs (q), and the data noise standard

deviation (𝜎) associated with data noise (𝜖).

3.1 Constructing priors for allocation fractions (𝝓) and input flows (q)

Since the elicitation of informative priors for all MFA variables of interest can be time prohibitive, we only elicit expert priors for the upstream

allocation fractions (𝜙) and external inputs (q), while using weakly informative priors elsewhere. Experts on US steel flows were identified by con-

ducting a literature search on steel flows and recycling and by contacting US steel companies (e.g., US Steel and Nucor). All the experts had more

than 5 years of working or research experience in the steel industry. Eight experts agreed to an emailed request to take part in the study (see

Table 2 in the Supporting Information).

For prior construction, the experts independently completed surveys online that contained a total of 32 questions: 23 elicitation questions for

allocation fractions associated with import, export, production, and consumption of ferrous rawmaterials, and an extra 9 seeding questions whose

actual observations are taken fromUSGS.

At least one author was present online to answer any questions during survey completion. It took the experts between 25 and 80 min each to

complete the survey. The fixed interval methodwas used to elicit the parameters. For allocation fractions 𝜙, the support [0,1] for 𝜙was divided into
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1114 DONG ET AL.

F IGURE 4 Prior elicitation required steel industry experts to complete an online Qualtrics Survey. The images above show an example
question and expert response. The images below show an example calculation of an aggregated prior for the fraction of US iron ore that is
exported. Only three expert responses are shown for the sake of concision. Their weights have been normalized accordingly to sum to unity.

10 equal-width intervals and Dirichlet hyperparameters were fit to the elicited experts’ histograms as described in Section 2.4. For the external

inputs, the expert first specifies the lower and upper bound, with the interval then divided into 10 equal-width intervals. Figure 4 shows an illustra-

tive example of a survey question for eliciting an allocation fraction. An expert could enter the probability value for each interval in the box or else

drag the bar across for the given interval until the summation of the bars is 1, otherwise the expert cannot continue to the next question.

Linear poolingwas used to aggregate the responses from themultiple experts into a single proper prior PDF for eachMFAvariable. First, weights

were assigned to each of the experts based on their responses to nine seeding questions using Cooke’s method. A wide range of expert weighting

values were obtained with the most informed expert having a weight of 0.299 and the least informed expert having a weight of less than 0.001.

Figure 4 shows how the response of multiple steel experts are combined to form a single aggregated prior PDF for anMFA variable.

3.2 Collecting MFA data records and constructing the prior for data noise standard deviation (𝝈)

After constructionof the allocation fraction andexternal inflowpriors, US steel flowMFAdatawere collected.We focus here on2012data although

any year from the previous 20 years could also have been chosen. The steel flow data were collected from the United States Geological Sur-

vey (USGS) (United States Geological Survey, 2012a, 2012b, 2012c), World Steel Association (WSA) (World Steel, 2012) and Zhu et al. (2019). A

complete record of all the collectedMFA data is provided in Supporting Information Section 6.

The collected MFA data are published without accompanying uncertainty information while data error is inevitable. Subsequently, the noise

for each piece of collected data is modeled as an independent relative error (see Equation 7) that follows a Gaussian distribution with zero mean

and a standard deviation 𝜎. Expert elicitation could be used to derive an informed prior for 𝜎; for example, experts could be interviewed on the

likely accuracy of USGS andWSA data. Further elicitation would significantly increase the surveying time. Therefore, in this study we avoid expert

elicitation on the data noise parameters and instead the prior on 𝜎 is modeled as only “weakly informative” using a normal distribution truncated

below zero and above 0.5 with hyperparameters set such thatℙ(𝜎 ≤ 0.1) andℙ(𝜎 ≤ 0.3) are approximately 0.5 and 0.95, respectively. This imposes

a reasonable probability that the data can be of high quality; for example, 𝜎 ≤ 0.1.

3.3 Case study results: US steel flow in 2012

The Bayesian inference is implemented using SMC in PyMC3 with the code adapted from Lupton and Allwood (2018). It takes approximately 17

h to generate 10,000 samples using an Intel(R) CoreTM i7-11800H CPU, 2.30 GHz. The prior and posterior results are shown in Figures 5 and 6,

 15309290, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jiec.13399, W

iley O
nline Library on [24/02/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



DONG ET AL. 1115

F IGURE 5 The prior for the US Steel flow in 2012. All
numbers on the flows refer to themean of the prior mass
flow in units of millionmetric tons (Mt). The uncertainty
percentages refer to the flow standard deviation as a
percentage of the flowmean. All mass flows refer to steel
except for the iron ore flows that include the non-ironmass
(e.g., oxygen and gangue). Underlying data for Figure 5 are
available in the Supporting Information.
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1116 DONG ET AL.

F IGURE 6 The posterior for the US Steel flow in 2012.
All numbers on the flows refer to themean of the posterior
mass flow in units of millionmetric tons (Mt). The uncertainty
percentages refer to the flow standard deviation as a
percentage of the flowmean. All mass flows refer to steel
except for the iron ore flows that include the non-ironmass
(e.g., oxygen and gangue). Underlying data for Figure 6 are
available in the Supporting Information.
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DONG ET AL. 1117

F IGURE 7 Examples of prior and posterior on allocation fractions (𝜙) and data noise parameters (𝜎) for annual US steel flow (2012).

respectively. The width of each line is proportional to the mean of the flow and the color indicates the uncertainty level, with a smaller relative

uncertainty displayed in darker blue colors.

Figure 7 shows the prior and posterior distributions for 𝜙 and 𝜎 associated with three prominent upstream flows. There is a significant uncer-

tainty reduction for all 𝜙 shown in Figure 7a–c. For example, despite a relatively flat prior for the fraction of (solid or liquid) pig iron consumed in the

basic oxygen furnace (BOF), even with only 1 year of data the posterior is able to reflect that pig iron is mainly consumed in the BOF. Figure 7d–f

presents the prior and posterior for 𝜎. The posterior distribution for 𝜎 on “Iron Ore→ BF” is more concentrated than the prior, indicating that the

data noise can be learned from data. However, in comparison to 𝜙, there is a lower uncertainty reduction in 𝜎. In an effort to enhance data noise

learning, we explored the use of multiple years of data to prompt a greater reduction in uncertainty.

3.4 Enhanced learning using data collected from multiple years

One interpretation of the modest residual uncertainty for 𝜎 shown in Figure 7 is that there is still a low amount of information from data for infer-

ence if using data only from2012.However, some of the𝜙 are very likely to be similar across years. In addition, themeasurement noise 𝜖 in different

years is also possibly a realization froma similar distribution. If the allocation fractions𝜙 anddata noise parameter𝜎 on regularly reportedMFAdata

(e.g., the USGS data record on “Iron ore→ BF”) can be verified to be similar across a multi-year time period, then there is the potential to leverage

multiple years’ worth of MFA data to enhance the learning of the data noise. Therefore, we used Bayes factor analysis (see Supporting Information

Section 4) to check and justify modeling the allocation fractions and data noise parameters as constant across five years worth of USGS andWSA

data (2012–2016), allowing the inference to be rerun using these additional years’ data.

Figure 8 shows the posteriors on𝜙 and 𝜎when utilizing one year (2012) versus five yearsworth (2012–2016) of data. Figure 8 shows a reduction

in 𝜎 uncertainty when leveraging these extra data. For “Iron ore→ BF,”, utilizing 2012–2016 data reduces both the uncertainty on 𝜎 and its mean

value. On the other hand, the posterior on “Pig Iron→ BOF” shows a reduced uncertainty for 𝜎 but an increase in its mean. This could be because

the data noise is indeed low in the “Iron ore→ BF” data and high in the “Pig Iron→ BOF” data. However, readers should note that the data noise

calculated here reflects not only the collected MFA data quality but also any inadequacy in the modeling; for example, from the MFA network

structure used to the assumption of constant data noise errors across the five years.
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1118 DONG ET AL.

F IGURE 8 Examples of posteriors on allocation fractions (𝜙) and data noise parameters (𝜎) using data only from 2012 versus full data from
2012-2016.

4 DISCUSSION AND CONCLUSIONS

Bayesian inference is a general probabilisticmethod for uncertainty quantification and updating asmore data become available. Its potential uses in

industrial ecology extend beyondMFA and includeUQ for inventory and environmental impact data in life cycle assessments, as previously demon-

strated in modeling of end-of-life waste management systems (Lo et al., 2005) and production using emerging manufacturing technology (Liao

et al., 2023). This paper has introduced, adapted, and demonstrated the use of expert elicitation techniques to define proper prior distributions

for Bayesian inference inMFA, and demonstrated how the noise level in collectedMFA data may itself be learned from data. Below, we discuss the

lessons learned from the case study on US steel flows, limitations of these approaches, and future work to advance the Bayesian approach inMFA.

4.1 Using expert elicitation in MFA

Expert elicitation allows the use of informed priors in MFA and will result in a quick reduction in parametric uncertainties when combined with

collected data. In cases where no or negligible MFA data can be collected, expert elicitation provides a statistically robust method of estimating

material flows. Expert elicitationmay also reveal model-formmistakes in theMFA structure that were not apparent beforehand.

A potential drawback is the time needed to find experts, develop well-posed elicitation questions, and process the responses. For the case study,

the authors were concerned that each interview might take more than 1 h and that there would be significant confusion regarding our request to

answer questionswith histogramsandPDFs rather thanpoint values.However,most interviewswere completedwithin 30min and the authors only

received approximately one survey clarification question per expert. Even experts who were unaccustomed to PDFs were comfortable completing

the questions after reviewing the example question and solution we posted at the start of the survey. There was one case where the sum of upper

bound elicited allocation fractions from a single source node was less than unity. While this does not prevent hyperparameter fitting to a Dirichlet

PDF it does suggest that either the expert made a mistake or that the expert thought that the model structure was incorrect, believing that there

should be another destination node from that source node. Amore sophisticated elicitation procedure could ask experts to evaluate the probability

of candidateMFAmodel structures in addition toMFA parametric values. Overall, the fixed interval method used in the case study was found to be

an effective and quickmethod of eliciting allocation fraction and external inflow priors.
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DONG ET AL. 1119

In the case study, a single weight was assigned to each expert. A potential problem is that the expert might not be uniformly informed across the

domain of interest; for example, an expert might be an authority on steel recycling but relatively uninformed on primary steelmaking. In the case

study, it was possibly a case of non-uniform expertise that affected the derivation of the aggregated prior for the allocation fraction from (liquid

and solid) pig iron to the BOF. The expert who received the highest weighting gave a very different answer from the other experts in response to

the elicitation question on “Pig Iron→ BOF,” indicating that less than 50% of the iron flows into the BOF. The high weighting given to this expert

meant that the aggregated prior for pig iron to BOFwas relatively uninformed (flat) despite the other seven experts responding that themajority of

pig iron flows into the BOF (see Figure 7). One option to avoid such problems would be to assign multiple weights to each expert corresponding to

different areas of expertise; however, that would require the development and asking of more seeding questions tailored to those different areas

of expertise.

A source of confusion for one of the experts was whether the survey was asking for uncertainty on a given variable (e.g., 𝜃 =
Amount of iron ore exported

Amount of iron ore produced
) or its variability over space and time; for example, the histogram of the

Amount of iron ore exported

Amount of iron ore produced
for each month in a year

or across regions. The survey was eliciting the former (uncertainty instead of variability) and we found it useful to clarify that we were seeking

uncertainty by demonstrating a “toy” example and also using equations to define the variable of interest.

4.2 Learning the MFA variables and data noise parameters

The uncertainty reduction in theUS steelmass flows between the prior and posterior is shownby the increase in dark blue colors betweenFigures 5

and 6. The ability to quantify and reduce these uncertainties in a principled manner using Bayesian inference is appealing as it can lead to more

informed decision- and policy-making. For example, the potential effects of import tariffs are clearer in upstream production (where imports are

shaded blue in Figure 6) than in downstream fabrication where planning for the consequences is not as easy. Figure 6 also confirms Zhu et al.’s sug-

gestion that US production of reinforcing bar (which typically acts as a sink for steel recycling impurities) is small at less than 25% of construction

demand; therefore, improved scrap separation and refining technologies will be needed if more US end-of-life scrap is to be diverted away from

export and recycled domestically (Zhu et al., 2019). Elsewhere, the benefits of deploying a new, more energy-efficient mill technology can be calcu-

lated with greater confidence for the cold rolling mill (calculated to have processed an expected 32.3 Mt in 2012 with a standard deviation of 3.27

Mt) compared to the primarymill (calculated to have processed a smaller expected value of 23.1Mt in 2012 but with a larger standard deviation of

8.69Mt).

A newMFAapproach explored in this article has been to incorporate data noise parameters as randomvariables. The allocation fractions and the

datanoiseparameters are then learned simultaneouslywith collectedMFAdata. Intuitively it is harder toachievegreatuncertainty reductionsusing

this method because the same amount of data is used to provide information on more parameters, even though it is a more honest representation

if we do not know the true data noise. To combat this, we used Bayes factor analysis to verify the existence of time-invariant data noise parameters,

allowing us to incorporatemultiple years worth of data for greater uncertainty reductions.

The speed advantages of the Bayesian approach are from the easy updateability of the results. When newly acquired data become available,

Bayesian updating requires only the uncertainty results (posteriors) of the previous analysis, and then performing of the posterior sampling step

in Section 2.6. In contrast, methods such as least squares reconciliation require re-running an analysis from scratch that includes the original plus

newly acquired data sets. As observed elsewhere (Lupton andAllwood, 2018), a potential drawback of the Bayesian approach toMFA is the compu-

tational cost of the Monte Carlo-based algorithms. Modeling the data noise parameters as random variables significantly increased the stochastic

dimension of the problem and in turn computational cost, from 3 h per run of the python script if the data noise parameters are prescribed as con-

stants, to 17hper runof thepython scriptwhen thedata noise parameters aremodeled as randomvariables. Therefore, there is a trade-off between

the amount of bias and the computational cost. However, the computational speed can be increased by, for example, usingmulti-core processors to

run algorithms that can be parallelized or applying approximate Bayesian techniques such as variational inference (Blei et al., 2017).

4.3 Conclusions and future work

TheBayesian framework provides amathematically rigorousmethodof quantifying and thenupdating the uncertainty inMFA, supporting informed

decision- and policy-making. This paper has introduced, adapted, and demonstrated the use of expert elicitation techniques to define proper prior

distributions forMFA and illustrated how the noise level in collectedMFA data may itself be learned from data. Files have beenmade available (via

the Supporting Information) to help readers apply these methods, including templates for conducting expert elicitation surveys, calculating expert

weights and aggregating priors, and performing Bayesian inference usingMFA priors and collected data.

The Bayesian approach to MFA provides a mathematically principled procedure to incorporate expert knowledge alongside sparse, noisy, and

often incomplete data records: a data-informed model learning approach. We plan to investigate how this model-and-data relationship can be

leveraged to create intelligent data acquisition strategies for seeking out the most informative data that can tell us what theMFA structure should
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look like, and what its parameters values are. These remain important challenges in MFA and can be approached by combining the use of Bayesian

inference for uncertainty quantification early in theMFAexercisewith the principles of Bayesian experimental design (Chaloner &Verdinelli, 1995;

Müller, 2005).
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