
A Correct-and-Certify Approach to Self-Supervise
Object Pose Estimators via Ensemble Self-Training

Jingnan Shi*, Rajat Talak*, Dominic Maggio, and Luca Carlone

This paper has been accepted for publication at the 2023 Robotics: Science and Systems Conference.
Please cite the paper as: J. Shi*, R. Talak*, D. Maggio and L. Carlone, “A Correct-and-Certify Approach to Self-Supervise

Object Pose Estimators via Ensemble Self-Training,” Robotics: Science and Systems (RSS), 2023.

Abstract—Real-world robotics applications demand object

pose estimation methods that work reliably across a variety

of scenarios. Modern learning-based approaches require large

labeled datasets and tend to perform poorly outside the training

domain. Our first contribution is to develop a robust corrector
module that corrects pose estimates using depth information,

thus enabling existing methods to better generalize to new test

domains; the corrector operates on semantic keypoints (but is also

applicable to other pose estimators) and is fully differentiable.

Our second contribution is an ensemble self-training approach

that simultaneously trains multiple pose estimators in a self-

supervised manner. Our ensemble self-training architecture uses

the robust corrector to refine the output of each pose estimator;

then, it evaluates the quality of the outputs using observable cor-
rectness certificates; finally, it uses the observably correct outputs

for further training, without requiring external supervision. As

an additional contribution, we propose small improvements to

a regression-based keypoint detection architecture, to enhance

its robustness to outliers; these improvements include a robust

pooling scheme and a robust centroid computation. Experiments

on the YCBV and TLESS datasets show the proposed ensemble

self-training performs on par or better than fully supervised

baselines while not requiring 3D annotations on real data. Code

and pre-trained models are available on the project web page
1
.

I. INTRODUCTION

Object pose estimation is a key capability for robotics.
From search-and-rescue in caves and subways [1], to domestic
robotics and factory automation [2], to satellite pose estimation
for autonomous docking and debris removal [3], estimating 3D
poses of external objects is a necessary prerequisite for robot
navigation, manipulation, and human-robot interaction.

Recent progress in learning-based object pose estima-
tion has been fueled by the availability of pose-annotated
datasets [4], [5] and computer vision challenges (e.g., the
BOP challenge [6], [7]). However, in robotics applications it
is not always practical to collect training data for all relevant
environments, also considering that most techniques require
3D pose annotations, which are more challenging to manually
annotate. While increasingly more realistic simulators are

* equal contribution
This work was partially funded by Army Research Laboratory Distributed

and Collaborative Intelligent Systems and Technology Collaborative Research
Alliance under Grant W911NF-17-2-0181, in part by the Office of Naval
Research RAIDER project under Grant N00014-18-1-2828, in part by the
NSF CAREER award “Certifiable Perception for Autonomous Cyber-Physical
Systems,” and the Amazon project “Next-Generation Spatial AI for Human-
Centric Robotics.”

J. Shi, R. Talak, D. Maggio, L. Carlone are with the Laboratory for Informa-
tion & Decision Systems (LIDS), Massachusetts Institute of Technology, Cam-
bridge, MA 02139, USA, Email: {jnshi,talak,drmaggio,lcarlone}@mit.edu

1https://web.mit.edu/sparklab/research/ensemble_self_training/

Ours: Ensemble
(Self-supervised)

CosyPose
(Supervised)

RKN
(Supervised)

Fig. 1: We propose an ensemble self-training architecture that
simultaneously trains multiple pose estimators without external
supervision. (Top) The percentage of observably correct pose
estimates increases as the self-training progresses, jumping
from 19% to 80% after 3000 iterations. (Bottom) The resulting
estimates are on par or better compared to fully supervised
baselines, including a point-cloud based architecture (RKN)
and CosyPose [8]. Green points represent the input point cloud
transformed into the model frame based on the estimated pose.

reducing the sim-to-real gap, it remains unclear if the gap
will eventually disappear, and while simulation makes it easy
to provide ground-truth labels for the object poses, creating
a variety of assets to cover different scenarios remains an
expensive and time-consuming task. Therefore, it would be
desirable to develop self-supervised learning approaches that
can learn from real data without manual 3D annotations.

A related issue is that current learning-based techniques
generalize poorly outside the training domain. For instance,
a change in the placement of the camera (e.g., from a ground
robot to a drone) may induce a domain gap. Similarly, an
approach trained in simulation might exhibit a sim-to-real
gap, hindering real-world performance. Therefore, it would be
desirable to design approaches that can better bridge the gap
between training and testing, and generalize to unseen data.

In this paper we tackle these issues with two main contri-
butions. First, we propose a robust corrector (Section IV),
which can be added to the output of any pose estimation
architecture (as long as a CAD model of the object is available)
and is able to correct moderate pose estimation errors. The
robust corrector is a differentiable optimization layer, and

ar
X

iv
:2

30
2.

06
01

9v
2

 [c
s.C

V
]

11
 M

ay
 2

02
3

https://web.mit.edu/sparklab/research/ensemble_self_training/

corrects the pose output by using depth or point-cloud data and
the given object CAD model. While Talak et al. [9] showed
that a similar scheme outperforms standard pose refinement
methods (e.g., ICP), the key feature of our method is its
robustness to outliers, i.e., points incorrectly segmented to be
part of the object. Additionally, the robust corrector enables a
simple differentiation rule for back-propagation.

Our second contribution is an ensemble self-training ap-
proach (Section V), in which, any number of existing object
pose estimation models can be augmented and self-trained, in
parallel, on real-world data without requiring pose annotations.
The ensemble self-training approach attaches a robust correc-
tor to each pose estimator in order to refine their outputs. Then,
it computes certificates of observable correctness to assess the
quality of the output of each pose estimator. An observable
correctness certificate is a binary condition that checks whether
a pose estimate (after being refined by the corrector) meets
some basic geometric consistency requirements. We impose
two such consistency checks. The first, requires that the posed
CAD model (posed at the corrector pose estimate) matches the
input. The second, requires that a rendering of the posed CAD
model matches a 2D segmentation mask of the object. These
certificates extend the corresponding observable correctness
certificates in [9] to account for the presence of outliers and to
operate on both 3D and 2D data. The corrector pose, output by
the robust corrector, is said to be observably correct, if it meets
both these geometric consistency checks. Finally, the ensemble
self-training approach selects the observably correct outputs
across all the pose estimators in the ensemble, and uses them
for further self-supervised training. The key idea is that when
an estimator produces an observably correct output, it can learn
from it, while simultaneously informing the other estimators.
This allows exploiting the complementarity between different
models (e.g., a point-cloud-based architecture might perform
better than an RGB-based one in low-lighting conditions),
while helping to bootstrap the self-training process (e.g., if a
model initially is not able to get observably correct instances,
it still gets informed by observably correct instances produced
by the other models). In our experiments, we observe that as
the self-training progresses the number of observably correct
instances increases, and the proposed ensemble self-training
approach outperforms each model in the ensemble, even when
those are provided with full supervision (Fig. 1).

As an addition contribution, we develop an outlier-robust

point cloud processing by proposing small improvements to
a standard point-cloud-based regression model for semantic-
keypoint detection (Section VI). Regression models for
semantic-keypoint detection (e.g., [9]) are not robust to out-
liers in the segmentation mask due to two reasons: (i) most
of the point cloud architectures use farthest point sampling
(FPS) [10], [11], [12], which in the presence of outliers ends
up sampling many outlier points, rather than rejecting them;
(ii) the lack of exact translation and rotation equivariance of
point-cloud-based architectures results in incorrect detections,
when the input point cloud is not centered correctly — a
phenomenon that happens often when the point cloud contains

many outliers. We propose a trainable robust pooling layer
and a robust centroid computation, that can make any point
cloud-based model robust to outliers. The robust pooling sam-
ples points based on regressed scores, using point features and
trainable weights. The robust centroid computation computes
a robust center for the input point cloud using graduated non-
convexity [13]. The point cloud is then centered at this robust
center, before passing it to the point cloud-based model.

We conclude the paper by evaluating the robust corrector,
the ensemble self-training, and the outlier-robust point cloud
processing on the YCBV [14], [7] and the TLESS [5], [7]
datasets. The results confirm that (i) the robust corrector is
able to correct large errors in the keypoint detections; (ii) the
ensemble self-training produces pose estimates on par or
better compared to fully supervised baselines (10% average
increase in the ADD-S (AUC) scores over CosyPose [8] on
selected YCBV objects), and largely outperforms competing
self-supervised methods (40% increase in the ADD-S (AUC)
scores over Self6D++ [15]); (iii) the outlier-robust point cloud
processing increases the robustness of the keypoint detection
in the presence of outliers. The code will be released upon the
acceptance of this paper.

Before delving into our contributions, we review related
work (Section II) and formally state the problem (Section III).

II. RELATED WORKS

Self-Supervised Object Pose Estimation. The literature
on self-supervised pose estimation is sparse and very recent.
Wang et al. [16] train a pose estimation model on synthetic
RGB-D data, and then refine it further with self-supervised
training on real, unannotated data; differentiable rendering
provides the required supervision signal. Self6D++ [15] ex-
tends [16] by accounting for possible occlusions of the object.
Chen et al. [17] propose a student-teacher iterative scheme
to bridge the sim-to-real domain gap, for a sim-trained pose
estimation model. Wang et al. [18] extract pose-invariant
features, thereby canonizing object’s shape, and use them
for category-level object pose estimation of unseen object
instances. Zakharov et al. [19] utilize differentiable rendering
of signed distance fields of objects, along with normalized
object coordinate spaces [18], to learn 9D cuboids in a
self-supervised manner. Zhang et al. [20] propose to jointly
reconstruct the 3D shape of an object category and learn dense
2D-3D correspondences between the input image and the 3D
shape, by training on large-scale, real-world object videos.
Deng et al. [21] self-supervise pose estimation by interacting
with the objects in the environment; the model gets trained on
the data collected autonomously by a manipulator.

Point-cloud-only, self-supervised approaches for pose es-
timation have been also proposed. Li et al. [22] extract
an SE(3)-invariant feature, which works as a canonical ob-
ject, and use it to supervise training with a Chamfer loss.
Sun et al. [23] tackle self-supervised point cloud alignment
by extracting features using capsule network. Talak et al. [9]
propose a self-supervised keypoint-based pose estimator that
uses a corrector and binary certificates during self-supervision.

Our approach shares insights with [17], [16], [15], [9].
Similar to these approaches, our goal is to take sim-trained
models and further train them in a self-supervised manner. The
works [15], [17] use a student-teacher architecture which re-
quires instantiating two networks: the teacher and the student;
on the other hand, with the proposed corrector and certificates
we can directly self-supervise the pose estimation models
without the need to instantiate another network. The works [9],
[17] use certificates or consistency checks to assess the quality
of the pose estimates for self-training; contrary to our certifi-
cates, the ones in [9], [17] are sensitive to outliers resulting
from a noisy segmentation of the object, due to their reliance
on non-robust distance functions. Conversely, [16] is not robust
to foreground occlusions of the object, as shown in [15]. The
work [9] is the first to propose a self-training procedure based
on a corrector and binary certificates. However, the approach
is restricted to keypoint-based methods and performs poorly
in the presence of outliers (Section VII). In addition, none of
the works above jointly self-supervise multiple models.

Point Cloud Architectures. The success of convolutional
neural networks on images has led many researchers to
investigate models that can work directly on point cloud
data (e.g., produced by a LiDAR or an RGB-D camera).
However, most existing point-cloud-based models suffer from
the fact that there is not an easy and efficient equivalent to the
pooling/unpooling operation for point cloud data. Most models
use farthest point sampling (FPS) (which sequentially samples
a set of points, such that each point is farthest away from all
the points sampled thus far). This method often leads to sub-
optimal performance [24], [25], [26], [27], [28], [29], [30],
[31], especially in the presence of outliers; see also our analy-
sis in Section VII. Dovrat et al. [31] show that a task-specific,
learning-based approach to sub-sample points can outperform
a method like FPS. Yang et al. [30] propose a learnable,
task-agnostic, Gumbel subset sampling, which produces “soft”
subsets in training, and hard discrete subsets at test-time.
Lang et al. [29] propose a differentiable relaxation of point
cloud sampling, as a mixture of points. Nezhadarya et al. [28]
propose a global down-sampling method that first determines
critical points to sample, from regressed point features, hence
obviating the need to use computationally expensive k-nearest
neighbor-based aggregation. Yan et al. [27] propose adaptive
sampling, that modifies the sampled points using FPS, and then
uses a local-nonlocal module to extract and capture neigh-
boring and long-range dependencies of the sampled points.
Lin et al. [25] propose a learning-based sampling strategy,
and shows how the sampled points differ across various tasks
such as object-part segmentation and point cloud completion
— making the point that the sampling strategy needs to
be task specific. Wang et al. [24] propose a lightweight
transformer network for point cloud downsampling. None of
these works investigate the effect of outliers in point-cloud-
based regression models for semantic keypoint detection.

Differentiable Optimization. A differentiable optimization
layer solves an optimization problem, and also computes
the gradient of the optimal solution with respect to the

Fig. 2: Examples of outliers caused by a noisy 2D seg-
mentation. (a) RGB image with segmentation mask overlaid
in green. (b) Depth map with masked points highlighted in
green. (c) Zoomed-in view of the depth point cloud, with
outliers circled in red. Outliers are common even in manually
annotated masks: the example in the figure is obtained using
the ground-truth segmentation available in the YCBV dataset.

input parameters, for back-propagation. A differentiable op-
timization layer allows a learning-based model to explicitly
take into account various geometric and physical constraints.
Related work has developed tools to differentiate through
quadratic optimization problems [32], convex problems [33],
non-linear optimization problems [34], stochastic optimization
problems [35], and combinatorial optimization problems [36],
[37], [38]. Open-source libraries, such as [39], [40], provide
off-the-shelf tools to implement differentiable non-linear least-
squares. Our architecture implements a robust corrector mod-
ule as a differentiable optimization layer. Although, it solves
a non-convex optimization problem, we are able to exploit its
specific structure to implement a very simple derivative.

III. PROBLEM STATEMENT

Consider a robot equipped with a calibrated RGB-D camera.
The camera collects color and depth data picturing a 3D scene
containing an object of interest; we assume the object has a
known shape, i.e., we have its CAD model. We also assume ac-
cess to a standard pre-trained 2D object detection and instance
segmentation model (e.g., pre-trained MaskRCNN [41]), and
use it to extract a region of interest I (RoI) and the object
2D segmentation mask M . Given the 2D segmentation mask
and camera intrinsics, we compute the partial point cloud X

of the detected object, along with its (RGB) color f as:

X,f = ⇡�1 (I,M) , (1)

where ⇡�1 (·) simply back-projects the pixels in the mask
M to 3D points using the depth and camera intrinsics,
and attaches (RGB) color information to each point. Here,
X 2 R3⇥n and f 2 R3⇥n, where n is the number of points.

The segmentation mask M—produced by the 2D segmenta-
tion model— is typically noisy and may include outlier pixels
that do not actually belong to the object or miss pixels that

do belong to it (Fig. 2). More formally, if M is a segmented
2D binary mask, then we can write it as:

M = M
⇤ +OM , (2)

where M
⇤ denotes the ground-truth mask for the object and

OM contains the misclassified (outlier) pixels.
The outliers in the segmentation mask, in turn, induce

outliers in the partial point cloud X of the object, according
to eq. (1); these are 3D points that do not actually belong to
the object (Fig. 2). To formalize this concept, it is useful to
define a generative model that relates the point cloud X with
the to-be-computed object pose T

⇤ and its CAD model B.
We write the generative model for the partial point cloud X

as follows:

X = ⇥ (T ⇤ ·B) + nw +OX , (3)

where T
⇤ ·B is the ground-truth posed CAD model (i.e., the

CAD model arranged according to its true pose T
⇤), ⇥ (·)

is an occlusion function that samples a subset of points on
the posed CAD model T ⇤ ·B of the object, restricted to the
ground-truth mask M

⇤, nw is the sensor measurement noise,
and OX are the outlier points caused by outlier pixels in OM .

Our goal is to develop an estimator for the object pose T
⇤.

We consider the realistic case where we have access to existing
learning-based pose estimation models, but these have been
trained on a different domain (e.g., they have been trained in
simulation). Therefore, our goal is to further train these models
on real data without 3D annotations and in the presence of a
potentially large domain gap (e.g., sim-to-real gap).

Problem 1 (Self-Train Pose Estimation Models). Propose
a method to take one or more sim-trained pose estimation
models, and train them, in parallel, with self-supervision on
unannotated real-world data.

IV. ROBUST CORRECTOR

In this section we focus on keypoint-based pose estimation
and we develop a robust corrector that can compensate errors
in the keypoint detections (e.g., caused by the sim-to-real gap).
In the next section we show that the same ideas can be applied
to other pose estimators that do not rely on keypoints.

Fig. 3: CAD model
with annotated se-
mantic keypoints.

A semantic-keypoint-based pose es-
timator (e.g., [42], [43], [44]) first uses
a neural network to detect semantic
keypoints ỹ from the input; the neural
network is trained to detect specific
points on the surface of the object
(see Fig. 3). The detector can be im-
plemented using CNN-based architec-
tures on RGB inputs (e.g., [43], [44])
or regression models (e.g., point trans-
formers [12]) on point cloud and RGB-
D data. After detecting the keypoints,
a pose estimate can be retrieved via point-cloud registration,
i.e., by computing the rigid transformation T̃ that aligns the
annotated keypoints b on the CAD model (Fig. 3), and the

detected keypoints ỹ. In this section we will assume the
keypoint detector to be given, while in Sections V and VI we
will discuss how to self-train a detector and how to improve
the robustness of existing architectures, respectively.

Robust Corrector Overview. The detected keypoints ỹ

may be inaccurate when there is a large domain gap, which
in turn leads to poor pose estimates T̃ . Our first contribution
is a robust corrector, that corrects the detected keypoints by
utilizing the dense information in the input point cloud X and
the object CAD model B. Contrary to related work [9], the
robust corrector is designed to automatically reject outliers in
the input point cloud X , caused by the noisy segmentation
mask M . In a nutshell, our robust corrector takes in the
detected keypoints ỹ, and produces a correction �y

⇤ by
solving the robust corrector optimization problem (details
below). The corrected keypoints then become:

ŷ = ỹ +�y
⇤. (4)

After computing the corrected keypoints ŷ, we can compute
a corrected pose T̂ (�y

⇤) via outlier-free registration:

T̂ (�y
⇤) = argminT2SE(3)

PN
i=1 kŷ[i]� T · b[i]k22. (5)

where N is the number of semantic keypoints.
We now describe the robust corrector optimization problem,

and its forward and backward pass: since we are going to insert
this module in a trainable architecture in Section V, we are
particularly interested in making it differentiable.

Robust Corrector Optimization Problem. The robust
corrector computes a correction term �y, to the detected
keypoints ỹ, by attempting to match the input point cloud
to the resulting posed CAD model X̂(�y), which is arranged
according to the corrected pose T̂ (�y

⇤). The corrector solves
a bi-level optimization problem given by:

Minimize
�y2R3⇥N

1

n

nX

i=1

⇢

✓
min
j

||X[i]� X̂(�y)[j]||2
◆
,

subject to X̂(�y) = T (�y) · B̂,

T (�y) = argmin
T2SE(3)

NX

i=1

kỹ[i] +�y[i]� T · b[i]k22

(6)

where X[i] and X̂(�y)[j] denote the i-th and j-th points in
the input X and posed CAD model X̂(�y) = T (�y) · B̂,
respectively. Here, B̂ denotes a dense sampling of points on
the CAD model B, and ⇢(·) is a truncated least squares (TLS)
robust loss function defined as ⇢(z) = min{z2, c̄2}, where c̄ is
a user-specified threshold. In words, problem (6) computes the
optimal keypoint correction such that the corrected keypoints
produce a pose estimate T (�y) (via the last constraint in (6))
such that the CAD model posed at T (�y) (second constraint
in (6)) matches the input (objective in (6)). The objective
minimizes the distance between point pairs with distance
below c̄ and disregards points in the input X for which the
closest point in X̂(�y) is at a distance farther than c̄. We use
the TLS loss to automatically reject outliers in the input X ,
when solving the corrector optimization problem. The TLS

loss is commonly used in robust estimation for robotics [13],
[45], [46] due to its insensitivity to outliers.

Forward Pass. The bi-level optimization problem (6) is
non-linear and non-convex. However, we note that the lower-
level optimization problem (last line in (6)) is nothing but an
outlier-free registration problem, which can be solved in closed
form via singular value decomposition (SVD) [47], [48].
Since the SVD computation is differentiable, we can directly
compute the gradient of the cost function with respect to the
correction �y. Therefore, we can solve the robust corrector
problem (6) via a constant-step-size gradient descent. In our
experiments, we implement the solver in PyTorch [49] —so as
to enable batch processing— and compute the gradients using
the autograd functionality in PyTorch.

Backward Pass. In order to include the robust corrector
as a module of a trainable architecture, it is necessary to
differentiate through the corrector optimization problem. We
now show that the robust corrector optimization problem,
although non-linear and non-convex, admits a very simple
derivative of the output �y

⇤, with respect to the input ỹ.

Proposition 1. The gradient of the correction �y
⇤ with

respect to the detected keypoints ỹ is the negative identity:

@�y
⇤/@ỹ = �I. (7)

We omit the proof of the proposition, which remains iden-
tical to its non-robust counterpart in [9].

Remark 2 (Robust Corrector vs. Non-Robust Corrector vs.
ICP). The work [9] proposes a non-robust version of the
corrector, that is recovered by using ⇢(z) = z2 in (6). The
work also showed the advantage of optimizing over keypoints,
rather than over poses (e.g., as in ICP). As we show in our
experiments, the non-robust loss in [9] leads to large errors
when the input point cloud contains outliers resulting from
a noisy 2D segmentation. On the other hand, the proposed
approach is able to correct large errors even in the presence
of a large fraction of outliers.

V. ENSEMBLE SELF-TRAINING ARCHITECTURE

Overview. Figure 4 illustrates the proposed ensemble self-
training architecture. In the figure and description below, we
limit the scope to stacking only two pose estimation models in
parallel, but the methodology presented here can be trivially
extended to a larger number of models (see Remark 4 below).

Let M1 and M2 be two pose estimators that take in
(I,M ,X,f) and output estimated pose and detected key-
points; below we will observe that keypoints detections can
be artificially added to any pose estimator, as long as we
have a CAD model of the object. We use (ỹ1, T̃ 1) and
(ỹ2, T̃ 2) to denote the outputs produced by models M1 and
M2, respectively. We augment each pose estimators with two
modules: (i) robust corrector and (ii) observable correctness
certificate check. The robust corrector takes in the estimated
pose and detected keypoints (T̃ , ỹ), and outputs corrected pose
and keypoints (T̂ i, ŷi), i = 1, 2, see Section IV.

The observable correctness certificate implements two
checks to assess the geometric consistency of the corrected
pose. The 3D certificate checks if the input point cloud X

matches the posed CAD model T̂
i · B, for i = 1, 2. The

2D certificate, on the other hand, checks if the rendering of
the posed CAD model, namely T̂

i · B, on the image plane
is compatible with the input segmentation mask M . Both
tests account for occlusions and outliers in the detected object.
These two certificates in turn determine if the corrected poses
T̂

1 and T̂
2, produced by the robust correctors, are observably

correct or not. The self-training uses the observably correct
instances to supervise the training process. We now describe
each of these modules, and the self-training method, in detail.

A. Robust Corrector Beyond Keypoint-based Models

In Section IV, we observed that a semantic-keypoint-based
pose estimator processes the sensor data to obtain keypoint
detections ỹ and pose estimate T̃ . Therefore, we can think
about such an estimator as a map from the input (I,M ,X,f)
to the tuple (ỹ, T̃) of detected keypoints and pose estimate:

M : (I,M ,X,f)! (ỹ, T̃), (8)

where for the sake of generality we let M take (I,M ,X,f)
as input, whereas an estimator may use only a subset of the
four inputs (e.g., a point-cloud-only pose estimator may choose
to work with only X , in the four-tuple).

It is now easy to realize that if a pose estimator does not
rely on keypoints and only computes a pose estimate T̃ , we
can still hallucinate semantic-keypoint detections as

ỹ = T̃ · b, (9)

where b are the keypoints on the CAD model. Using ỹ as
keypoint detections, we can then apply the robust corrector
optimization problem (6) to any pose estimator, as long as we
have a CAD model B of the object we aim to detect.

B. Certificate of Observable Correctness

This section describes binary certificates that can distinguish
correct estimates from incorrect ones, i.e., a certificate that
is equal to one when the estimate from a pose estimator
is correct and zero otherwise. More precisely, we design
certificates of observable correctness [9] that determines if the
output produced by a learning-based model is consistent with
the input data and the object CAD model. We propose two
certificates of observable correctness, that assess consistency
with both the 2D segmentation mask and the 3D point cloud.

3D Certificate. Let T̂ be the corrected pose produced by
the robust corrector. We compute the posed CAD model X̂ =
T̂ · B̂, posed at T̂ . Consider the set of distance-scores:

S(X, X̂) = {si = min
j
kX[i]�X̂[j]k2 | i = 1, . . . , n}. (10)

The 3D certificate is then given by

oc3D(X, T̂) = I
n
percentile(S(X, X̂), p) < ✏3D

o
, (11)

Robust
Corrector

2D Certificate

Robust
Corrector

3D Certificate

2D Certificate

3D Certificate

O
bject D

etection

Fig. 4: Ensemble self-training architecture. The proposed architecture stacks several pose estimation models in parallel —we
show only two for the sake of simplicity: model M1 and M2. The models take in the outputs produced by a 2D object
detection and segmentation: I (scaled RoI of the detected object), M (2D segmentation mask of the detected object), X and
f (point cloud of the detected object and color as point feature). The two models output object pose estimates and keypoints:
(ỹ1, T̃ 1), (ỹ2, T̃ 2). The robust corrector, corrects the estimated poses, using dense information from the input X and the
object CAD model B. It produces corrected pose and keypoints: (ŷ1, T̂ 1), (ŷ2, T̂ 2). Two binary certificates, namely, the 2D
and 3D certificates check geometric consistency of the corrected pose T̂

1 and T̂
2. If the 2D and 3D checks succeed, the

corrected pose is declared to be observably correct. The architecture outputs an observably correct pose, and if none is found,
it outputs the corrected pose of a preferred model, say pose T̂

1 from M1.

where percentile(S(X, X̂), p) is the p-th percentile of the
vector S(X, X̂) (p = 0.9 in our tests), and ✏3D is a user-
specified threshold. Intuitively, for p = 0.9, oc3D(X, T̂) = 1
if at least 90% of the points in X is within a distance
✏3D from a point in X̂ , or oc3D(X, T̂) = 0 otherwise.
The percentile is used to account for outliers: taking a 90%
percentile corresponds to assuming that the outliers OX in (3)
do not corrupt more than 10% of the points in the input X .

2D Certificate. Let T̂ be the corrected pose produced
by the robust corrector. We render the posed CAD model
T̂ · B to obtain the mask M̂ . Note that the M̂ will render
the entire posed CAD model, hence will not account for
occlusions, caused by other objects. In order to ensure that
our 2D certificate is occlusion-aware, we compare the area of
the detected mask M with the area of the intersection M\M̂ .
The 2D certificate is then given by

oc2D(X, T̂) = I

8
<

:
ar
⇣
M \ M̂

⌘

ar (M)
> 1� ✏2D

9
=

; , (12)

where ar (M) denotes the pixel area of all pixels (i, j) in the
mask M with M(i, j) = 1, and ✏2D is a given threshold.

Observable Correctness Certificate. We say that an output
(ŷ, T̂) is observably correct if the two checks —the 3D and
2D certificates— are met. More formally, we deem an output
(ŷ, T̂) to be observably correct when oc(X, T̂) = 1 with:

oc(X, T̂) = oc2D(X, T̂) · oc3D(X, T̂). (13)

In the next subsection, we show how to use the binary
certificates to self-supervise an ensemble of pose estimators.

Remark 3 (Certificates vs Certifiable Correctness). The
work [9] shows that one can formally guarantee the correct-
ness of a pose estimate (i.e., its proximity to the ground truth)

by computing a certificate of observable correctness and a
certificate of non-degeneracy. The former evaluates how well
the estimate fits the data; the latter ensures that the data
contains enough information to compute a unique estimate. In
this work, we only define certificates of observable correctness,
hence we cannot derive formal performance guarantees. This
is mostly due to the fact that we consider a realistic case with
noisy segmentation, while the analysis [9] assumes perfect
segmentation. Despite this theoretical gap, we empirically
observe that the certificates of observable correctness provide
an excellent tool for identifying good estimates.

C. Ensemble Self-Training
We now describe our ensemble self-training procedure that

trains multiple models in parallel, using just the binary-valued,
observable correctness certificate to supervise.

Loss Functions. We first define two loss functions involved
in our ensemble self-training. For a corrected T̂ and input X ,
we define the self-supervised loss to be:

Lself

⇣
X, T̂

⌘
=

1

n

X

i

⇢

✓
min
j
kX[i]� T̂ · B̂[j]k2

◆
, (14)

where ⇢(z) = min{z2, c̄2} and c̄ denotes the maximum
admissible distance between pairs of points to be considered
inliers. For a pose T

0, we also define a supervised loss to be

Lsup

⇣
T̂ ,T 0

⌘
=

1

m

X

i

min
j
kT̂ · B̂[i]� T

0 · B̂[j]k22

+
1

m

X

j

min
i
kT̂ · B̂[i]� T

0 · B̂[j]k22, (15)

where m denotes the number of points on the sampled point
cloud B̂. In our definition in (15), we assume the loss to only
back-propagate through T̂ (to train model weights), and not

through T
0. We remark that the supervised loss is nothing but

the ADD-S [50] loss between the two posed models, namely
T̂ · B̂ and T

0 · B̂; below we are going to use it in a way that
each model in the ensemble supervises the others.

Self-Training. Recall that T̂
1 and T̂

2 denote the two
poses outputted by model M1 and M2 and refined by the
robust corrector (Fig. 4). Our self-training relies on stochastic
gradient descent (SGD). At each SDG iteration and for each
input X in a batch, we induce the following training loss:

L = oc(X, T̂ 1) ·
h
Lself

⇣
X, T̂ 1

⌘
+ Lsup

⇣
T̂

2, T̂ 1
⌘i

+ oc(X, T̂ 2) ·
h
Lself

⇣
X, T̂ 2

⌘
+ Lsup

⇣
T̂

1, T̂ 2
⌘i

. (16)

The supervised loss Lsup

⇣
T̂

2, T̂ 1
⌘

only back-propagates

through T̂
2, and trains model M2, and not M1. Similarly,

Lsup

⇣
T̂

1, T̂ 2
⌘

back-propagates through T̂
1, and trains model

M1, and not M2. Note that the loss only uses the input and the
output of the different models but does not rely on external su-
pervision. oc(X, T̂ 1) and oc(X, T̂ 2) are the binary-valued,
observable correctness certificates. For instance, oc(X, T̂ 1) =
1 indicates that the pose T̂

1 is observably correct. Therefore,
whenever T̂ 1 is observably correct, the loss (16) induces a self-
supervised loss Lself

⇣
X, T̂ 1

⌘
on model M1 and a supervised

loss Lsup

⇣
T̂

2, T̂ 1
⌘

on model M2 (with supervision using

T̂
1). Similarly, it induces a loss on M1 and M2, when

T̂
2 is observably correct. This ensures that the observably

correct outputs produced by one model are used to train the
second model, and vice versa, taking advantage of the potential
complementarity of the models in the ensemble.

Remark 4 (From Two to Many). The training loss (16)
is specified for training two models in parallel. This loss
function can easily be extended to simultaneously train K pose
estimation models. Let T̂

1, T̂ 2, . . . T̂K denote the corrected
poses output by the K pose estimators, after applying the
robust corrector to each model. The training loss of our
ensemble self-training—for each input X— would then be:

KX

k=1

oc(X, T̂ k)·

2

4Lself

⇣
X, T̂ k

⌘
+

X

k0 6=k

Lsup

⇣
T̂

k0
, T̂ k

⌘
3

5 .

Recall that the loss Lsup

⇣
T̂

k0
, T̂ k

⌘
only back-propagates

through T̂
k0

to train model Mk0
, and not Mk.

Remark 5 (Role of the Robust Corrector). The robust cor-
rector is instrumental in extending the reach of each trained
model. That is, it retains high accuracy for a much larger
set of inputs, than what the pose estimation model —without
the corrector— initially does. This allows bootstrapping the
self-training process, i.e., ensures that during the initial self-
training iterations there are enough observably correct inputs
(which are then used for self-training) despite a potentially
large domain gap; see results in Section VII-D.

VI. OUTLIER-ROBUST POINT CLOUD PROCESSING

This section describes two improvements to existing
regression-based architectures for keypoint detection; these
improvements are mostly minor, but impact performance in
practice, and are broadly applicable to a number of architec-
tures, including point transformers [12] and point-net [10].

Challenges of Regression-based Architectures. The un-
structured nature of point clouds makes it harder to device
a simple pooling layer, that simultaneously samples repre-
sentative points in the point clouds, and aggregates nearby
features. Most point cloud-based architectures have resorted
to using farthest point sampling strategy (FPS) [10], [11],
[12], followed by aggregating features from the k-nearest
neighbors. Such a pooling layer assumes that maximizing the
distance between the sampled points is a good heuristic to
select representative points in the point cloud. However, in
the presence of outliers, FPS —by construction— tends to
sample many outliers, instead of rejecting them. Furthermore,
the lack of intrinsic translation invariance/equivariance also
renders point-cloud-based models sensitive to the choice of a
centroid, which is used in practice to center the point cloud and
regain partial translation invariance/equivariance. To address
these issues, we propose a robust centroid computation and
robust pooling, which enhance the robustness of point-cloud-
based models in the presence of outliers in the input points.

Robust Centroid. In the presence of outliers, the algebraic
mean of the points in the point cloud X might be a poor
proxy for the object center. We proposed to compute a robust
centroid by solving a robust estimation problem:

x̄ = argmin
u2R3

1

n

X

i

⇢ (kX[i]� uk2) , (17)

where ⇢(·) is a robust loss function (e.g., TLS). We solve (17)
using the graduated non-convexity algorithm [13].

The input point cloud is then centered at x̄, namely,

X X � x̄⌦ 1T
n (18)

where 1n is the vector of ones, before passing it to the point-
cloud architecture. If the output is desired to be translation
equivariant, the robust centroid x̄ is also added to the model
output. We remark that the robust centroid computation does
not require to be differentiable, since it is applied directly to
the input and there are no trainable weights in (17).

Robust Pooling. Pooling is a building block of existing key-
point detection architectures, see [10], [11], [12]. We propose
a simple, trainable pooling layer, which samples points based
on regressed scores for each point. The pooling layer takes
an input point cloud with features (X,f) 2 R3⇥n⇥Rd⇥n

and outputs another point cloud, with features (X 0,f 0) 2
R3⇥n0⇥Rd⇥n0

; d denotes the feature dimension (d=3 in our
pose estimation setup), and n0<n since the number of pooled
points is always smaller than the number of input points.

Given the input features f = [f1, . . .fn], we first regress
a score si = MLP (fi) for each point i using a multilayer
perceptron MLP (·). We select n0 (< n) points in (X,f) that

have the highest scores to obtain (X 0,f 0). In our experiments,
we implement MLP (·) to have one hidden layer and ReLU
activations. The trainable MLP (·) weights make the layer
malleable during training to automatically learn to reject
outliers in the input point cloud.

Remark 6 (Robust Pooling as Trainable Sampling). The ro-
bust pooling layer only samples points and does not aggregate
features from nearby points to create new features — as a
traditional pooling layer does. We assume here that other
blocks in the architecture will learn to extract the neces-
sary features, before pooling. Treating pooling as trainable
sampling not only simplifies the architecture, but also saves
compute time that is otherwise spent in performing k-nearest-
neighbor search and aggregation operation.

VII. EXPERIMENTS

We present four sets of experiments. We first demonstrate
the effectiveness of the robust corrector in correcting large key-
point errors (Section VII-A), and show its utility viz-a-viz the
non-robust corrector proposed in [9] (Section VII-B). We then
show the ability of the robust centroid and pooling strategies,
developed in Section VI, in mitigating the effects of outliers
during keypoint detection (Section VI). Finally, we show the
effectiveness of our ensemble self-training architecture by self-
training a point-cloud-based model and a CNN-based model
(CosyPose [8]) in parallel (Section VII-D).

A. Robust Corrector Analysis

Setup. We use the YCBV dataset and objects [51], [7]. For
each YCBV object, we extract the object depth point cloud
from the YCBV test set. In this subsection, we use the ground-
truth pose annotations to get the ground-truth keypoint anno-
tations using (9), and we set the detected keypoints ỹ to be
ground-truth semantic keypoints plus an additive perturbation.
If y⇤ denotes the ground-truth keypoints, our noise model adds
uniform noise in range [��D/2,�D/2], to keypoint y

⇤[i],
with probability f , where D is the object diameter; this allows
us to simulate increasing levels of keypoint detection errors by
increasing �. We set f = 0.8 and analyze the robust corrector
as a function of the noise variance parameter �.

Results. The robust corrector is designed to correct key-
point detection errors. Fig. 5(a) plots the normalized ADD-
S (i.e., the ADD-S normalized by the object diameter D)
as a function of the keypoint detection noise parameter �.
We plot these scores for the robust corrector, as well as the
observably correct instances produced by the robust corrector.
We evaluate against two baselines: (i) Naive: which sets ŷ = ỹ

in solving the outlier-free registration problem (5), and (ii)
Naive + ICP: which uses outlier-free registration (same as
Naive) and then refines the result with point-to-point ICP. The
threshold c̄ for the robust corrector and the maximum points-
pair correspondence distance in ICP are both set to be 30% of
the object diameter. Fig. 5(b) plots the fraction of observably
correct instances produced by each method, as a function of �.

Insights. We observe that the robust corrector is able
to correct large keypoint errors, leading to improved pose
estimates (Fig. 5(a)). Even when � = 0.6, i.e., when 80%
of the keypoints are perturbed by uniform noise proportional
to 60% of the object diameter, we see that around 80% of
the outputs produced by the robust corrector are observably
correct (Fig. 5(b)), and the observably correct instances are
highly accurate (dashed red line in Fig. 5(a)). This number
drops to 0% for Naive (Fig. 5(b)), which indeed exhibits much
larger errors (Fig. 5(a)). Naive + ICP outperforms Naive, in
terms of accuracy and fraction of observably correct instances.
The robust corrector outperforms both — especially for large
noise (�) values.

B. Robust versus Non-Robust Corrector

Setup. We implement the non-robust corrector proposed
in [9], which solves (6), but with ⇢(z) = z2. We compare
the latter against the proposed robust corrector in the presence
of increasing number of outlier points in the input X . We use
a setup similar to Section VII-A, but now we fix � = 0.4
(along with f = 0.8), and add outliers to X . We evaluate the
ADD-S score as a function of the outlier rate: for instance,
when the outlier rate is 0.5, we test on a point cloud where
50% of the points have been replaced with random points.

Results and Insights. Figure 5(c) plots the normalized
ADD-S score as a function of the outlier rate. We observe
that the proposed robust corrector significantly outperforms
the non-robust corrector from [9]. We also observe that, in
the presence of outliers, the non-robust corrector yields worse
performance than having no corrector at all, which is expected,
since the non-robust corrector will be increasingly biased by
the outliers in the point cloud X .

C. Impact of Robust Centroid and Robust Pooling

Robust Keypoint Network (RKN). To evaluate the effect
of the robust centroid and robust pooling, we integrate these
two modules into a point transformer architecture [12] for se-
mantic keypoint detection. In particular, we subtract the robust
centroid to the point cloud before passing it to the detector.
Then, in the architecture, we alternate each point transformer
block [12] (which extracts and transforms features), with a
robust pooling layer (that sparsifies the point cloud). This
is repeated several times, and the final result is passed to
a multi-layered perceptron, which regresses the keypoints ỹ.
Finally, the centroid is added back to the keypoints to regain
translation equivariance. We call the resulting architecture
Robust Keypoint Network (RKN): RKN regresses semantic
keypoints ỹ, given a point cloud with color as point features.

Setup. We evaluate RKN against baselines that use the same
architecture as RKN, but without the robust pooling and cen-
troid; we refer to those with the label “KeyPo”. In particular,
we consider the following variants: (i) KeyPo (FPS): which
is KeyPo with farthest point sampling for pooling, (ii) KeyPo
(Random): which is KeyPo with random point sampling for
pooling, (iii) KeyPo (No Pooling): which is KeyPo without
any pooling layers, (iv) KeyPo (Robust Pooling): which is

(a) (b) (c)

Fig. 5: (a) Normalized ADD-S (averaged across all objects in the YCBV dataset) and corresponding standard deviation (shown
as error bars) as a function of the noise parameter �. (b) Fraction of observably correct instances (oc = 1) (averaged across
all objects in the YCBV dataset) as a function the noise parameter �. (c) ADD-S as a function of the outlier rate.

Fig. 6: Mean squared error (MSE) in the keypoint detection
as a function of the added noise variance �.

Fig. 7: Mean squared error (MSE) in the keypoint detection
as a function of the outlier rate in the input X .

KeyPo with the proposed robust pooling, and finally, (v)
RKN, which is nothing but KeyPo with the proposed robust
centroid and robust pooling. We remark that KeyPo (FPS),
KeyPo (Random), KeyPo (No Pooling), and KeyPo (Robust
Pooling) use a non-robust centroid computation. We use the
YCBV dataset [51], [7] and train the keypoint detectors in
a fully supervised manner. We evaluate the trained models
in two settings. The first adds zero-mean Gaussian noise, with
standard deviation �, to each point in the input X . The second
adds outlier points to the input X .

Results and Insights. Fig. 6 plots the mean squared error
(MSE) in the detected keypoints as a function of the added
noise standard deviation �; Fig. 7 plots the MSE of the
detected keypoints as a function of the outlier rate in X . We
observe that RKN, with robust centroid and robust pooling,
outperforms all the baselines. We see that while KeyPo (Ro-
bust Pooling) shows performance competitive to RKN in the
case of added noise but no outliers (Fig. 6), it does not fare
well in the presence of outliers. We also observe that popular
pooling methods, such as farthest point sampling and random
sampling, tend to do worse than using no sampling at all.

D. The YCBV and TLESS Experiment

Setup. We consider an ensemble self-training architecture
with two complementary pose estimators: CosyPose [8], a
CNN-based, RGB-only pose estimator, and RKN, the point
cloud-based pose estimator described in Section VII-C. We
take sim-trained CosyPose and RKN, and stack them in our
ensemble self-training architecture and self-train them on a
real unannotated dataset, using the self-training method in Sec-
tion V. We label the resulting self-trained model “Ensemble
(SSL)” (as in self-supervised learning); we also report the
accuracy achieved only by the outputs deemed observably
correct: we denote the resulting results as “Ensemble (SSL,
oc = 1)”. Moreover, we also evaluate the performance of each
branch in the ensemble self-training architecture. Ensemble-
CosyPose denotes the results corresponding to the corrected
poses from the CosyPose branch. Similarly, Ensemble-RKN
denotes the results corresponding to the corrected poses

(a) (b)

(c)

(d)

Fig. 8: (a) Cumulative distribution of ADD-S scores, averaged across all objects in the YCBV dataset, for the proposed
ensemble self-training architecture (Ensemble) and other baselines. (b) Cumulative distribution of ADD-S scores, across all
objects in the YCBV dataset, for Ensemble and its branches. (c) Average ADD-S score attained by the observably correct
outputs of Ensemble and its branches. (d) Percentage of observably correct instances for Ensemble and its branches.

from the RKN branch. We compare these results against
fully supervised versions of CosyPose and RKN, and against
Self6D++ [15], a state-of-the-art self-supervised method, with
weights and hyper-parameters provided by the authors.

We train the supervised baselines on the YCBV and T-LESS
training set in the BOP dataset [7]; we use the given training
and test split. For ensemble self-training, the initial models
are pre-trained on the synthetic data generated by a rendering
engine, also provided in the BOP dataset. The models are
then self-trained on the real test dataset. We use the stochastic
gradient descent optimizer, with a learning rate of 2 · 10�2

for RKN and 3 · 10�4 for CosyPose for 20 epochs over
the standard test splits. Other hyper-parameters are reported
in Appendix C. For the supervised baselines, we use the
suffix “Synth.” when they are trained on the synthetic data,
or “Real” when they are trained on the real training data;
for instance “CosyPose (Real)” corresponds to the state-of-
the-art approach from [8], which is trained in a supervised
manner using the training data from YCBV or TLESS. For
all approaches we use the 2D segmentation masks provided
by the datasets (Fig. 2). We measure performance using the
ADD-S score [50], computed on the test set and averaged
across all objects.

Results and Insights. Fig. 8(a) shows the cumulative
distribution of the ADD-S scores for each approach. The figure
shows that the proposed ensemble self-training outperforms
by a small margin the fully supervised RKN (Real) and
CosyPose (Real) approaches on the YCBV test dataset. This
shows that the ensemble self-training architecture is able to
reap the complementary benefits provided by the two models,
and enhance them, without the need for external supervision.
The figure also shows the performance of only the observably
correct outputs produced by Ensemble, i.e., Ensemble (SSL,
oc = 1). We see that these exhibit a further performance
boost, indicating that our certificates of observable correctness
are indeed able to identify correct outputs. The figure also
shows that RKN (Synth.) and CosyPose (Synth.), which are
trained on synthetic data, perform poorly, indicating a large

sim-to-real gap, and remarking the capability of the proposed
ensemble self-training to self-train starting from poor initial
models. Finally, we observe that the proposed ensemble self-
training significantly outperforms Self6D++ — a state-of-the-
art, self-supervised pose estimation method [15].

Figure 8(b) shows how each branch in the ensemble self-
training architecture contributes to its overall performance.
We observe that Ensemble-RKN contributes the most. This is
partly because RKN, in the RKN-branch, works directly on the
RGB-D input, as opposed to CosyPose, which only relies on
RGB information. However, a significant performance boost
to RKN is provided by the robust corrector (cf. with Fig. 8(a),
where RKN (Real) does much worse than CosyPose (Real)).

While Fig. 8(a)-(b) showed that the observably correct
outputs correspond to highly accurate pose estimates —this
is also true for each branch, see Fig. 8(c)— not all outputs
produced by Ensemble are observably correct. Figure 8(d)
shows the percentage of observably correct outputs produced
by Ensemble, and each of its branches. We observe a gap
in terms of the % of observably correct instances produced.
While the RKN-branch produces 67% observably correct
outputs, this number is 28% for the CosyPose branch. The
overall Ensemble architecture, as expected, gets the best of
both models, and 70% of its outputs are observably correct.

Tables I and II provide further insights into the compared
techniques by breaking down the results by objects (Fig. 8
instead averaged results across all objects). The tables report
the threshold ADD-S score with a threshold equal to 5% of the
object diameter, and ADD-S (AUC) with a threshold equal to
10% of the object diameter. Note that this is a much stricter
setup, compared to [15], which uses a much larger ADD-S
threshold of 10 cm. Table I shows the performance on six
YCBV objects, and Table II on six T-LESS objects; evalua-
tion of all YCBV and TLESS objects is given in Tables V
and VI. We see that our conclusions, gleaned from Fig. 8,
still hold when parsing the object-specific performance. This
reinforces that the proposed ensemble self-training ensures
very accurate pose estimates and performs on par or better

than fully supervised baselines while not requiring real-world
3D annotations. Qualitative results comparing our Ensemble
against the supervised baselines, RKN (Real) and CosyPose
(Real), are given in Fig. 1.

Insights: Impact of Corrector. The robust corrector in Sec-
tion IV was proposed to help bridge the sim-to-real gap. Ta-
ble III validates our proposal by showing the threshold ADD-S
scores for the sim-trained models, RKN (Synth.) and CosyPose
(Synth.), with and without the robust corrector, along with the
fully supervised models on the real data, i.e., RKN (Real) and
CosyPose (Real). We see that the robust corrector provides the
anticipated performance boost, and helps to bridge the sim-to-
real gap. Extra results with cumulative distributions of ADD-S
scores are given in Appendix A.

Insights: Progression of the Ensemble Self-Training.

Figure 1 shows that the number of observably correct instances
grows as the ensemble self-training progresses. Appendix B
provides further results, showing the increase in the average
number of observably correct instances for both branches of
the ensemble, as well as breaking down the results in terms
of 2D and 3D certificates.

VIII. CONCLUSION

We advance self-supervised learning for object pose esti-
mation by proposing an ensemble self-training architecture
that simultaneously trains multiple models without manual 3D
annotations, and leverages the complementarity of the models
to further boost their performance. The ensemble self-training
architecture is enabled (i) by a differentiable robust corrector,
which refines the pose estimates by each model, and (ii) by the
definition of observable correctness certificates that identify
correct pose estimates at test-time. The proposed ensemble
self-training performs on par or better compared to state-
of-the-art, fully supervised methods and largely outperforms
competing self-supervised baselines. As additional contribu-
tions, we introduce a robust centroid computation and robust
pooling operation that empirically enhance the performance
of point-cloud-based architectures for keypoint detection in the
presence of outliers caused by a noisy 2D object segmentation.

The results in this paper open several avenues of future
work. First, it would be interesting to extend the proposed
self-supervised approach to category-level perception where
the object CAD model is unknown or has to be selected from
a library of CAD models [42]. Second, it would be interesting
to enhance the robust corrector to leverage 2D information
(currently, it only uses the point cloud). Finally, the proposed
robust centroid and robust pooling are expected to be useful
for other point-cloud processing tasks, including point cloud
segmentation and shape completion.

APPENDIX

A. Impact of the Robust Corrector
The proposed robust corrector is designed to help bridge

the sim-to-real gap. Table III in the main paper validates
our proposal by showing the threshold ADD-S scores for the
sim-trained models, RKN (Synth.) and CosyPose (Synth.),

(a)

(b)

Fig. 9: Cumulative distribution of ADD-S scores, averaged
across all objects in the YCBV dataset. (a) The robust Cor-
rector bridges the sim-to-real gap for RKN. (b) The robust
Corrector partially bridges the sim-to-real gap for CosyPose.

with and without the robust corrector, along with the fully
supervised models on the real data, i.e., RKN (Real) and
CosyPose (Real). Figure 9 plots the full distribution of the
ADD-S scores for these models, further confirming that the
corrector does indeed help bridge the sim-to-real gap.

B. Progression of the Ensemble Self-Training
Figure 1 in the main paper showed that the number of ob-

servably correct instances grows as the ensemble self-training
progresses, confirming the effectiveness of the proposed self-
training. Figure 10 provides further insights by showing the
average increase in the percentage of instances with (oc2D =
1) and (oc3D = 1), produced by both the branches, after
our ensemble self-training. For CosyPose, we also consider
a variant that implements a trainable coarse detector, which
directly regresses object pose, while the CosyPose (Refine)
implements a pre-trained coarse detector along with a trainable
pose refinement model [52]. CosyPose (Refine), in fact, is what
is proposed in [8] to achieve high accuracy. We observe that
the RKN achieves the highest increase: 23% for (oc2D = 1)
and 56% for (oc3D = 1). We also see an increase for the
CosyPose branch. The CosyPose (Coarse) shows a higher
improvement (10% and 24%) compared to CosyPose (Refine)
(1% and 3%). Despite the modest increase in CosyPose
(Refine), it still shows higher pose estimation accuracy after

TABLE I: Evaluation of Ensemble and baselines on the YCBV dataset.

ADD-S ADD-S (AUC) Coffee Can Sugar Box Tuna Can Wood Block Scissors Large Clamp

RKN (Real) 0.90 0.65 0.14 0.16 0.62 0.50 0.05 0.18 0.01 0.16 0.12 0.23
CosyPose (Real) 0.83 0.63 1.00 0.81 0.93 0.70 0.27 0.29 0.22 0.28 0.86 0.67
Self6D++ (SSL) 0.25 0.29 0.36 0.43 0.32 0.33 0.26 0.25 0.11 0.14 0.38 0.32
Ensemble (SSL) 1.00 0.77 0.99 0.79 1.00 0.76 0.98 0.69 0.96 0.73 0.97 0.78

Ensemble (SSL, oc = 1) 1.00 0.78 1.00 0.83 1.00 0.79 1.00 0.74 1.00 0.77 0.97 0.78

TABLE II: Evaluation of Ensemble and baselines on the T-LESS dataset.

ADD-S ADD-S (AUC) obj_000004 obj_000010 obj_000013 obj_000024 obj_000026 obj_000030

RKN (Real) 0.19 0.32 0.62 0.52 0.46 0.48 0.31 0.39 0.40 0.47 0.79 0.58
CosyPose (Real) 0.41 0.38 0.84 0.63 0.51 0.42 0.62 0.50 0.83 0.64 0.93 0.71
Ensemble (SSL) 0.38 0.42 0.74 0.56 0.43 0.46 0.66 0.52 0.53 0.52 0.97 0.73

Ensemble (SSL, oc = 1) 0.85 0.65 0.99 0.73 0.79 0.59 0.98 0.69 1.00 0.72 1.00 0.75

TABLE III: Effects of the robust corrector on closing the sim-
to-real gap for both CosyPose and RKN.

ADD-S Synth. Synth. with Robust Corrector Real

CosyPose 0.41 0.69 0.85
RKN 0.17 0.36 0.36

Fig. 10: Average percentage increase in the number of in-
stances with (oc3D = 1) and (oc2D = 1), after ensemble self-
training. Results are for the RKN branch, and two variations
of the CosyPose branch, namely, CosyPose (Coarse) and
CosyPose (Refine).

self-training, compared to CosyPose (Coarse). Therefore, in
the baseline comparisons we only show CosyPose (Refine).

C. List of Hyper-Parameters

The proposed ensemble self-training used stochastic gradi-
ent descent optimizer with a learning rate of 2 ·10�2 for RKN
and 3 · 10�4 for CosyPose. The momentum and weight decay
was set to 0.9 and 1 · 10�5, respectively, and a batch size
of 20 was used during the ensemble self-training. The clamp
threshold c̄ in the robust corrector (eq. (6) in the main paper)
and the loss function (eq. (14) in the main paper) was set to
10% of the object diameter. The ✏oc3D and ✏oc2D , used in the
3D and 2D certificates (eqs. (11)-(12) in the main paper), were
tuned manually for different objects. For YCBV, ✏oc3D was set
to 4% of the object diameter, whereas ✏oc2D was chosen to be
the best among: 50%, 60%, and 95% of the object diameter.
For TLESS, ✏oc2D was set to 90% of the object diameter,
whereas ✏oc3D was chosen to be the best among: 4%, 6%, and
8% of the object diameter. We had to be lenient in the choice

of ✏oc2D because of the inaccuracies in the detected masks.
Table IV lists them for all the YCBV and TLESS objects.

D. Additional Visualization

Figure 11 shows some examples of pose estimates resulting
from the proposed Ensemble and other baseline methods.

REFERENCES

[1] K. Ebadi, L. Bernreiter, H. Biggie, G. Catt, Y. Chang, A. Chatterjee,
C. Denniston, S.-P. Deschênes, K. Harlow, S. Khattak, L. Nogueira,
M. Palieri, P. Petrác̆ek, P. Petrlík, A. Reinke, V. Krátký, S. Zhao,
A. Agha-mohammadi, K. Alexis, C. Heckman, K. Khosoussi, N. Kot-
tege, B. Morrell, M. Hutter, F. Pauling, F. Pomerleau, M. Saska,
S. Scherer, R. Siegwart, J. Williams, and L. Carlone, “Present and
future of SLAM in extreme underground environments,” arXiv preprint:
2208.01787, 2022.

[2] A. Zeng, K. T. Yu, S. Song, D. Suo, E. Walker, A. Rodriguez, and
J. Xiao, “Multi-view self-supervised deep learning for 6d pose estimation
in the amazon picking challenge,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA). IEEE, 2017, pp. 1386–1383.

[3] B. Chen, J. Cao, A. Parra, and T.-J. Chin, “Satellite pose estimation
with deep landmark regression and nonlinear pose refinement,” in 2019
IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW). IEEE, 2019, pp. 2816–2824.

[4] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “Benchmarking in Manipulation Research: Using the Yale-
CMU-Berkeley Object and Model Set,” IEEE Robotics & Automation
Magazine, vol. 22, no. 3, pp. 36–52, Sep. 2015.

[5] T. Hodan, P. Haluza, S. Obdrzalek, J. Matas, M. Lourakis, and X. Zabu-
lis, “T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less
Objects,” in IEEE Winter Conf. Appl. Computer Vision (WACV), Mar.
2017.

[6] T. Hodaň, F. Michel, E. Brachmann, W. Kehl, A. G. Buch, D. Kraft,
B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt,
F. Tombari, T.-K. Kim, J. Matas, and C. Rother, “BOP: Benchmark
for 6D Object Pose Estimation,” in European Conf. on Computer Vision
(ECCV), 2018, pp. 19–35.

[7] T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann,
F. Michel, C. Rother, and J. Matas, “BOP challenge 2020 on 6D object
localization,” European Conference on Computer Vision Workshops
(ECCVW), 2020.

[8] Y. Labbe, J. Carpentier, M. Aubry, and J. Sivic, “CosyPose: Consistent
multi-view multi-object 6D pose estimation,” in European Conf. on
Computer Vision (ECCV), 2020.

[9] R. Talak, L. Peng, and L. Carlone, “Certifiable 3D object pose esti-
mation: Foundations, learning models, and self-training,” IEEE Trans.
Robotics, (to appear) 2023, arXiv preprint: 2206.11215 (pdf).

[10] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3D classification and segmentation,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 652–660.

https://arxiv.org/pdf/2206.11215.pdf

Ensemble

Input
Point Cloud

Gelatin BoxScissorsTuna Can

CosyPose
(Real)

RKN
(Real)

CosyPose
(Synth)

RKN
(Synth)

Fig. 11: Sample estimates of the proposed ensemble self-training (label: Ensemble) and various baseline methods on three
objects from the YCBV dataset. The first row displays input point clouds generated from depth maps using segmentation masks.
Green dots represent model point clouds transformed with ground-truth transformations, and the CAD models are transformed
using the pose estimates.

TABLE IV: Parameters ✏oc3D and ✏oc2D , as a % of the object diameter, used for the YCBV and TLESS objects.

Y
C

B
V

object ✏oc3D ✏oc2D object ✏oc3D ✏oc2D object ✏oc3D ✏oc2D object ✏oc3D ✏oc2D

obj_01 4% 95% obj_02 4% 95% obj_03 4% 95% obj_04 4% 95%
obj_05 4% 60% obj_06 4% 95% obj_07 4% 50% obj_08 4% 95%
obj_09 4% 60% obj_10 4% 50% obj_11 4% 95% obj_12 4% 60%
obj_13 4% 95% obj_14 4% 95% obj_15 4% 50% obj_16 4% 95%
obj_17 4% 50% obj_18 4% 50% obj_19 4% 50% obj_20 4% 50%
obj_21 4% 60% - - -

TL
ES

S

object ✏oc3D ✏oc2D object ✏oc3D ✏oc2D object ✏oc3D ✏oc2D object ✏oc3D ✏oc2D

obj_01 4% 90% obj_02 4% 90% obj_03 4% 90% obj_04 4% 90%
obj_05 6% 90% obj_06 6% 90% obj_07 6% 90% obj_08 6% 90%
obj_09 6% 90% obj_10 6% 90% obj_11 6% 90% obj_12 6% 90%
obj_13 4% 90% obj_14 4% 90% obj_15 8% 90% obj_16 8% 90%
obj_17 4% 90% obj_18 4% 90% obj_19 6% 90% obj_20 6% 90%
obj_21 6% 90% obj_22 6% 90% obj_23 6% 90% obj_24 4% 90%
obj_25 4% 90% obj_26 4% 90% obj_27 6% 90% obj_28 6% 90%
obj_29 4% 90% obj_30 4% 90% - -

TABLE V: Evaluation of Ensemble and baselines on 21 YCBV objects.

ADD-S ADD-S (AUC) Coffee Can Cracker Box Sugar Box Soup Can Mustard Bottle Tuna Can

RKN (Real) 0.90 0.65 0.01 0.06 0.14 0.16 0.64 0.51 0.64 0.47 0.62 0.50
CosyPose (Real) 0.83 0.63 0.98 0.75 1.00 0.81 0.85 0.65 1.00 0.78 0.93 0.70
Self6D++ 0.25 0.29 0.77 0.63 0.36 0.43 0.09 0.17 0.80 0.67 0.32 0.33
Ensemble (SSL) 1.00 0.77 0.68 0.55 0.99 0.79 0.96 0.74 1.00 0.78 1.00 0.76

Ensemble (SSL, oc = 1) 1.00 0.78 0.96 0.75 1.00 0.83 0.98 0.76 1.00 0.78 1.00 0.79

ADD-S ADD-S (AUC) Pudding Box Gelatin Box Meat Can Banana Pitcher Bleach

RKN (Real) 0.01 0.18 0.00 0.15 0.40 0.35 0.18 0.23 0.70 0.55 0.39 0.35
CosyPose (Real) 0.91 0.79 0.88 0.70 0.61 0.51 0.94 0.77 1.00 0.84 0.82 0.67
Self6D++ 0.63 0.58 0.05 0.16 0.30 0.30 0.90 0.68 1.00 0.77 0.77 0.62
Ensemble (SSL) 1.00 0.80 1.00 0.85 0.71 0.59 1.00 0.79 0.81 0.66 1.00 0.76

Ensemble (SSL, oc = 1) 1.00 0.80 1.00 0.85 0.80 0.65 1.00 0.79 1.00 0.81 1.00 0.76

ADD-S ADD-S (AUC) Bowl Mug Power Drill Wood Block Scissors Marker

RKN (Real) 0.17 0.14 0.54 0.52 0.27 0.28 0.05 0.18 0.01 0.16 0.05 0.06
CosyPose (Real) 0.48 0.39 0.81 0.66 0.98 0.79 0.27 0.29 0.22 0.28 0.50 0.44
Self6D++ 0.16 0.24 0.03 0.17 0.77 0.62 0.26 0.25 0.11 0.14 0.18 0.17
Ensemble (SSL) 0.98 0.82 0.95 0.73 1.00 0.84 0.98 0.69 0.96 0.73 0.97 0.75

Ensemble (SSL, oc = 1) 0.98 0.82 1.00 0.82 1.00 0.84 1.00 0.74 1.00 0.77 0.99 0.80

ADD-S ADD-S (AUC) Large Clamp Extra Large Clamp Foam Brick - - -

RKN (Real) 0.12 0.23 0.05 0.19 0.00 0.20
CosyPose (Real) 0.86 0.67 1.00 0.81 0.54 0.46
Self6D++ 0.38 0.32 0.82 0.63 0.19 0.24
Ensemble (SSL) 0.97 0.78 0.91 0.73 0.59 0.51

Ensemble (SSL, oc = 1) 0.97 0.78 0.96 0.77 0.49 0.43

[11] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in neural
information processing systems, 2017, pp. 5099–5108.

[12] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point transformer,” in
Intl. Conf. on Computer Vision (ICCV), 2021, pp. 16 239–16 248.

[13] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone, “Graduated non-
convexity for robust spatial perception: From non-minimal solvers to
global outlier rejection,” IEEE Robotics and Automation Letters (RA-L),
vol. 5, no. 2, pp. 1127–1134, 2020.

[14] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The YCB object and Model set: Towards common benchmarks
for manipulation research,” in Intl. Conf. on Advanced Robotics (ICAR),
Jul. 2015, pp. 510–517.

[15] G. Wang, F. Manhardt, X. Liu, X. Ji, and F. Tombari, “Occlusion-Aware
Self-Supervised Monocular 6D Object Pose Estimation,” IEEE Trans.

Pattern Anal. Machine Intell., pp. 1–1, 2022.
[16] G. Wang, F. Manhardt, J. Shao, X. Ji, N. Navab, and F. Tombari,

“Self6D: Self-supervised monocular 6D object pose estimation,” in
European Conf. on Computer Vision (ECCV), A. Vedaldi, H. Bischof,
T. Brox, and J.-M. Frahm, Eds., Nov. 2020, pp. 108–125.

[17] K. Chen, R. Cao, S. James, Y. Li, Y. Liu, P. Abbeel, and Q. Dou, “Sim-
to-real 6D object pose estimation via iterative self-training for robotic
bin picking,” in European Conf. on Computer Vision (ECCV), 2022.

[18] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. Guibas,
“Normalized object coordinate space for category-level 6d object pose
and size estimation,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 2642–2651.

[19] S. Zakharov, W. Kehl, A. Bhargava, and A. Gaidon, “Autolabeling 3D
Objects with Differentiable Rendering of SDF Shape Priors,” in IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), Jun. 2020,

TABLE VI: Evaluation of Ensemble and baselines on 30 TLESS objects.

ADD-S ADD-S (AUC) obj_000001 obj_000002 obj_000003 obj_000004 obj_000005 obj_000006

RKN (Real) 0.71 0.50 0.76 0.53 0.90 0.61 0.19 0.32 0.29 0.40 0.33 0.43
CosyPose (Real) 0.60 0.45 0.51 0.40 0.84 0.62 0.41 0.38 0.89 0.68 0.94 0.70

Ensemble (SSL) 0.51 0.44 0.68 0.48 0.69 0.51 0.38 0.42 0.36 0.43 0.21 0.36

Ensemble (SSL, oc = 1) 0.33 0.33 0.40 0.33 0.32 0.44 0.85 0.65 0.71 0.49 0.25 0.40

ADD-S ADD-S (AUC) obj_000007 obj_000008 obj_000009 obj_000010 obj_000011 obj_000012

RKN (Real) 0.28 0.40 0.31 0.40 0.33 0.41 0.62 0.52 0.68 0.53 0.74 0.53
CosyPose (Real) 0.94 0.72 0.90 0.66 0.90 0.68 0.84 0.63 0.77 0.57 0.84 0.63

Ensemble (SSL) 0.25 0.35 0.23 0.33 0.74 0.51 0.90 0.62 0.70 0.53 0.72 0.53

Ensemble (SSL, oc = 1) 0.25 0.36 0.25 0.35 0.76 0.52 0.93 0.65 0.72 0.55 0.77 0.55

ADD-S ADD-S (AUC) obj_000013 obj_000014 obj_000015 obj_000016 obj_000017 obj_000018

RKN (Real) 0.46 0.48 0.16 0.26 0.53 0.50 0.75 0.55 0.85 0.62 0.72 0.55
CosyPose (Real) 0.51 0.42 0.71 0.54 0.79 0.58 0.89 0.64 0.94 0.72 0.93 0.76

Ensemble (SSL) 0.74 0.55 0.74 0.54 0.65 0.54 0.74 0.53 0.81 0.59 0.90 0.64

Ensemble (SSL, oc = 1) 0.82 0.59 0.80 0.58 0.68 0.55 0.77 0.55 0.95 0.66 0.98 0.70

ADD-S ADD-S (AUC) obj_000019 obj_000020 obj_000021 obj_000022 obj_000023 obj_000024

RKN (Real) 0.54 0.48 0.11 0.32 0.32 0.40 0.31 0.43 0.32 0.35 0.31 0.39
CosyPose (Real) 0.79 0.59 0.73 0.55 0.75 0.61 0.70 0.55 0.87 0.67 0.62 0.50
Ensemble (SSL) 0.40 0.46 0.13 0.30 0.41 0.41 0.52 0.48 0.66 0.52 0.66 0.52

Ensemble (SSL, oc = 1) 0.40 0.44 0.26 0.33 0.38 0.39 0.61 0.52 0.75 0.58 0.98 0.69

ADD-S ADD-S (AUC) obj_000025 obj_000026 obj_000027 obj_000028 obj_000029 obj_000030

RKN (Real) 0.40 0.46 0.40 0.47 0.32 0.40 0.42 0.42 0.14 0.34 0.79 0.58
CosyPose (Real) 0.86 0.65 0.83 0.64 0.91 0.69 0.85 0.69 0.94 0.72 0.93 0.71
Ensemble (SSL) 0.63 0.55 0.82 0.61 0.79 0.57 0.65 0.46 0.58 0.49 0.97 0.73

Ensemble (SSL, oc = 1) 0.82 0.60 0.90 0.64 0.85 0.60 0.72 0.51 0.76 0.59 1.00 0.75

pp. 12 224–12 233.
[20] K. Zhang, Y. Fu, S. Borse, H. Cai, F. Porikli, and X. Wang, “Self-

supervised Geometric Correspondence for Category-level 6D Object
Pose Estimation in the Wild,” in Intl. Conf. on Learning Representations
(ICLR), Feb. 2023.

[21] X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and D. Fox,
“Self-supervised 6D Object Pose Estimation for Robot Manipulation,”
in IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2020, pp.
3665–3671.

[22] X. Li, Y. Weng, L. Yi, L. Guibas, A. L. Abbott, S. Song, and H. Wang,
“Leveraging SE(3) Equivariance for Self-Supervised Category-Level
Object Pose Estimation,” in Advances in Neural Information Processing
Systems (NIPS), Dec. 2021.

[23] W. Sun, A. Tagliasacchi, B. Deng, S. Sabour, S. Yazdani, G. E.
Hinton, and K. M. Yi, “Canonical Capsules: Self-Supervised Capsules in
Canonical Pose,” in Advances in Neural Information Processing Systems
(NIPS), vol. 34, 2021, pp. 24 993–25 005.

[24] X. Wang, Y. Jin, Y. Cen, T. Wang, B. Tang, and Y. Li, “LighTN:
Light-weight Transformer Network for Performance-overhead Tradeoff
in Point Cloud Downsampling,” arXiv, no. arXiv:2202.06263, Feb. 2022.

[25] Y. Lin, L. Chen, H. Huang, C. Ma, X. Han, and S. Cui, “Task-Aware
Sampling Layer for Point-Wise Analysis,” IEEE Trans. Vis. Comput.
Graph., pp. 1–1, May 2022.

[26] Y. Qian, J. Hou, Q. Zhang, Y. Zeng, S. Kwong, and Y. He, “MOPS-
Net: A Matrix Optimization-driven Network forTask-Oriented 3D Point
Cloud Downsampling,” arXiv, no. arXiv:2005.00383, Apr. 2021.

[27] X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, “PointASNL: Robust Point
Clouds Processing Using Nonlocal Neural Networks With Adaptive
Sampling,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), Jun. 2020, pp. 5588–5597.

[28] E. Nezhadarya, E. Taghavi, R. Razani, B. Liu, and J. Luo, “Adaptive
Hierarchical Down-Sampling for Point Cloud Classification,” in IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), Jun. 2020,
pp. 12 953–12 961.

[29] I. Lang, A. Manor, and S. Avidan, “SampleNet: Differentiable Point

Cloud Sampling,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), Jun. 2020, pp. 7575–7585.

[30] J. Yang, Q. Zhang, B. Ni, L. Li, J. Liu, M. Zhou, and Q. Tian, “Modeling
Point Clouds With Self-Attention and Gumbel Subset Sampling,” in
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Jun
2019, pp. 3318–3327.

[31] O. Dovrat, I. Lang, and S. Avidan, “Learning to Sample,” in IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp.
2760–2769.

[32] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in Intl. Conf. on Machine Learning (ICML).
JMLR. org, 2017, pp. 136–145.

[33] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter,
“Differentiable convex optimization layers,” in Advances in Neural
Information Processing Systems (NIPS), 2019, pp. 9558–9570.

[34] S. Gould, R. Hartley, and D. Campbell, “Deep Declarative Networks,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 44, no. 8, pp. 3988–4004,
Aug. 2022.

[35] P. Donti, B. Amos, and J. Z. Kolter, “Task-based End-to-end Model
Learning in Stochastic Optimization,” in Advances in Neural Information
Processing Systems, vol. 30, Nov. 2017.

[36] M. V. Pogančić, A. Paulus, V. Musil, G. Martius, and M. Rolinek,
“Differentiation of Blackbox Combinatorial Solvers,” in Intl. Conf. on
Learning Representations (ICLR), Mar. 2020.

[37] A. Paulus, M. Rolinek, V. Musil, B. Amos, and G. Martius, “CombOpt-
Net: Fit the Right NP-Hard Problem by Learning Integer Programming
Constraints,” in Intl. Conf. on Machine Learning (ICML), Jul. 2021, pp.
8443–8453.

[38] P.-W. Wang, P. Donti, B. Wilder, and Z. Kolter, “SATNet: Bridging
deep learning and logical reasoning using a differentiable satisfiability
solver,” in Proceedings of the 36th International Conference on Machine
Learning, May 2019, pp. 6545–6554.

[39] C. Wang, D. Gao, K. Xu, J. Geng, Y. Hu, Y. Qiu, B. Li, F. Yang,
B. Moon, A. Pandey, A. Aryan, J. Xu, T. Wu, H. He, D. Huang, Z. Ren,
S. Zhao, T. Fu, P. Anthireddy, W. Wang, J. Shi, R. Talak, H. Wang,

http://arxiv.org/abs/2202.06263
http://arxiv.org/abs/2005.00383

H. Yu, S. Wang, A. Kashyap, R. Bandaru, K. Dantu, J. Wu, L. Carlone,
M. Hutter, and S. Scherer, “PyPose: A library for robot learning with
physics-based optimization,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), Jun. 2023, arXiv preprint: 2209.15428
(pdf).

[40] L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. T. Q. Chen,
J. Ortiz, D. DeTone, A. S. Wang, S. Anderson, J. Dong, B. Amos,
and M. Mukadam, “Theseus: A Library for Differentiable Nonlinear
Optimization,” in Advances in Neural Information Processing Systems
(NIPS), Oct. 2022.

[41] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Intl.
Conf. on Computer Vision (ICCV), 2017, pp. 2980–2988.

[42] J. Shi, H. Yang, and L. Carlone, “Optimal pose and shape estimation for
category-level 3D object perception,” in Robotics: Science and Systems
(RSS), 2021.

[43] G. Pavlakos, X. Zhou, A. Chan, K. Derpanis, and K. Daniilidis, “6-dof
object pose from semantic keypoints,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2017.

[44] K. Schmeckpeper, P. Osteen, Y. Wang, G. Pavlakos, K. Chaney,
W. Jordan, X. Zhou, K. Derpanis, and K. Daniilidis, “Semantic
keypoint-based pose estimation from single rgb frames,” arXiv preprint
arXiv:2204.05864, 2022.

[45] K. M. Tavish and T. D. Barfoot, “At all costs: A comparison of robust
cost functions for camera correspondence outliers,” in Conf. Computer
and Robot Vision. IEEE, 2015, pp. 62–69.

[46] H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and Certifiable Point
Cloud Registration,” IEEE Trans. Robotics, vol. 37, no. 2, pp. 314–333,
2020.

[47] B. k P Horn and E. J. Weldon, “Direct methods for recovering motion,”
Intl. J. of Computer Vision, vol. 1, no. 2, pp. 51–76, 1988.

[48] K. Arun, T. Huang, and S. Blostein, “Least-squares fitting of two 3-D
point sets,” IEEE Trans. Pattern Anal. Machine Intell., vol. 9, no. 5, pp.
698–700, sept. 1987.

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems (NIPS), Dec. 2019, pp. 8024–8035.

[50] C. Wang, D. Xu, Y. Zhu, R. Martin-Martin, C. Lu, L. Fei-Fei, and
S. Savarese, “Densefusion: 6d object pose estimation by iterative dense
fusion,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), Jun. 2019, pp. 3338–3347.

[51] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A
convolutional neural network for 6D object pose estimation in cluttered
scenes,” in Robotics: Science and Systems (RSS), 2018.

[52] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “DeepIM: Deep Iterative
Matching for 6D Pose Estimation,” in European Conf. on Computer
Vision (ECCV), 2018, pp. 683–698.

https://arxiv.org/pdf/2209.15428.pdf
http://arxiv.org/abs/2204.05864

	I Introduction
	II Related Works
	III Problem Statement
	IV Robust Corrector
	V Ensemble Self-Training Architecture
	V-A Robust Corrector Beyond Keypoint-based Models
	V-B Certificate of Observable Correctness
	V-C Ensemble Self-Training

	VI Outlier-Robust Point Cloud Processing
	VII Experiments
	VII-A Robust Corrector Analysis
	VII-B Robust versus Non-Robust Corrector
	VII-C Impact of Robust Centroid and Robust Pooling
	VII-D The YCBV and TLESS Experiment

	VIII Conclusion
	Appendix
	A Impact of the Robust Corrector
	B Progression of the Ensemble Self-Training
	C List of Hyper-Parameters
	D Additional Visualization

	References

