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Abstract

This review describes advances in understanding and forecasting tropical cyclone (TC) subseasonal variability during the past four years. A
large effort by the scientific community has been in understanding the sources of predictability at subseasonal timescales beyond the well-known
modulation of TC activity by the Madden-Julian Oscillation (MJO). In particular, the strong modulation of TC activity over the western North
Pacific by the Boreal Summer Intra-Seasonal Oscillation (BSISO) has been documented. Progress has also been realized in understanding the role
of tropical-extratropical interactions in improving subseasonal forecasts. In addition, several recent publications have shown that extratropical
wave breaking may have a role in the genesis and development of TCs. Analyses of multi-model ensemble data sets such as the Subseasonal to
Seasonal (S2S) and Subseasonal Experiment (SubX) have shown that the skill of S2S models in predicting the genesis of TCs varies strongly
among models and regions but is often tied to their ability to simulate the MJO and its impacts. The skill in select models has led to an increase
over the past four years in the number of forecasting centers issuing subseasonal TC forecasts using various techniques (statistical, statistical-
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dynamical and dynamical). More extensive verification studies have been published over the last four years, but often only for the North Atlantic

and eastern North Pacific.
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Communication Co. Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Camargo et al. (2019) reviewed the significant progress in
our understanding and prediction of subseasonal tropical
cyclone (TC) activity during 2015-2018. The current review
provides a similar summary for the subsequent four years. A
great advance in predicting subseasonal TC activity in the last
four years has been the maturation of the Subseasonal Exper-
iment (SubX; Pegion et al., 2019) and the World Meteoro-
logical Organization (WMO) Subseasonal-to-Seasonal (S2S;
Vitart et al., 2017) model intercomparison projects. These
models have produced increasingly skillful Madden—Julian
Oscillation (MJO) forecasts beyond three weeks. Hybrid
statistical-dynamical models have been created to leverage
these MJO forecasts and the known relationships between the
MJO and TC activity (e.g., Hansen et al., 2022). Some
dynamical models can even produce skillful forecasts of sub-
seasonal TC activity with minimal post-processing (Camp
et al.,, 2018). The increasing skill of these models has
empowered several operational forecast centers to produce
experimental and even operational TC forecasts for week 3 (see
section 4).

2. Modulation of TC activity by subseasonal modes of
variability

2.1. Impact of tropical waves on tropical cyclone activity

In the four years since Camargo et al. (2019), many studies
have focused on the sub-basin scale and elucidating how the
MJO/Boreal Summer Intraseasonal Oscillation (BSISO) mod-
ulates TC activity in tandem with other shorter period phe-
nomena (e.g., tropical waves). Fowler and Pritchard (2020)
showed that the South China Sea (100°E-120°E) is the most
sensitive region in the western North Pacific (WNP) to the
MJO/BSISO. In this region, the favorable decrease in vertical
wind shear coincides with an increase in mid-level moisture.
On the other hand, the eastern WNP (160°E—180°) is less
sensitive to the MJO/BSISO because these factors are out of
phase with one another: the increase in moisture precedes the
decrease in vertical wind shear (Fig. 1). Along with the MJO/
BSISO and the quasi-biweekly oscillation (QBWO), other
modes of variability such as equatorial Rossby waves (ERW),
Kelvin waves (KW), and the combination of Mixed Rossby-
gravity waves (MRG) and tropical depression-type distur-
bances (collectively MRGTD) also contribute to TC genesis in
the Bay of Bengal (BoB; Landu et al., 2020) and the WNP
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(Zhao et al., 2019). Landu et al. (2020) showed that during
simultaneous ERW and MJO events, more TCs formed in the
BoB than during any other combination of waves. ERW
increased low-level vorticity, and the MJO increased moisture.
On the other hand, simultaneous MRGTD and KW were
associated with fewer BoB TCs than any other combination of
waves. The MRGTD reduced vertical shear and contributed to
drying at mid-levels, and KW decreased low-level vorticity,
which results in fewer TCs in the BoB.

Understanding how TC tracks and thus landfall risk are
modulated by the MJO/BSISO could potentially lead to better
TC risk decision-making. In the WNP, TCs tend to move
northwestward during the enhanced convective phases of the
MIJO/BSISO and QBWO, but during the suppressed convective
phases recurving storms are more common (Wang et al., 2019;
Ling et al., 2020; Nakano et al., 2021). A westward extension
of the WNP subtropical high (Ling et al., 2020) or eastward
extension of the monsoon trough (Wang et al., 2019) lead to
more northwestward-moving TCs during the convective
phases.

In addition to these sub-basin studies, significant progress
has been made in examining nonlinear interactions between the
MJO and the El Nifio Southern Oscillation (ENSO). For
example, Atlantic TC activity generally increases during La
Nina episodes. However, Hansen et al. (2020) found that the
most favorable MJO phase for Atlantic TC activity also shifts
with the ENSO state. During neutral ENSO states, MJO phases
1 and 2 were associated with the highest level of TC activity in
the Atlantic. During strong La Nifia states, MJO phases 4 and 5
were most likely to have above-average accumulated cyclone
energy (ACE; Bell et al., 2000). To investigate other potential
factors that influence subseasonal TC activity, Hansen et al.
(2020) developed a compositing technique that isolated sub-
seasonal signals of environmental conditions in association
with TC activity, which were referred to as ACE By Year
(ABY). The most important predictors of enhanced TC activity
were negative vertical wind shear anomalies in the North
Atlantic Main Development Region (MDR), and positive ver-
tical shear anomalies in the subtropical North Atlantic (Fig. 2).
The vertical shear pattern associated with MJO phases 1 and 2
was similar to, but distinct from, the shear pattern in the ABY
composite. Both nonlinear MJO/ENSO interactions and the
subseasonal vertical shear signals appear to be linked to po-
tential vorticity streamers, which suggests mid-latitude in-
teractions may contribute to a significant portion of the
subseasonal variability of North Atlantic TC activity (Hansen
et al., 2020).
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Fig. 1. (a, ¢) Average 850-hPa (blue) and 250-hPa (green) winds for each MJO phase; dashed lines represent the Phase 1-8 mean. (b, d) Genesis Potential Index
(GPI) decomposition for each MJO phase, defined using the OLR-only MJO Index (OMI, Kiladis et al., 2014). (from Fowler and Pritchard 2020).
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Fig. 2. Vertical wind shear anomalies associated with subseasonal active TC periods in the North Atlantic using the ABY composite technique (from Hansen et al.,

2020).

2.2. Impact of extratropical wave breaking on tropical
cyclones

Several recent studies (Zhang et al., 2016; 2017; Li et al.,
2018; Papin 2017; Papin et al., 2020; Jones et al., 2020)
demonstrated that occurrence of extratropical Rossby wave
breaking (RWB) events tend to reduce TC activity on
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subseasonal and longer time scales through larger vertical wind
shear and mid-tropospheric dryness. Using semi-idealized nu-
merical model simulations, Chang and Wang (2018) showed
that these negative extratropical impacts on Atlantic TC ac-
tivity may exceed the positive impacts of local sea-surface
temperature (SST) anomalies in some years. Jones et al.
(2022) showed that the dynamical impacts of RWB on
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vertical wind shear are predictable through the link between the
North Atlantic Oscillation (NAO) and the RWB event. Thus,
including such dynamical impacts may improve seasonal TC
predictions. Zhang et al. (2021) analyzed a large ensemble of
climate simulations forced by observed SSTs and demonstrated
that seasonal variations of RWB events are potentially pre-
dictable owing to SST forcing in both the tropics and
extratropics.

The tropical and extratropical impacts on TC activity can be
integrated in the framework of summertime stationary waves. In
particular, tropical upper-tropospheric troughs (TUTTS), inter-
preted here as stationary waves, are the preferred regions of
RWB (e.g., Postel and Hitchman 1999), and become the regions
of active interaction between the tropics and extratropics. These
TUTTs are subject to the modulation by diabatic heating, which
leads to variability of the North Pacific TUTT and the North
Atlantic TUTT. This variability of large-scale environmental
conditions thus contributes to the variability of TC activity
(Fig. 3). In addition, the anti-correlation of TUTTSs between the
North Atlantic and North Pacific leads to the TC activities in the
two basins tending to compensate for each other. Thus, Northern
Hemisphere TC activity may be less variable than it would be if
these two TUTTSs were independent.

While most recent studies have focused on RWB and North
Atlantic TC activity, Takemura and Mukougawa (2021) inves-
tigated tropical cyclogenesis over the WNP triggered by RWB
to the east of the Asian coast. A composite observational anal-
ysis indicated that approximately 55% of the detected RWB
events were accompanied by the genesis and development of
TCs to the southwest of the wave breaking center (Fig. 4). A
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RWB event leads to an intrusion of the upper-level positive
potential vorticity toward the southwest and consequently
enhanced convection over the subtropical WNP. This enhanced
convection is a favorable condition for TC genesis and devel-
opment. It is noteworthy that Takemura and Mukougawa (2021)
showed that no TC genesis occurred after the peak day of a
RWB event.

3. Simulation of subseasonal TC activity in S2S and SubX
models

3.1. Model description

Research on subseasonal-to-seasonal prediction of TCs has
been accelerated by the maturation of multi-model datasets.
There have been expansions and updates to the WMO S2S
(Vitart et al., 2017) and the SubX (contains only North Amer-
ican models; Pegion et al., 2019) datasets. There are also new
global model simulations and improvements in global models
that can potentially lead to advances in subseasonal TC pre-
dictions. Some examples of these models are the GFDL SPEAR
global coupled model (Xiang et al., 2022a), the new version of
the NASA GMAO GEOS S2S system (Molod et al., 2020) and
the Australia Bureau of Meteorology (BoM) ACCESS-S1 with
an ensemble Kalman filter (ACCESS-GE2, Gregory et al.,
2020). Additionally, Richter et al. (2022) showed that the
CESM2 can be used as a community resource for research on
subseasonal predictability (see Table 1 for details).

Lee et al. (2020) evaluated regional TC events (genesis
and subsequent track) in 20° longitude and 15° latitude boxes
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Fig. 3. Composites of tropical cyclone track density function (TDF, number of TCs per month within a 10° X 10° grid box) based on (a) the North Atlantic TUTT
index and (b) the North Pacific TUTT index. Dashed contours depict anomalies exceeding the 95% confidence level. The TUTT index is defined based on the
equatorward extension of the upper-level westerly flow over a subtropical ocean (adapted from Wang et al., 2020).
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Fig. 4. (a) Daily time series for the total numbers of TCs (black line; right axis) and TC genesis (gray bars; left axis) detected in 24 RWB cases during a period from
10 days before (day —10) to 10 days after (day +10) the peaks of RWB. (b) Scatter diagram between area-averaged monthly RWB frequency over 25°N—45°N,
140°E-180° and the monthly numbers of TCs detected from 15°N to 45°N and from 120°E to 180°E in July and August during the period from 1958 to 2018. (from

Takemura and Mukougawa 2021).

Table 1

List of available subseasonal TC reforecast datasets. VO1 refers to the tracker from Vitart and Stockdale (2001). Other than S2S TCs, data availability requires further
confirmation from each research group. (Table prepared by Dr. Jorge Garcia-Franco).

Model Native resolution Coverage period Ensemble size frequency TC tracker data availability
(most updated)

BoM 2°, L17 1981-2013 33 6/month Vo1 S28

CNRM 1.4°, 1L91 1993-2014 15 4/month Vo1 S2S

CNR-ISAC 0.75°, L54 1981-2010 5 5 days Vo1 S28

CMA 0.5°, L56 2006-2020 4 2/week Vo1 S28

ECCC 0.35°, L45 1998-2017 4 weekly Vo1 S28

ECMWF 0.15°; 0.3° L137 2000-2020 11 2/week Vo1 S28

HMCR 1.2°, 128 1985-2010 10 weekly Vo1 S2S

IMA 0.5°, L60 1981-2012 5 3/month Vo1 S2S

KMA 0.75°, L85 1991-2016 3 4/month Vo1 S28

NCEP 1°, L64 1999-2010 4 daily Vo1 S28

UKMO 0.75°, L85 1993-2016 7 4/month Vo1 S28

CESM2 (CAM6) 1°,L32 1999-2020 11 weekly Tempest Extremes Climate Data Gateway
CESM2 (WACCM6) 1°,L70 1999-2020 5 weekly N/A N/A

GEOS-S2S-2 0.5°, L72 1999-2020 4 5 days Tempest Extremes Unk

SPEAR 0.5°, L33 2000-2019 10 5 days Unk Unk

in the WMO S28S database models' reforecasts and found that ACCESS-S1, ACCESS-GE2, and ECMWF models and

the European Center for Medium-range Weather Forecasts
(ECMWF) model had one of the best performances in
simulating the TC climatology as well as having higher pre-
diction skill. Lee et al. (2020) found that a key limitation in
prediction skill of regional TC activity is genesis prediction,
and the ECMWF model had the smallest errors in genesis
climatology when compared to other WMO S2S models
(Lee et al., 2018).

Camargo et al. (2021) reported that North Atlantic TC tracks
in the ECMWF subseasonal reforecasts had clusters with
similar characteristics to the observed. However, the ECMWF
model had an additional cluster of recurving North Atlantic
hurricane tracks near the coast of Africa with characteristics
that do not correspond to the observed track clusters in that
region, which may be due to some systematic biases in low-
level winds and geopotential heights in the ECMWF model.
When evaluating the climatology of TC intensity, model res-
olution was found to play an important role (Camargo et al.,
2021; Gao et al., 2019). Gregory et al. (2020) compared sub-
seasonal forecasts for the Southern Hemisphere among the

140

concluded that the superior performance of the ECMWF sys-
tem was due to a larger ensemble size, higher spatial resolution,
and an improved data assimilation scheme.

The MJO modulation of TC activity in these subseasonal
forecast models has also been examined (Lee et al., 2020;
Camargo et al., 2021). With the improvement of the MJO
representation in models (Vitart 2017), the MJO-TC relation-
ship is also simulated more realistically. Recently, Xiang et al.
(2022b) suggested that landfalling TCs near the U.S. coast can
be influenced by three localized atmospheric circulation modes
with significant subseasonal (10-30 day) variability that is
distinct from the MJO: (1) an anomalous low pressure center in
the eastern U.S.; (2) a zonal dipole pattern with a low pressure
centered in the western U.S. and a trough extending south-
eastward to the Gulf of Mexico; and (3) a meridional dipole
pattern with a low centered over the Caribbean Sea and a high
over central-eastern North America. There are more U.S.
landfall TCs during the positive phases of these modes. The
GFDL SPEAR model can simulate these landfall track
modulations.
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3.2. Model verification

Whereas the ECMWF model has the highest prediction skill
among the WMO S2S models (Lee et al., 2020, Fig. 5a), the
skill analysis is sensitive to what validation metrics are used as
well as how the forecast is defined. Results from Lee et al.
(2020) are based on the verification of probabilistic pre-
dictions of regional TC activity measured by the Brier Skill
Score (BSS). When verified against a total seasonal climato-
logical forecast (BSS,), reforecasts from ECMWF and Météo-
France/Center National de Recherche Météorologiques models
are skillful for most TC basins with lead times up to week 3 or
longer. The BoM model is skillful for Southern Hemisphere
TC basins. However, when validated versus weekly clima-
tology activity (BSS,,,), only the ECMWF model shows skill in
predicting TC occurrence anomalies beyond one week. In the
Southern Hemisphere, Gregory et al. (2020) showed that
ACCESS-S1 is skillful in predicting TC occurrence (not TC
anomalies) at up to 3 week lead times. Regional BSS is not
always consistent with basin-wide mean BSS values. The week
2 BSS for the ECMWEF system is shown in Fig. 5b.

In terms of TC ACE, the WMO S2S models have low
prediction skill when measured by the Ranked Probability
Skill Score (RPSS), which may be attributed to insufficient
horizontal grid resolution to simulate either the TC's core
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structure or the occurrence of the most intense TCs (Lee et al.,
2020; Camargo et al., 2021). Using the Heidke Skill Score
(HSS) in reference to a random forecast, Gao et al. (2019)
showed that the HIRAM model with a 8-km inner nested
domain was skillful in predicting basin-wide (not regional)
ACE associated with hurricanes and major hurricanes in the
North Atlantic.

Prediction skill of regional TC occurrence predictions can
be improved via post-processing calibrations such as removing
model mean biases (Camp et al., 2018; Gregory et al., 2020).
Lee et al. (2020) showed that while removing mean biases
works in some cases, it does not guarantee a positive impact
globally. To improve a probabilistic forecast skill (often
measured by BSS), one needs to increase the correlation be-
tween forecasts and observations and/or reduce the conditional
and unconditional biases. Removing the mean TC occurrence
biases reduces the unconditional bias to zero, but does not al-
ways guarantee a smaller conditional bias even in the training
data. Thus, Lee et al. (2020) suggested a linear regression
method (van den Dool et al., 2017) that removes the uncon-
ditional biases and minimizes the conditional biases. In addi-
tion, Gregory et al. (2020) showed that improved forecast skill
could be obtained by using multi-model ensemble prediction,
and including lag-averaged forecasts at t-12 h, t-24 h, etc. to
increase the number of ensemble members.
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Fig. 5. Brier Skill Score (BSS) of (a) regional TC occurrence predictions from six WMO S2S models, listed in the middle-row right and (b) global map of TC
occurrence from the ECMWF model. BSS, and BSS,;, indicate seasonal-total and weekly-varying climatology references. BSS jjinear is the BSS,,, for a bias-corrected
forecast with a linear-regression bias-correction scheme. The TC basins are as follows: Atlantic (ATL), northern Indian Ocean (NI), western North Pacific (WNP),
eastern North Pacific (ENP), southern Indian Ocean (SIN, 0°-90°E), Australia (AUS, 90°~160°E), and southern Pacific (SPC, east of 160°E) (from Lee et al., 2020).
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Several recent case studies with deterministic or ensemble
models have extended TC forecasts into the subseasonal TC
range. For example, the landfall of Cyclone Hilda (2017) in
northwestern Australia was predicted 2—3 weeks in advance by
the ACCESS-S1 model, and the multi-model ensemble with
the ACCESS-S1 and the ECMWF predicted cyclones Gebile
and Gita (2018) two weeks in advance (Gregory et al., 2020).
Domeisen et al. (2022) showed successful ECMWF ensemble
week 3 or 4 forecasts for TCs Belna (2019, southern Indian
Ocean), Claudia (2020, Australia), and Chan-Hom (2015,
western North Pacific), which Domeisen et al. (2022) attributed
to the occurrence of a strong MJO coinciding with the occur-
rence of these storms. This is consistent with findings from Lee
et al., which demonstrated that the WMO S2S models were
more skillful when the convectively-enhanced phase of the
MJO was active in that basin.

In addition to using direct TC forecasts from dynamic
models, Kolstad (2021) suggested the inclusion of large-scale
variables as predictors in a hybrid statistical-dynamical fore-
casting system could potentially extend the prediction time of
potential precursor, and thus allow early detection of possible
tropical cyclones. The hybrid model from Qian et al. (2020)
indeed had superior forecast skill for predicting basin-wide
tropical cyclone genesis count over the western-north Pacific,
compared to the dynamical model that provided input to the
hybrid model. Similarly, Maier-Gerber et al. (2021) demon-
strated that their hybrid model for subseasonal tropical cyclone
activity in the North Atlantic Main Development Region and
Gulf of Mexico had comparable skill to numerical weather
prediction systems.

Lee et al. (2020) had earlier demonstrated that the WMO
S2S models were more skillful when the convectively-
enhanced phase of the MJO was active in that basin. Howev-
er, the impact of the MJO on TC prediction skill varies by basin
and by model. Kolstad (2021) recently suggested the inclusion
of large-scale variables as predictors in a hybrid
statistical-dynamical forecasting system could potentially
extend the MJO subseasonal prediction time, and thus allow
early detection of possible tropical cyclones. To that end,
Maier-Gerber et al. (2021) showed that a hybrid model for
subseasonal TC activity in the North Atlantic Main Develop-
ment Region and Gulf of Mexico had comparable skill to nu-
merical weather prediction systems.

4. Operational subseasonal forecasts of tropical cyclones
4.1. NOAA products

The NOAA Climate Prediction Center (CPC) provides the
once-a-week Global Tropics Hazards (GTH) Outlook. An
important component of informing the operational CPC GTH
outlook is global TC identification and tracking utilizing S2S
model data for the Weeks 1-4 target forecast period. The CFS,
ECMWF, ECCC, and GEFSv12 operational ensemble model
systems are utilized as forecast guidance for the GTH, and
the TC activity is identified and tracked using the methods
outlined in Camargo and Zebiak (2002). The forecasts are
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bias-corrected using a false alarm climatology based on model
reforecasts and the National Hurricane Center (NHC) and the
Joint Typhoon Warning Center (JTWC) best track datasets
(Long et al., 2020). In addition to this model guidance, the
GTH TC outlook includes (i) the state of ENSO and the MJO;
(ii) coherent subseasonal tropical variability such as atmo-
spheric KW, ERW, and African easterly waves (AEW); and
(iii) interactions with the extratropical circulation (i.e., low-
latitude fronts, wave breaking).

The Symmetric Extreme Dependency Score (SEDS)—a
metric that focuses on relatively rare events—for TC tracks at
Weeks 1-3 is shown in Fig. 6 for the CFS and ECMWF
deterministic models, and for the GEFSv12 and the ECCC
ensemble prediction systems for their respective reforecast
periods. The contingency table for the SEDS calculations de-
fines a hit when a forecast TC track point comes within a 3°
box of a verifying TC track point within the same weekly in-
terval. For clarity and to show better results, only the North
Atlantic (ATL) and the eastern North Pacific (ENP) basins are
shown. Note that the ENP has better skill than the ATL for
both Week 2 and Week 3, and the ECMWF has the best scores
among the four models shown. Although forecast skill in Week
3 is lower than in Week 2, it is noteworthy that substantial
areas of skill have been found for Week 3, and especially with
all four models in the ENP basin.

4.2. ECMWF forecasts

ECMWEF has issued week 1-4 forecasts of TC activity for
each TC region since 2010 (Vitart et al., 2010). The TC fore-
cast products include: (1) the predicted number of tropical
storms/hurricanes or ACE over a TC basin for a weekly period
(calendar week 1-4); and (2) a TC strike probability map: the
probability of a tropical depression/storm/intense storm (hur-
ricane intensity) passing within 300 km (see example in Fig. 7).
Maps of TC strike probability anomaly relative to model
climatology are also available. These forecasts produced with
the ECMWF TC tracker (Vitart and Stockdale, 2001) are is-
sued twice a week and are now publicly available. Tropical
cyclone tracks predicted by the ECMWF ensemble model
during the 46-day integrations are available from the S2S
database, but with a 3-week delay (more information at www.
s2sprediction.net). The forecast skill of these forecasts has been
evaluated in Camargo et al. (2021) for the North Atlantic and
by Lee et al. (2020) for the entire globe. It is planned in mid
2023 to increase the frequency of these forecasts from twice
weekly to daily and to increase the ensemble size from 51 to
101 ensemble members. The objective is to provide more
frequent updates and more accurate probabilistic distribution
functions of TC activity.

The Elsberry et al. (2022) TC high-wind lifecycle guidance
product based on the ECMWF ensemble (ECEPS) could
improve decision-making related to ENP TCs compared to
presently available probabilistic genesis or TC activity prod-
ucts. This technique provides time-to-formation (T2F) and
time-to-hurricane (T2H) to the nearest 6-h synoptic time and
at a position along generally highly accurate ECEPS track
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forecasts of up to 15 days in length. In addition, the technique
provides the ending time as a hurricane (TEHU) and ending
time as a tropical storm (TETS) along that up to the 15-day
ECEPS track forecast. For the first six hurricanes of the 2021
ENP season, the first detections in the ECEPS were 8—12 days
in advance of the T2F, and 9-13 days in advance of the T2H.

(a) ENDING-HURRICANE LINDA TRACK

Tropical Cyclone Research and Review 12 (2023) 136—150

A summary diagram is provided in Fig. 8 for both the pre-
formation and the ending of Hurricane Linda's track forecasts
(panel b and panel a, respectively) and the timing errors for
these two variables (panels ¢ and d, respectively). Whereas the
first NHC advisory forecast of pre-TS Linda was only 12 h
before the T2F in panel b, 19 ECEPS forecasts at 12-h intervals

(b) PRE-HURRICANE LINDA TRACK
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were available prior to that T2F. Although there is substantial
track spread due to the variations in the initial positions, the
cross-track spread among these ECEPS forecasts that included
both a TEHU and a TETS, the track spread was reasonable
considering that these forecasts started as early as 14 days
before the TEHU (panel b). The very small timing errors for the
T2F and the T2H along these pre-T2F tracks in panel (b) are
presented in panel (c), and the generally small timing errors in
TEHU and TETS timing errors are presented in panel (d). This
15-day TC high-wind guidance product in the ENP was in
operational testing during the 2022 season and could be
extended longer in the subseasonal timeframe in the future if
ECEPS forecasts are extended.

4.3. Australian Bureau of meteorology forecasts

The Bureau of Meteorology (BoM) makes available multi-
week TC strike probability forecasts for use by National
Meteorological Services and the public (see http:/www.bom.
gov.au/climate/pacific/outlooks/). Operational forecasts are
currently available for the South Pacific for weeks 2 and 3, and
the WNP for weeks 2, 3 and 4. Forecasts are updated daily
during a region's TC season, and a 2-week archive is also made
available. Three products are provided: (i) raw model proba-
bilities of TC occurrence; (ii) calibrated probabilities
(following Camp et al., 2018) and (iii) calibrated probabilities
relative to observed climatology.

Multi-week forecasts are produced using output from the
ACCESS-S model, which is based on the UKMO GloSea5
(MacLachlan et al., 2015). Version 1 of this system (AC-
CESS-S1; Hudson et al., 2017) was operational during the
period April 2018-September 2021. This model showed
impressive skill for predictions of the MJO out to a lead time
of ~30 days. These forecasts also showed skill over clima-
tology for forecasts of TC occurrence over the Southern
Hemisphere for lead time weeks 1-5, when a spatial and
temporal calibration was applied (Camp et al., 2018). As
indicated in section 3.2, ACCESS-S1 provided useful guid-
ance for the development of severe TCs, including Cyclone
Gita in the South Pacific and Cyclone Hilda off of the west
coast of Australia, at more than two weeks lead time (Gregory
et al., 2019). Applying a wind speed threshold to the model
TCs also helped to reduce false alarm rates and improve
forecast skill early on in the forecast period (Gregory et al.,
2019).

In 2020/21 ACCESS-S1 provided good guidance for se-
vere TC Seroja, which became the strongest TC to make
landfall in southern Western Australia since 1956 (WMO,
2021). This cyclone presented a major challenge for fore-
casters due to its Fujiwhara interaction with TC Odette from
April 7-9. A tropical low that failed to intensify was also in
the region, moving south-east across the Cocos Islands from
April 6-11. The uncertainty of the forecast was evident by the
large spatial ensemble spread, and the associated low strike
probabilities. Forecasts of the probability of TC occurrence
for TC Seroja are shown for ACCESS-S1 for lead time weeks
2 and 3 in Fig. 9.
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Following the successful trials for the Southern Hemisphere,
research was extended to the WNP basin, and skill was found
over climatology for calibrated forecasts of TC occurrence out to
week 4 (BoM, 2020). Skill of real-time forecasts using a lagged
ensemble of 2-3 days was found to provide increased skill for
both the WNP and Southern Hemisphere for the trial 2017/18
and 2018/19 TC seasons (BoM, 2020). Finally, combining
forecasts from the ECMWF's Medium- and Extended-Range
Ensemble Integrated Forecasting System (IFS) and ACCESS-
S1 to create a multi-model ensemble showed superior skill to
the component models during the 2017/18 and 2018/19 TC
seasons (Gregory et al., 2020).

In October 2021 the BoM operational system was upgraded
to ACCESS-S2 (Wedd et al., 2022). This system retains the
skill of the MJO out to ~30 days and shows skill over clima-
tology for multi-week forecasts of TC frequency over the
Southern Hemisphere, western and eastern North Pacific, and
North Atlantic out to week 5. However, the skill over clima-
tology in the North Indian Ocean was only to week 2 (Camp
et al. 2023a; 2023b).

4.4. Colorado State University forecasts

Colorado State University (CSU) has been operationally
issuing two-week Atlantic basin ACE forecasts since 2009.
These forecasts are issued six times during August—October.
Each forecast is for the probability of above-normal, normal, or
below-normal ACE terciles for the North Atlantic. These pre-
dictions are based on both statistical and dynamical models and
consider several different factors: (1) National Hurricane
Center (NHC) current and forecast North Atlantic activity; (2)
NHC Tropical Weather Outlooks; (3) Global model forecasts
of North Atlantic TC development; (4) Current and projected
state of the MJO; (5) Global model forecasts of key atmo-
spheric circulation patterns; and (6) the current TC numbers
relative to the CSU Atlantic seasonal hurricane forecast.

For the sample of 78 two-week Atlantic TC forecasts since
2009, 64% have verified in the correct tercile, 28% missed by
only one tercile, and 8% missed by two terciles. In general,
these forecasts have shown improved skill in recent years, with
only one two tercile miss (e.g., forecast bust) since 2013.

4.5. Joint Typhoon Warning Center

In 2018, JTWC began providing graphical two-week TC
Formation Outlooks that depict geographic areas (boxes),
timeframes, and forecaster-designated TC formation probabil-
ities in the Indian, WNP, and South Pacific basins. JTWC will
continue to generate and distribute these outlooks at least twice
daily while exploring the viability of longer period forecasts.
For example, the JTWC and the 14th Weather Squadron (14
WS) Climate Monitoring, Analysis and Prediction teams have
conducted weekly collaboration calls to coordinate 14 WS
Week 3 TC formation outlooks for the JTWC forecast basins.
Although JTWC has no near-term plans to extend its two-week
TC formation outlook to the week 3 period, the collaboration
has infused new tools and perspectives from 14 WS


http://www.bom.gov.au/climate/pacific/outlooks/
http://www.bom.gov.au/climate/pacific/outlooks/

C.J. Schreck III, F. Vitart, S.J. Camargo et al.

Tropical Cyclone Research and Review 12 (2023) 136—150

ACCESS-S1: Forecast tropical storm activity (existing and forming storms) in Australian Region
Initialised date 20210323: Valid between 20210407 - 20210413. Lead time: 21 days

S

A)

>
74BN
A S
N
10S S\
%
20S
A
30s —— SEROJA
-—- ODETTE
----- INVEST
40S
80E 100E 120E 140E 160E

Initialised date 20210330: Valid between 20210407 - 20210413. Lead time: 14 days

S

A)

[SY=N \
0 <« \\
iy
10S X
l{
205
AN
305 —— SEROJA
—-—- ODETTE
----- INVEST
405
80E 100E 120E 140E 160E
, l . T
005 010 020 030 040 050 060 070 0.80 090 1.00

Probability that storm will pass within 300km

Fig. 9. Probability of a TC passing within a 300 km radius for ACCESS-S1 forecasts valid in a) week 3 (initialized March 23, 2021) and b) week 2 (initialized March
30, 2021) for the period 7-13 April 2021. Corresponding observed tracks for TC Seroja, TC Odette and an invest area are overlain in black. Observed TC tracks are
from the US Navy's Joint Typhoon Warning Center (JTWC; Chu et al., 2002). TC Seroja made landfall on April 11, 2021.

climatology experts into the existing JTWC extended-range
forecasting process.

The JTWC development efforts also benefit from extensive
collaboration with the NOAA CPC and U.S. Department of
Defense (DOD) partner organizations. For example, the 16th
Weather Squadron (16 WS) numerical modeling team devel-
oped a suite of TC prediction guidance for DOD forecasters.
Included in the new 16 WS guidance is a multi-model
ensemble forecast of large-scale probability of wind speed
exceedance that effectively highlights geographic areas and
timeframes in which TC formation may occur.

4.6. U.S. Naval Research laboratory
Hansen et al. (2022) examined whether nonlinear MJO/

ENSO influences and the subseasonal vertical shear pattern
impacts on North Atlantic ACE can be used to improve

subseasonal predictions. Hansen et al. (2022) built a statistical-
dynamical hybrid model using Navy-Earth System Prediction
Capability (ESPC; Barton et al., 2020) reforecasts as part of the
SubX project (Pegion et al., 2019). Persistence reforecasts of
Nifo 3.4 SSTs and MDR SSTs, and Navy-ESPC reforecasts of
the first two principal components (PCs) of the MJO, were used
as predictors for the basic model. Two shear index predictors
evaluated from Navy-ESPC reforecasts were added in one
option, and a second option was substituting a nonlinear MJO/
ENSO predictor in place of the MJO PCs and Nifio 3.4 SST
predictors. These predictors were fed into a logistic regression
model, which adds and removes predictors to assess the skill
contribution from each predictor. North Atlantic SSTs and the
MJO were found to be the most important factors contributing
to subseasonal North Atlantic TC activity (Fig. 10). The shear
pattern improved forecast skill at 5-10 day lead times before
forecast shear errors became too large. Nonlinear MJO/ENSO
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interactions did not improve skill compared to separate linear
considerations of these factors, but did improve the reliability
of predictions for high-probability active TC periods.

4.7. Private sector forecasts

It is well known that a TC strike across an economic point
of interest will drive a chain of reactions across the global
markets. These market reactions vary depending on the in-
tensity of the TC, the risk of inundation, and even the amount
of rainfall. Understanding these risks at longer lead times is
always desired, which will require improved numerical weather
prediction (NWP) model forecasts of TCs at these long lead
times. At subseasonal forecast leads (i.e., forecast weeks 3+),
private sector companies often rely on a combination of NWP
forecasts and tropical wave-based statistical forecasts of TC
activity. While there have been incremental advances in NWP
forecasts beyond 10 days, the prediction of TC impacts is still
not reliable. This unreliability has resulted in little to no ad-
vancements in subseasonal outlooks of TC impacts across the
private sector.

In recent years, there has been more desire to utilize the full
distribution of an NWP ensemble suite. As the private sector
industry gains knowledge about medium-range to subseasonal
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predictions of TCs, the community is shifting away from
deterministic NWP forecasts and toward probabilistic forecasts.
Questions often asked by decision makers are, “What is the
range of outcomes that could happen?” or “What is the prob-
ability of wind speeds greater than 100 mph across this specific
location?” As agencies continue to increase the number of
ensemble members in their forecast models and improve the
forecast skill beyond 7+ days, more private sector groups rely
on ensemble probabilistic guidance to hedge risk in whatever
TC decision they must make.

5. Summary and conclusions

Progress has been made by the scientific community over
the last four years to better understand the sources of predict-
ability and the modulation of TC activity at subseasonal
timescales. In particular, several recent publications have
evaluated the impact of the BSISO on TC activity over the
WNP. There has also been significant progress in the under-
standing of the impact of extratropical wave breaking on
tropical storm development.

The availability of large datasets of subseasonal forecasts
(S2S and SubX) has been an opportunity to better understand
the capability of S2S models to simulate and predict the
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subseasonal variability of TCs. Guided by the observational
studies, the model diagnostics and comparisons have focused
on predicting the MJO and its modulation of TC activity. Most
S2S models have difficulties predicting subseasonal TC ac-
tivity beyond a seasonal varying climatology, although the skill
can be improved by post-process calibration.

The improving availability and skill of subseasonal
dynamical models has led to a surge in the number of opera-
tional subseasonal forecasts of TCs over the past four years.
These forecasts are produced by both dynamical models and
statistical methods. Given the increasing skill of these forecasts
and the ever-present demand for them, we are very optimistic
that these improvements will continue in the coming years.
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Appendix A. Acronyms:

AEW African Easterly Wave
ABY ACE by Year
ACCESS-S Australian Community Climate Earth-System

Simulator—Seasonal
ACCESS-GE2 Australian Community Climate Earth-System
Simulator—Global Ensemble version 2

ACE Accumulated Cyclone Energy

ATL Atlantic

AUS Australia

BoB Bay of Bengal

BoM Australian Bureau of Meteorology

BSISO Boreal Summer Intraseasonal Oscillation

BSS Brier Skill Score

CAM6 Community Atmospheric Model version 6

CESM2 Community Earth System Model version 2

CFS Climate Forecast System

CMA China Meteorological Agency

CNR-ISAC Institute for Atmospheric Sciences and
Climate, Italy

CNRM National Center for Meteorological Research,
Meétéo-France

CPC Climate Prediction Center

CSuU Colorado State University

DOD Department of Defense

ECCC Environment and Climate Change Canada

ECEPS ECMWF Ensemble Prediction System

ECMWF European Center for Medium-range Weather
Forecasts

ENP Eastern North Pacific

ENSO

ERW

ESPC
GEFSv12
GEOS-S52S-2

GFDL
GloSea5
GMAO
GPI

GTH
HiRAM
HMCR
HSS

IFS
JAMSTEC

IMA
JTWC
KMA
KW
MDR
MetFr
MJO
MRG
MRGTD

NAO
NCEP
NHC
NI
NOAA

NWP
OMI
PC
QBWO
RH
RPSS
RWB
S2S
SEDS
SIN
SPC
SPEAR

SST
SubX
T2F
T2H
TDF
TC
TEHU
TETS
TS
TUTT
UKMO
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El Nifio—Southern Oscillation

Equatorial Rossby Waves

Earth System Prediction Capability

Global Ensemble Forecast System version 12
Goddard Earth Observing System Subseasonal-
to-Seasonal Prediction System v2
Geophysical Fluid Dynamics Laboratory
Global Seasonal forecast system

Global Modeling and Assimilation Office
Genesis Potential Index

Global Tropical Hazards and Benefits Outlook
High Resolution Atmospheric Model
Hydro-Meteorological Center of Russia
Heidke Skill Score

Integrated Forecasting System.

Japan Agency for Marine-Earth Science and
Technology

Japan Meteorological Agency

Joint Typhoon Warning Center

Korea Meteorological Agency

Kelvin Waves

Main Development Region

Météo-France

Madden—Julian Oscillation

Mixed Rossby—Gravity Waves

Mixed Rossby—Gravity Waves and Tropical
Depressions

North Atlantic Oscillation

National Centers for Environmental Prediction
National Hurricane Center

North Indian Ocean

National Oceanic and Atmospheric
Administration

Numerical Weather Prediction

OLR-only MJO Index

Principal Component

Quasi Bi-weekly Oscillation

Relative Humidity

Ranked Probability Skill Score

Rossby Wave Breaking
Subseasonal-to-seasonal

Symmetric Extreme Dependency Score
South Indian Ocean

Southern Pacific Ocean

Seamless System for Prediction and Earth Sys-
tem Research

Sea Surface Temperature

Subseasonal Experiment

Time-to-Formation

Time-to-Hurricane

Track Density Function

Tropical Cyclone

Time to Ending Hurricane

Time to Ending Tropical Storm

Tropical Storm

Tropical Upper Tropospheric Trough

U.K. Met Office
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WACCM6  Whole Atmosphere Community Climate Model
version 6

WMO World Meteorological Organization

WNP Western North Pacific

WS Weather Squadron
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