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ABSTRACT 1 
Precise estimation of Origin-Destination (OD) flow in signalized arterials is essential for efficient operation 2 
of coordinated traffic signal systems. While earlier studies have demonstrated sufficient estimation accu-3 
racy, it is crucial to consider the variations in accuracy across different OD pairs to avoid potential spatial 4 
fairness issues. Especially those based on Connected Vehicle (CV) trajectories may lead to unsatisfactory 5 
signal operation in underserved communities. To address this concern, a Fairness-Aware Artificial Intelli-6 
gence framework is proposed, leveraging partially observed CV trajectories. The proposed model focuses 7 
on improving spatial fairness by balancing estimation accuracies across different OD pairs. It achieves this 8 
by incorporating a state-of-the-art adaptive weighting technique within a deep-neural-network-based self-9 
supervised learning approach. The performance of the model was evaluated on a simulated real-world ar-10 
terial corridor. The results were compared with a benchmark model that scales up the CV OD matrix with 11 
the global CV market penetration rate and an ordinary self-supervised-learning model without fairness con-12 
siderations. The findings demonstrated that the proposed model effectively addresses spatial fairness con-13 
cerns by reducing the disparities in estimation accuracy among OD pairs. Notably, the proposed model 14 
achieved comparable overall estimation accuracy to the ordinary self-supervised-learning model while sur-15 
passing the benchmark model, which can yield "equally unsatisfactory" estimations. Furthermore, the pro-16 
posed model showed potential benefits for underserved communities where CV penetration rates might be 17 
relatively low. However, it is important to acknowledge the trade-off between overall estimation accuracy 18 
and spatial fairness when the base estimation model remains unchanged. 19 
 20 
Keywords: Fairness, Origin-Destination Flow Estimation, Signalized Arterial, Artificial Intelligence  21 
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INTRODUCTION 1 
A precise estimation of Origin-Destination (OD) flow in signalized arterials is crucial to ensure 2 

optimal traffic operational efficiency. For instance, coordinated arterial traffic signal control systems(1–3) 3 
designed to alleviate congestion heavily rely on accurate spatial-temporal-dependent OD flow along the 4 
arterial corridor as their input. Studies have been conducted to estimate the OD flow along the arterial 5 
corridor. Traditionally, arterial OD flow estimations are primarily based on traffic counts. Lou and Yin(4) 6 
developed a decomposition framework to estimate dynamic OD flow for signalized arterials from link 7 
counts. Yang and Chang(5) proposed three estimation models based on link counts, intersection turning 8 
movements, and the combination of intersection turning movements and queue lengths, respectively. More 9 
recent studies have leveraged vehicle trajectories to estimate the OD flow(6). Yang et al.(7) developed two 10 
models using GPS locations of probe vehicles, where the first model corrects the scaled probe vehicle OD 11 
flow with link counts, and the second model extends the first one by incorporating observed link probe 12 
ratios. Due to the challenges in acquiring the ground truth historical OD flows, Wang et al.(8) proposed a 13 
self-supervised learning approach to estimate OD flows using the trajectories from connected vehicles (CVs) 14 
without the ground truth, given that the market penetration rate of CVs is low. 15 

However, while trajectory-based approaches have shown sufficient estimation accuracy for traffic 16 
signal control systems, they often overlook variations in accuracy across different OD pairs. This lack of 17 
attention to spatial fairness may lead to potential issues. For instance, communities with limited resources 18 
might have lower adoption rates of expensive connectivity technologies in their vehicles due to financial 19 
constraints. Consequently, lower market penetration rates of connected vehicles (CVs) in such areas can 20 
lead to compromised estimation accuracy(8). Unsatisfactory OD flow estimations could then negatively 21 
impact the efficiency of traffic signal systems at intersections within these underserved communities, re-22 
sulting in less efficient traffic operations. 23 

To address these potential fairness concerns, it is crucial to explicitly consider fairness during the 24 
model development process. Fortunately, recent advances in artificial intelligence (AI) research have intro-25 
duced fairness-aware AI(9), providing a feasible approach to tackle these issues. Therefore, this study pro-26 
poses a framework based on fairness-aware AI to ensure the spatial fairness of arterial OD estimation. The 27 
OD estimation framework relies on partially observed trajectory data from CVs and employs a fair machine 28 
learning model that explicitly balances overall estimation accuracy and performance distribution across 29 
different OD pairs. By doing so, this framework aims to achieve accurate and spatially equitable OD flow 30 
estimation for signalized arterials, potentially benefiting all communities. 31 
 32 
METHODS 33 
Problem Statement 34 
 Consider an arterial corridor denoted as 𝐶 = (𝑁, 𝐿) (refer to Figure 1), where 𝑁 represents the 35 
nodes that can be either intersections along the arterials (depicted as red nodes) or points where the vehicles 36 
enter to (origins) and exit from (destinations) the intersections (depicted as blue nodes), and 𝐿 denotes the 37 
links connect two adjacent nodes in the corridor. A set of OD pairs are defined as 𝐼 = {1, 2,… , 𝑖}. The 38 
analysis period, 𝑇, is divided into 𝑘 uniform intervals, and the set of time intervals is represented as 𝐾 =39 
{1, 2, … , 𝑘}. The traffic pattern of the corridor 𝐶 during the analysis period 𝑇 can by represented by an OD 40 
matrix, 𝑀, as follows: 41 
 42 

𝑀 =

[
 
 
 
𝑥1

1 𝑥1
2 ⋯ 𝑥1

𝑘

𝑥2
1 𝑥2

2 ⋯ 𝑥2
𝑘

⋮ ⋮ ⋱ ⋮
𝑥𝑖

1 𝑥𝑖
2 ⋯ 𝑥𝑖

𝑘]
 
 
 

 (1) 

where  𝑥𝑖
𝑘 denotes the count of vehicles traveling along the OD pair 𝑖 during the time interval 𝑘.  43 

 Assume that two types of vehicles, regular vehicles (RVs) and CVs, are traveling along the corridor. 44 
The numbers of the CVs traveling along the OD pairs, represented as the CV OD matrix 𝑀𝑐, can be obtained 45 
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as they continuously broadcast their locations in real-time. However, it is worth noting that the market 1 
penetration rate of CVs, which indicates the proportion of CVs among all types of vehicles, remains low. 2 
On the other hand, the numbers of RVs are unknown, resulting in an unknown RV OD matrix, denoted as 3 
𝑀𝑅.  4 
 5 

𝑀 = 𝑀𝑐 + 𝑀𝑟  (2) 

Then the problem can be formulated as estimating the OD matrix, 𝑀, using the known CV OD 6 
matrix 𝑀𝑐, through a function denoted as 𝑓. 7 
 8 

𝑀 = 𝑓(𝑀𝑐) (3) 

 9 
 10 

Figure 1 A Simplified Roadway Corridor (Adopted from (8)) 11 
 12 

Self-Supervised Learning without Ground Truth 13 
 In this study, a self-supervised machine learning (SSML) model (8) developed earlier by the authors 14 
is utilized to estimate the OD matrix 𝑀. The ML model is employed to learn the function 𝑓 as defined in 15 
(3). Conventional supervised ML models learn the function 𝑓 by minimizing the divergence, represented 16 
as the loss 𝐿(𝑀, 𝑀̂), between the ground truth 𝑀 and the 𝑀̂ = 𝑓𝜃 (𝑀𝑐) estimated by 𝑓𝜃  with a parameter 17 
set 𝜃: 18 
 19 

min
𝜃

𝐿(𝑀, 𝑓𝜃 (𝑀𝑐) )  (4) 

 In this specific OD estimation problem, an L2 loss is adopted, which is defined as follows: 20 
 21 

𝐿 = ‖𝑓𝜃 (𝑀𝑐) − 𝑀‖2   (5) 

However, in this problem, the ground truth 𝑀 is inaccessible due to the unknow number of RVs. 22 
Consequently, conventional supervised ML methods cannot be directly applied as the loss cannot be ob-23 
tained. To address this, a self-supervised ML approach is adopted. Assume that a reasonably accurate esti-24 
mate of the global market penetration rate of CVs, denoted as 𝛽, is known (e.g., 25%). Based on this as-25 
sumption, a naïve yet flawed estimate, denoted as 𝑀𝑏, of the OD matrix 𝑀, and the flaw, denoted as 𝑏, in 26 
the estimation can be expressed as: 27 
 28 

𝑀𝑏 = 
𝑀𝑐

𝛽
  (6) 

𝑀𝑏 = 𝑀 + 𝑏 (7) 

 Given that 𝛽 is a known and reasonably accurate estimate of the global penetration rate, it is also 29 
reasonable to assume that that the bias has a zero mean, i.e., 𝐸(𝑏) = 0. Then, 30 
 31 
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𝐸(𝑀𝑏,𝑖) = 𝑀  (8) 

Equation (8) implies that when multiple biased matrices, derived from the same true matrix but 1 
with different biases, are obtained, averaging these biased matrices will converge to the true matrix. 2 

A J-invariant function (10) can be defined as: 3 
Definition.  Let 𝒥 be a partition of the dimensions {1, 2, … ,𝑚}, where 𝑚 is the dimension of the matrices 4 
𝑀,𝑀𝑏 ∈ ℝ𝑚. Let 𝐽 ∈ 𝒥. A function 𝑓:ℝ𝑚 → ℝ𝑚 is considered 𝐽-invariant if 𝑓(𝑀𝑏)𝐽 does not depend on 5 

the value of 𝑥𝐽, where 𝑓(𝑀𝑏)𝐽 and 𝑥𝐽 denote 𝑓(𝑀𝑏) and 𝑥, which is an element of 𝑀𝑏, restricted to 𝐽. The 6 

function is 𝒥-invariant if it is 𝐽-invariant for each 𝐽 ∈ 𝒥. 7 
 Then, the self-supervised loss can be proposed over a 𝒥-invariant function 𝑓 as follows: 8 
 9 

𝐿𝑏 = 𝐸‖𝑓 (𝑀𝑏) − 𝑀𝑏‖
2  (9) 

Proposition. Suppose 𝐸(𝑀𝑏) = 𝑀, and the flaw in each 𝐽 ∈ 𝒥 is independent of the flaw in its complement 10 
𝐽𝑐, condition on 𝑀. Let 𝑓 be 𝒥-invariant. Then 11 
 12 

𝐸‖𝑓 (𝑀𝑏) − 𝑀𝑏‖
2 = 𝐸‖𝑓 (𝑀𝑏) − 𝑀‖2 + 𝐸‖𝑀𝑏 − 𝑀‖2   (10) 

 Equation (10) shows that the self-supervised loss is the summation of the conventional supervised 13 
loss and the variance of the flaw. Consequently, when 𝑓 is 𝒥-invariant, minimizing the self-supervised loss 14 
indirectly minimizes the supervised loss. The detailed proof of the proposition can be found in the authors’ 15 
earlier work (8).  16 
 According to the Definition, if 𝑓 is 𝒥-invariant, it implies that 𝑓(𝑀𝑏)𝐽 does not depend on the 17 

value of 𝑥𝐽. Intuitively, 𝒥-invariant means that 𝑓 only uses 𝐽𝑐 to estimate 𝑥𝐽. In other words, 𝒥-invariant 18 

functions can be seen as a set of functions 𝑓:ℝ𝐽𝑐 → ℝ𝐽. Based on this insight, a masking scheme is pro-19 
posed to create a blind spot, where 𝑓 is employed to estimate the values of the blind spot. In general, let 20 
𝑔𝜃 be the conventional estimator with a parameter set 𝜃, ℎ (𝑀𝑏) be the function replacing 𝑥𝐽. Then a 𝒥-21 

invariant function 𝑓 can be defined as follows: 22 
 23 

𝑓𝜃(𝑀𝑏) ≔ 𝑔𝜃 (1𝐽 ∙ ℎ (𝑀𝑏) + 1𝐽𝑐 ∙ 𝑀𝑏)𝐽
 (11) 

for each 𝐽 ∈ 𝒥.  1𝐽  and 1𝐽𝑐  are the indicator functions. The element-wise multiplication of  1𝐽  with the 24 

ℎ (𝑀𝑏) will mask the blind spot, and the element-wise multiplication of 1𝐽𝑐  retain the other elements out-25 

side the blind spot. 26 
 In this study, an interpolation mask was utilized, which estimates the value of an element by com-27 
puting a local average of its neighboring elements from a 𝑟 × 𝑟 window that does not include the element 28 
itself. This approach ensures that no information from the element is leaked, thereby maintaining 𝒥-invar-29 
iant property of the function. 30 
 31 
Adaptative Weighting 32 

Conventional ML models solely focus on minimizing the loss, as demonstrated in the equation (4). 33 
Since ML models are not flawless, in most cases, the optimal loss is not zero. Consequently, even after 34 
training, errors may persist between the estimated OD matrix 𝑀̂ and the ground truth 𝑀. However, conven-35 
tional ML methods do not account for the distribution of the loss. In other words, in this problem, the ML's 36 
performance in terms of estimation accuracy may vary across different OD pairs. This discrepancy in ac-37 
curacy could potentially lead to fairness issues, as mentioned earlier. 38 

This study adopts a modified and simplified version of the adaptive weighting method originally 39 
proposed by Chai and Wang (11). The goal is to balance the estimation accuracy across different OD pairs 40 
by adaptively assigning different weights to each 𝑥𝑖

𝑘 in the matrix 𝑀𝑓. Essentially, a larger weight 𝑤𝑖
𝑘 ∈ 𝑊 41 
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is assigned to the 𝑥𝑖
𝑘 associated with larger loss values. By doing so, the estimator can focus more on the 1 

OD pairs with less satisfactory estimations or higher error probabilities. 2 
During the training process, the weight matrix 𝑊 is continuedly changing to ensure that it adapts 3 

to the changing loss.  4 
The problem of loss-based weighting can be formulated as follows: 5 

 6 

max
𝑊

∑ 𝑤𝑖
𝑘𝐿𝑏(𝑥𝑖

𝑘)

𝑤𝑖
𝑘∈𝑊

 

(12) 

𝑠. 𝑡.  𝑊𝑇1 = 𝑚, 𝑤𝑖
𝑘 ≥ 0 

where 𝑚 = 𝑖𝑘. 7 
 Intuitively, the solution to problem (12) is assigning a non-zero weight only to the 𝑥𝑖

𝑘 the with the 8 
largest loss1, while setting zero weights for all others. However, this approach might exacerbate fairness 9 

issues by only correcting the problem for a single 𝑥𝑖
𝑘. To address this issue, a regularization term is intro-10 

duced, and the optimization is modified as follows: 11 
 12 

max
𝑊

∑ 𝑤𝑖
𝑘𝐿𝑏(𝑥𝑖

𝑘)

𝑤𝑖
𝑘∈𝑊

− 𝛼‖𝑊‖2
2 

(13) 

𝑠. 𝑡.  𝑊𝑇1 = 𝑚, 𝑤𝑖
𝑘 ≥ 0 

 By adjusting the value of 𝛼, the number of non-zero weights assigned can be controlled. As 𝛼 ap-13 
proaches infinity, the significance of the first term diminishes, and all weights become equal to 1.14 
 Without any loss of generality, assume that the losses 𝑙𝑗, 𝑙𝑝 ∈ 𝐿𝑓 are sorted in descending order 15 

such that 𝑙𝑗 ≥ 𝑙𝑝, ∀𝑗 > 𝑝. The optimal solution 𝑊∗ to the problem (13) can be derived as follows 16 

 17 

𝑤𝑗
∗ = max(

𝑙𝑗 − 𝜆

2𝛼
, 0) , 𝑗 = 1,2,…𝑚 (14) 

where 𝜆 =
∑ 𝑙𝑝−2𝛼𝑚𝑚′

𝑗=1

𝑚′ , and 𝑚′  is determined by ∑ 𝑙𝑝 − 𝑚′𝑙𝑚′+1
𝑚′

𝑗=1 > 2𝛼𝑚 > ∑ 𝑙𝑝 − 𝑚′𝑙𝑚′
𝑚′

𝑗=1 . When 18 

∑ 𝑙𝑝 − 2𝛼𝑚𝑚′

𝑗=1 ≤ 0, ∀𝑚′, 𝑚′ = 𝑚 and 𝜆 ≤ 0. The solution (14) is obtained using the method of Lagrange 19 

multipliers, and the detailed proof is omitted for simplicity. 20 
 21 
Deep Neural Network 22 
 A deep neural network is employed as the base ML model for the self-supervised learning frame-23 
work with adaptive reweighing. The neural network model comprises a Long Short-Term Memory (LSTM) 24 
component(12) and the attention mechanism(13). LSTM is commonly used in time-dependent traffic stud-25 
ies(14–16). It is used to capture the temporal features of OD flows at a higher level. Moreover, the attention 26 
mechanism is widely utilized in traffic studies (17, 18) to enhance estimation performance by dynamically 27 
exploring the most relevant temporal and spatial correlations. In this study, a multi-head attention mecha-28 
nism is implemented to capture both spatial and temporal correlations in the OD matrix.  The structure of 29 
the customized deep neural network used in this study is illustrated in Figure 2. Additionally, the dropout 30 
technique is applied to the dense layers to further improve the performance. 31 

 
1 Non-zero-equal weights are assigned in case of ties. However, such situations are rare. 
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 1 
Figure 2 The Structure of the Customized Deep Neural Network 2 
 3 
The Fair Self-Supervised Learning 4 
 The pseudocode below summarizes the proposed fair self-supervised learning algorithm: 5 
 6 
Algorithm Fair Self-Supervised Learning 

Input: weight regulation rate 𝛼, learning rate 𝜆,  number of training epochs 𝑁 

Initialization: set 𝑤𝑖
𝑘 ≔ 1,∀𝑗  

for epoch = 1 to 𝑁 do 

1. Obtain the self-supervised loss 𝐿𝑏 by applying estimator 𝑓𝜃(𝑀𝑏) 

2. Update 𝑊 by solving (13): 

max
𝑊

∑ 𝑤𝑖
𝑘𝐿𝑏(𝑥𝑖

𝑘)

𝑤𝑖
𝑘∈𝑊

− 𝛼‖𝑊‖2
2 

𝑠. 𝑡.  𝑊𝑇1 = 𝑚, 𝑤𝑖
𝑘 ≥ 0 

 

3. Updated 𝜃 by the weighted self-supervised loss 𝑊𝐿𝑏 using Adam (19) 

end for 

return 𝑓𝜃 

 7 
EXPERIMENT 8 
Design and Implementation 9 
 Due to the challenges in obtaining ground truth OD flows from real-world field data, we conducted 10 
evaluations using a simulated arterial corridor that represents a segment of Redwood Road in Salt Lake 11 
City, Utah. The layout of this corridor is depicted in Figure 3. The simulations were performed using the 12 
PTV VISSIM platform. To calibrate the simulation scenarios, we utilized field turning movement count 13 
data collected from the Automated Traffic Signal Performance Measures (ATSPM) system. Specifically, 14 
the ATSPM system collects turning movement counts at the stop-bar using Wavetronix SmaterSensor Ma-15 
trix detectors. 16 

A total of 1,000 simulation replications were conducted, each with different random seeds. Out of 17 
these replications, 900 were used for training purposes, while the remaining 100 were reserved for testing. 18 
Each replication had a duration of 3 hours2  to ensure that at least one connected vehicle (CV) traveled 19 
through each OD pair. The trajectories of all simulated vehicles were collected to calculate the ten-minute 20 
traffic flow for each OD pair. During the self-training process, the CV flow served as the input, and the CV 21 
OD matrix was directly scaled up by the global market penetration rate, serving as the "ground truth" for 22 

 
2 Without warm-up. 
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the estimation. However, during the testing stage, the total CV flow was utilized as the ground truth for 1 
performance evaluation. The penetration rate of CV is set to be 25%. 2 
 3 

  4 
Figure 3 The Layout of the Study Site 5 
 6 
 The comparison involves three different models: 1) the benchmark model, which estimates the OD 7 
matrix by simply scaling up the CV OD matrix with the global CV market penetration rate; 2) the ordinary 8 
self-supervised learning model (SSL) that does not consider fairness; 3) and the proposed fair self-super-9 
vised learning model (FSSL). It's worth noting that the structures of the base deep neural network are the 10 
same between SSL and FSSL (refer to Figure 2). The remaining hyperparameters related to the training 11 
process can be found in Table 1. The only differing hyperparameter is the learning rate, as the introduction 12 
of adaptive weighting significantly alters the learning process.  13 
 14 
TABLE 1 List of Training Hyperparameters  15 

Name SSL FSSL 

Number of Training Epochs 3,000 

Dropout Rate 0.5 

Batch Size 10 

Learning Rate 0.001 0.005 

Weight Regulation Rate N/A 0.5 

 16 
 Two metrics, namely mean absolute percentage error (MAPE) and Gini Index (G), are employed 17 
to evaluate the performance of the aforementioned three models in terms of estimation accuracy and fair-18 
ness, respectively. The MAPE measures the relative error and can be defined as follows: 19 
 20 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑥𝑖 − 𝑥𝑖̂

𝑥𝑖
|

𝑁

𝑖=1

 (14) 

where 𝑥𝑖 and 𝑥𝑖̂ represent the ground-truth and the estimated OD flow, respectively; and 𝑁 is the total num-21 
ber of OD pairs.  22 

The Gini Index (20) is a measure of statistical dispersion used to represent inequality. Originally, 23 
it was designed to measure income inequality or wealth inequality within a nation. The GI can be defined 24 
as follows:  25 
 26 

𝐺 =
∑ ∑ |𝑦𝑖 − 𝑦𝑗|

𝑁
𝑗=1

𝑁
𝑖=1

2𝑁2𝑦̅
 (15) 
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where 𝑦𝑖 and 𝑦𝑗 are observed values,  𝑦̅ is the mean, and 𝑁 is number of values. A lower G indicates higher 1 

equality, meaning that values are more evenly distributed. A G of 0 represents perfect equality, where all 2 
values are identical. On the other hand, a G of 1 reflects maximal inequality among values, where one value 3 
dominates all others. In this study, since the aim is to ensure fair estimation among the OD pairs, 𝑦 denotes 4 
the average estimation accuracy represented by the MAPE of a specific OD pair across different time in-5 
tervals. 6 
 The experiments were implemented using the Python programming language. Specifically, the 7 
deep learning model was developed using TensorFlow(21) and the optimization problem of adaptive 8 
weights was solved using CVXPY(22). 9 
 10 
Results 11 
 Table 2 presents the performance of the models in terms of MAPE and Gini Index. In regard to 12 
overall estimation accuracy, both the SSL and FSSL models exhibit improvements compared to the bench-13 
mark model. The SSL model shows a MAPE improvement of 21.41%, while the FSSL model shows a 14 
slightly lower improvement of 18.65%. Nevertheless, the overall estimation accuracy of the FSSL model 15 
remains comparable to other trajectory-based OD estimation methods(3, 6, 7). Regarding spatial fairness, 16 
the benchmark model demonstrates a satisfactory distribution of estimation accuracy across different OD 17 
pairs, as indicated by its Gini Index. However, the SSL model raises some potential spatial fairness con-18 
cerns, with its Gini Index being 52.56% higher than that of the benchmark model. The FSSL model ad-19 
dresses fairness concerns to some extent, showing a 15.13% improvement in Gini Index over the SSL 20 
model. Nevertheless, the Gini Index of the FSSL model still remains higher than that of the benchmark 21 
model. 22 
 23 

TABLE 2 Summary of the Performance 24 

Model MAPE Gini Index 

Benchmark 40.718  0.078  

SSL 32.001 (21.41%) 0.119 (-52.56%)  

FSSL 33.123 (18.65%) 0.101 (-29.49%) 

FSSL Improvement 

Over SSL 

MAPE -3.51% 

Gini Index 15.13% 

 25 
To gain a comprehensive understanding of the spatial fairness of the three models, the distribution 26 

of estimation accuracy across the OD pairs is illustrated in the violin plot depicted in Figure 4. The bench-27 
mark model exhibits a significantly smaller range of estimation errors compared to both ML models. How-28 
ever, this seemingly promising spatial fairness comes at the cost of systematically larger errors, as evi-29 
denced by its maximum, minimum, and median MAPEs. In other words, the benchmark model generates 30 
estimations that are "equally unsatisfactory" across all OD pairs. Conversely, the SSL model achieves more 31 
satisfactory estimations for certain OD pairs, as indicated by its minimum and median MAPEs. However, 32 
the wide upper tile suggests that it can also lead to some extremely unsatisfactory estimations, even when 33 
compared with the benchmark model. One of the major contributions of the FSSL model is narrowing this 34 
upper tile, thereby reducing the number of extremely unsatisfactory estimations. Furthermore, although the 35 
medians of MAPEs for the SSL and FSSL models are nearly the same, the FSSL model exhibits a wider 36 
central region, indicating a more balanced and equally accurate estimation across the OD pairs. Neverthe-37 
less, it is important to note that the minimum MAPE for the FSSL model is higher compared to the SSL 38 
model, indicating a trade-off between overall estimation accuracy and fairness when using the exact base 39 
estimation model. 40 
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 1 
Figure 4 The Distribution of MAPE of the Three Models 2 
 3 
 To provide further insight into the performances of the models under different circumstances, snap-4 
shots of the model estimations were obtained. Figure 4 displays the flow estimations of all 72 OD pairs at 5 
specific ten-minute intervals from the first testing replication. The top plot illustrates the estimated OD 6 
flows when the machine learning models' performance is satisfactory (𝑘 = 6), while the bottom plot shows 7 
the less satisfactory scenario (𝑘 = 0). In general, both models are capable of capturing the variations of 8 
flows across different OD pairs to some degree. However, the estimation of the FSSL model appears to be 9 
more conservative and less adaptive to variations across the OD pairs. This leads to an interesting observa-10 
tion that the estimations of FSSL are less likely to be impacted by the CV penetration rates. On one hand, 11 
when the CV penetration rates are sufficiently high for specific OD pairs (e.g., OD pairs 1 to 6 and OD 12 
pairs 65 to 72), meaning that the total OD flow can be well estimated or even overestimated by input CV 13 
flows, the performance of FSSL may be less satisfactory due to its conservative nature. On the other hand, 14 
when the CV penetration rates are too low to accurately reflect the total OD flows (e.g., OD pairs 28 to 32 15 
and OD pairs 42 to 46), a conservative estimator is less likely to be dominated by flawed input CV OD 16 
flows. In other words, the conservative nature of the FSSL model has potentials to benefit underserved 17 
communities, where the CV penetration rate is relatively low.  18 

In summary, the proposed FSSL method effectively improves spatial fairness by balancing estima-19 
tion accuracies across different OD pairs. It achieves similar overall estimation accuracy compared to the 20 
ordinary SSL model without fairness considerations, while avoiding the "equally unsatisfactory" outcomes 21 
observed in the benchmark model. Furthermore, the FSSL model demonstrates potential benefits for un-22 
derserved communities with relatively low CV penetration rates. However, it is important to acknowledge 23 
that there might be a trade-off between estimation accuracy and fairness when the base estimation model 24 
remains unchanged. Overall, the FSSL method represents a valuable step towards more equitable and effi-25 
cient traffic flow estimation in signalized arterials.26 
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1 

 2 
Figure 5 Flow Estimations of All OD Pairs During a Specific Time Interval (Top: Best Performed, 3 
Bottom: Worst Performed) 4 
 5 
CONCLUSIONS 6 
 Precise estimation of OD flow in signalized arterials is essential for optimizing traffic operational 7 
efficiency. While trajectory-based approaches have demonstrated sufficient accuracy for traffic signal con-8 
trol systems, it is crucial to consider the variations in accuracy across different OD pairs to avoid potential 9 
fairness issues. Especially those based on CV trajectories may leads to unsatisfactory results in underserved 10 
communities.  11 
 To address this concern, a novel Fair Self-Supervised Learning (FSSL) framework for estimating 12 
OD flows in signalized arterials is proposed, leveraging partially observed CV trajectories. The FSSL model 13 
focuses on improving spatial fairness by balancing estimation accuracies across different OD pairs. It 14 
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achieves this by incorporating a state-of-the-art adaptive weighting technique within a deep-neural-net-1 
work-based self-supervised learning approach. 2 
 The performance of the FSSL model was evaluated on a simulated real-world arterial corridor, 3 
considering overall estimation accuracy measured by MAPE and spatial fairness measured by the Gini 4 
Index. The results were compared with a benchmark model that scales up the CV OD matrix with the global 5 
CV market penetration rate and an ordinary SSL model without fairness considerations. The findings 6 
demonstrated that the FSSL model effectively addresses spatial fairness concerns by reducing the dispari-7 
ties in estimation accuracy among OD pairs. Notably, the FSSL model achieved comparable overall esti-8 
mation accuracy to the ordinary SSL model while surpassing the benchmark model, which can yield 9 
"equally unsatisfactory" estimations. Furthermore, the FSSL model showed potential benefits for under-10 
served communities where CV penetration rates might be relatively low. However, it is important to 11 
acknowledge the trade-off between estimation accuracy and fairness when the base estimation model re-12 
mains unchanged. 13 
 Overall, the FSSL framework represents a promising solution that enhances spatial fairness without 14 
significantly compromising overall estimation accuracy. Nevertheless, some limitations should be consid-15 
ered. The training of the FSSL model is computationally expensive due to the added optimization process 16 
of the adaptive weighting. Future research may explore more efficient approaches to ensure fairness. Ad-17 
ditionally, while the model was evaluated in a corridor, conducting larger-scale experiments could assess 18 
its scalability. Finally, the effectiveness of the proposed model in a traffic signal control system has not 19 
been validated yet. Future studies may integrate the proposed model into a traffic signal control system and 20 
examine its performance. 21 
  22 
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