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ABSTRACT 1 

In the foreseeable future, the coexistence of connected automated vehicles (CAVs) and human-2 
driven vehicles (HVs) will persist in the traffic landscape for an extended duration. The accurate estimation 3 
of the mixed traffic status becomes crucial to effectively manage traffic flow and ensure road safety. In this 4 
research, we introduce a discrete macroscopic second-order traffic flow model tailored to capture the 5 
intricacies of the mixed traffic environment. Building upon a microscopic traffic model, our proposed 6 
approach considers the interactions between CAVs and HVs, as well as the distinctive driving behaviors 7 
exhibited by each vehicle type. Notably, we conduct an in-depth analysis of car-following and lane-8 
changing behaviors observed in human-driven vehicles. To assess the efficacy of our proposed model, we 9 
conducted extensive numerical simulations on a freeway segment involving speed control. The results of 10 
the simulations reveal two key findings: Firstly, the proposed model achieves accurate estimations of mixed 11 
traffic states, encompassing both flow and speed parameters. Secondly, we observe a noteworthy 12 
enhancement in performance as the speed control disparity between CAVs and HVs increases. Our research 13 
contributes to advancing traffic management strategies and paves the way for enhanced traffic flow in 14 
mixed traffic environments. Furthermore, the proposed model holds significant potential for aiding the 15 
design and implementation of future transportation systems that embrace connected automated vehicles 16 
while accommodating human-driven vehicles seamlessly. 17 

 18 
Keywords: Macroscopic Traffic Model, Lane-changing Behavior, Mixed Traffic Flow, CAV   19 
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INTRODUCTION 1 

Through the exchange of real-time information between vehicles and infrastructures, applications 2 
involving Connected and Automated Vehicles (CAVs) have exhibited promising advantages in enhancing 3 
transportation safety (1) and mobility(2). CAV technology has demonstrated significant potential in 4 
addressing traffic congestion and enhancing the efficiency of transportation systems(3, 4). Aiming to 5 
explore potential benefits, many researchers have conducted investigations into the applications of CAV 6 
technology across various traffic control domains(5–7). Such endeavors aid traffic agencies in deploying 7 
CAV applications effectively in the real world. 8 

However, due to the constraints in technical development, it is foreseeable that CAVs will need to 9 
coexist with human-driven vehicles (HVs) and share the road network in the recent future. For the control 10 
of CAVs in the mixed traffic environment, it is important to propose a traffic estimation model, which can 11 
capture the mixed CAV and HV traffic pattern, to support traffic operation research and applications(8–12 
12). Nevertheless, the conventional macroscopic traffic state model fails to encapsulate the influence of 13 
controlled CAVs on the overall freeway traffic state in most CAV applications. 14 

Despite the abundance of literature on mixed traffic environments comprising both CAVs and 15 
human-driven vehicles HVs (13–15), the current models mainly focused on the fundamental diagram(15–16 
21) and there remains a significant gap in fully capturing the intricate interactions between these vehicle 17 
types. Existing studies have not adequately addressed crucial aspects such as CAVs operating under 18 
dynamic trajectory control with varying speeds, which directly impact the behavior of following HVs in 19 
the traffic stream. Additionally, the link between sharp vehicle speed reductions and the triggering of lane-20 
changing behavior in following vehicles has not been thoroughly investigated, despite its potential impact 21 
on the overall traffic pattern. The research gap is threefold: Firstly, there is a need to develop a macroscopic 22 
traffic flow model that accurately incorporates the lane-changing and car-following behaviors of HVs, thus 23 
enabling a comprehensive representation of the interactions between CAVs and HVs. Secondly, current 24 
models lack mechanisms to effectively handle variable speed limit control for both CAVs and HVs in mixed 25 
traffic environments, despite its importance in optimizing traffic flow. Lastly, the impact of factors such as 26 
the penetration rate of CAVs and the compliant rate of drivers on freeway traffic dynamics requires further 27 
exploration to better understand their role in shaping the overall traffic behavior in a mixed traffic scenario. 28 
Addressing these critical issues will significantly advance our understanding of mixed traffic dynamics and 29 
pave the way for more efficient and safe transportation systems that seamlessly integrate CAVs and HVs.  30 

This study aims to tackle the aforementioned challenges by proposing a novel second-order multi-31 
class macroscopic traffic state model that effectively captures the complex interactions between CAVs and 32 
HVs as distinct groups. By conducting a comprehensive kinematic analysis of both vehicle types, the 33 
proposed macroscopic model emerges, overcoming the limitations of existing approaches. In this research, 34 
we derive the macroscopic traffic model from a microscopic counterpart, incorporating essential features 35 
such as HV drivers' lane-changing behavior and their response to variable speed limit (VSL) control. This 36 
integration of lane-changing dynamics and VSL response enhances the model's realism and provides a more 37 
accurate representation of real-world mixed traffic scenarios. By explicitly differentiating CAVs and HVs 38 
in the model, we gain deeper insights into their unique driving characteristics and their influence on overall 39 
traffic dynamics. The model's multi-class nature allows us to study the distinct behavioral patterns exhibited 40 
by CAVs and HVs separately, providing a comprehensive understanding of their interactions and impact 41 
on traffic flow. 42 

The following sections of this paper are structured as: Section 2 presents the methodology based 43 
on kinematic analysis and mathematics modeling. Section 3 describes the design of the numerical 44 
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experiment, followed by the discussion on the effectiveness of the traffic model proposed in this research 1 
in Section 4. Lastly, the conclusion is presented in the final section. 2 

METHODOLOGY 3 

In this section, the mathematical model is proposed based on the analysis of different kinds of 4 
vehicles to estimate the traffic status of mixed traffic environment with variable speed limit (VSL) that was 5 
guided by roadside unit (for CAVs) and changeable message signs (for HVs). Traffic sensors located at the 6 
roadside that could gather traffic flow status, such as speed, and flow rate, could be used as the input of the 7 
model.  8 

In a mixed traffic environment, two types of vehicles coexist: CAVs and HVs. CAVs, controlled 9 
by a central system, strictly adhere to the VSL and only change lanes when necessary. On the other hand, 10 
HVs, controlled by individual drivers, may or may not follow the speed limit instructions. Compliant human 11 
drivers adjust their speed to match the VSL. When the leading vehicle decreases its speed due to the VSL, 12 
these compliant drivers also reduce their vehicle speed and continue to follow the leading vehicle. However, 13 
some drivers may choose not to comply with the displayed speed limit information. In such cases, when 14 
the leading vehicle decreases its speed, these non-compliant drivers might change lanes to maintain a higher 15 
speed. To build the model for a general mixed traffic flow environment, the following assumptions are 16 
considered: 17 

1. The road geometry will not affect the driver’s behavior and vehicle movement. 18 

2. The weather condition is assumed to be fine and will not affect the driver’s behaviors and vehicle 19 
movements. 20 

3. Drivers will not change their lanes randomly, lane-changing decisions are induced by variable 21 
speed limits. 22 

4. The driver’s characteristics and personalities are the same and will not affect the driver’s behavior 23 
and vehicle movement. 24 

5. Different vehicles (CAV, Compliant HV, Uncompliant HV, Lane-changing HV) are evenly 25 
distributed on the road. 26 

6. Vehicles of the same type have the same movement criteria and will not affect the driver’s behavior 27 
and vehicle movement. 28 

7. The human drivers are greedy, if the lane-changing conditions are satisfied, they will change the 29 
lane. 30 

In this research, the authors are aiming at proposing a discrete macroscopic traffic flow model in a 31 
mixed traffic environment to predict the traffic status for the following time interval. The vehicle behaviors 32 
including car-following and lane-changing are considered separately in microscopic scope to build the 33 
model in macroscopic scope. 34 

Vehicle Moving Analysis 35 

Vehicle Type 1: CAV 36 

In microscopic, CAVs are assumed to keep following the previous vehicle and are controlled by 37 
the control center. The car-following behavior of CAV could be described as(22): 38 

𝑣𝑖̇(𝑡) =
𝑉𝐶𝐴𝑉(𝑠𝑖̇(𝑡)) − 𝑣𝑖(𝑡)

𝜏
− 𝛾(𝑣𝑖(𝑡) − 𝑣𝑖+1(𝑡)) (1.) 39 
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where, 𝑣𝑖̇(𝑡) is the acceleration function of vehicle 𝑖 over time; 𝑉𝐶𝐴𝑉(𝑠𝑖̇(𝑡)) is the optimal velocity function 1 

of CAV; 𝑣𝑖(𝑡)  is the current speed of CAV; 𝑣𝑖+1(𝑡)  is the current speed of the previous vehicle; 𝜏 2 

represents sensitivity for speed differences between current speed and optimal velocity of CAV; and 𝛾 3 
represents the sensitivity for speed differences between current speed and leading vehicle’s speed. 4 

The acceleration of CAV is related to the optimal velocity from the control center and the speed 5 
difference between CAV and the leading vehicle. The speed function over time could be formulated by 6 
integration as: 7 

𝑣𝑖(𝑡) = 𝑣𝑖(𝑡0) + ∫ (
𝑉𝐶𝐴𝑉(𝑠𝑖̇(𝑡)) − 𝑣𝑖(𝑡)

𝜏
− 𝛾(𝑣𝑖(𝑡) − 𝑣𝑖+1(𝑡))) 𝑑𝑡

𝑡0+Δ𝑇

𝑡0

(2.) 8 

From the microscopic to the macroscopic, the discrete macroscopic traffic flow model(23) for 9 

CAVs in road segment 𝑖 and lane 𝑗 at time interval 𝑘 + 1 could be written as: 10 

𝑣𝑖,𝑗
𝐶𝐴𝑉(𝑘 + 1) = 𝑣𝑖,𝑗

𝐶𝐴𝑉(𝑘) +
Δ𝑇

𝜏𝑖
[𝑉𝑖,𝑗

𝐶𝐴𝑉 (𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)) − 𝑣𝑖,𝑗

𝐶𝐴𝑉(𝑘)] +
Δ𝑇

𝐿𝑖
𝑣𝑖,𝑗

𝐶𝐴𝑉(𝑘)[𝑣𝑖−1,𝑗
𝐶𝐴𝑉 (𝑘) − 𝑣𝑖,𝑗

𝐶𝐴𝑉(𝑘)]

−
𝜈𝑖Δ𝑇

𝜏𝑖𝐿𝑖

[𝑑𝑖+1,𝑗
𝐴𝐿𝐿 (𝑘)−𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)]

[𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)]

(3.)

 11 

The optimal velocity function of CAV is related to 𝑣𝑓,𝑖,𝑗
𝐶𝐴𝑉, which is the expected speed of CAV from 12 

the control center. 13 

𝑉𝑖,𝑗
𝐶𝐴𝑉[𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)] = 𝑣𝑓,𝑖,𝑗
𝑉𝑆𝐿exp [−

1

𝑎𝑖,𝑗
𝐶𝐴𝑉 (

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)

𝑑𝑐𝑟,𝑖,𝑗
𝐶𝐴𝑉 )

𝑎𝑖,𝑗
𝐶𝐴𝑉

] (4.) 14 

where: 15 

𝑣𝑖,𝑗
𝐶𝐴𝑉(𝑘 + 1) is the traffic speed of CAV on segment 𝑖 and lane 𝑗 at time 𝑘 + 1 16 

𝑣𝑖,𝑗
𝐶𝐴𝑉(𝑘) is the traffic speed of CAV on segment 𝑖 and lane 𝑗 at time 𝑘 17 

𝑣𝑖−1,𝑗
𝐶𝐴𝑉 (𝑘) is the traffic speed of CAV on segment 𝑖 − 1 and lane 𝑗 at time 𝑘 18 

Δ𝑇 is the length of update time interval 19 

𝐿𝑖 is the length of segment 𝑖 20 

𝜏𝑖, 𝜈𝑖, 𝜅𝑖 are the parameters in the dynamic speed equations of segment 𝑖 21 

𝑉𝑖,𝑗
𝐶𝐴𝑉[𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘) ] is the static speed of CAVs for segment 𝑖 and lane 𝑗 at time 𝑘 with respect to the 22 

density of segment 𝑖 and lane 𝑗 at time 𝑘 23 

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘) is the traffic density on road segment 𝑖 and lane 𝑗 at time interval 𝑘 24 

𝑑𝑐𝑟,𝑖,𝑗
𝐶𝐴𝑉  is the critical density for CAV on road segment 𝑖 and lane 𝑗 25 

𝑎𝑖,𝑗
𝐶𝐴𝑉 is the speed exponent term of segment 𝑖 and lane 𝑗 for CAV 26 

𝑣𝑓,𝑖,𝑗
𝐶𝐴𝑉, is the expected speed of CAV from the control center. 27 

 28 
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Vehicle Type 2: Compliant HV 1 

The compliant HV will follow the VSL control instructions on the information board. Similarly, 2 
the car-following behavior of CHV based on FVDM and the speed function over time could be written as: 3 

𝑣𝑖̇(𝑡) =
𝑉𝐶𝐻𝑉(𝑠𝑖̇(𝑡)) − 𝑣𝑖(𝑡)

𝜏
− 𝛾(𝑣𝑖(𝑡) − 𝑣𝑖+1(𝑡)) (5.) 4 

where, 5 

𝑣𝑖̇(𝑡) the acceleration function of vehicle 𝑖 over time. 6 

𝑉𝐶𝐻𝑉(𝑠𝑖̇(𝑡)) the optimal velocity function of CHV 7 

𝑣𝑖(𝑡) the current speed of HV 8 

𝑣𝑖+1(𝑡) the current speed of the previous vehicle 9 

𝜏 sensitivity for speed differences between current speed and optimal velocity of HV 10 

𝛾 sensitivity for speed differences between current speed and leading vehicle’s speed 11 

𝑣𝑖(𝑡) = 𝑣𝑖(𝑡0) + ∫ (
𝑉𝐶𝐻𝑉(𝑠𝑖̇(𝑡)) − 𝑣𝑖(𝑡)

𝜏
− 𝛾(𝑣𝑖(𝑡) − 𝑣𝑖+1(𝑡))) 𝑑𝑡

𝑡0+Δ𝑇

𝑡0

(6.) 12 

The macroscopic discrete velocity function of car-following CHVs in road segment 𝑖 and lane 𝑗 at 13 

time interval 𝑘 + 1 could be derivatized. The optimal velocity function of CHV is related to 𝑣𝑓,𝑖,𝑗
𝐶𝐻𝑉, which 14 

is the driver’s expected speed of HV. When there is no speed limitation, the CHV will drive with free-flow 15 

speed 𝑣𝑓,𝑖,𝑗
𝑓𝑟𝑒𝑒

 as the expected speed; when the CHV passes a speed limit spot, the expected speed of CHV 16 

𝑣𝑓,𝑖,𝑗
𝐶𝐻𝑉 will be the VSL speed 𝑣𝑓,𝑖,𝑗

𝑉𝑆𝐿 because the CHV drivers will completely follow the speed limitation. 17 

𝑣𝑖,𝑗
𝐶𝐻𝑉(𝑘 + 1) = 𝑣𝑖,𝑗

𝐶𝐻𝑉(𝑘) +
Δ𝑇

𝜏𝑖
[𝑉𝑖,𝑗

𝐶𝐻𝑉 (𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)) − 𝑣𝑖,𝑗

𝐶𝐻𝑉(𝑘)] +
Δ𝑇

𝐿𝑖
𝑣𝑖,𝑗

𝐶𝐻𝑉(𝑘)[𝑣𝑖−1,𝑗
𝐶𝐻𝑉 (𝑘) − 𝑣𝑖,𝑗

𝐶𝐻𝑉(𝑘)]

−
𝜈𝑖Δ𝑇

𝜏𝑖𝐿𝑖

[𝑑𝑖+1,𝑗
𝐴𝐿𝐿 (𝑘)−𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)]

[𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)]

(7.)

 18 

𝑉𝑖,𝑗
𝐶𝐻𝑉[𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)] = 𝑣𝑓,𝑖,𝑗
𝐶𝐻𝑉exp [−

1

𝑎𝑖,𝑗
𝐻𝑉 (

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)

𝑑𝑐𝑟,𝑖,𝑗
𝐻𝑉 )

𝑎𝑖,𝑗
𝐻𝑉

] (8.) 19 

𝑣𝑓,𝑖,𝑗
𝐶𝐻𝑉 = {

𝑣𝑓,𝑖,𝑗
𝑉𝑆𝐿 𝑈𝑛𝑑𝑒𝑟 𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝑣𝑓,𝑖,𝑗
𝑓𝑟𝑒𝑒

 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(9.) 20 

Vehicle Type 3: Uncompliant HV 21 

The uncompliant HV is proposed to describe the car-following behavior of those drivers who will 22 
not follow the speed limitation. For those vehicles, their desired speed will always be the free-flow speed 23 
no matter if they pass a speed control board. The UHV drivers prefer to drive at  a higher speed rather than 24 
decrease their speed. The microscopic car-following behavior and speed integration function could be 25 
formulated by FVDM as follows: 26 

𝑣𝑖̇(𝑡) =
𝑉𝑈𝐻𝑉(𝑠𝑖̇(𝑡)) − 𝑣𝑖(𝑡)

𝜏
− 𝛾(𝑣𝑖(𝑡) − 𝑣𝑖+1(𝑡)) (10.) 27 
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𝑣𝑖(𝑡) = 𝑣𝑖(𝑡0) + ∫ (
𝑉𝑈𝐻𝑉(𝑠𝑖̇(𝑡)) − 𝑣𝑖(𝑡)

𝜏
− 𝛾(𝑣𝑖(𝑡) − 𝑣𝑖+1(𝑡))) 𝑑𝑡

𝑡0+Δ𝑇

𝑡0

(11.) 1 

Then, the discrete macroscopic traffic flow model for UHV could be formulated based on its car-2 

following behavior. The desired speed in optimal velocity function 𝑣𝑓,𝑖,𝑗
𝑈𝐻𝑉 is the expected speed of UHV 3 

drivers. 4 

𝑣𝑖,𝑗
𝑈𝐻𝑉(𝑘 + 1) = 𝑣𝑖,𝑗

𝑈𝐻𝑉(𝑘) +
Δ𝑇

𝜏𝑖
[𝑉𝑖,𝑗

𝑈𝐻𝑉 (𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)) − 𝑣𝑖,𝑗

𝑈𝐻𝑉(𝑘)] +
Δ𝑇

𝐿𝑖
𝑣𝑖,𝑗

𝑈𝐻𝑉(𝑘)[𝑣𝑖−1,𝑗
𝑈𝐻𝑉 (𝑘) − 𝑣𝑖,𝑗

𝑈𝐻𝑉(𝑘)]

−
𝜈𝑖Δ𝑇

𝜏𝑖𝐿𝑖

[𝑑𝑖+1,𝑗
𝐴𝐿𝐿 (𝑘)−𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)]

[𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)]

(12.)

 5 

𝑉𝑖,𝑗
𝑈𝐻𝑉[𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)] = 𝑣𝑓,𝑖,𝑗
𝑈𝐻𝑉exp [−

1

𝑎𝑖,𝑗
𝑈𝐻𝑉 (

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)

𝑑𝑐𝑟,𝑖,𝑗
𝑈𝐻𝑉 )

𝑎𝑖,𝑗
𝑈𝐻𝑉

] (13.) 6 

Vehicle Type 4: LCHV 7 

When the front vehicle decreases its speed, the car-following distance will decrease. Some vehicles 8 
will decrease their speed to keep a safe car-following status, while some drivers could make a lane-changing 9 
decision to keep a higher driving speed if the lane-changing conditions are satisfied on the adjacent lane. 10 
In the multi-lane mixed traffic environment, human drivers’ lane-changing behavior could be triggered by 11 
the speed decreasing of front vehicle because of the VSL. 12 

Lane-changing Analysis 13 

1.Lane-changing Conditions 14 

Generally, there are two lane-changing conditions for FVDM (22). It could be described as: 15 

1. The distance between the new following vehicle on the target lane should be larger than the safe 16 
distance. 17 

𝑆𝑠𝑎𝑓𝑒 = 𝑠0 + 𝑇[𝑣𝑓̂ − 𝜏𝑏𝑠𝑎𝑓𝑒 + 𝛾𝜏(𝑣𝑓̂ − 𝑣𝐿𝐶)] (14.) 18 

2. The distance between the new previous vehicle on the target lane should be larger than the 19 
advantage distance. 20 

𝑆𝑎𝑑𝑣 = 𝑠𝑓 + 𝑇𝜏[Δa + 𝑎𝑏𝑖𝑎𝑠 + 𝛾(𝑣𝑙 − 𝑣𝑙)] (15.) 21 

where 𝑠0 is the minimum acceptable following distance;  𝑠𝑓 is the car-following distance on the current 22 

lane; 𝑣𝑓̂, 𝑣𝑙 is the traffic speed on the target lane; 𝑣𝐿𝐶 is the traffic speed of HV on the current lane; 𝑣𝑙 is 23 

the speed of the CAV; Δa is the lane-changing threshold; 𝑎𝑏𝑖𝑎𝑠 is the asymmetry term; 𝑏𝑠𝑎𝑓𝑒 is the safe 24 

deceleration for drivers; 𝑇 is the steady-state time gap; 𝜏 is the speed adaption time; and 𝛾 is sensitivity for 25 
speed differences. 26 

Figure 1 illustrates the process for human drivers to make lane-changing decisions. When the lane-27 
changing conditions are both satisfied, the HV could make a lane-changing decision to keep a higher driving 28 
speed. 29 
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 1 
Figure 1 Lane-changing scenario for HV 2 

2.Kinematic Analysis of LCHV 3 

In a 10–15-minute time scale, the maneuver of lane-changing human-driven vehicles (LCHVs) 4 
could be divided into two parts: lane-changing and car-following after lane-changing. As a single lane-5 
changing only takes 1-2 seconds, compared with the much larger predict time interval of 10-15 minutes, 6 
the short-time effect of lane-changing could be ignored, the car-following behavior of LCHV after lane-7 
changing is mainly focused in this research. 8 

CAV

LCHV CAV

L1 CAV

LCHV CAV

L1 L2 CAV

LCHV CAV

 9 
Figure 2 Vehicle Moving After Lane-Changing 10 

After executing a lane change, the LCHV will align itself behind another vehicle in the adjacent 11 
lane. In the absence of a lane change, the HV should reduce its speed when the preceding vehicle in the 12 
current lane slows down. Due to the advantageous condition, the HV can maintain a higher speed in the 13 
adjacent lane after the lane change than in its original lane. Consequently, the subsequent movement of the 14 
LCHV is contingent upon the behavior of the new leading vehicle in the adjacent lane. As depicted in Figure 15 
2, we observe that the further a CAV or a CHV is from the LCHV, the later the LCHV will decelerate its 16 
speed. 17 

 

F3 F2 F1 L1 L2 L3

LC Leading

 safeS advS

fS
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The vehicle (either CAV or CHV) influenced by the VSL will gradually decrease its speed as it 1 
approaches a VSL control spot. Consequently, the distance between the VSL-affected vehicle and the 2 
preceding vehicle will progressively increase until it reaches a value approximately equal to the current car-3 
following distance. As a result, the VSL-affected vehicle can be considered the leader of a platoon, 4 
consisting of several UHVs that desire a higher speed but are also influenced by the deceleration of the 5 
VSL-affected vehicle, along with the LCHV itself. Moreover, in a given road segment, a higher proportion 6 
of VSL-affected vehicles leads to a shorter platoon length. 7 

In this platoon, the moving of the leading vehicle could be described as: 8 

𝑣𝐿𝑒𝑎𝑑̇ (𝑡) =
𝑉𝑉𝑆𝐿(𝑡) − 𝑣𝐿𝑒𝑎𝑑(𝑡)

𝜏
(16.) 9 

For the UHVs in the platoon following the VSL-affected vehicle, the car-following model could be 10 
written as: 11 

𝑣𝑖̇(𝑡) =
𝑉(𝑠𝑖̇(𝑡)) − 𝑣𝑖(𝑡)

𝜏
−

𝑣𝑖(𝑡)

𝐿
(𝑣𝑖(𝑡) − 𝑣𝑖+1(𝑡)) (17.) 12 

Considering the influence of the ratio of VSL-affected vehicles, the car-following model of LCHV 13 
could be derived. If there are 3 vehicles before the LCHV, the first vehicle is a VSL-affected vehicle, and 14 
the second and third vehicles are UHV. Then, the car-following model of the LCHV could be written as: 15 

 16 
Figure 3 The situation of 3 vehicles before the LCHV 17 

𝑣𝐿𝐶𝐻𝑉̇ (𝑡, 𝑁 = 3) = ∑ ((
Δ𝑡

𝐿
)

𝑛−1

(
𝑉(𝑠𝑛̇(𝑡)) − 𝑣𝑛(𝑡)

𝜏
−

𝑣𝑛(𝑡)(𝑣𝑛(𝑡) − 𝑣𝑛+1(𝑡))

𝐿
) ∏ 𝑣𝑛(𝑡)

2

𝑛=1

)

3

𝑛=1

(18.) 18 

Then, after the iteration, if there are 𝑁 vehicles before an LCHV. The leading vehicle is a VSL-19 

affected vehicle, and the 𝑁 − 1 followed vehicles are UHV. The acceleration function of time could be 20 
written as: 21 

𝑣𝐿𝐶𝐻𝑉̇ (𝑡, 𝑁) = ∑ ((
Δ𝑡

𝐿
)

𝑛−1

(
𝑉(𝑠𝑛̇(𝑡)) − 𝑣𝑛(𝑡)

𝜏
−

𝑣𝑛(𝑡)(𝑣𝑛(𝑡) − 𝑣𝑛+1(𝑡))

𝐿
) ∏ 𝑣𝑛(𝑡)

𝑁−1

𝑛=1

)

𝑁

𝑛=1

(19.) 22 

That (Equ 19) is the microscopic car-following model for the LCHV following a 𝑁 vehicle platoon 23 

after the lane-changing. The penetration rate of CAVs is 𝛼 on a freeway segment, then, the probability for 24 

 

F1
LCHV

(HV1)
HV2 HV3 CAV

LCHV CAV

 safeS

fS
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following an N-vehicle platoon is 𝛼(1 − 𝛼)𝑁−1. Generally, by adding all possible situations together, the 1 
acceleration function for the LCHV is: 2 

𝑣𝐿𝐶𝐻𝑉̇ (𝑡) = ∑  𝛼(1 − 𝛼)𝑁−1

∞

𝑁=1

∑ ((
Δ𝑡

𝐿
)

𝑛−1

(
𝑉(𝑠𝑛̇(𝑡)) − 𝑣𝑛(𝑡)

𝜏
−

𝑣𝑛(𝑡)(𝑣𝑛(𝑡) − 𝑣𝑛+1(𝑡))

𝐿
) ∏ 𝑣𝑛(𝑡)

𝑁−1

𝑛=1

)

𝑁

𝑛=1

(20.) 3 

where 𝑁 is the number of vehicles in the platoon before a LCHV, including one VSL-compliant vehicle 4 

and 𝑁 − 1  VSL-uncompliant vehicles; 𝛼  is the penetration rate of CAV; 𝐿  is the length of the road 5 

segment; 𝜏 is the speed adaption time; Δ𝑡 is a little o number 𝑠𝑛̇(𝑡) is the car-following distance for vehicle 6 

𝑛 at time 𝑡; 𝑣𝑛(𝑡) is the speed of vehicle 𝑛 at time 𝑡, and: 7 

 𝑣𝑛(𝑡) = {

𝑣𝐿𝐶𝐻𝑉(𝑡) 𝑛 = 1

𝑣𝑛(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑣𝐿𝑒𝑎𝑑(𝑡) 𝑛 = 𝑁 + 1

 8 

Similarly, for road segment 𝑖 and lane 𝑗 at time interval 𝑘 + 1 the discrete macroscopic traffic flow 9 

model of LCHV could be written as: 10 

𝑣𝑖,𝑗
𝐿𝐶𝐻𝑉(𝑘 + 1) = 𝑣𝑖,𝑗

𝐿𝐶𝐻𝑉(𝑘) −
𝜈𝑖Δ𝑇

𝜏𝑖𝐿𝑖

[𝑑𝑖+1,𝑗
𝐴𝐿𝐿 (𝑘)−𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)]

[𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)]

+ Δ𝑇 ∑ 𝛼𝑖,𝑗(1 − 𝛼𝑖,𝑗)𝑁−1 

∞

𝑁=1

×

∑ ((
Δ𝑡

𝐿𝑖
)

𝑛−1

(
𝑉𝑖,𝑗

𝐿𝐶𝐻𝑉 (𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)) − 𝑣𝑖,𝑗

𝐿𝐶𝐻𝑉(𝑘)

𝜏𝑖
+

𝑣𝑖,𝑗
𝐿𝐶𝐻𝑉(𝑘)(𝑣𝑖−1,𝑗

𝐻𝑉 (𝑘) − 𝑣𝑖,𝑗
𝐿𝐶𝐻𝑉(𝑘))

𝐿𝑖
) ∏ 𝑣𝑖,𝑗

𝐿𝐶𝐻𝑉(𝑘)

𝑁−1

𝑛=1

)

𝑁

𝑛=1

(21.)

 11 

The optimal velocity function of LCHV is related to 𝑣𝑓,𝑖,𝑗
𝐿𝐶𝐻𝑉, which is the driver’s expected speed 12 

of LCHV. 13 

𝑉𝑖,𝑗
𝐿𝐶𝐻𝑉[𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)] = 𝑣𝑓,𝑖,𝑗
𝐿𝐶𝐻𝑉exp [−

1

𝑎𝑖,𝑗
𝐿𝐶𝐻𝑉 (

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)

𝑑𝑐𝑟,𝑖,𝑗
𝐿𝐶𝐻𝑉 )

𝑎𝑖,𝑗
𝐿𝐶𝐻𝑉

] (22.) 14 

3. Proportion Analysis 15 

The proportion of LCHV is related to the traffic flow status and lane-changing conditions. Human 16 
drivers are assumed to be greedy. As long as the lane-changing conditions are satisfied, the driver will 17 
change lanes to ensure that the driving speed will not be affected by the deceleration of the leading vehicle. 18 
Drivers are also assumed to change their lanes only once per time interval. 19 

For two homogeneous adjacent lanes 𝑚 and 𝑚 + 1, if the vehicle on lane 𝑚 intend to switch to 20 

lane 𝑚 + 1, the vehicle space on lane 𝑚 + 1  𝑠𝑚+1
𝐼𝑛𝑖𝑡𝑖𝑎𝑙should be larger than: 21 

𝑆𝑚,𝑚+1
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑠0 + 𝑇[𝑣𝑚+1

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 + 𝜏(Δa + 𝑎𝑏𝑖𝑎𝑠 − 𝑏𝑠𝑎𝑓𝑒)] + 𝑠𝑚
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 (23.) 22 

Then, 𝑛𝑚,𝑚+1 human-drivers will change their lane from 𝑚 to 𝑚 + 1, the final HV number on lane 23 

𝑚 + 1 after lane-changing will be 𝑛𝑚+1
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑛𝑚,𝑚+1 , and the HV number of lane 𝑚 will be 𝑛𝑚

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 −24 

𝑛𝑚,𝑚+1 The traffic density after lane-changing for lane 𝑚  and 𝑚 + 1  could be 
𝑛𝑚

𝐼𝑛𝑖𝑡𝑖𝑎𝑙−𝑛𝑚,𝑚+1

𝐿
 and 25 

𝑛𝑚+1
𝐼𝑛𝑖𝑡𝑖𝑎𝑙+𝑛𝑚,𝑚+1

𝐿
 respectively; and car-following distance after lane-changing for lane 𝑚  and 𝑚 + 1  is 26 

𝐿

𝑛𝑚
𝐼𝑛𝑖𝑡𝑖𝑎𝑙−𝑛𝑚,𝑚+1

  and 
𝐿

𝑛𝑚+1
𝐼𝑛𝑖𝑡𝑖𝑎𝑙+𝑛𝑚,𝑚+1

. 27 

Because the drivers are greedy, the final traffic state of lane 𝑚 + 1, which is the vehicle distance 28 

on lane 𝑚 + 1 𝑠𝑚+1
𝐹𝑖𝑛𝑎𝑙 should be equal to: 29 



Y. Zhang, K. Yang, Y. Lei, Y. Gong, and X. Yang  

11 
 

𝑆𝑚,𝑚+1
𝐹𝑖𝑛𝑎𝑙 = 𝑠0 + 𝑇[𝑣𝑚+1

𝐹𝑖𝑛𝑎𝑙 + 𝜏(Δa + 𝑎𝑏𝑖𝑎𝑠 − 𝑏𝑠𝑎𝑓𝑒)] + 𝑠𝑚
𝐹𝑖𝑛𝑎𝑙 (24.) 1 

The number of lane-changing vehicles from lane 𝑚 to lane 𝑚 + 1 is 𝑛𝑚,𝑚+1, the number of lane-2 

changing is related to the traffic flow status on the target lane. Then, we have  3 

0 = 𝑠0 + 𝑇 [𝑣𝑓,𝑖,𝑚+1exp [−
1

𝑎𝑖,𝑚+1
(

𝑛𝑚+1
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑛𝑚,𝑚+1

𝐿𝑑𝑐𝑟,𝑖,𝑚+1
)

𝑎𝑖,𝑚+1

] + 𝜏(Δa + 𝑎𝑏𝑖𝑎𝑠 − 𝑏𝑠𝑎𝑓𝑒)]

+
𝐿

𝑛𝑚
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑛𝑚,𝑚+1

−
𝐿

𝑛𝑚+1
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑛𝑚,𝑚+1

(25.)

 4 

  5 

Then, in road segment 𝑖, the proportion of LCHVs from lane 𝑚 to lane 𝑚 + 1 is  6 

𝜔𝑖,𝑚,𝑚+1 =
𝑛𝑚,𝑚+1

𝑛𝑚
𝐼𝑛𝑖𝑡𝑖𝑎𝑙

(26.) 7 

where, 𝜔𝑖,𝑚,𝑚+1 is the proportion of LCHVs from lane 𝑚 to lane 𝑚 + 1 in road segment 𝑖; 𝑛𝑚+1
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 is the 8 

initial vehicle number in the road segment on lane 𝑚 + 1; 𝑛𝑚
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 is the initial vehicle number in the road 9 

segment on lane 𝑚; 𝑛𝑚,𝑚+1is the number of vehicles change their lane from lane 𝑚 to lane 𝑚 + 1; 𝐿 is the 10 

length of the road segment; 𝑠0 is the minimum acceptable following distance; 𝑇 is the steady-state time 11 

gap; 𝜏 is the speed adaption time; Δa is the lane-changing threshold; 𝑎𝑏𝑖𝑎𝑠 is the asymmetry term; 𝑏𝑠𝑎𝑓𝑒 is 12 

the safe deceleration for drivers; 𝑣𝑓,𝑖,𝑚+1is the expected velocity for vehicles on segment 𝑖 lane 𝑚 + 1; 13 

𝑑𝑐𝑟,𝑖,𝑚+1 is the critical density on road segment 𝑖 and lane 𝑚 + 1; and 𝑎𝑖,𝑚+1 is the speed exponent term 14 

of segment 𝑖 and lane 𝑚 + 1 for HVs. 15 

Then, for a macroscopic level, at time interval 𝑘 the density changes from lane 𝑗 to lane 𝑗 + 1 16 

because of LCHV 𝑑𝑖,𝑗,𝑗+1(𝑘) on segment 𝑖 could be formulated as: 17 

𝑓(𝑑𝑖,𝑗,𝑗+1(𝑘)) = 𝑠0 + Δ𝑇 [𝑣𝑓,𝑖,𝑗+1
𝑉𝑒ℎ exp [−

1

𝑎𝑖,𝑗+1
𝑉𝑒ℎ (

𝑑𝑖,𝑗+1
𝐴𝐿𝐿 (𝑘) + 𝑑𝑖,𝑗,𝑗+1(𝑘)

𝐿𝑖
2𝑑𝑐𝑟,𝑖,𝑗+1

𝑉𝑒ℎ )

𝑎𝑖,𝑗+1
𝑉𝑒ℎ

] + 𝜏(Δa + 𝑎𝑏𝑖𝑎𝑠 − 𝑏𝑠𝑎𝑓𝑒)] 18 

+
1

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘) − 𝑑𝑖,𝑗,𝑗+1(𝑘)

−
1

𝑑𝑖,𝑗+1
𝐴𝐿𝐿 (𝑘) + 𝑑𝑖,𝑗,𝑗+1(𝑘)

(27.) 19 

At time interval 𝑘, the proportion of LCHVs from lane 𝑗 to lane 𝑗 + 1 on segment 𝑖 is: 20 

𝜔𝑖,𝑗,𝑗+1(𝑘) =
𝑑𝑖,𝑗,𝑗+1(𝑘)

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)

(28.) 21 

The Summary of Discrete Macroscopic Multi-class Traffic Model 22 

Based on the kinematic analysis of CAVs, CHVs, UHVs, and LCHVs in this section, the second-23 
order multi-class discrete macroscopic traffic flow model proposed in this research could be summarized 24 
as follows: 25 

𝑣𝑖,𝑗(𝑘 + 1) = 𝛼𝑖,𝑗(𝑘)𝑣𝑖,𝑗
𝐶𝐴𝑉(𝑘 + 1) + 𝛽𝑖,𝑗(𝑘)𝑣𝑖,𝑗

𝑈𝐻𝑉(𝑘 + 1)  26 

+ (1 − 𝛼𝑖,𝑗(𝑘) − 𝛽𝑖,𝑗(𝑘) − 𝜔𝑖,𝑗,𝑗+1(𝑘) − 𝜔𝑖,𝑗,𝑗−1(𝑘)) 𝑣𝑖,𝑗
𝐶𝐻𝑉(𝑘 + 1) 27 

+ (𝜔𝑖,𝑗+1,𝑗(𝑘) + 𝜔𝑖,𝑗−1,𝑗(𝑘)) 𝑣𝑖,𝑗
𝐿𝐶𝐻𝑉(𝑘 + 1) (29.) 28 
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𝑣𝑖,𝑗
𝐶𝐴𝑉(𝑘 + 1) = 𝑣𝑖,𝑗

𝐶𝐴𝑉(𝑘) +
Δ𝑇

𝜏𝑖
[𝑉𝑖,𝑗

𝐶𝐴𝑉 (𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)) − 𝑣𝑖,𝑗

𝐶𝐴𝑉(𝑘)] +
Δ𝑇

𝐿𝑖
𝑣𝑖,𝑗

𝐶𝐴𝑉(𝑘)[𝑣𝑖−1,𝑗
𝐶𝐴𝑉 (𝑘) − 𝑣𝑖,𝑗

𝐶𝐴𝑉(𝑘)] −  1 

𝜈𝑖Δ𝑇

𝜏𝑖𝐿𝑖

[𝑑𝑖+1,𝑗
𝐴𝐿𝐿 (𝑘)−𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)]

[𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘) + 𝜅𝑖]

(30.) 2 

𝑣𝑖,𝑗
𝐻𝑉(𝑘 + 1) = 𝑣𝑖,𝑗

𝐻𝑉(𝑘) +
Δ𝑇

𝜏𝑖
[𝑉𝑖,𝑗

𝐻𝑉 (𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)) − 𝑣𝑖,𝑗

𝐻𝑉(𝑘)] +
Δ𝑇

𝐿𝑖
𝑣𝑖,𝑗

𝐻𝑉(𝑘)[𝑣𝑖−1,𝑗
𝐻𝑉 (𝑘) − 𝑣𝑖,𝑗

𝐻𝑉(𝑘)] −  3 

𝜈𝑖Δ𝑇

𝜏𝑖𝐿𝑖

[𝑑𝑖+1,𝑗
𝐴𝐿𝐿 (𝑘)−𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)]

[𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘) + 𝜅𝑖]

(31.) 4 

𝑣𝑖,𝑗
𝐿𝐶𝐻𝑉(𝑘 + 1) = 𝑣𝑖,𝑗

𝐿𝐶𝐻𝑉(𝑘) −
𝜈𝑖Δ𝑇

𝜏𝑖𝐿𝑖

[𝑑𝑖+1,𝑗
𝐴𝐿𝐿 (𝑘)−𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)]

[𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)]

+ Δ𝑇 ∑ 𝛼𝑖,𝑗(1 − 𝛼𝑖,𝑗)𝑁−1 

∞

𝑁=1

×

∑ ((
Δ𝑡

𝐿𝑖
)

𝑛−1

(
𝑉𝑖,𝑗

𝐿𝐶𝐻𝑉 (𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)) − 𝑣𝑖,𝑗

𝐿𝐶𝐻𝑉(𝑘)

𝜏𝑖
+

𝑣𝑖,𝑗
𝐿𝐶𝐻𝑉(𝑘) (𝑣𝑖−1,𝑗

𝐻𝑉 (𝑘) − 𝑣𝑖,𝑗
𝐿𝐶𝐻𝑉(𝑘))

𝐿𝑖
) ∏ 𝑣𝑖,𝑗

𝐿𝐶𝐻𝑉(𝑘)

𝑁−1

𝑛=1

)

𝑁

𝑛=1

(32.)

 5 

𝑉𝑖,𝑗
𝑉𝑒ℎ[𝑑𝑖,𝑗

𝐴𝐿𝐿(𝑘)] = 𝑣𝑓,𝑖,𝑗
𝑉𝑒ℎexp [−

1

𝑎𝑖,𝑗
𝑉𝑒ℎ (

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)

𝑑𝑐𝑟,𝑖,𝑗
𝑉𝑒ℎ )

𝑎𝑖,𝑗
𝑉𝑒ℎ

] (33.) 6 

𝜔𝑖,𝑗,𝑗+1(𝑘) =
𝑑𝑖,𝑗,𝑗+1(𝑘)

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘)

(34.) 7 

𝑓(𝑑𝑖,𝑗,𝑗+1(𝑘)) = 𝑠0 + Δ𝑇 [𝑣𝑓,𝑖,𝑗+1
𝑉𝑒ℎ exp [−

1

𝑎𝑖,𝑗+1
𝑉𝑒ℎ (

𝑑𝑖,𝑗+1
𝐴𝐿𝐿 (𝑘) + 𝑑𝑖,𝑗,𝑗+1(𝑘)

𝐿𝑖
2𝑑𝑐𝑟,𝑖,𝑗+1

𝑉𝑒ℎ )

𝑎𝑖,𝑗+1
𝑉𝑒ℎ

] + 𝜏(Δa + 𝑎𝑏𝑖𝑎𝑠 − 𝑏𝑠𝑎𝑓𝑒)] 8 

+
1

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘) − 𝑑𝑖,𝑗,𝑗+1(𝑘)

−
1

𝑑𝑖,𝑗+1
𝐴𝐿𝐿 (𝑘) + 𝑑𝑖,𝑗,𝑗+1(𝑘)

(35.) 9 

𝑑𝑖,𝑗
𝐴𝐿𝐿(𝑘) = 𝑑𝑖,𝑗

𝐶𝐴𝑉(𝑘) + 𝑑𝑖,𝑗
𝐻𝑉(𝑘) (36.) 10 

𝑑𝑖,𝑗
𝐶𝐴𝑉(𝑘 + 1) = 𝑑𝑖,𝑗

𝐶𝐴𝑉(𝑘) +
∆𝑇

𝐿𝑖
[𝑞𝑖−1,𝑗

𝐶𝐴𝑉 (𝑘) − 𝑞𝑖,𝑗
𝐶𝐴𝑉(𝑘) + 𝑟𝑖,𝑗

𝐶𝐴𝑉(𝑘) − 𝑠𝑖,𝑗
𝐶𝐴𝑉(𝑘)] (37.) 11 

𝑑𝑖,𝑗
𝐻𝑉(𝑘 + 1) = 𝑑𝑖,𝑗

𝐻𝑉(𝑘) +
∆𝑇

𝐿𝑖
[𝑞𝑖−1,𝑗

𝐻𝑉 (𝑘) − 𝑞𝑖,𝑗
𝐻𝑉(𝑘) + 𝑟𝑖,𝑗

𝐻𝑉(𝑘) − 𝑠𝑖,𝑗
𝐻𝑉(𝑘)] −

              𝑑𝑖,𝑗,𝑗+1(𝑘) − 𝑑𝑖,𝑗,𝑗−1(𝑘) + 𝑑𝑖,𝑗+1,𝑗(𝑘) + 𝑑𝑖,𝑗−1,𝑗(𝑘) (38.)

 12 

𝑞𝑖,𝑗
𝐴𝐿𝐿(𝑘) = 𝑞𝑖,𝑗

𝐶𝐴𝑉(𝑘) + 𝑞𝑖,𝑗
𝐻𝑉(𝑘) (39.) 13 

𝑞𝑖,𝑗
𝐶𝐴𝑉(𝑘) = 𝑑𝑖,𝑗

𝐶𝐴𝑉(𝑘)𝑣𝑖,𝑗
𝐶𝐴𝑉(𝑘) (40.) 14 

𝑞𝑖,𝑗
𝐻𝑉(𝑘) = 𝑑𝑖,𝑗

𝐻𝑉(𝑘)𝑣𝑖,𝑗
𝐻𝑉(𝑘) (41.) 15 

 16 

 17 
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NEUMERICAL EXPERIMENT 1 

In order to assess the performance of the multi-class METANET (MultiMETANT) model proposed 2 
in this research, a series of numerical experiments are conducted. The primary focus of these experiments 3 
revolves around the estimation of traffic on a 3-lane highway, wherein varying VSL settings are employed 4 
within a mixed traffic environment. This section comprehensively elucidates the design of the numerical 5 
experiments concerning freeway geometry, mixed traffic flow simulation, model parameters, and 6 
measurements. 7 

Freeway Geometry  8 

In the experiment, we have designed a 3-lane straight freeway with mixed traffic flow for model 9 
evaluation. The total length of this study area measures 5 km, divided into 5 segments, each spanning 1 km. 10 
Within this mixed traffic environment, we have a combination of CAVs and HVs. The HVs are capable of 11 
both car-following and lane-changing maneuvers. 12 

As Figure 4 shows, the sensors are installed along the roadside for data collection. Additionally, a 13 
speed control board is strategically positioned at the beginning of segment 3, indicating that segment 3 is 14 
the initial road segment where speed control measures are implemented. 15 
 16 
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 17 
Figure 4 Geometry of experiment road 18 

Mixed Traffic Flow Generator 19 

The traffic flow analyzed in this research is generated by a simulator. Within the traffic flow, 20 
vehicles are observed to move using the FVDM. Additionally, vehicles have the capability to change lanes 21 
provided that the lane-changing conditions are met. The CAV and CHV vehicles will adjust their desired 22 
speed to speed control requirements, whereas the LCHV and UHVs will maintain their desired speed as the 23 
free flow speed regardless of whether they are in a speed control segment. 24 

The traffic trajectory data was generated using a mixed traffic flow simulator comprising 25 
Connected and Autonomous Vehicles (CAVs) and Human-driven Vehicles (HVs). The total simulation 26 
duration lasted 3900 seconds, and the effective area covered a distance of 5000 meters. A specific speed 27 
control location was designated at 2000 meters. 28 
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Parameters  1 
 2 

Table 1 Value of parameters 3 

Parameter Value 

Vehicle Simulator 

𝑠0 3m 

𝑏𝑠𝑎𝑓𝑒 2𝑚/𝑠2 

𝑏𝑚𝑎𝑥 5𝑚/𝑠2 

𝑏𝑠ℎ𝑎𝑟𝑝 8𝑚/𝑠2 

𝜏 5s 

𝑇 2s 

𝛾 0.6 

Δa 5𝑚/𝑠2 

𝑎𝑚𝑎𝑥 5𝑚/𝑠2 

𝑢𝑓 120 km/h 

METANET and MultiMETANET 

𝜏 20 s 

𝜈 0.05 

𝜅 13 veh/km/lane 

𝑢𝑓 120 km/h 

𝑑𝑐𝑟 33.5 veh/km 

𝑎 1.4324 

𝛼 0.2 

The parameters employed in the experiment for both the vehicle trajectory simulator and the traffic 4 
model are documented in  5 

Table 1. The parameters utilized in the vehicle simulator serve to produce vehicle trajectories in a 6 
mixed traffic environment. The parameters for METANET(23) and MultiMETANET are configured to 7 
evaluate the performance of the traffic model. 8 

Measurements 9 

To evaluate the performance of the proposed multi-class METANET model, the error metrics Root 10 
Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Squared Prediction Error 11 
(MSPE), and Root Mean Squared Prediction Error (RMSPE) are applied. The definitions of the error 12 
metrics are shown in the following equations. 13 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑥𝑖 − 𝑥𝑖̂)

2

𝑁

𝑖=1

(42.) 14 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑥𝑖 − 𝑥𝑖̂

𝑥𝑖̂
|

𝑁

𝑖=1

(43.) 15 

𝑀𝑆𝑃𝐸 =  
1

𝑁
∑ (

𝑥𝑖 − 𝑥𝑖̂

𝑥𝑖̂
)

2𝑁

𝑖=1

(44.) 16 
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𝑅𝑀𝑆𝑃𝐸 =  √
1

𝑁
∑ (

𝑥𝑖 − 𝑥𝑖̂

𝑥𝑖̂
)

2𝑁

𝑖=1

(45.) 1 

where 𝑥𝑖̂ represents the value of estimation of mixed traffic flow model at each time step 𝑖; and 𝑥𝑖 denotes 2 
the traffic flow data generated by the simulator. 3 

RESULTS DISCUSSION 4 

Effectiveness Analysis 5 

Figure 5 illustrates the time-space pattern of vehicles in each lane, depicting their trajectories and 6 
corresponding speeds. Initially, all vehicles were configured with an initial speed of 120 km/h, and the 7 
speed was controlled to decrease to 80 km/h after passing the designated control spot at 2000 meters. 8 
Clearly, the figure shows a distinct decrease in the slope of vehicle trajectories, indicating a reduction in 9 
vehicle speed following the control point. Furthermore, the figure reveals that lane 2 exhibited a higher 10 
initial traffic density compared to lanes 1 and 3. As a result, vehicles in lanes with higher initial density, 11 
such as lane 2, demonstrated a greater tendency to switch to lanes with lower density after receiving the 12 
speed decrease command. 13 

 14 
Figure 5 Vehicle trajectory in 3 lanes simulation 15 
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 1 
Figure 6 Vehicle speed in 3 lanes simulation 2 

The traffic status data is obtained from the vehicle trajectory data generated by the mixed traffic 3 
flow simulator. To evaluate the effectiveness of the multi-class traffic model presented in this study, we 4 
utilize the original METANET model as the reference for traffic status prediction. 5 

Figure 7 illustrates the model's performance in traffic flow estimation. It is evident that the 6 
predictive outcomes of the multi-class model closely match the actual traffic flow, outperforming the 7 
original METANET model. Notably, substantial improvements in the multi-class model's performance are 8 
observed, particularly after vehicle speed control, in segments 2, 3, and 4.  9 

The proposed model shows a considerable improvement in traffic speed estimation. This 10 
enhancement is visually evident from Figure 8, where it becomes apparent that the Multiclass METANET 11 
outperforms the original METANET in accurately depicting the variable speed limit (VSL). Notably, after 12 
passing the control spot, the majority of vehicles adhere to the speed limitation. In contrast to the original 13 
METANET's speed estimation, which indicates an increase over time in speed along road sections after 14 
speed control, the proposed multi-class traffic model demonstrates a decrease in speed due to the influence 15 
of VSL. 16 
 17 
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 1 
Figure 7 Traffic flow estimation 2 

 3 

 4 
Figure 8 Speed estimation 5 

 6 

 7 

 8 

Table 2  Errors of model prediction 9 
 Traffic Flow Traffic Speed 
 MultiMETANET METANET MultiMETANET METANET 

RMSE 2.626936 3.830534 4.466233 16.7441 

MAPE 0.02925 0.037628 0.024635 0.115122 

MSPE 0.002997 0.006373 0.002122 0.029819 

RMSPE 0.054728 0.079803 0.055906 0.209676 

In this case, the MultiMETANET model achieved a substantially lower root mean square error 10 
(RMSE) of 2.626936 in traffic flow estimation, while the METANET model obtained a higher RMSE of 11 
3.830534. Similarly, in traffic speed estimation, MultiMETANET obtained an RMSE of 4.466233, whereas 12 
the METANET model had a significantly higher RMSE of 16.7441. The lower RMSE values indicate that 13 
the MultiMETANET model outperforms the METANET model in accurately predicting traffic-related 14 
values. 15 
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MAPE computes the average percentage difference between predicted values and actual values. 1 
The results show that the MultiMETANET model outperforms the METANET model in both traffic flow 2 
and traffic speed prediction. The MAPE for MultiMETANET is 0.02925 in traffic flow estimation and 3 
0.024635 in the traffic speed prediction. In contrast, the METANET model yields higher MAPE values of 4 
0.037628 and 0.115122 in the traffic flow and speed prediction, respectively. The lower MAPE values for 5 
MultiMETANET indicate that it provides more accurate predictions with smaller percentage errors. MSPE 6 
measures the average squared percentage differences between predicted and actual values. Once again, the 7 
MultiMETANET model demonstrates superior performance, as it achieves lower MSPE values in both 8 
scenarios. The MultiMETANET's MSPE values are 0.002997 and 0.002122 in flow and speed estimation, 9 
respectively. On the other hand, the METANET model has higher MSPE values of 0.006373 and 0.029819 10 
in the flow and speed estimation, respectively. The lower MSPE values for MultiMETANET highlight its 11 
ability to provide more precise predictions with minimized squared percentage errors. RMSPE computes 12 
the square root of the average squared percentage differences between predicted and actual values. As with 13 
the other metrics, the MultiMETANET model performs better in this evaluation as well. It achieves RMSPE 14 
values of 0.054728 and 0.055906, while the METANET model has higher RMSPE values of 0.079803 and 15 
0.209676 in flow and speed prediction respectively. The lower RMSPE values for MultiMETANET 16 
indicate its superior accuracy in predicting traffic-related values with minimized percentage errors. 17 

In conclusion, the proposed model, by capturing the lane-changing behavior of HVs, offers a more 18 
comprehensive representation of the traffic status compared to the original METANET model, 19 
encompassing both speed and flow. The analysis of the performance metrics demonstrates that the 20 
MultiMETANET model outperforms the METANET model in both traffic flow estimation and traffic speed 21 
prediction. It consistently exhibits lower values across all evaluation metrics, highlighting its superiority in 22 
accurately estimating traffic status. 23 

Sensitive Analysis of VSL Difference 24 

To further investigate the model's performance under various differences in VSL (Variable Speed 25 
Limit) speeds, the experiments encompass diverse traffic flow scenarios. Specifically, the initial traffic 26 
speed is set at 120 km/h, while the speed limit assumes different lower values (110 km/h, 100 km/h, 90 27 
km/h, 80 km/h, and 70 km/h). The analysis primarily centers on evaluating the extent of performance 28 
enhancement using RMSE, MAPE, MSPE, and RMSPE. 29 

With different VSL speeds, Figure 9 illustrates the model's performance in estimating traffic flow, 30 
while Figure 10 displays the predictions of traffic speed. Concerning traffic flow estimation, it is evident 31 
that as the disparity between the Variable Speed Limit (VSL) and free flow speed increases, the flow 32 
variance at speed control section 2 becomes more pronounced. This is attributed to the greater influence of 33 
the speed limit on the traffic flow with a larger difference in VSL. Regarding traffic speed estimation, as 34 
the speed difference expands, the variance of the predicted speed also increases, indicating the model's 35 
effectiveness in predicting speed across different VSL values. 36 
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 1 
Figure 9 Traffic flow estimation with different VSL speed 2 

 3 
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 1 
Figure 10 Traffic speed estimation with different VSL speed 2 

 3 
 4 
 5 
 6 
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Table 3 Errors of model prediction with different VSL speed 1 
  

  

Traffic Flow  Traffic Speed  

Multi 

METANET 
METANET Improvement 

Multi 

METANET 
METANET Improvement 

120km/h to 110 km/h 

RMSE 0.701197 0.755647 7.21% 1.435452 4.069715 64.73% 

MAPE 0.007824 0.007795 -0.37% 0.00587 0.020998 72.04% 

MSPE 0.000213 0.000248 13.89% 0.00016 0.001289 87.56% 

RMSPE 0.014653 0.015773 7.10% 0.013076 0.03708 64.74% 

120km/h to 100 km/h 

RMSE 1.694786 1.697376 0.15% 2.771797 8.681826 68.07% 

MAPE 0.017818 0.016763 -6.29% 0.01234 0.048785 74.71% 

MSPE 0.001248 0.001251 0.30% 0.000664 0.006516 89.81% 

RMSPE 0.035372 0.035404 0.09% 0.027841 0.087197 68.07% 

120km/h to 90 km/h 

RMSE 1.942346 2.691084 27.82% 3.734368 12.77466 70.77% 

MAPE 0.021094 0.026262 19.68% 0.01832 0.07883 76.76% 

MSPE 0.001637 0.003143 47.90% 0.001334 0.01561 91.45% 

RMSPE 0.040466 0.056064 27.82% 0.041478 0.141936 70.78% 

120km/h to 80 km/h 

RMSE 2.626936 3.830534 31.42% 4.466233 16.7441 73.33% 

MAPE 0.02925 0.037628 22.26% 0.024635 0.115122 78.60% 

MSPE 0.002997 0.006373 52.97% 0.002122 0.029819 92.89% 

RMSPE 0.054728 0.079803 31.42% 0.055906 0.209676 73.34% 

120km/h to 70 km/h 

RMSE 3.342379 5.111124 34.61% 4.947461 20.38392 75.73% 

MAPE 0.033142 0.050117 33.87% 0.031353 0.158486 80.22% 

MSPE 0.004849 0.011338 57.24% 0.002888 0.049022 94.11% 

RMSPE 0.069633 0.106482 34.61% 0.070755 0.291951 75.76% 

Table 3 reveals that the model's performance for both traffic flow and traffic speed estimation 2 
deteriorates (increased RMSE, MAPE, MSPE, and RMSPE) with a reduction in the speed limit from 120 3 
km/h to 70 km/h. In contrast, the improvement demonstrated by MultiMETANET over the benchmark 4 
shows a progressive trend. This can be attributed to the fact that as the speed difference of Variable Speed 5 
Limits (VSL) increases, there is a subsequent rise in the number of lane-changing events caused by the 6 
speed decrease of the leading vehicles. Consequently, the MultiMETANET model proposed in this 7 
research, which takes into account the behavior of lane-changing vehicles, allows for a more accurate 8 
representation of the traffic flow status. 9 

Regarding the traffic flow estimation, the MultiMETANET exhibits superior performance 10 
compared to the original METANET. The extent of improvement increases as the speed difference grows 11 
larger, leading to improvements of 34.61% in RMSE, 33.87% in MAPE, 57.24% in MSPE, and 34.61% in 12 
RMSE, respectively. 13 
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Concerning the speed estimation, the MultiMETANET also demonstrates significant enhancements 1 
over the benchmark. Notably, it exhibits greater improvements compared to the traffic flow estimation. 2 
This outcome can be attributed to the model proposed based on kinematic analysis of various vehicle 3 
categories, enabling the MultiMETANET model proposed in this research to more accurately describe 4 
vehicle speeds and achieve superior overall performance. 5 

CONCLUSIONS 6 

The CAV technology holds promising benefits for road traffic management. In the long run, HVs 7 
and CAVs are expected to coexist and share the road network. To effectively support traffic management 8 
in this mixed traffic environment, it is essential to establish a fundamental traffic model theory. However, 9 
the conventional macroscopic traffic model faces critical challenges that need to be addressed, including 10 
(a) Incorporating the lane-changing and car-following behaviors of HVs into the macroscopic traffic flow 11 
model to accurately capture the interaction between CAVs and HVs. (b) Developing a model for variable 12 
speed limit control that effectively accommodates both CAVs and HVs in a mixed traffic environment. (c) 13 
Properly accounting for the impact of the penetration rate and compliant rate of CAVs on the dynamics of 14 
traffic flow in freeway scenarios. Addressing these critical issues is essential to devise comprehensive 15 
traffic management strategies and ensuring the seamless integration of CAVs and HVs in mixed traffic 16 
environments. 17 

In this study, we introduce a discrete second-order macroscopic traffic model to bridge the existing 18 
gap. The proposed model categorizes vehicles into distinct classes, each possessing unique characteristics. 19 
Formulating the macroscopic model relies on the microscopic movement of each vehicle class, taking into 20 
account essential factors such as lane-changing and car-following behaviors. Additionally, the model 21 
effectively captures the intricate interaction between Connected and Autonomous Vehicles (CAVs) and 22 
Human-Operated Vehicles (HVs) arising from speed control. Moreover, both the penetration rate of CAVs 23 
and the compliant rate of HVs are incorporated into the framework of this model, contributing to its 24 
comprehensive and realistic representation of mixed traffic dynamics. 25 

The numerical experiment was conducted to validate the performance of the proposed 26 
MultiMETANET model. When compared to the original METANET model, the proposed model 27 
demonstrates a higher degree of accuracy in predicting traffic status. Specifically, in terms of traffic flow 28 
estimation, the MultiMETANET exhibits significantly superior performance to the original METANET, 29 
with remarkable enhancements observed across the evaluation metrics. These improvements include a 30 
34.61% reduction in RMSE, a 33.87% decrease in MAPE, a 57.24% decrease in MSPE, and a 34.61% 31 
decrease in RMSE, respectively. Regarding speed estimation, the MultiMETANET also showcases 32 
substantial advancements over the benchmark, surpassing the improvements observed in traffic flow 33 
estimation. This outcome can be attributed to the MultiMETANET model being designed based on 34 
kinematic analysis of various vehicle categories, enabling it to more accurately capture vehicle speeds and 35 
achieve an overall superior performance compared to the original METANET model. 36 

The proposed model holds the potential to facilitate various traffic control tasks in freeway 37 
management. By effectively estimating the mixed traffic status through current speed control on both CAVs 38 
and HVs, the model can contribute to more efficient traffic management strategies. Since the proposed 39 
model has been exclusively tested with a base case of a 20% CAV penetration rate, exploring the effects of 40 
different penetration rates of CAVs could be a valuable subject for future research. Investigating pertinent 41 
issues related to varying rates of CAVs would offer valuable insights and enhance our understanding of the 42 
model's performance under different scenarios, thereby contributing to further advancements in traffic flow 43 
management in mixed traffic environments.  44 



Y. Zhang, K. Yang, Y. Lei, Y. Gong, and X. Yang  

23 
 

ACKNOWLEDGMENTS 1 
This study is supported by the grant titled "CAREER: Physics Regularized Machine Learning Theory: 2 
Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems," funded by the National Science 3 
Foundation. The authors would like to acknowledge the utilization of ChatGPT, a large language model, 4 
exclusively for enhancing the linguistic quality of the manuscript preparation process. 5 
 6 
AUTHOR CONTRIBUTIONS 7 
The authors confirm contribution to the paper as follows: study conception and design: Y. Zhang, X. Yang; 8 
simulation and data collection: Y. Zhang, K. Yang, Y. Lei; analysis and interpretation of results: Y. Zhang, 9 
Y. Gong; draft manuscript preparation: Y. Zhang, X. Yang. All authors reviewed the results and approved 10 
the final version of the manuscript. 11 
 12 

REFERENCES 13 
1.  Papadoulis, A., M. Quddus, and M. Imprialou. Evaluating the Safety Impact of Connected and 14 

Autonomous Vehicles on Motorways. Accident Analysis & Prevention, Vol. 124, 2019, pp. 12–22. 15 
https://doi.org/10.1016/J.AAP.2018.12.019. 16 

2.  Kavas-Torris, O., S. Y. Gelbal, M. R. Cantas, B. Aksun Guvenc, and L. Guvenc. Connected UAV 17 
and CAV Coordination for Improved Road Network Safety and Mobility. SAE Technical Papers, 18 
No. 2021, 2021. https://doi.org/10.4271/2021-01-0173. 19 

3.  He, S., F. Ding, C. Lu, and Y. Qi. Impact of Connected and Autonomous Vehicle Dedicated Lane 20 
on the Freeway Traffic Efficiency. European Transport Research Review, Vol. 14, No. 1, 2022, pp. 21 
1–14. https://doi.org/10.1186/S12544-022-00535-4/FIGURES/6. 22 

4.  Peng, B., M. F. Keskin, B. Kulcsár, and H. Wymeersch. Connected Autonomous Vehicles for 23 
Improving Mixed Traffic Efficiency in Unsignalized Intersections with Deep Reinforcement 24 
Learning. Communications in Transportation Research, Vol. 1, 2021, p. 100017. 25 
https://doi.org/10.1016/J.COMMTR.2021.100017. 26 

5.  Ge, J. I., and G. Orosz. Optimal Control of Connected Vehicle Systems With Communication Delay 27 
and Driver Reaction Time. IEEE Transactions on Intelligent Transportation Systems, Vol. 18, No. 28 
8, 2017, pp. 2056–2070. https://doi.org/10.1109/TITS.2016.2633164. 29 

6.  Du, R., S. Chen, Y. Li, J. Dong, P. Y. J. Ha, and S. Labi. A Cooperative Control Framework for 30 
CAV Lane Change in a Mixed Traffic Environment. 2020. 31 

7.  Zhou, L., T. Ruan, K. Ma, C. Dong, and H. Wang. Impact of CAV Platoon Management on Traffic 32 
Flow Considering Degradation of Control Mode. Physica A: Statistical Mechanics and its 33 
Applications, Vol. 581, 2021, p. 126193. https://doi.org/10.1016/J.PHYSA.2021.126193. 34 

8.  Yang, H., and W. L. Jin. A Control Theoretic Formulation of Green Driving Strategies Based on 35 
Inter-Vehicle Communications. Transportation Research Part C: Emerging Technologies, Vol. 41, 36 
2014, pp. 48–60. https://doi.org/10.1016/J.TRC.2014.01.016. 37 

9.  Hegyi, A., B. De Schutter, and H. Hellendoorn. Model Predictive Control for Optimal Coordination 38 
of Ramp Metering and Variable Speed Limits. Transportation Research Part C: Emerging 39 
Technologies, Vol. 13, No. 3, 2005, pp. 185–209. https://doi.org/10.1016/J.TRC.2004.08.001. 40 



Y. Zhang, K. Yang, Y. Lei, Y. Gong, and X. Yang  

24 
 

10.  Chanut, S., and C. Buisson. Macroscopic Model and Its Numerical Solution for Two-Flow Mixed 1 
Traffic with Different Speeds and Lengths. https://doi.org/10.3141/1852-26, No. 1852, 2003, pp. 2 
209–219. https://doi.org/10.3141/1852-26. 3 

11.  Bose, A., and P. A. Ioannou. Analysis of Traffic Flow with Mixed Manual and Semiautomated 4 
Vehicles. IEEE Transactions on Intelligent Transportation Systems, Vol. 4, No. 4, 2003, pp. 173–5 
188. https://doi.org/10.1109/TITS.2003.821340. 6 

12.  Lo, S. C., and C. H. Hsu. Cellular Automata Simulation for Mixed Manual and Automated Control 7 
Traffic. Mathematical and Computer Modelling, Vol. 51, No. 7–8, 2010, pp. 1000–1007. 8 
https://doi.org/10.1016/J.MCM.2009.08.042. 9 

13.  Li, X., Y. Xiao, X. Zhao, X. Ma, and X. Wang. Modeling Mixed Traffic Flows of Human-Driving 10 
Vehicles and Connected and Autonomous Vehicles Considering Human Drivers’ Cognitive 11 
Characteristics and Driving Behavior Interaction. Physica A: Statistical Mechanics and its 12 
Applications, Vol. 609, 2023, p. 128368. https://doi.org/10.1016/J.PHYSA.2022.128368. 13 

14.  Qin, Y., and H. Wang. Cell Transmission Model for Mixed Traffic Flow with Connected and 14 
Autonomous Vehicles. Journal of Transportation Engineering, Part A: Systems, Vol. 145, No. 5, 15 
2019, p. 04019014. https://doi.org/10.1061/JTEPBS.0000238/ASSET/589EC17C-8E38-4CD2-16 
B43D-1FCB1147D1DA/ASSETS/IMAGES/LARGE/FIGURE6.JPG. 17 

15.  Tajdari, F., and C. Roncoli. Adaptive Traffic Control at Motorway Bottlenecks with Time-Varying 18 
Fundamental Diagram. IFAC-PapersOnLine, Vol. 54, No. 2, 2021, pp. 271–277. 19 
https://doi.org/10.1016/J.IFACOL.2021.06.051. 20 

16.  Guo, Q., and X. (Jeff) J. Ban. Macroscopic Fundamental Diagram Based Perimeter Control 21 
Considering Dynamic User Equilibrium. Transportation Research Part B: Methodological, Vol. 22 
136, 2020, pp. 87–109. https://doi.org/10.1016/J.TRB.2020.03.004. 23 

17.  Zhou, J., and F. Zhu. Modeling the Fundamental Diagram of Mixed Human-Driven and Connected 24 
Automated Vehicles. Transportation Research Part C: Emerging Technologies, Vol. 115, 2020, p. 25 
102614. https://doi.org/10.1016/J.TRC.2020.102614. 26 

18.  Halakoo, M., and H. Yang. Evaluation of Macroscopic Fundamental Diagram Transition in the Era 27 
of Connected and Autonomous Vehicles. IEEE Intelligent Vehicles Symposium, Proceedings, Vol. 28 
2021-July, 2021, pp. 1188–1193. https://doi.org/10.1109/IV48863.2021.9575687. 29 

19.  Shi, X., and X. Li. Constructing a Fundamental Diagram for Traffic Flow with Automated Vehicles: 30 
Methodology and Demonstration. Transportation Research Part B: Methodological, Vol. 150, 31 
2021, pp. 279–292. https://doi.org/10.1016/J.TRB.2021.06.011. 32 

20.  Seraj, M., J. Li, and T. Z. Qiu. Expansion of the Fundamental Diagram from a Microscopic 33 
Multilane Modeling Framework of Mixed Traffic. 2020. https://doi.org/10.1155/2020/8878346. 34 

21.  Zhang, J., H. Pei, X. (Jeff) Ban, and L. Li. Analysis of Cooperative Driving Strategies at Road 35 
Network Level with Macroscopic Fundamental Diagram. Transportation Research Part C: 36 
Emerging Technologies, Vol. 135, 2022, p. 103503. https://doi.org/10.1016/J.TRC.2021.103503. 37 

22.  Treiber, M., and A. Kesting. Traffic Flow Dynamics: Data, Models and Simulation. Springer Berlin 38 
Heidelberg, 2013. 39 



Y. Zhang, K. Yang, Y. Lei, Y. Gong, and X. Yang  

25 
 

23.  MESSNER, A., and M. PAPAGEORGIOU. METANET: A Macroscopic Simulation Program for 1 
Motorway Networks. Traffic engineering & control, Vol. 31, No. 8–9, 1990, pp. 466–470. 2 

  3 
 4 


