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Abstract

Label Shift has been widely believed to be harmful to the generalization performance of machine
learning models. Researchers have proposed many approaches to mitigate the impact of the label
shift, e.g., balancing the training data. However, these methods often consider the underparametrized
regime, where the sample size is much larger than the data dimension. The research under the over-
parametrized regime is very limited. To bridge this gap, we propose a new asymptotic analysis of
the Fisher Linear Discriminant classifier for binary classification with label shift. Specifically, we
prove that there exists a phase transition phenomenon: Under certain overparametrized regime, the
classifier trained using imbalanced data outperforms the counterpart with reduced balanced data.
Moreover, we investigate the impact of regularization to the label shift: The aforementioned phase
transition vanishes as the regularization becomes strong.

Keywords: Linear discriminant analysis, Binary classification, Label shift, Underparametrized and
overparametrized regime, double descent phenomenon

1 Introduction

Label shift [58] occurs predominantly in classification tasks, in domains like computer vision [4, 72],
medical diagnosis [26, 47], fraud detection [56] and others [28, 59]. Label shift often stems from, for
example, a non-stationary environment and a biased way that the training and test data sets are collected.

The basic assumption in label shift [44] is that, while the class prior changes, the conditional distri-
butions of data within a class are maintained in training and testing. A well known special case of label
shift is learning with imbalanced data [14, 74] where the training are remarkably imbalanced due to some
sampling bias, while the test data have a more balanced prior on the labels, e.g., uniform prior. It is com-
monly believed that training with imbalanced data can significantly undermine the overall performance
of the trained classifiers [36, 51].

Typically, the test label distribution is unknown and many methods have been proposed to estimate
the test priors [15, 65]. When the test label distribution has been estimated, learning under label shift
[10, 21] reduces to the problem of resampling the training data. Common techniques include oversampling
the minority class, downsampling the majority class [12, 30, 71], and reweighting [33, 70]. For example,
Seiffert et al. [61] integrate downsampling with boosting for classification with imbalanced training data.
The performance (measured by the area under the ROC curve) improves compared to base line methods
(e.g., adaboost). However, these balancing method comes with several drawbacks. When the data
imbalancing is extreme, downsampling incurs significant loss of information, and oversampling can lead
to over-fitting [16, 17]. Reweighting methods tend to make the optimization of deep models difficult
[17, 33].

The aforementioned findings primarily focus on the underparametrized regime, where the sample
size is much larger than the data dimension. Recently, significant progress have been made in training
overparametrized models, such as deep neural networks. Such progress have stimulated empirical and
theoretical studies on overparametrized models, whose statistical properties surprisingly challenge the
conventional wisdom. For example, the typical U-shaped bias-variance trade-off curve is complemented
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by the double descent phenomenon observed in various models (see more in the related work section,
Bartlett et al. [5], Belkin et al. [6], Hastie et al. [29], Mei and Montanari [52]).

In this paper, we study binary classification with label shift. The classifier is taken as Fisher Linear
Discriminant Analysis (LDA, Bishop [11], Fisher [23]). We consider a Gaussian mixture data model,
where = € RP? is the feature, y € {0, 1} is the label, and z |y is Gaussian distributed. Suppose n training
data are collected under certain prior with ny, samples in class ¢ such that ng +n; = n. Specifically, data
imbalance refers to the case where the majority and minority class priors do not match, i.e., ny/ng # 1.
The test prior on each class is denoted as my = P(y = £) for £ = 0,1. We assume the test priors are
known and different from the training priors. When the test priors are not known, we can still estimate
them from the empirical label distributions in the test data.

Our contributions. We provide a theoretical analysis on the performance of LDA under label shift,
in both the under- and over-parametrized regime. We explicitly quantify the misclassification error in
the proportional limit of n — oo and p/ny — ~, for £ = 0,1, where v, > 0 is a constant. Our theory
shows a peaking phenomenon when the sample size is close to the data dimension.

We demonstrate a phase transition phenomenon about data imbalance: The misclassification error
exhibits different behaviors as the two-class ratio ny /ng varies, depending on the value of 7. In particular,
when g is fixed and the ratio nqi/ng increases from 1, we observe the following three phases:

e In the underparametrized regime (e.g., 7o = 0.5), the misclassification error first decreases then
increases as 7; decays, yet the error decrease is marginal.

e In the lightly overparametrized regime (e.g., 7o = 2.5), the misclassification error first increases
then decreases as v, decays.

e In the overparametrized regime (e.g., vo = 5), the misclassification error first decreases then
increases, and finally decreases again as 7; decays.

Such a phase transition suggests that LDA trained with imbalanced data can outperform the coun-
terpart trained with reduced balanced data, in certain overparametrized regime.

Moreover, we investigate the impact of the £s regularization on the performance of LDA under label
shift: The aforementioned phase transition vanishes when the regularization is sufficiently strong. While
the phase transition persists when the regularization is weak.

Related work. In literature, many methods have been developed to handle classification under
label shift. The sampling techniques include the informed upsampling [40, 45], synthetic oversampling
[16], cluster-based oversampling [37]. Cost-sensitive methods [33, 66] use a cost matrix to represent the
penalty of classifying examples from one class to another. Examples are cost-sensitive decision trees [49]
and cost-sensitive neural networks [41]. Kernel-based methods are developed in [31, 46, 68]. Despite
the empirical success, there are limited theories about how the classification results are affected by data
imbalance.

Statistical properties of LDA has been well established in existing works (Anderson [1], Fukunaga
[25, Section 10.2], Sifaou et al. [63], Velilla and Hernéndez [67], Zollanvari and Dougherty [75], Zollanvari
et al. [76]). LDA with balanced training and test data is studied in Raudys and Duin [60] in the
overparametrized case, while the assumption is more restrictive than ours, e.g., the feature vector is
Gaussian with the identity covariance matrix in Raudys and Duin [60]. In the asymptotic regime (i.e.,
p,n — ), Bickel and Levina [9] show that, when p/n — oo, LDA tends to random guessing. Later,
Wang and Jiang [69] consider the proportional scenario where p/n — v € (0,1). Our theory is more
general, and covers both 0 < 7 < 1 (underparametrization) and v > 1 (overparametrization). The
misclassification error of Regularized LDA is analyzed in Elkhalil et al. [22]. Our error analysis on LDA
can not be implied from Elkhalil et al. [22] by taking the limit of the regularization parameter to 0 since
the covariance matrix is not invertible in the overparametrized case. We note a parallel line of work
studying LDA in sparsity constrained high-dimensional binary classification problems [13, 48, 62].

Our theory demonstrates a peaking phenomenon of LDA, which has been recognized in history
[20, 32, 34, 64] and recently for neural networks [6]. This phenomenon has been justified for linear
regression [5, 7, 8, 29, 54|, random feature regression [52], logistic regression [18], max-margin linear
classifier [53], and others [19, 55, 73]. To our knowledge, we are the first to provide a theoretical
justification of the peaking phenomenon for LDA under label shift.

The rest of the paper is organized as follows: Section 2 introduces LDA; Section 3 presents an
asymptotic analysis of the misclassification error for LDA, and the phase transition phenomenon under
data imbalance; Section 4 presents the impact of regularization; Section 5 presents real-data experiments;

Draft



Section 6 presents a proof of our main results; Section 7 discusses binary classification with extremely

imbalanced data and in the highly overparametrized regime. We also discuss future directions.
Notation: Given a vector v € RP, we denote ||[v]|y, = Vv T Xo for a positive definite matrix X. Given a

matrix M, we denote M as its pseudo-inverse. Let ®(-) be the CDF of the standard normal distribution.

For two random variables X and Y, we denote X 2Y as X and Y having the same distribution. For a
sequence of random variables {X,,}, we denote X,, % X as the almost sure convergence.

2 Binary Classification using LDA

Binary classification aims at classifying an input feature z € R? into two classes labeled by y € {0,1}.
A linear classifier achieves this goal by predicting the label based on a linear decision boundary in the
form of 87 (x — ) = b with o, 3 € R? and b € R.

To be specific, a linear classifier gives the label y of the feature x by

b )0, if 37 (x — a) > b,
fap(®) = {1, if BT (x —a) <b. )

Given the class priors mg + m; = 1, we determine «, 8 and b by minimizing the misclassification error
defined as

2)

LDA approaches the binary classification problem by assuming that the conditional distribution of x
given label y = 0 (resp. y = 1) is Gaussian N (pg,>) (resp. N(p1,%)). Accordingly, the optimal
classifier in LDA (also known as the Bayes rule) takes
a*:w7 B* =" (o — 1), b* =In L. (3)
o
The decision boundary 8* coincides with the Fisher linear discriminant rule [23], which maximizes the
ratio of between-class variance and within-class variance:

6T _ BT 2
g S @

The optimal ratio in (4) at 8* is defined as the Signal-to-Noise Ratio (SNR), i.e., SNR = ||B*H; =
CRIDY
In practice, we receive ny and n; i.i.d training data points from class 0 and 1, respectively. We denote

the per-class data points as {xf ot for £ =0,1. The total number of samples is n = ng + n1. We obtain

the empirical Fisher linear discriminant classifier fg 5 with

Ho+ M1 5 &St~ o~ ~ n
PO B=Si(fig—fin), b=In—t, (5)

a:
2 ’ U

where [ig, 111 and S are empirical estimators of g, 1, 2:

Ll I 1 : . _
WZTTZZ%f» T= o SO @ —he) (i —0)"
i=1 3

3 Phase Transition of LDA under Label Shift

In this section, we present our main results on the misclassification error analysis of LDA, which covers
both the under- and over-parametrized regime.
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3.1 Error Analysis of LDA
We first introduce a data model for our theoretical analysis.

Assumption 1. For both the training and the test data, the conditional distribution of x given y =¥ is
Gaussian, i.e.,

| (y=10~N(u,X), for £=0,1.

The training data {xe . are i.i.d. sampled for class £ = 0,1, respectively. The test data have priors
o, T1 such that o + 71 = 1.

ne

Assumption 1 allows arbitrarily imbalanced training data with ng # n; where the test label distri-
bution can be different from the training data. Under Assumption 1, we prove an asymptotic behavior
of the misclassification error of LDA in the limit of n,p — oc.

oY1

0T Under Assumption 1, we let

Theorem 2. Let vy,71 and A? be positive constants and set v =
n,p — 0o with

p/no — Y0, p/n1 — 71, p/n — 7, and ||»3*H22 — A2

Then the misclassification error R(fg 5) converges to a limit almost surely when v € (0,1)U (1, 00), i.e.,

9(v0,71,¢) €1 Y0
+(-1) ln>
Y1 (6)

NS m@( ]

£=0,1 k(VOaVl)m

for0 <~y <1, and
(’YOKYIJ) + ( )é In 2o

R S mpp | 20D 2 -
oo g:zo;l k(0. Wl)m
for v > 1, where

9(v0,71:4) :—*(AQ +(=1) (0 —m))

k(v0,71) = VA2 + 90 + 71

Theorem 2 is proved in Section 6.2. Theorem 2 demonstrates a peaking phenomenon of LDA. For
simplicity, we illustrate this peaking phenomenon for balanced training (vo = 71) and test data (mp =

m1 = 0.5). In this case, the limit of R(fg E) can be simplified to

2
~ o _AM) 7 0<vy<1,
R(fg B) a.s. 2\/2A2+4'y

’ L1 v > 1.

2y4/A2+4y |’

Figure 1 (left panel) shows the asymptotic misclassification error as a function of v with various SNR.

A peak occurs as v approaches 1, when the training sample size is approximately equal to the data
dimension. In the underparametrized regime (0 < v < 1), the misclassification error increases with
respect to v. In the overparametrized regime (v > 1), the misclassification error has a local minimum
such that the error first decreases and then increases. This peaking phenomenon exists for all levels of
SNR.

We interpret the peaking phenomenon as an interplay between the conditioning of the covariance
matrix and the variance in the statistical estimation of the means and the covariance matrix. With
balanced training data, the training model and the test model are the same so there is no model mismatch.
In the underparametrized regime (0 < v < 1), the covariance matrix is full rank. In this case, variance
dominates the estimation error, and variance decreases as the sample size increases, since a larger number
of samples yield better estimations of g, 11, and X. Therefore, the misclassification error decreases as
v decreases. In the overparametrized regime (7 > 1), the covariance matrix is rank- deﬁcient. According
to Bai-Yin theorem [3], the condition number of X is proportional to (1 — /1/7)~2, which decreases
as 7y increases from 1. As a result, the misclassification error decreases as -y increases from 1. When -~
further increases, variance dominates the error due to limited number of samples, so the error increases
again. This explains the local minimum when v > 1.
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Figure 1: Misclassification error of LDA as a function of v when nj/ng = 1 (left panel) and ny/ng = 8
(right panel), with balanced test data (mo = m1 = 0.5), for various levels of asymptotic SNR. The solid
curve represents the theoretical error given by Theorem 2, and the scatters denote synthetic data errors,
with n = 200,p = [yn].

More interestingly, under the label shift with imbalanced training data (yo # 1) and balanced test
data (mg = m = 0.5), there are trade-offs among three factors: (1) the conditioning of the pseudo-inverse
of the covariance matrix; (2) the variance in the statistical estimation of the means and the covariance
matrix; (3) an additional model mismatch. The misclassification error exhibits intricate behaviors with
multiple local minima in the error curve. See Figure 1 (right panel) for an example with ny/ng = 8.

3.2 Phase Transition under Label Shift

A critical question for classification under label shift is: When the class priors vary between the training
data and the test data, is it beneficial to correct the training data distribution?

In order to evaluate the overall performance of classifier trained with imbalanced data, we usually
consider a special case of label shift with balanced test data (mg = w1 = 0.5). The question above is
reduced to whether it is beneficial to downsample the majority class. Theorem 2 suggests an interesting
dichotomy to the question above. Specifically, we fix vy and investigate how the two-class ratio ny/ng €
[1,10] affects the performance of LDA. We identify three distinct behaviors of LDA depending on the
value of 9. We demonstrate the three behaviors in Figure 2:

e Behavior I: When 9 = 0.5, i.e., the class of £ = 0 is underparametrized, the misclassification error
first decreases and then increases as a function of nj/ng;

e Behavior II: When -y = 2.5, i.e., the class of £ = 0 is slightly overparametrized, the misclassification
error first increases and then decreases as a function of ny /ng;

e Behavior III: When ~y = 5, i.e., the class of £ = 0 is overparametrized, the misclassification error first
decreases and then increases, and finally decreases again, as a function of n/ny.

We obtain rich insights on training with imbalanced data from Figure 2. When the data imbalance
is moderate, for example n1/ng € [1, 3], training with imbalanced data can outperform the counterpart
of using reduced balanced data as in Behavior I and Behavior III. Nonetheless, the improvement in
Behavior I is only marginal. On the contrary, Behavior II indicates that downsampling the majority
class improves the performance of LDA.

As the data imbalance becomes more significant, for example, ny/ng € [8,10], Behavior II and IIT
both indicate that downsampling the majority class hurts the performance. Such behavior is expected,
since the downsampling incurs severe information loss.

Theorem 2 also characterizes the misclassification error when nj/ng is extremely large. We can
check that the misclassification error converges to 0.5 as nj/ng — 00, regardless of the value of vy (see
Appendix A). This indicates that extreme label shift renders the trained classifier suffering from the
model mismatch. Nonetheless, in such an extreme imbalanced case, the minority group is prone to be
outliers, and detection of outliers is also of great interest.

In the sequel, we formally characterize three phases corresponding to the aforementioned different
behaviors. We explicitly identify two phase transition knots =y, and 7, (derived in Appendix A):

1
Yo =2 and %:g(lz—A2+\/A4+40A2+144).
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Figure 2: We demonstrate three behaviors of the misclassification error of LDA as a function of ny/ng
for various vy and a fixed asymptotic SNR A% = 9. The solid curve represents the error based on our
theoretical analysis in Theorem 2. The scatters denote synthetic data errors, with ng = 40,p = [yono].
Upper left panel: Plots of an underparametrized (yo = 0.5), a slightly overparametrized (y = 2.5) and an
overparametrized (y = 5) case. Upper right panel: Behavior I in the underparametrized cases; Bottom
Left panel: Behavior II in the slighly overparametrized cases. Bottom right panel: Behavior III in the
overparametrized cases.

We claim three phases depending on the value of 7.

e Phase I: If 75 € (0,7,), the misclassification error has Behavior I,

e Phase II: If 7o € (74,7), the misclassification error has Behavior II

e Phase III: When ~ € (7p,7.) for some ~. > 0, the misclassification error has Behavior III.

We observe that the first transition 7, appears at the exact parametrized case, i.e., p = n. The
second transition 7, depends on the SNR and is always larger than ~,.

We remark that in Phase III, we cut off 79 at some threshold ~.. If g is extremely large, i.e., the
problem is highly overparametried, we can observe a fourth behavior on the misclassification error. In
fact, the misclassification error has multiple local maxima, reflecting a complex interaction between the
limited information in the training data and the mismatch of the training and test model. We discuss
the highly overparametried regime in Section 7.

4 Regularization Impact on LDA

In machine learning, regularization is commonly used to stabilize the computation and improve the
generalization performance. In this section, we study regularized LDA [24, 27] and analyze its asymptotic
misclassification error.

4.1 Error Analysis of Regularized LDA

When an {5 regularization term is added on [, we consider the following optimization problem based on

(4):
argmin — (BT — B o) + A|BI5. st BTEB=1.
cRp
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This gives rise to an optimal solution 3. For simplicity, we formalize it in an equivalent form as
By = (Z+ )" (ko — ). (8)

We denote the regularized Fisher linear discriminant classifier by f(l;* B3 where a* and b* are given in

(3)-

The empirical counterpart of the regularized LDA is given by fg 3, where the empirical parameters
=P

a, By and b are computed through fig, i1 and X according to (5) and

Br=(E+ M) (o — 7i1)-

Similar to Theorem 2, we prove an asymptotic behavior of the misclassification error of the regularized

LDA.
Theorem 3. Let vy,7y1 and A? be positive constants and set v = % Under Assumption 1, we let

n,p — 00 with
2
p/no = Yo, p/na = m, p/n =7, and ||B*|5 — A%

The misclassification error R(fg 3 ) converges to a limit almost surely when v € (0,1) U (1,00), i.e.,
ISP

3 as 9(v0, 71, £)m(=X) + (—1)* In 22
R(f&ﬁx) ~ Z Wq)( k(v0,71)v/m (=) )

£=0,1

where g(Y0,71,¢) and k(y0,71) are defined in Theorem 2, and m(\) = [ 1/(s—A)dF\(s) with Fy denoting
the Marchenko-Pastur law.

Theorem 3 is proved in Appendix C.1. Theorem 3 implies that regularization has a smoothing effect
on the peaking phenomenon. For simplicity, we show this smoothing effect for balanced training (v = 1)

and test data (mg = w1 = 0.5).
Figure 3 shows the asymptotic misclassification error of regularized LDA as a function of v. When

the regularization is weak, e.g., A = 10~%, we observe a similar peaking phenomenon as in Figure 1, while
the peak is lower than that in Figure 1. Compared to the unregularized classifier fg 3 regularization

improves the conditioning of the estimated covariance matrix, i.e., $ + Al is never singular, which in
turn mitigates the performance degradation when v ~ 1.

0.5 0.5
8 0.4 g 0.41 )
[8a] [8a)
203 .2 0.3
2 2
a. a.
0.2 0.21
g — A% g — A%
<o0.1 — w4 | <1 — a4
— A% — 2%
0 1 2 3 0 1 2 3
Value of v (regularization A = 107%) Value of 7 (regularization A\ = 1)

Figure 3: Misclassification error of regularized LDA as a function of v for various levels of asymptotic
SNR. The left panel shows the impact of weak regularization A = 10~%, and the right panel uses a strong
regularization A = 1. The solid line represents the theoretical error given by Theorem 3, and the scatters

denote synthetic data errors, with n = 200,p = [yn].

When the regularization is strong, e.g., A = 1, the peaking phenomenon disappears in Figure 3 (right
panel). In this case, the matrix S+ A is always well-conditioned. The error is dominated by the variance
in the statistical estimation of the means and the covariance matrix. As a result, the error increases as
v increases. We remark that proper regularization greatly reduces the misclassification error when the

problem is approximately exactly parametrized (v & 1).
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Figure 4: We demonstrate three behaviors of the misclassification error of regularized LDA as a function
of my /ng for various 79 when we use a weak regularization with A = 10~% (left panel). They disappears
with a strong regularization A = 1 (right panel). We fix the asymptotic SNR A% = 9. The scatters
denote synthetic data errors, with ng =40,p = [vono].

4.2 Phase Transition of Regularized LDA

In this section, we study the impact of the regularization on the phase transition phenomenon discussed
in Section 3.2. We discuss the impact of weak and strong regularization separately, as they lead to very
different behaviors.

When the regularization is weak, e.g., A = 107, we observe a similar phase transition phenomenon
as in Section 3.2. We depict the misclassification error curves as a function of ny /ng in Figure 4.

When the regularization is strong, e.g., A = 1, the phase transition phenomenon disappears (See
a formal justification in Appendix C.2). Figure 4 shows that the asymptotic misclassification error of
regularized LDA as a function of ny /ng for various vy. We observe that the error curve consistently first
decreases and then increases. In this case, the matrix DEYEN always well-conditioned. Therefore the
misclassification error is the consequence of the trade-off between two factors: 1) the model mismatch
and 2) the variance in the statistical estimation of the means and the covariance matrix.

5 Real-Data Binary Classification

We connect our theoretical findings to real-data binary classification tasks. We consider Neural Network
(NN) classifiers for the MNIST (CC-BY 3.0) and CIFAR-10 (MIT) datasets [39, 42]. We focus on the
overparametried regime, which is the working regime for neural networks.

MNIST dataset and NN classifier. The MNIST dataset consists of handwritten digits of resolu-
tion 28 x 28. We train a neural network classifier with one hidden layer to distinguish digits 3 and 8. We
vary the number of hidden units in {32,64,128}. The activation function is ReLU, i.e., o(-) = max{-,0}.
We use Adam [38] for training, with default hyperparameters in Pytorch.

CIFAR-10 dataset and NN classifier. The CIFAR-10 dataset consists of RGB images of res-
olution 32 x 32 from 10 categories. We pick two similar categories, e.g., horse v.s. deer, for binary
classification. We downsample the data to a resolution of 16 x 16. We also train an NN classifier with
one hidden layer. The number of neurons in the hidden layer is 10, and the activation function is ReLU.
We use momentum SGD for training, with momentum coefficient 0.9 and learning rate 0.001.

In both tasks, during training, we fix the number of samples from one category (500 in MNIST and
1000 in CIFAR-10), and vary the samples in the other category. The total number of training epochs
is 50 for MNIST and 20 for CIFAR-10. After training, the classifier is tested on a balanced test set,
which consists of 900 samples from each class in MNIST, and 1000 samples per-class in CIFAR-10. The
test error is averaged over 10 independent runs for MNIST and 5 independent runs for CIFAR-10 with
random seeds.

Result. The misclassification error in MNIST and CIFAR-10 as a function of nj/ng is plotted in
Figure 5. In both the MNIST and CIFAR-10 experiments, the neural network is overparametrized.
Therefore, we expect the misclassification error exhibits Behavior III in Figure 2. This is corroborated
in Figure 5 as the misclassification error first decreases and then increases as nj/ng grows.
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Figure 5: Misclassification error of neural network classifiers on MNIST and CIFAR-10 for binary clas-
sification.

More importantly, these experiments consistently indicate that in the overparametrized regime, down-
sampling the majority class may hurt the model performance (cf. ny/ng &~ 3 in MNIST and n1/ng ~ 1.5
in CIFAR-10). Meanwhile, when the data imbalance is relatively severe, downsampling the majority
class can be beneficial, due to its mitigation on label shift between training and testing.

6 Proof of Theorem 2

In this Section, we prove our main Theorem 2. The proof for Theorem 3 about the regularized LDA is
similar to the proof of Theorem 2. The proof of Theorem 3 is given in Appendix C.1.

6.1 Lemmas to be used for the proof of Theorem 2

Our analysis relies on change of variables to exploit the independence between the sample mean estimator
and the covariance estimator.

Lemma 4 (Independence between sample mean and sample covariance). Let x; Vs (1, X) for i =

1,...,n, be samples from a Gaussian distribution. We denote i = %Z?=1 x; as the estimator of the
sample mean, and £ = - 3" (x; — i) (z; — i) T as the estimator of the sample covariance. Then [i

and 3 are independent.

We also utilize the asymptotic characterization of the spectrum of Wishart matrix.

Lemma 5 (Isotropicity of wishart matrix). Assume % ~ W(,,n — 2). For any vector z € RP

independent of Z, we have
AVAVEFE I AFAN
z (n—Q) z:;”zHgtr (n—Q) . 9)

Lemma 4 and 5 are proved in Appendix B.1. We next present some helper lemmas.

Lemma 6. Given a matriz Z with i.i.d. standard normal distributed entries, we have
w((272)") = ((227)"). (10)

Lemma 7 (Strong law of large numbers). Assume z ~ N (0, I,) and pq is a non-random p-dimensional

vector such that ||,ud||§ 2% A? and ny, satisfies Binomial distribution B(ng + ny,m) then we have

a.s.
— Ty.

1 s, 1 5, ng
—,u;—z 250, —z'z%%1,

NG D ng + 1y
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Lemma 8 (Marchenko-Pastur law). Let F, be the Marchenko-Pastur (MP) law of 0 <~y < 1. Then for
any real number ¢ < 0, the Stieltjes transform of MP law and its derivative at  are given as

_ [ 1 I e e S VA (s B e 1

m(Q) = [ Py ) = o (1)
and
2y(y — 1) — 2y(¢(r+1)-(v=1)%)

d B 1 _ V((—y—1)2—4y

7@ = [ = gmr (o) = e . (12)
In particular, we have
1 d 1

Lemma 6, 7 and 8 are proved in Appendix B.2.

6.2 Proof of Theorem 2
Proof of Theorem 2. To begin with, we recall the misclassification error of binary classification in (2).
Substituting the Fisher linear discriminant classifier f; 5 (with @, 8,b given in (5)) and prior my = m =

1/2 into (2), we derive

Q) )

P B (r—a <1nf|$NN(MO7 ))

l\D\»—~

_|_
N =

(A=) > 2 o (. 3))

P

( (x — po) B\r(a—ﬂo)—i-%’
P |

P

- ~ N (po, z>)

1Bls 18115

1 (BT (@—m) _ BT(@—m)+h2 )
z > o ~ N(u1,
2 ( 1Blls Ble e M)

~ 1o ({BT(@ o)+ an;] /||B||g) g ([Bwl —a)+n H /|B||z) )

Therefore, it suffices to find the limits of

+

o= (7@ p) + 1022 ) /13l and g1 = (B Gm - @) 4122 ) Bl

since the Gaussian CDF & is continuous. R R
To further aid our analysis, we characterize the distributions of @, 3, and X. Specifically, we make

the following change of variables:

a4 1
Ho = ——=2X229 + po,
V1o
1
i7222:14-/,[,1, (14)

where 29,21 ~ N(0,1,) and Z € R("=2*P with each element Z; ; ~ N(0,1). Note that zy,z; and Z are
independent with each other and Z"Z is a Wishart matrix by Lemma 4.
e Case 1. 0 < v < 1. We present in detail how to characterize the asymptotic limit of gg, and ¢; follows
a similar argument. We tackle the numberator and denominator of gy separately. Using Lemma 7, we
check
In 2 Eﬂnﬂ —n 22
o To gs!

10
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Therefore, we temporarily omit the threshold term In(n;/ng) in both qg, ¢ to ease the presentation. By
the change of variables formula in (14) and some manipulation, we deduce

T T
5@ ) = —5na+ == =) (25) wd—}zo—\/%zn
T T
:%ZOT <f_Z2> 071( a—21/vnn)’ (Z ZQ) (a — 21/+/n1) (15)
T
4 [—;|ud—¢%z1||§+23mzo||§] x;m(f_i) , 16)
A B

where g = £72(uo — p1) and the last equality follows from the isotropicity of the Wishart matrix
Z'Z in lemma 5, In the sequel, we establish the limits of terms A and B, since they are independent.
Asymptotic convergence of A. We show

as, 1
A—>—§(A2+71—’YO)- (17)

To see the result above, we expand term A as

1 2, 1 2
a1l + 5 loll”

1, w1 -
**iﬂﬂdH JF\/T—lHle* 2

Recall that in Lemma 7, we verlfy that —- ||le2 = 51 > |1z ||§ 2% 41 and = ||zo||2 2% ~p by the strong

\/nTMd 21 =2 0. Invoking the

assertion in Theorem 2 that ||5*||22 = Hﬂd”; = A?, we deduce the desired convergence of A.
Asymptotic convergence of B. We next show
1

B ——
1—v

(18)

The convergence result above utilizes the Stieljes transformation of the Marchenko-Pastur law. Specifi-
cally, by the Bai-Yin theorem [3], for v < 1,

AN
Cmin (TL 2) Z %(1 - W)Qa

which implies that Z T Z is almost surely invertible. Conditioned on Z " Z being invertible, we rewrite B

as
1 ANA
B=-t - dF
P r(n—2> ZsZ / ZTZ

i=1

where s;’s denote the eigenvalues of ZT Z/(n — 2) and Fy(a) = % P_L 1{X\;(M) < a} is the empirical
measure of eigenvalues of M.

Now apply the Marchenko-Pastur theorem [50], which says that Fi;r z/(,_2) converges weakly, almost
surely, to the Marchenko-Pastur law F, (depending only on 7). Invoking the Portmanteau theorem [50],
weak convergence is equivalent to the convergence in expectation of all bounded functions h, that are
continuous except on a set of zero probability under the limiting measure. Defining h(s) = 1/s- 1{s >
a/2}, where we abbreviate a = (1 — \/7)?, it follows that as n,p — co, almost surely,

/wldFZTZ( o [ Lams)

/28 n—2 a/25

We can remove the lower limit of integration on both sides above; for the right-hand side, this follows
since support of the Marchenko-Pastur law F), is [a,b], where b = (1 + ,/7); for the left-hand side, this
follows again by the Bai-Yin theorem [3] (which as already stated, implies the smallest eigenvalues of
Z'Z/(n —2)) is almost surely greater than a/2 for large enough n). Thus the last display implies that

as n,p — 00, almost surely,
1
B %/fF (s)
s

11
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Thanks to the Stieljes transformation of the Marchenko-Pastur law, we can explicitly compute
Il %dFv(s). In particular, the Stieljes transformation of F, is defined as

m(C) :/ﬁdF,y(s) with ¢ € C.

Taking ¢ — 0, we obtain m(0) = lim¢_om(¢) = ﬁ by Lemma 8. Consequently, we establish B 2%

1
11—
Substltutmg (17) and (18) into (16) yields

~ a.s. 1 1
BT(@ - o) = —§(A2+W’1 —’)’0)1 _

(19)

Next we consider the denominator || B = in go. Applying the change of variables in (14) and using
Lemma 5, analogous to (16), we derive

1BI1% =(io — in) "ETEE (7l — fin)
1 2
Gt g=ro- =" ((5) ) e s g
\ﬁ N4 n—2 \/770 NG
1

= ?f((fiiy)z' .

A’ B’

i

Hag + ——

The convergence of term A’ follows the same argument of term A in the numerator, and we have
A 25 A 4y + . (21)

Conditioned on Z T Z being invertible, term B’ can be written as

1 1

To compute the limiting integral above, we differentiate the Stieljes transformation m(¢). By sending
¢ — 0 again, we can derive

(22)

Substituting (21) and (22) into (20) yields

1

Blls 2% /A2 .
18]ls +m+ 0 g 72

(23)

Combining (19) and (23), as well as putting the threshold term In(n;/ng) back, we obtain

A%
s _ (1717) + hl 'YO

\% A? +mn +’70(1 ,7)3/2 .

The same argument of analyzing g9 applies to g1, and therefore, we have

(24)

A+y0—m fai%
a.s, T 21—y +In

qQ — .
VAT + 91+ Y7

To complete the proof in the case of 0 < v < 1, we plugging (24) and (25) into (13).

e Case 2. 7 > 1. The goal is still to find the limits of gy and ¢;. Consider g first. We observe that both
(16) and (20) are valid for v > 1. However, a key difference is that Z T Z is rank deficient in the limit
considering v > 1. To resolve this issue, we observe that Z'Z and ZZ T share all nonzero eigenvalues.

(25)

12
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Figure 6: Misclassification error in the highly overparametrized regime as a function of ny/ng, with
A? =09,

Therefore, we can replace Z'Z by ZZ" in (16) and (20) without changing their values. Such a reasoning
is justified by Lemma 6. We can now rewrite (16) as

;
o S 1 Lo 1 ] (n—2)? 1 Z77
B (a—po) = {—§||Md— \/—n—121||2+—||20||2} A e '

2’[10 p
ﬂ—l[Ang%—vo] x (26)
2 (v =1)
Similarly we can rewrite (20) as
2 3 ToNH) 2
sy d 1 1 (n—273 1 AV
2 - t
I ‘“”m—ozo v, T w2 (2
a.s. 1
(28)

Combining (26) and (27), as well as putting the threshold term In(n/ng) back, we obtain

A%y Yo
a.s, 2v(v—1) +n "

qo — s
A% + 71 + Y

The same argument of analyzing qo applies to ¢;, and therefore, we have

A%ty a8
S 27(v—1) +1n o

a.
q .
VA2 47 +70W

The misclassification error in the case of v > 1 follows by substituting go, g1 above into (13). The proof
O

is complete.

7 Conclusion and Discussion

This paper provides a theoretical analysis on the performance of LDA under label shift, in both the under-
and over-parametrized regime. We explicitly quantify the misclassification error in the proportional
limit of n — oo and p/ng — v for £ = 0,1, where 7, > 0 is a constant. Our theory shows a peaking
phenomenon when the sample size is close to the data dimension. We demonstrate a phase transition
phenomenon about data imbalance: The misclassification error exhibits different behaviors as the two-
class ratio nj/ng varies, depending on the value of v5. We clearly characterize the three behaviors
of the misclassification error in the underparametrized, lightly overparametrized, and overparametrized

13
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regions depending on 9. We also investigate the regularized LDA, and show that the peaking and phase
transition phenomenons disappear when the regularization becomes strong.

Additionally, in the highly overparametrized regime, the misclassification error under label shift has
multiple maxima, as shown in Figure 6. We believe that the multi-peaking behavior of the misclassifi-
cation error reflects the intertwined interaction between the lack of information in data and the model
mismatch under label shift.

A  Proof of Phase Transition in Section 3.2

Misclassification error as n;/ng — oo In this section, we will give a proof to show the misclassifi-
caiton error tends to 0.5 when nj/ng — co. When the training data set is extremely imbalanced with
ny/ng — 00, i.e., y0/v1 — 00, the Bayes classifier tends to classify all data points to class 1. This leads
to the following limits,

A? - A2 _

VA 470+ VAt

Then the limit of misclassification error is given by

The proof is complete.

Phase transition knots In this section, we provide theoretical justifications of the phase transition
knots given in section 3.2. Denote the asymptotic misclassification error in (6) and (7) as R(yo,71). We
fix 79 and let v; vary starting from the balanced case with ~v; = 7.

The transition knots are obtained by a local analysis about the instantaneous change of misclassi-
fication error as nj/ng slightly increases from 1. We observe that, as nj/ng slightly increases from 1,
the misclassification error decreases in Phase I and 111, and increases in Phase II. Notice that ~; slightly
decreases from 7g as nj/ng slightly increases from 1.

The instantaneous change of R (7o, 1) with respect to v, can be characterized by the following partial
derivative, 6%172(70, Y1) |y

A2 <A2(12'yo)é)
0 VA2
7R|’Y1:’Yo - 2 - 3 +2’Y01 T X [4+ A2]’
Om 16(A2 +279)2 (1 — 270)2

for vy < 2, and

A2 —A2(Ly-1)2
i'R . Yo/ AZ+2vg

= x [4ye — (12 — A%)y — 447,
o "Yl*"/() 4,}/3(A2+270)%(%70_1)% [y — ( )70 ]

Q(v0,4)

for 9 > 2, where ¢ is the probability density function of the standard normal distribution. The Q(vo, A)
term is a quadratic function with two roots of opposite signs. The positive root is v, = %(12 — A%+

VA% 4+ 40A2 + 144). The sign of the above partial derivative has the following cases:

e When v, € (0,2), 3%173(70,71) |, =, is always positive. As a result, R(70,71) decreases as 11
decreases from 7y, which corresponds to Phase I.

e When v € (2,7), %R('yo,’yl) | =+, is negative. In this case R(7o,71) increases as 71 decreases
from ~yy, which corresponds to Phase II.

e When vy € (1, +00), %R('yo,'yl) |’v1:'va is positive. In this case R(79,7v1) decreases as 7 de-
creases from -y, which includes Phase III.

14
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B Proofs of Lemmas in Section 6.1

B.1 Proofs of Lemma 4 and Lemma 5

Proof of lemma 4. We will prove this result by Basu theorem, i.e., we will show that (i —pu) is a complete
and sufficient statistic and ¥ is an auxiliary statistic w.r.t. p.

First, we show /i is a complete statistic. We need to check that for any p and measurable function
g, Elg(n)] = 0 for any p implies P(g(iz) = 0) = 1 for any p. Indeed, for any measurable function g such
that the expectation of g(it) over sample space (1,22, ..., 2,) is zero, i.e.,

Elg(@)] =0 for any 4, (29)

we can derive P(g(jz1 — p) = 0) = 1 by taking derivatives of Equation (29) w.r.t. p recursively,

E [h(ﬁ)g(ﬁ)} = 0, for any polynomial h,

and therefore [ is a complete statistic w.r.t. parameter pu.

To prove [i is also a sufficient statistic for 1, we need to show that given the statistic i the conditional
distribution of 1, ..., 2, does not depend on u. Note that fi has a multivariate normal distribution,
ie, i~ N(p, L%), since g = £ 3" | x; is a linear combination of i.i.d. multivariate normal vectors

T1,T2,...,%Ty. The pdf of g and the joint distribution of x1,zs,...,x, are given by
~ 1 n, . Ta—1/~
= e (S-S A p), 30
f(m) HISE 5 (= h) (17— p) (30)

1 "1 .
L1y ey Ty) = ——p—— €Xp | — —(x; — Y (xy — .
fan ) REISE p( ;:12( 1) ( u))
The joint density function of x1,...,z, and { is given by
—~ 1
f(xl,,xn,,u)Zf(xl,,xn)ll (/L:n(x1+x2++xn)> (31)

By taking the fraction of (30) and (31), the conditional density of x1,...,x, given [ is

F (@1 | ) = Coxp (—é(w—ﬁfz%x—m), (32)

where C'is a constant. By Fisher-Neyman factorization theorem [43], given the statistic i the conditional
distribution of w1, ..., z,, does not depend on p and therefore [i is a sufficient statistic for p.
Sample covariance has a distribution which doesn’t depend on the parameter p.

~

S= (- i) @ —i) =+ (33)

n n
=1 i=1

i
and therefore it is a auxiliary statistic.

Combining i being a complete and sufficient statistic and s being an auxiliary statistic, we obtain
that o and ¥ are independent, by Basu Theorem. O

Proof of lemma 5. The following isotropic property of Wishart distribution has been given by Wang and
Jiang [69]. For any orthogonal matrix U € RP*P, we have

U’ <ZTZ2> U~W(I,n—2). (34)

n —

We next apply this property to the left-hand side of equation

9)
AVAN AVAN
27 ( ) 2 =2 UU" ( UU; 2
n—2 n—2
T T
el e (UJ (Z Z)m) (35)
’ n—2
A
_ €

T T
Ay 2.7 (2 .
Ll el (25) e
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where U; is a orthogonal matrix that transforms the vector z to canonical basis vector e;, i.e.,

Ufz: lellyeis i=1,2....p. (36)
We can further simplify the product z ( )Tz by taking an average over the index ¢,
ZTzZ\" 41 ARAY
(22 20 3 e (22) -
=1,..., » T (37)
L, o VAN
= —|lz[lz tr m_9 )
p n—
where we get the isotropicity of Wishart distribution in Equation (9). O

B.2 Proofs of Lemma 6, Lemma 7 and Lemma 8

Proof of Lemma 6. We use the eigenvalue decomposition of ZTZ = UT DU to simplify the left-hand
side of Equation (10),

tr[(Z"2) =t (UD'UT)

S
SEXN(ZT Z),5#0

The result above implies that the trace of the pseudo-inverse of Z'Z is equal to the sum of the
reciprocal of its eigenvalues. By the same arguments on ZZ ", we can show that

1
w[(zZ2N)1= > "
SENZZT),s#0

Then we deduce the desired result by the fact that the set of non-zero eigenvalues of ZZ T matches that
of Z'7Z. O

Proof of Lemma 7. We first compute the limit of f pg z. The linear combination of multivariate normal

random vector z ~ N(0,1,) is a normal random variable, namely, ﬁu}z ~ N(0, %u;ud). From the
concentration inequality of the normal random variable [57], we have

1
z
P (| de] 2 Sl ) <2

Combining Equation (38), e™ < L for z > 0 and [|pal2 < 2A for a sufficiently large p, the sum of the
probabilities of %| iy z| > € is finite, for any positive € > 0, i.e.,

”,Ud||2 —(®p)/ 2l al2)
R > Hd
Z ( DEEDE Z Dale.

e /2 forallz > 0. (38)

By the Borel-Cantelli lemma, we have

We next consider the limit of %z; z¢. Since zy satisfies the chi-squared distribution independently with

expectation E[zgl] = 1 and finite variance Var(zl%i) = 2, we know the average of the squared elements
in zy converges to the expectation almost surely by the strong law of the large numbers, namely,

1 :
*Z;Zg 251
p
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By the same arguments given above, n, satisfies the binomial distribution B(ng + ni,m¢) which is
composed of ng + ny independent Bernoulli distribution with expectation mg and Variance mgm;. From
the strong law of large numbers, we have

Ty a.s.
— Ty.
ng + nq

O

Proof of Lemma 8. We first derive the expression of m(¢). The Marchenko-Pastur law is supported on
a compact subset of R, i.e., supp(F,) C [a,b] where

a=(1-y7)? and b= (1+7)%

Let {z1} be a sequence of complex numbers such that Im(z;) > 0,Re(z;) = ¢ for any k and
limy o0 2 = (. Consider the sequence of integral

b
dF. .
/a s — 21 7(5)

For any k£, 0 <y < 1 and s > a, we have

1
S — Zk

S

By the dominated convergence theorem, we have

b b
l/gizdFﬂQ:i/ lim ——dF, (s) = lim L ar(s)

S — k—oo § — 2k k—oo J, S — zk

= lim
k— o0 S — Zk

dF, (s). (39)

To compute [ S%deFw(s), Bai and Silverstein [2, Lemma 3.11] gives

/ 1 dFV(S):1—7—2k+\/(zk—"/—1)2—47. (40)

S — Zk 2z,

According to the definition of the square root of complex numbers in Bai and Silverstein [2, Equation
(2.3.2)], the real part of \/(z; — v — 1)2 — 4y has the same sign as that of z;, — v — 1. Since Re(zy,) =
¢ <0,7 >0, the real part of \/(z;, — v — 1)2 — 47 is negative and gives

Jim /(z =y =12 —dy = —/((—v = 1)* = 4. (41)

Substituting (41) and (40) into (39) gives rise to (11).
We then compute m(0). When substituting ¢ = 0 into (11), both the numerator and the denominator
are 0. Here we apply L’Hospital’s rule:

11—y —(—/((—v—1)2—4
m(0) = Jim ¢ \/2%(7 )2 — 4y

TN DR Sl
S (502y V=7 =12 -4y

_1 - -1
2y (—y—1)? -4y
1

I
[N}
_ =
7 N
L
+
—_ =
"
=2 [
N—
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We next derive the expression of d—dcm(g“ ). To derive the expression, we first show that

s —Z

1 d 1
/mdFv(s) = lim — / ——dF,(s) for z € C with Re(z) = ¢,Im(z) > 0. (42)
Let {hi} be a set of complex numbers such that |Re(h)| < |¢|/2 for any k and limj_,o b, = 0. For any
k and s > a, we have

1
(s—2z—hg)(s —2)

1
= T=

< 00.

By the dominated convergence theorem, we have

g [ sare =g o | [ san ) - [ Lar )]

1 /° 1 1
~ lim — / L ars)

where the second equality holds since F(s) is supported on [a, b].
Since
1

(s = 2)?

1
= T= v

< 00,

for any s > a, we have

1 b 1 Y A
/WdFv(s) :/a lim ———5dF,(s) = lim | ——dF,(s)

z=¢ (s — 2)2 z=C¢ J, (s —2)2
13} 1
_zh—giz/s—zd 7(5)

Using (40), we have
0 1
5 [ e

(272) {—HM] —(27) (1—7—Z+\/(z—7—1)2—47)

4~222
_ (2y2)(z—y=1) — A~ 12—
@2y )(y—-1)+ /Ry e 27\/(2 v—1) 4y

= . 43
4~2 22 (43)

Letting z — ¢ in (43) and recall that the real part of /(2 — v — 1)2 — 4 is negative, one gets (12).
To compute d%m(O)7 by L’Hopital’s rule, we deduce

9 1) - (222)(C=r-1) ) —~_1)2_4
4 () = lim (27)(v ) V(1217 + ’7\/(< Y ) Y _ 1
a0 = By e =

C Proofs in Section 4

C.1 Proof of Theorem 3

Proof of Theorem 3. The proof uses the same technique as in the Theorem 2, the misclassification error
is the same as (13), and we only need to show the limits of go and ¢;. By the change of variables formula
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n (14) and Lemma 8, we deduce

BT(a_NO)
1 1 1 777 f 1 1
= 5+ ——=20 - ——= Y ey ——
(ud+ o0 = z1)" < — ) (pa o0 \/77121)
1 AN f 1 AN/ f
= QnOZO (n 5 + Al ) z0 — i(ud — zl/\/ﬂ)T ( — + M ) (tg — z1/+/n1)
T
a|_1 1 2 1 2 1 z'7
= {_2/%1_\/@21”24'2710@0”2 X 5‘61r p— +>\I
a.s. 1
—§(A2 + 7 — y1)m(=A). (45)
Similarly we can derive
IBIIZ =(fio — i) (5 + ML) IS(E + ML) (7o — 7in)
+ 2
1 1 +((Z27Z ) 1 1
=(Ha + 20— ——= + Al +—20— —2
(Ha T T T z1) ((n 5 )(ud N \/7711)
2
d 1 1?1 ANA i
Md-&-i\ﬁo—iﬁzl ptr<(n2+/\fp>
25(A% + 40 +y1)m (= A). (46)

Combining (45) and (46), as well as putting the threshold term In(n;/ng) back, we obtain

o —3(A% =70 +y)m(=A) +In 2
VA2 491+ 70)m! (= N)

The same argument of analyzing gy applies to ¢; and therefore, we have

as. —3(A%+ 70 —y)m(=A) +In 2t
25
V(A2 + 91 +50)m/ (=)

We complete the proof by substituting go, g1 above into (13). O

q1

C.2 Proof of Regularized Phase Transition in Section 4.2

In this section, we show with a strong regularization, the phase transition phenomenon will vanish.
Denote the asymptotic misclassification error in Theorem 3 as

(0,71, )m (=) + (—1)¢In 22
R V1) = o V1 :
e Ezzo;l ( E(y0, v1)v/m/ (=) )

and we use the shorthand R () to denote R (7y0,7v1) with the balanced data, i.e., v = y1 = 27,

B B —A%m(=))
Ra(1) i= Ra(27,27) = & (wmz . 47>m'(A>>> |

We show the phase transition phenomenon vanishes with a strong regularization, namely,

0
afleA(’Yo,’h) |'YO:’Y1:2’Y >0 for a strong A > 0.

To see the result above, we need to show that 8%7(7) > 0 with a strong regularization. Specifically,
invoking Chain rule and by some manipulation, we have

IRA(7) Oy
6’)/ 871 Yo=71=27"

0
877173,\(70,71) | omyi=2y =
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By Mathematica Software [35], we check

3RA(7):¢< —A2m(-)) )a( —AZm(=)) )

dy 2 /(A2 1 dy)m'(—N) ) 0y \ 2(/(A% + 47)m/ (=)
(%)

where ¢ is the pdf of the standard normal distribution. By Mathematica Software [35], the denominator
of (%) is also always positive, and is given by

(V4 A+1)2 = 49]* (47 + A2)*/?

A% (7 + A+ 1)2 = 4y))2
x [73 + 72 (V2 F DA+ (y = 12+ A2+ 21 - 3)

2\/5,)/3/\3

(2P RO D F O F I+ A2 DA (- 1P 2 4 4+ 3)
}3/2

+AFDW2(r + DA+ (v —1)2+ A2 = A1)

As a result, the sign of 8%(7) is determined by the numerator of (x) given as
Bt

2[5+ 1)[A%( =320+ DA+ (7= 12+ W = 22//2(7 F DA+ (y - DZ + X2

+)\2+5>\+4>+8(>\+1)2 <\/2(7+1))\+(7—1)2+)\2—>\—1”

+ 2 [AQ (2A\/2(7 +DAF (= 1D24+ A2 432y + DA+ (7 — 1)2 + A2

—6)\—6) —4(A+1)(2A\/2(7+1)A+(7—1)2+A2 —9A—9
+TV20+ DA+ (= 7+ X2) |+ (A (VA2 2= )+ (L 1

AV DA (= 12+ A7+ A2 = 9) 43677 + 2y(A— 1) + (A + 1)2

+A? (—\/2(7—1—1)/\—1—(7—1)2+)\2+)\+4)—64} +v4[—A2+56

— 2072+ 29(A— 1) + (A + 1)2 + 4A (2\/72+27()\— D+ (A+1)2 +3>\—4>]

+49° [V2O + DA+ (= DZ + 22+ 3) = 6] + 49°

+ A2+ 1)3 (\/2(7+ DA+ (7 —1)Z+A2—\— 1) }

Combining the denominator and numerator, %R A(7) is positive only when one of the following case
happens,

1. A>0and 0 <y <1and A > 0.

2. A>0andy> YA+ 41 and A > 0.

3. A>0and 1<y < 7vA22+4 4+ 1 and A > the smallest real root of
[#1%(32y +4A2) + #1°(9672 + 8yA2 + 128y + 16A2) + #17 (967> + 1129 + 167A2 + 192y + At +
24A%) + #1(—8y3 A% — 1672A2% + 329* — 9673 — 6492 — 2yA* + 8yA? + 128y + 2A* + 16A?) —
491A2 + 1673A% + 42 A1 — 1672A% — 167" + 649% — 809% — 2yAT + 32y + A +4A?].

Consequently, We deduce that the misclassification error increases when  grows in the interval (0, 1)

or (7%24'4, oo); when v grows in (1, 7vA22+4), the misclassification error decreases when A is small, yet

increases when A is large. For example, when A% = 9 and A = 1, R (7) increases monotonically with

respect to v, and the peaking phenomenon disappears. Meanwhile we have the instantaneous derivative
OR (Y0,71)
oM | Yo=71=27

> 0 for any 79, which implies that the phase transition phenomenon vanishes.
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The commands of Mathematica are provided as follows.

_ V(A2 —dy+y—A—1

In[1]: m(y-, A): GED)
2

In[2]: R(y-, A, A)i=— & mx.A)
n2]: R(y ) 2\/_(4’Y+A2)87n(§')y\.>\)
In[3]: de(y_, A, A):=

Evaluate [Denominator [FullSimplify [Together [%’VNMHH
In[4]: nu(y,, A\, A):=

Evaluate [Numerator [FullSimplify [Together [%j‘mﬂﬂ
In[5]: Reduce[de(y,\,A) > 0AA>0AY>0AA>0,{v,\}]
In[6]: Reducenu(y,\,A) >0AA>0Ay>0AA>0,{v,\}]
In[7]: Reduce[nu(y,1,3) > 0Ay > 0,{v}]
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