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ABSTRACT

Precise estimation of Origin-Destination (OD) flow in signalized arterials is essential for efficient operation
of coordinated traffic signal systems. While earlier studies have demonstrated sufficient estimation accu-
racy, it is crucial to consider the variations in accuracy across different OD pairs to avoid potential spatial
fairness issues. Especially those based on Connected Vehicle (CV) trajectories may lead to unsatisfactory
signal operation in underserved communities. To address this concern, a Fairness-Aware Artificial Intelli-
gence framework is proposed, leveraging partially observed CV trajectories. The proposed model focuses
on improving spatial fairness by balancing estimation accuracies across different OD pairs. It achieves this
by incorporating a state-of-the-art adaptive weighting technique within a deep-neural-network-based self-
supervised learning approach. The performance of the model was evaluated on a simulated real-world ar-
terial corridor. The results were compared with a benchmark model that scales up the CV OD matrix with
the global CV market penetration rate and an ordinary self-supervised-learning model without fairness con-
siderations. The findings demonstrated that the proposed model effectively addresses spatial fairness con-
cerns by reducing the disparities in estimation accuracy among OD pairs. Notably, the proposed model
achieved comparable overall estimation accuracy to the ordinary self-supervised-learning model while sur-
passing the benchmark model, which can yield "equally unsatisfactory" estimations. Furthermore, the pro-
posed model showed potential benefits for underserved communities where CV penetration rates might be
relatively low. However, it is important to acknowledge the trade-off between overall estimation accuracy
and spatial fairness when the base estimation model remains unchanged.

Keywords: Fairness, Origin-Destination Flow Estimation, Signalized Arterial, Artificial Intelligence
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INTRODUCTION

A precise estimation of Origin-Destination (OD) flow in signalized arterials is crucial to ensure
optimal traffic operational efficiency. For instance, coordinated arterial traffic signal control systems(/—3)
designed to alleviate congestion heavily rely on accurate spatial-temporal-dependent OD flow along the
arterial corridor as their input. Studies have been conducted to estimate the OD flow along the arterial
corridor. Traditionally, arterial OD flow estimations are primarily based on traffic counts. Lou and Yin(4)
developed a decomposition framework to estimate dynamic OD flow for signalized arterials from link
counts. Yang and Chang(5) proposed three estimation models based on link counts, intersection turning
movements, and the combination of intersection turning movements and queue lengths, respectively. More
recent studies have leveraged vehicle trajectories to estimate the OD flow(6). Yang et al.(7) developed two
models using GPS locations of probe vehicles, where the first model corrects the scaled probe vehicle OD
flow with link counts, and the second model extends the first one by incorporating observed link probe
ratios. Due to the challenges in acquiring the ground truth historical OD flows, Wang et al.(8) proposed a
self-supervised learning approach to estimate OD flows using the trajectories from connected vehicles (CVs)
without the ground truth, given that the market penetration rate of CVs is low.

However, while trajectory-based approaches have shown sufficient estimation accuracy for traffic
signal control systems, they often overlook variations in accuracy across different OD pairs. This lack of
attention to spatial fairness may lead to potential issues. For instance, communities with limited resources
might have lower adoption rates of expensive connectivity technologies in their vehicles due to financial
constraints. Consequently, lower market penetration rates of connected vehicles (CVs) in such areas can
lead to compromised estimation accuracy(8). Unsatisfactory OD flow estimations could then negatively
impact the efficiency of traffic signal systems at intersections within these underserved communities, re-
sulting in less efficient traffic operations.

To address these potential fairness concerns, it is crucial to explicitly consider fairness during the
model development process. Fortunately, recent advances in artificial intelligence (Al) research have intro-
duced fairness-aware AlI(9), providing a feasible approach to tackle these issues. Therefore, this study pro-
poses a framework based on fairness-aware Al to ensure the spatial fairness of arterial OD estimation. The
OD estimation framework relies on partially observed trajectory data from CVs and employs a fair machine
learning model that explicitly balances overall estimation accuracy and performance distribution across
different OD pairs. By doing so, this framework aims to achieve accurate and spatially equitable OD flow
estimation for signalized arterials, potentially benefiting all communities.

METHODS
Problem Statement

Consider an arterial corridor denoted as C = (N, L) (refer to Figure 1), where N represents the
nodes that can be either intersections along the arterials (depicted as red nodes) or points where the vehicles
enter to (origins) and exit from (destinations) the intersections (depicted as blue nodes), and L denotes the
links connect two adjacent nodes in the corridor. A set of OD pairs are defined as [ = {1, 2, ..., i}. The
analysis period, T, is divided into k uniform intervals, and the set of time intervals is represented as K =
{1,2, ..., k}. The traffic pattern of the corridor C during the analysis period T can by represented by an OD
matrix, M, as follows:

1 2 k

X1 X1 X1

1 2 .. k
M=|*2 Yz % (1)

1 2 k

Xi Xi Xi

where x[ denotes the count of vehicles traveling along the OD pair i during the time interval k.
Assume that two types of vehicles, regular vehicles (RVs) and CVs, are traveling along the corridor.
The numbers of the CVs traveling along the OD pairs, represented as the CV OD matrix M, can be obtained
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as they continuously broadcast their locations in real-time. However, it is worth noting that the market
penetration rate of CVs, which indicates the proportion of CVs among all types of vehicles, remains low.
On the other hand, the numbers of RVs are unknown, resulting in an unknown RV OD matrix, denoted as
Mp.

M= M.+ M, )

Then the problem can be formulated as estimating the OD matrix, M, using the known CV OD
matrix M, through a function denoted as f.

M=fM) 3)

@ Y ]
Figure 1 A Simplified Roadway Corridor (Adopted from (8))

Self-Supervised Learning without Ground Truth

In this study, a self-supervised machine learning (SSML) model (8) developed earlier by the authors
is utilized to estimate the OD matrix M. The ML model is employed to learn the function f as defined in
(3). Conventional supervised ML models learn the function f by minimizing the divergence, represented
as the loss L(M, M), between the ground truth M and the M = f, (M,) estimated by fp with a parameter
set :

minL(M, fo (Mc) ) )

In this specific OD estimation problem, an L2 loss is adopted, which is defined as follows:

L =lIfo (M) — MI? ®)

However, in this problem, the ground truth M is inaccessible due to the unknow number of RVs.
Consequently, conventional supervised ML methods cannot be directly applied as the loss cannot be ob-
tained. To address this, a self-supervised ML approach is adopted. Assume that a reasonably accurate esti-
mate of the global market penetration rate of CVs, denoted as S, is known (e.g., 25%). Based on this as-
sumption, a naive yet flawed estimate, denoted as M, of the OD matrix M, and the flaw, denoted as b, in
the estimation can be expressed as:

M, = o< (6)
B
My =M+b (7

Given that f is a known and reasonably accurate estimate of the global penetration rate, it is also
reasonable to assume that that the bias has a zero mean, i.e., E(b) = 0. Then,
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E(My;))=M ()

Equation (8) implies that when multiple biased matrices, derived from the same true matrix but
with different biases, are obtained, averaging these biased matrices will converge to the true matrix.

A J-invariant function (/0) can be defined as:
Definition. Let J be a partition of the dimensions {1, 2, ..., m}, where m is the dimension of the matrices
M,M, € R™ Let] € J. A function f:R™ — R™ is considered J-invariant if f (M}); does not depend on
the value of x;, where f(My); and x; denote f (My,) and x, which is an element of M, restricted to ]. The
function is J-invariant if it is J-invariant for each | € J.

Then, the self-supervised loss can be proposed over a J-invariant function f as follows:

Ly = E|lf (Mp) — Mpl|? ©

Proposition. Suppose E(My,) = M, and the flaw in each ] € [J is independent of the flaw in its complement
J¢, condition on M. Let f be J-invariant. Then

Ellf(Mp) — MplI? = Ellf (Mp) — MII* + EIIM), — M||? (10)

Equation (10) shows that the self-supervised loss is the summation of the conventional supervised
loss and the variance of the flaw. Consequently, when f is J-invariant, minimizing the self-supervised loss
indirectly minimizes the supervised loss. The detailed proof of the proposition can be found in the authors’
earlier work (8).

According to the Definition, if f is J-invariant, it implies that f(M}),; does not depend on the
value of x;. Intuitively, J-invariant means that f only uses /° to estimate x;. In other words, J-invariant

functions can be seen as a set of functions f: R/ » R/. Based on this insight, a masking scheme is pro-
posed to create a blind spot, where f is employed to estimate the values of the blind spot. In general, let
gp be the conventional estimator with a parameter set 6, h (M},) be the function replacing x;. Then a J-
invariant function f can be defined as follows:

fo(M) = go (1; - h (Mp) + 1yc - M), (11)

for each J € J. 1; and 1jc are the indicator functions. The element-wise multiplication of 1; with the
h (M},) will mask the blind spot, and the element-wise multiplication of 1;c retain the other elements out-
side the blind spot.

In this study, an interpolation mask was utilized, which estimates the value of an element by com-
puting a local average of its neighboring elements from a r X r window that does not include the element
itself. This approach ensures that no information from the element is leaked, thereby maintaining J-invar-
iant property of the function.

Adaptative Weighting

Conventional ML models solely focus on minimizing the loss, as demonstrated in the equation (4).
Since ML models are not flawless, in most cases, the optimal loss is not zero. Consequently, even after
training, errors may persist between the estimated OD matrix M and the ground truth M. However, conven-
tional ML methods do not account for the distribution of the loss. In other words, in this problem, the ML's
performance in terms of estimation accuracy may vary across different OD pairs. This discrepancy in ac-
curacy could potentially lead to fairness issues, as mentioned earlier.

This study adopts a modified and simplified version of the adaptive weighting method originally
proposed by Chai and Wang (/7). The goal is to balance the estimation accuracy across different OD pairs
by adaptively assigning different weights to each x{‘ in the matrix M;. Essentially, a larger weight Wik ew
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is assigned to the x¥ associated with larger loss values. By doing so, the estimator can focus more on the
OD pairs with less satisfactory estimations or higher error probabilities.

During the training process, the weight matrix W is continuedly changing to ensure that it adapts
to the changing loss.

The problem of loss-based weighting can be formulated as follows:

max Z wkLy, (xF)
w
wkew (12)
sst. Wil=m, wkF=0
where m = ik.

Intuitively, the solution to problem (12) is assigning a non-zero weight only to the x the with the
largest loss!, while setting zero weights for all others. However, this approach might exacerbate fairness
issues by only correcting the problem for a single x{‘. To address this issue, a regularization term is intro-
duced, and the optimization is modified as follows:

max Z wfLy(xF) — allWII3
whew (13)

sst. Wil=m, wF=0
By adjusting the value of a, the number of non-zero weights assigned can be controlled. As a ap-
proaches infinity, the significance of the first term diminishes, and all weights become equal to 1.
Without any loss of generality, assume that the losses [j, [, € Ly are sorted in descending order

such that [; = 1,,,Vj > p. The optimal solution W* to the problem (13) can be derived as follows

li—2
2a

Wj* = max(

,0>,j =12, ..m (14)

!
> l,—2am . . ’ ’
where 4 = ==————, and m' is determined by Y7L, [, —m'lyyq > 2am > YL L, —m'l,. When

Z}”;l l, —2am < 0,vm’,m’ = m and 4 < 0. The solution (14) is obtained using the method of Lagrange
multipliers, and the detailed proof is omitted for simplicity.

Deep Neural Network

A deep neural network is employed as the base ML model for the self-supervised learning frame-
work with adaptive reweighing. The neural network model comprises a Long Short-Term Memory (LSTM)
component(/2) and the attention mechanism(/3). LSTM is commonly used in time-dependent traffic stud-
ies(/4-16). It is used to capture the temporal features of OD flows at a higher level. Moreover, the attention
mechanism is widely utilized in traffic studies (/7, /8) to enhance estimation performance by dynamically
exploring the most relevant temporal and spatial correlations. In this study, a multi-head attention mecha-
nism is implemented to capture both spatial and temporal correlations in the OD matrix. The structure of
the customized deep neural network used in this study is illustrated in Figure 2. Additionally, the dropout
technique is applied to the dense layers to further improve the performance.

! Non-zero-equal weights are assigned in case of ties. However, such situations are rare.

6
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Figure 2 The Structure of the Customized Deep Neural Network

The Fair Self-Supervised Learning
The pseudocode below summarizes the proposed fair self-supervised learning algorithm:

Algorithm Fair Self-Supervised Learning
Input: weight regulation rate a, learning rate A, number of training epochs N
Initialization: set w = 1,V
for epoch=1to N do
1. Obtain the self-supervised loss L, by applying estimator fg(M},)
2. Update W by solving (13):

max Z wkL,(xF) — allW||3
wll‘EW

sst. Wli=m, wk=0

3. Updated 8 by the weighted self-supervised loss WL, using Adam (/9)
end for
return fy

EXPERIMENT
Design and Implementation

Due to the challenges in obtaining ground truth OD flows from real-world field data, we conducted
evaluations using a simulated arterial corridor that represents a segment of Redwood Road in Salt Lake
City, Utah. The layout of this corridor is depicted in Figure 3. The simulations were performed using the
PTV VISSIM platform. To calibrate the simulation scenarios, we utilized field turning movement count
data collected from the Automated Traffic Signal Performance Measures (ATSPM) system. Specifically,
the ATSPM system collects turning movement counts at the stop-bar using Wavetronix SmaterSensor Ma-
trix detectors.

A total of 1,000 simulation replications were conducted, each with different random seeds. Out of
these replications, 900 were used for training purposes, while the remaining 100 were reserved for testing.
Each replication had a duration of 3 hours? to ensure that at least one connected vehicle (CV) traveled
through each OD pair. The trajectories of all simulated vehicles were collected to calculate the ten-minute
traffic flow for each OD pair. During the self-training process, the CV flow served as the input, and the CV
OD matrix was directly scaled up by the global market penetration rate, serving as the "ground truth" for

2 Without warm-up.
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the estimation. However, during the testing stage, the total CV flow was utilized as the ground truth for
performance evaluation. The penetration rate of CV is set to be 25%.

Redwood Rd
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Figure 3 The Layout of the Study Site

The comparison involves three different models: 1) the benchmark model, which estimates the OD
matrix by simply scaling up the CV OD matrix with the global CV market penetration rate; 2) the ordinary
self-supervised learning model (SSL) that does not consider fairness; 3) and the proposed fair self-super-
vised learning model (FSSL). It's worth noting that the structures of the base deep neural network are the
same between SSL and FSSL (refer to Figure 2). The remaining hyperparameters related to the training
process can be found in Table 1. The only differing hyperparameter is the learning rate, as the introduction
of adaptive weighting significantly alters the learning process.

TABLE 1 List of Training Hyperparameters

Name SSL | FSSL
Number of Training Epochs 3,000

Dropout Rate 0.5

Batch Size 10

Learning Rate 0.001 0.005
Weight Regulation Rate N/A 0.5

Two metrics, namely mean absolute percentage error (MAPE) and Gini Index (G), are employed
to evaluate the performance of the aforementioned three models in terms of estimation accuracy and fair-
ness, respectively. The MAPE measures the relative error and can be defined as follows:

N

1O — %
MAPE = —Z |—|
N ¢ X

i=1

(14)

where x; and X, represent the ground-truth and the estimated OD flow, respectively; and N is the total num-
ber of OD pairs.

The Gini Index (20) is a measure of statistical dispersion used to represent inequality. Originally,
it was designed to measure income inequality or wealth inequality within a nation. The GI can be defined
as follows:

(i Z?I=1|Yi - il

G= 2N2y

(15)




ONOOUL D WN -

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Gong, Wang, and Yang

where y; and y; are observed values, y is the mean, and N is number of values. A lower G indicates higher
equality, meaning that values are more evenly distributed. A G of 0 represents perfect equality, where all
values are identical. On the other hand, a G of 1 reflects maximal inequality among values, where one value
dominates all others. In this study, since the aim is to ensure fair estimation among the OD pairs, y denotes
the average estimation accuracy represented by the MAPE of a specific OD pair across different time in-
tervals.

The experiments were implemented using the Python programming language. Specifically, the
deep learning model was developed using TensorFlow(2/) and the optimization problem of adaptive
weights was solved using CVXPY(22).

Results

Table 2 presents the performance of the models in terms of MAPE and Gini Index. In regard to
overall estimation accuracy, both the SSL and FSSL models exhibit improvements compared to the bench-
mark model. The SSL model shows a MAPE improvement of 21.41%, while the FSSL model shows a
slightly lower improvement of 18.65%. Nevertheless, the overall estimation accuracy of the FSSL model
remains comparable to other trajectory-based OD estimation methods(3, 6, 7). Regarding spatial fairness,
the benchmark model demonstrates a satisfactory distribution of estimation accuracy across different OD
pairs, as indicated by its Gini Index. However, the SSL model raises some potential spatial fairness con-
cerns, with its Gini Index being 52.56% higher than that of the benchmark model. The FSSL model ad-
dresses fairness concerns to some extent, showing a 15.13% improvement in Gini Index over the SSL
model. Nevertheless, the Gini Index of the FSSL model still remains higher than that of the benchmark
model.

TABLE 2 Summary of the Performance

Model MAPE Gini Index
Benchmark 40.718 0.078

SSL 32.001 (21.41%) 0.119 (-52.56%)
FSSL 33.123 (18.65%) 0.101 (-29.49%)
FSSL Improvement MAPE -3.51%

Over SSL Gini Index 15.13%

To gain a comprehensive understanding of the spatial fairness of the three models, the distribution
of estimation accuracy across the OD pairs is illustrated in the violin plot depicted in Figure 4. The bench-
mark model exhibits a significantly smaller range of estimation errors compared to both ML models. How-
ever, this seemingly promising spatial fairness comes at the cost of systematically larger errors, as evi-
denced by its maximum, minimum, and median MAPESs. In other words, the benchmark model generates
estimations that are "equally unsatisfactory” across all OD pairs. Conversely, the SSL model achieves more
satisfactory estimations for certain OD pairs, as indicated by its minimum and median MAPEs. However,
the wide upper tile suggests that it can also lead to some extremely unsatisfactory estimations, even when
compared with the benchmark model. One of the major contributions of the FSSL model is narrowing this
upper tile, thereby reducing the number of extremely unsatisfactory estimations. Furthermore, although the
medians of MAPEs for the SSL and FSSL models are nearly the same, the FSSL model exhibits a wider
central region, indicating a more balanced and equally accurate estimation across the OD pairs. Neverthe-
less, it is important to note that the minimum MAPE for the FSSL model is higher compared to the SSL
model, indicating a trade-off between overall estimation accuracy and fairness when using the exact base
estimation model.
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Figure 4 The Distribution of MAPE of the Three Models

To provide further insight into the performances of the models under different circumstances, snap-
shots of the model estimations were obtained. Figure 4 displays the flow estimations of all 72 OD pairs at
specific ten-minute intervals from the first testing replication. The top plot illustrates the estimated OD
flows when the machine learning models' performance is satisfactory (k = 6), while the bottom plot shows
the less satisfactory scenario (k = 0). In general, both models are capable of capturing the variations of
flows across different OD pairs to some degree. However, the estimation of the FSSL model appears to be
more conservative and less adaptive to variations across the OD pairs. This leads to an interesting observa-
tion that the estimations of FSSL are less likely to be impacted by the CV penetration rates. On one hand,
when the CV penetration rates are sufficiently high for specific OD pairs (e.g., OD pairs 1 to 6 and OD
pairs 65 to 72), meaning that the total OD flow can be well estimated or even overestimated by input CV
flows, the performance of FSSL may be less satisfactory due to its conservative nature. On the other hand,
when the CV penetration rates are too low to accurately reflect the total OD flows (e.g., OD pairs 28 to 32
and OD pairs 42 to 46), a conservative estimator is less likely to be dominated by flawed input CV OD
flows. In other words, the conservative nature of the FSSL model has potentials to benefit underserved
communities, where the CV penetration rate is relatively low.

In summary, the proposed FSSL method effectively improves spatial fairness by balancing estima-
tion accuracies across different OD pairs. It achieves similar overall estimation accuracy compared to the
ordinary SSL model without fairness considerations, while avoiding the "equally unsatisfactory" outcomes
observed in the benchmark model. Furthermore, the FSSL model demonstrates potential benefits for un-
derserved communities with relatively low CV penetration rates. However, it is important to acknowledge
that there might be a trade-off between estimation accuracy and fairness when the base estimation model
remains unchanged. Overall, the FSSL method represents a valuable step towards more equitable and effi-
cient traffic flow estimation in signalized arterials.

10
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Figure 5 Flow Estimations of All OD Pairs During a Specific Time Interval (Top: Best Performed,

Bottom: Worst Performed)

CONCLUSIONS

Precise estimation of OD flow in signalized arterials is essential for optimizing traffic operational
efficiency. While trajectory-based approaches have demonstrated sufficient accuracy for traffic signal con-
trol systems, it is crucial to consider the variations in accuracy across different OD pairs to avoid potential
fairness issues. Especially those based on CV trajectories may leads to unsatisfactory results in underserved

communities.

To address this concern, a novel Fair Self-Supervised Learning (FSSL) framework for estimating
OD flows in signalized arterials is proposed, leveraging partially observed CV trajectories. The FSSL model
focuses on improving spatial fairness by balancing estimation accuracies across different OD pairs. It

11
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achieves this by incorporating a state-of-the-art adaptive weighting technique within a deep-neural-net-
work-based self-supervised learning approach.

The performance of the FSSL model was evaluated on a simulated real-world arterial corridor,
considering overall estimation accuracy measured by MAPE and spatial fairness measured by the Gini
Index. The results were compared with a benchmark model that scales up the CV OD matrix with the global
CV market penetration rate and an ordinary SSL model without fairness considerations. The findings
demonstrated that the FSSL model effectively addresses spatial fairness concerns by reducing the dispari-
ties in estimation accuracy among OD pairs. Notably, the FSSL model achieved comparable overall esti-
mation accuracy to the ordinary SSL model while surpassing the benchmark model, which can yield
"equally unsatisfactory” estimations. Furthermore, the FSSL model showed potential benefits for under-
served communities where CV penetration rates might be relatively low. However, it is important to
acknowledge the trade-off between estimation accuracy and fairness when the base estimation model re-
mains unchanged.

Overall, the FSSL framework represents a promising solution that enhances spatial fairness without
significantly compromising overall estimation accuracy. Nevertheless, some limitations should be consid-
ered. The training of the FSSL model is computationally expensive due to the added optimization process
of the adaptive weighting. Future research may explore more efficient approaches to ensure fairness. Ad-
ditionally, while the model was evaluated in a corridor, conducting larger-scale experiments could assess
its scalability. Finally, the effectiveness of the proposed model in a traffic signal control system has not
been validated yet. Future studies may integrate the proposed model into a traffic signal control system and
examine its performance.
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