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Abstract

Score matching based diffusion has shown to achieve the state
of art results in generation modeling. In the original score
matching based diffusion algorithm, the forward equation is
a differential equation for which the probability density equa-
tion evolves according to a linear partial differential equation,
the Fokker-Planck equation. A drawback of this approach is
that one needs the data distribution to have a Lipschitz loga-
rithmic gradient. This excludes a large class of data distribu-
tions that have compact support. We present a deterministic
diffusion process for which the vector fields are always Lip-
schitz, and hence the score does not explode for probability
measures with compact support. This deterministic diffusion
process can be seen as a regularization of the porous media
equation, which enables one to guarantee long-term conver-
gence of the forward process to the noise distribution. Though
the porous media equation is itself not always guaranteed to
have a Lipschitz vector field, it can be used to understand
the closeness of the output of the algorithm to the data dis-
tribution as a function of the time horizon and score match-
ing error. This analysis enables us to show that the algorithm
has better dependence on the score matching error than ap-
proaches based on stochastic diffusions. Using numerical ex-
periments we verify our theoretical results on example one
and two dimensional data distributions which are compactly
supported. Additionally, we validate the approach on modi-
fied versions of the MNIST and CIFAR-10 data sets for which
the distribution is concentrated on a compact set. In each of
the experiments, the approach using deterministic diffusion
performs better that the diffusion algorithm with a stochas-
tic forward process, when considering the FID scores of the
generated samples.

1 Introduction

In recent years, score matching based diffusion models have
become the state of art in generative modeling (Ho, Jain, and
Abbeel 2020; Song et al. 2020; Dhariwal and Nichol 2021).
They have found several applications such as image synthe-
sis (Dhariwal and Nichol 2021), protein modeling (Anand
and Achim 2022) and inpainting (Lugmayr et al. 2022).
Due to their success, a number of works have focused on
the theoretical understanding of the class of data distribu-
tions that can be sampled from using score matching based
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techniques (De Bortoli 2022; Chen et al. 2022; Chen, Lee,
and Lu 2023; Lee, Lu, and Tan 2022; Benton, Deligianni-
dis, and Doucet 2023) study the rate of convergence of solu-
tions of the discrete implementations of the continuous for-
ward and reverse process to the data distribution. A com-
mon thread in these works is that if the data distribution has
bounded logarithmic gradient, then the distributions can be
sampled with error that depends polynomial on some algo-
rithm parameters. To sample from distributions that have a
bounded logarithmic gradient implies that the data distribu-
tion is positive everywhere on the sample space. For exam-
ple, if one wants to sample from the set of cats, there is still a
small probability that one will sample from the set of chairs.
To address this issue, (De Bortoli 2022) study the rate of
convergence when the data distribution satisfies the mani-
fold hypothesis that data is concentrated on a lower dimen-
sional manifold. They derived error estimates that scale ex-
ponentially with the algorithm parameters using the fact that
one can approximate the measure value distribution using a
distribution of full support using the regularizing properties
of the Fokker Planck equation. Similar ideas have been used
to derive early stopping criteria to sample from data distribu-
tions that are not fully supported on the sample space (Chen,
Lee, and Lu 2023). However, the actual distributions that the
approaches sample are still positive everywhere and the ex-
ploding score issue cannot be avoided.

Another drawback of stochastic forward processes is that
the particle trajectories are not differentiable and the approx-
imation procedure for the reverse phase does not achieve the
best error estimates. One way to address this issue is to en-
sure that the forward phase trajectories are obtained from a
deterministic process. For this reason, probabilistic ordinary
differential equation (ODE) flows have been analyzed in lit-
erature to derive better error estimates (Chen et al. 2023).
However, the implementation of the forward algorithm in
(Chen et al. 2023) is not strictly deterministic. Similarly,
(Liu, Gong, and Liu 2022) constructs deterministic vector
fields that transport one measure to another. However, the
vector fields can be highly irregular for distributions that are
not positive everywhere.

To sample from data general distributions we introduce an
alternative deterministic forward process to the probabilis-
tic ODE model. Similar to the probabilistic flow ODE, the
vector-field is a function of the particle distribution. How-
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Figure 1: Results for distribution with compact support. The
initial row illustrates the outcomes for the 1D data distribu-
tion, while the subsequent row displays the results for the
2D distribution. For 1D distribution, we set Qnin = 1 and
Qunax = 3. For 2D distribution, we set Q,;, = —1 and

Qmax =1

ever, unlike for the probabilistic ODE model, the evolution
of the probability density is given by a nonlinear partial dif-
ferential equation (PDE). An advantage of using this process
is that the vector fields remain bounded and regular for any
choice of data distribution. To understand the long-term be-
havior and approximation properties of this alternative score
matching algorithm we study a limit diffusion process as
a certain parameter in the ODE goes to zero. In this case,
evolution of the probability density of the diffusion pro-
cess evolves according to a well-known PDE, known as the
porous media equation. Using this deterministic approach
we also experimentally validate how our algorithm shows
superior performance for distributions that are not positive
everywhere on the sample space. See Figure 1. Importantly,
our empirical findings are in perfect agreement with theory
which identifies that deterministic diffusion can be superior
when the stochastic diffusion’s gradient becomes unstable.
Figure 2 follows the setting of Figure 1 and shows that, as
time grows and density function evolves to attain near-zero
values, stochastic gradient blows up whereas smoothed de-
terministic gradient remains stable.

The paper is organized as follows. In section 2, we pro-
vide background on diffusion based generative modeling. In
section 3, we present the deterministic diffusion algorithm
presented and studied in this paper. In section 4, we present
experiments where we validate the effectiveness of our al-
gorithm over the classical stochastic approach. In section 5
we present some mathematical preliminaries and definitions
which are used in the later part of the paper. In section 6,
we present analysis on the long-term behavior of the for-
ward process and derive error estimates on the output of the
algorithm as a function of the time horizon and the score
matching error.

2 Background

Before we discuss the deterministic diffusion based score
matching diffusion algorithm presented in the paper, we re-
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Figure 2: The gradient norm associated with the determin-
istic diffusion is represented by the blue curve, while the
gradient norm corresponding to the stochastic diffusion is
depicted in orange. These outcomes were obtained using a
2D distribution with compact support, aligning with the re-
sults presented in the second row of Fig. 1.

view the classical score matching based generation as pre-
sented in (Song et al. 2020). Let p, be the data distribution
from which we desire to sample from. We define the forward
process.

dX = —VV(X)dt + V2dW + dy(t) (1)
Xo ~ pg

where W (t) is the standard Brownian motion and v is a
stochastic process that ensures that the process remains con-
fined to some domain 2. The probability distribution p, rep-
resents to distribution of data, and the goal of generative
modeling is to sample from the distribution p4. The poten-
tial V : R? — R is chosen such that the probability den-
sity of the random variable X () converges to a distribu-
tion p,,, from which one can easily sample and referred to
as the noise distribution. This is guaranteed by analyzing the
behavior of the Fokker Planck equation which governs the
evolution of p(t) given by

0
5 =80+ V- (VW (@) @)

p(0) = pa.

When (2 is a bounded set, this equation is additionally sup-
plemented by a boundary condition, known as the zero flux
boundary condition

fi(x) - (Vp(t,x) + VV(x)) = 0 on 99 3)

where 7(z) is the unit vector normal to the boundary of
the domain O0f2. This boundary condition ensures that pre-
serves that ensures [, p(t, 2)dz = 1 forall t > 0. An ad-
vantage of considering the situation of bounded domain is
that one can choose V' = 0 and the noise distribution can be
taken to be the uniform distribution on 2. Alternatively, as
in (Song et al. 2020), for the choice V(z) = —V log p,, we
can show that lim;_, o, p(t) = p,,. We can rewrite the above
equation as

o _

i V- ([Viegp+ VV(z)]p) 4)



In order to sample from pg, fixing T' > 0, one can sample
from p,, and run the reverse process, also referred to as the
probabilistic flow ODE,

dX = Vlogp(T —t)dt — VV (x)dt
Xo ~ pn )
However, in practice one does not have complete informa-
tion about the score: Vlog p(T' — t). Therefore, a neural

network s(¢,x,0) is used to approximate this quantity by
solving the optimization problem,

T
min [ By gls(t0) - Viogp(T - Odt(®
0

This objective ensures that the solution py(¢) of the equation

00— 9 ([s(t,2,0) ~ YV @))oo) ™
po(0) = pn

is close to p(T'—t) so that we can sample from py by running
the reverse ODE,

dX = s(t, X,0) — VV(z)dt
Xo ~ pn ®

3 Deterministic Diffusion Algorithm

One of the drawbacks of this sampling approach from pq
is that one requires V log p(t), and hence Vlogpg to be
bounded, which excludes a large class of probability distri-
butions.

For this reason, we consider an alternative deterministic
forward diffusion process inspired by the blob method for
diffusions, as presented in (Carrillo, Craig, and Patacchini
2019; Craig et al. 2023). Let K : R? — R be a non-
negative mollifier function such that [, K (x)dz = 1 and
lime_, K(z) := 5 K(£) = do, where § is the Dirac mea-
sure at 0.

dX(t) = =VEK,. x p(t)dt — VV(X)dt + di(t) C)
Xo~pa (10
where p(t) is the distribution of the variable X (¢) and * de-
notes the convolution operation. An example, of the interac-
tion functional that we take is the Gaussian kernel,
L
(47)d/2 €
Since the evolution of the process depends on the distribu-
tion of the variable itself, this is known as a Mckean-Vlasov
process. In practice, p(t) is approximated by a finite N num-
ber of particles X;(¢) fori = 1,.., N, and the system (9) is
approximated by the system of ODEs

K(z) = (11)

dXi(t) = —% Y0, VK. (X; — X;)dt
—VV(X;)dt + dip(t)
Xi(0) ~ pa (12)

The term E;V:1 VK. (X; — X;) has a similar effect
on the evolution X (¢) as the noise term dW (¢) in (1). How-
ever, in the deterministic case particles are diffusing by mu-
tually repelling each other rather than due to the presence of

noise. An advantage of using this forward process is that the
particle trajectories are deterministic and hence regular as a
function of time. This is unlike the stochastic case, where
particle trajectories are nowhere differentiable, and hence
harder to approximate in the reverse direction. Moreover, for
fixed € > 0 the vector-field is always Lipschitz regular. The
evolution of the density of the process is then given by

0
5 = V-([VEx p+V(@)lp) (13)

p(0) = pa

In this case, if V(z) = VK * p,, then noise distribution p,,
becomes an equilibrium point of the above nonlinear partial
differential equation. Alternatively, when V' is equal to 0 ev-
erywhere, the particles will spread close to uniformly on €.
The long-term behavior for (9) fixed ¢ > 0 is not known,
unlike for (1), for which we know that the distribution ex-
ponentially converges to equilibrium. However, one can un-
derstand the long-term behavior this deterministic diffusion
process by considering the limit e — 0 since VK *xp = Vp
which is equal to O for the uniform distribution. See section
6.

Similar to the stochastic case we define the optimization
problem to be solved for the reverse process

T
mgin / E r—t)|s(t, -, 0) + VK * p(T — t)|*dt
0

As in the stochastic case, one can sample from the distribu-
tion pg4 by running reverse process,

dX =s(t, X,0)dt + VV (z)dt + dy(t) (14)
Xo ~ pn

The algorithm for the deterministic diffusion based sampling
in presented in Algorithm 1, where we take V' = 0, so that
the noise distribution is the uniform distribution on €2.

4 Experiments

In this section, we illustrate the advantages inherent in em-
ploying deterministic diffusion as opposed to the stochastic
forward process. Through the presentation of results, we aim
to corroborate our theoretical conclusions. To this end, we
conduct the following experiments:

* We compare the performance of the stochastic and deter-
ministic forward processes across data distributions for
two a that are have take positive values only in a strict
subset of the sample space.

* We show the gradients of the deterministic and stochastic
diffusion processes during the reverse phase.

* We compare the performance of the deterministic and
stochastic diffusion techniques manifest when applied to
real-world datasets binary MNIST (LeCun et al. 1998)
and CIFAR-10 (Krizhevsky, Nair, and Hinton 2014).

Initially, we generate 1D and 2D data distributions which
have a compact support, which results in taking a value equal
to zero for a large portion of the sample space. To create the
1D distributions, we uniformly distribute 200 data points



Algorithm 1: Deterministic

Parameters: # of local epochs M; # of samples N; the
range of the distribution [Qmin, Qmax]

Generating Samples from iga¢,:

Xo — sample from given samples {z* }511
Training
for epoch 1 to M do
t — sample from U(0,T")
for k =1totdo
for i in range(IN) do
z; — sample from A/(0, 1)
X = XF 4 Atk SN VK (X - X))
project X* 1 t0
end for
end for
1 N 1 N
0O, t) = § D iz [8(Xint,0) + 5z X252 VE(Xit —
X;t)]?
6 = optimizer_step(1(6))
end for
Sampling
Yy — sample from uniform distribution
for k in range(T") do
YR = YF 4 Atsg(YF, k),
project Y**1 to Q
end for
Function: project X to Q
for it =0to 1do
if X 1 [ii] > Qpax then
XFPHid] = Qua
end if
if X T [ii] < Quin then
XFii] = Quin
end if
end for

within the intervals [0,1] and [2,3]. Outside of these inter-
vals, no data points are present. To generate a 2D data dis-
tribution, we create a circle of radius one centered at (0,0).
In total, we generate 200 points uniformly distributed along
the circumference of this circle.

In another example, we also generate 1D and 2D distribu-
tions that are positive in the entire sample space. To obtain
the 1D distribution, we uniformly distribute 200 data points
within the intervals [1,2] and [3,4], and additionally intro-
duce 200 extra points uniformly distributed within the range
[0,5]. Similarly, for the 2D distribution, we augmented the
existing circular distribution with an additional 200 points
uniformly distributed within the specified range[-2,2].

To test the effectiveness of the approach for different
choices of the functions K and V', we ran the experiments
with compactly supported data distribution, for the two di-
mensional synthetic data for two different choices of ker-
nel functions, K; = exp(ﬁ)lmkl,fﬁ = (1-
|2/€?)?1)4)<1) and Gaussian noise distribution V.

Because the distributions are relatively straightforward

and comprise only a limited number of samples, we employ
a basic 4-layer fully connected model with ReLLU as the ac-
tivation function for our diffusion model.

In terms of implementation specifics, we utilize a batch
size of 16 and train for 500 epochs. The optimization uses
the Adam optimizer with a learning rate of le-3. Addition-
ally, we set the value of A; to 0.01, implying a total of 100
steps in the process.

We provide a visualization of the generated distributions
when the data distributions have a compact support in Fig. 1.
Remarkably, the deterministic diffusion technique exhibits
notable enhancement in performance. In contrast, the orig-
inal stochastic diffusion approach encounters limitations in
accommodating general distributions since the vector fields
are not bounded in this case. Our algorithm, incorporating
deterministic forward processes, adeptly handles such sce-
narios. Concerning distributions featuring full support on
Q, both diffusion methods demonstrate comparable perfor-
mance. The results are shown in Fig. 5. The results of the
experiments for different choices of kernel and noise distri-
bution are shown in Figure 3 and 4. Our empirical findings
reveal a consistent trend of improvement in the determinis-
tic algorithm’s performance across these various kernel and
noise distribution choices. This consistency underscores the
robustness of our approach. The first kernel function we ex-
plored exhibited similar performance to the Gaussian kernel.
This indicates that a judicious choice of the kernel might re-
sult in a better algorithm.

In addition to the synthesized toy examples, we extend our
evaluation to real-world datasets, specifically binary MNIST
images, for which the data distribution does not exhibit pos-
itivity throughout the sample space. The outcomes are illus-
trated in Fig. 6. Notably, the deterministic diffusion method
continues to exhibit discernible enhancements in perfor-
mance.

We calculated the Wasserstein distance between the gen-
erated data distribution and the target distribution to fa-
cilitate a more straightforward assessment of the diffusion
model’s performance. The results are presented in Table 1.

We conducted simulations of the reverse phase on the 1D
distribution featuring compact support, employing both de-
terministic and stochastic diffusion methods. We performed
a numerical evaluation of the gradient for different values
of t. Notably, as t — 1, the gradient remains stable for de-
terministic diffusion, without any indications of exploding
behavior. Conversely, for the stochastic approach, the gradi-
ent does exhibit an exploding tendency.

We additionally conducted experiments on the CIFAR-10
dataset. To highlight the effect of compact support of the
data distribution, we extended the original 32 x 32 pixel im-
ages to 40 x 40 pixels by padding with black pixels. Subse-
quently, we trained our model on both stochastic and deter-
ministic approaches.

We compared the FID scores specifically on the original
32 x 32 pixel portion of the generated images, and the re-
sults are presented in Table 1. Our findings indicate that
the deterministic approach performs significantly better than
the stochastic approach in terms of FID scores. This empir-
ical evidence demonstrates the effectiveness of our method,
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Figure 3: Results on 2D data set for different choices of the
Kernel.

(b) Stochastic
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Figure 4: Results on 2D data set when the noise distribution
is Gaussian.

particularly when applied to more substantial and complex
datasets like CIFAR10.

5 Mathematical Preliminaries and
Definitions

In this section, we define some notation that will be used in
section 6 where we present where we will present some anal-
ysis about the algorithm presented in 3. We refer the readers
to (Ambrosio, Gigli, and Savaré 2005) for more details. Let
Q) C R? be a convex set. Without loss of generality we as-
sume that  has Lebesgue measure 1. Let Po(R9) denote
the set of Borel probability measures on R? with finite sec-
ond moment: [, |x|*du(z) < oo. For a given Borel map

(a) Target

(b) Stochastic (c) Deterministic

Figure 5: Results for distribution without compact support.
The initial row illustrates the outcomes for the 1D data dis-
tribution, while the subsequent row displays the results for
the 2D distribution. For 1D distribution, we set Q;;, = 0
and Q.x = 5. For 2D distribution, we set Q,;, = —2 and
Quax = 2.

Positivity  Distribution Deterministic ~ Stochastic

Yes 1D 2.315 2.290
2D 3.873 3.964
1D 1.953 3.143
No 2D 2.057 4.628
Binary MNIST 15.61 23.27
CIFAR-10 27.93 42.05

Table 1: Wasserstein distances. Average of 5 runs

T : R? — RY we will denote by Ty the corresponding push-
forward map, which maps any measure p to a measure Tl 1,
where T 1 is the measure defined by

(Tgp)(B) = W(T~1(B)), (15)

for all Borel measurable sets B C R®. For w,v € Py (Rd),
we denote the set of transport plans from p to v by

L(p,v) :={y € PR x RY)|why = p, 7wy = v}, (16)

where 7% : R? x R? — R? are the projections on to the ith
coordinates, respectively. We will define the 2—Wasserstein
distance between two probability measures p, v as the fol-
lowing

1/2
Wa(u,v) = min / 2 — ylPdv(z,y)
e (u,v) Rd xRd

7)
Suppose that K is smooth. We define the functional £, given
by

Ee(p) = %/Rd " Ke(z —y) du(y)dp(x) (18)

for all u € P2(R?)
Additionaly, we define the functional

V(u) = / V(@) (19)

where V' € C?(R?) be a smooth strongly convex function.
That is, there exists A > 0 such that

Vive + (1 =7y)y) <V(z) + (1 -7)V(y)

N (1 —7)

o2
L~y

7 N
=1 B

(a) deterministic

(b) stochastic

Figure 6: Binary MNIST



(a) CIFAR

(b) Stochastic (c) Deterministic

Figure 7: Unconditional CIFAR10 generation.

for all z,y € R? and all y € (0, 1), such that —V is positive
everywhere and — [, V(z)dz = 1. Additionally, we will
define the functional

0if su N
bt = {01

20
oo otherwise (20)

It follows from the theory of gradient flows on Wasserstein
spaces (Ambrosio, Gigli, and Savaré 2005), that the PDE
(13), can be expressed as a gradient flow of the functional
F =&+ V + Vq. Similarly, the PDE can be expressed as
gradient flow of the functional £.

dp
a —VwaoF 21
OF
= . —_— 22
\Y% (pvap) (22)

where formally Vo is the Wasserstein gradient of F.

In order to understand the long-term behavior and the per-
formance of the algorithm, we introduce another forward
process by taking the limit e — 0 to get

dX(t) = =Vp(t)dt — VV(X)dt + dip(t) (23)

Xo ~ pd (24)

In this case the evolution of the probability density function
is given by,

& -V (Vo + V@) (25)

p(0) = pa (26)

This PDE can also be seen as the gradient flow of the func-
tional F := £ + V + Vq. where functional £ : P2(Q) —
[0, 00) is given by,

3 Jo (@) Pdaif p << L

27
oo otherwise @7

) = {

where £ denotes the Lebesgue measure on R? and p <<
L denotes that u is absolutely continuous with respect to
the Lebesgue measure. This introduces the score matching
optimization problem for the limit ¢ — 0 given by

T
min / Epr—s|s(t, -, 0) + Vp(T —t)|*dt
0

We will quantify in the next section the closeness of pg(7')
to pq for the equation
dpe

5 =V ([s(t,,0) = VV(2)]py) (28)

6 Analysis

In this section, we present some analysis on the long-term
behavior of (13) by studying the behavior of (25). We first
verify that for the limit forward process ¢ = 0 the distri-
bution of the process converges to the noise distribution as
t — 0.

Lemma 6.1. Let p be the gradient flow of the functional F.
Then we have that
lim Wa(p(t), pn) < e Walpr, pn) (29)

t—o00

where p, = —V.
Suppose V,, is only convex and not necessarily strongly
convex, then

Jim W (p(t), pn)) = 0 (30)

where p, = —V if V is non-zero and equal to clq other-
wise, where 1q, is the characteristic function of QY and ¢ > 0
is a constant such that clq is the uniform distribution on Q.

Proof. The functional F is A—convex on P (R?) along gen-
eralized geodesics (See (Ambrosio, Gigli, and Savaré 2005))
due to the strong convexity of the function V. Hence, the ex-
ponential convergence result is well known due to (Ambro-
sio, Gigli, and Savaré 2005)[Theorem 11.2.1].

In the case when V is not strongly convex, the functional
€ is convex on Py(€2), but not A-convex for A > 0. We note
that the functional £ has the same minimizers as

D(p) = F(p) +
Rd

V3(z)dx (31)

The functional § [, [u(z) + V (x)|*da is strictly convex in
L2(2) N P2(Q), the set of square integrable functions on {2
and hence has a unique global minimizer —V (). Hence, on
measures with support in €2, the functional F has the same
minimizers as the functional p +— 1 [, |u(z) + V (z)|?dx +
Vq. Therefore, the global minimizer in P2 (€2) is also unique.
Then the result follows from (Ambrosio, Gigli, and Savaré
2005)[Corollary 4.0.6]. O

Though, for V' = 0 we do not have exponential stability
in the Wassertstein-2 metric, it is known to be exponentially
convergent in the case of a bounded domain in the L*° norm
for long time.

Lemma 6.2. (Grillo and Muratori 2013) Let V. = 0. Let

p(t, x) be the solution of (25). Then there exists C,m > 0
Ip(t) = 1allec < Ce™™

forallt > 1.

Unfortunately, due to the lack convexity of the functional
F. on Py(R%) it is not possible to use the same argument to
infer the long term convergence of (13) to the noise distribu-
tion. However, we know the following.



Lemma 6.3. The minimizers of F. converge to the minimiz-
ers of F in Po(R%) as e — 0.

Proof. In (Craig et al. 2023)[Theorem 5.1] it has been
shown that the functional & + V gamma converges to the
functional £ 4V as € — 0. Firstly, this means that, for every
sequence /i, € Po(R?) converging to ;1 € Pa(RY),

E(p) +V(n) < liminf £ (pe) + Ve(pe)
Hence, we can also conclude that

F(p) < liminf Fe(pe)

Secondly, from the gamma convergence result we know that
for every 1 € Po(IR?), there exists a sequence 1. € Pa(R%)
such that

S(M) + V(M) > lim sup ge(:ue) + Ve(ﬂe)'

€E—> 00

From the definition of Vg, this also implies that

F(p) > limsup Fe(pue).
[Snde el
Hence, F. gamma converges to F as ¢ — o0o. This along
with coercivity of the functionals F., implies that minimiz-
ers of F, converge to minimizers of F. O

The previous result, however, does not immediately give
as that the solution p. of (13) are converging to solutions of
(25) as ¢ — 0. However, it has been shown in (Craig et al.
2023), that one can find a sequence of regularizations F j
of the functional F}, for which, the corresponding gradient
flows converge to that of F for a suitable sequence of £, €.
This is achieved by regularizing the functional Vq.

Next, we look at the approximation capabilities of the
score matching algorithm as a function of the time horizon
and the score matching error, under the assumption that the
actual score and the approximating one are Lipschitz. This
is a common assumption in error analysis of score matching
algorithms (Chen, Lee, and Lu 2023). Since the processes
are deterministic we are able to get linear dependence of the
error in density estimation as a function of the score error.
This is unlike the stochastic case, where the dependence is a
function of the square root of the score error.

Lemma 6.4. Suppose V is strongly convex with constant
A > 0 and Q is compact. Let p € C1([0,T] x Q) be a solu-
tion of E. Suppose NV p(t) and s(t -, 0) is uniformly Lipschitz
for a Lipschitz constant L. Moreover, assume that the sup-
port of p(t) lies in a compact set K for all t > 0 and

T
/ Epr—t)|s(t,,0) + Vp(T —t)*dt < € (32)
0

Then
Wi(po(T), pa) < Ce N Wy(pa, pn) + ee™".

Proof. Due to the assumptions of Lipschitnzess, we can
conclude from Theorem (Benton, Deligiannidis, and Doucet
2023)[Theorem 1] that the flows satisfy the estimate

Wa(p(T), po(T)) < ee™” (33)

where p is the solution of the equation
0p ~

5t =V (=Vp(T =1) = VV(2)p) (34)

p(0) = pn (35)

Due to the Lipschitz assumption on Vp(T — t) we can es-
timate the distance between the the final conditions as a
function of the distance between the initial conditions. From
(Bonnet and Frankowska 2021)[Proposition 2] we can con-
clude that

Wo(p(T), pa) < Ce*TWa(pn, p(T)) (36)

Using the triangle inequality for the Wasserstein-2 distance,
we can conclude that

Wa(po(T), pa) < Wa(p(T), po(T)) + W2(p(T), pa)

Applying the estimate from (33) and (36) it follows from
Lemma 6.1 and (33) that

Walpo(T), pa) < ee™™ + Ce* " Wy(p(T), pn)

Then applying the result in Lemma 6.1 to bound the second
term, the result follows. O]

7 Conclusion

We presented a deterministic diffusion algorithm for gener-
ative modeling. Experiments show that the presented algo-
rithm performs much better than the original score matching
algorithm based on a stochastic forward process. This be-
havior is due to the bounded score for the distribution for
any kind of data distribution. In contrast, the score explodes
in value for the stochastic approach for the cases when the
distribution has a compact support inside the domain. In ad-
dition, we justify the experimental results based on analysis
of long-term behavior of the forward process and its approx-
imation properties. Due to the determinism in the trajectories
we are able to get linear dependence of the error in density
estimation as a function of the score error.
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