
FLAIR: Defense against Model Poisoning Attack in Federated
Learning

Atul Sharma
Purdue University

West Lafayette, IN, USA
sharm438@purdue.edu

Wei Chen
Purdue University

West Lafayette, IN, USA
chen2732@purdue.edu

Joshua Zhao
Purdue University

West Lafayette, IN, USA
zhao1207@purdue.edu

Qiang Qiu
Purdue University

West Lafayette, IN, USA
qqiu@purdue.edu

Saurabh Bagchi
Purdue University

West Lafayette, IN, USA
sbagchi@purdue.edu

Somali Chaterji
Purdue University

West Lafayette, IN, USA
schaterji@purdue.edu

ABSTRACT

Federated learning—multi-party, distributed learning in a decen-
tralized environment—is vulnerable to model poisoning attacks,
more so than centralized learning. This is because malicious clients
can collude and send in carefully tailored model updates to make
the global model inaccurate. This motivated the development of
Byzantine-resilient federated learning algorithms, such as Krum,
Bulyan, FABA, and FoolsGold. However, a recently developed un-
targeted model poisoning attack showed that all prior defenses can
be bypassed. The attack uses the intuition that simply by changing
the sign of the gradient updates that the optimizer is computing,
for a set of malicious clients, a model can be diverted from the
optima to increase the test error rate. In this work, we develop
FLAIR—a defense against this directed deviation attack (DDA),
a state-of-the-art model poisoning attack. FLAIR is based on our
intuition that in federated learning, certain patterns of gradient
flips are indicative of an attack. This intuition is remarkably stable
across different learning algorithms, models, and datasets. FLAIR
assigns reputation scores to the participating clients based on their
behavior during the training phase and then takes a weighted con-
tribution of the clients. We show that where the existing defense
baselines of FABA [IJCAI ’19], FoolsGold [Usenix ’20], and FLTrust
[NDSS ’21] fail when 20-30% of the clients are malicious, FLAIR
provides byzantine-robustness upto a malicious client percentage
of 45%. We also show that FLAIR provides robustness against even
a white-box version of DDA.

CCS CONCEPTS

• Security and privacy → Distributed systems security.

KEYWORDS

Federated learning; Model poisoning; Byzantine-robust aggregation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:

Atul Sharma, Wei Chen, Joshua Zhao, Qiang Qiu, Saurabh Bagchi, and So-
mali Chaterji. 2023. FLAIR: Defense against Model Poisoning Attack in
Federated Learning. In Proceedings of (ACM ASIACCS ’23). ACM, New York,
NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Federated learning (FL) [13, 17] offers a way for multiple clients on
heterogeneous platforms to learn collaboratively without sharing
their local data. The clients send their local gradients to the param-
eter server that aggregates the gradients and updates the global
model for the local clients to download. FL can be attacked during
the training phase by compromising a set of clients that then send
maliciously crafted gradients. The attack can be targeted against
particular data instances or can be untargeted. The latter brings
down the overall accuracy by affecting all classes. In this work, we
use the state-of-the-art (SOTA) class of untargeted model poisoning
attacks called directed deviation attacks (DDA) – Fang attack [5]
and Shejwalkar attack [12]. Both have been shown to bypass all
existing Byzantine-robust aggregation techniques, e.g., Krum, Bulyan,
Trimmed mean, and Median. In our experiments, the Shejwalkar
attack has been found to decrease the test accuracy from 70% to a
low 10% on ResNet-18 trained on the CIFAR-10 dataset, and from
92% to 10% on a DNN trained on MNIST using FedSGD, distributed
among clients, only 20% of which are under the attacker’s control,
and the server is secure. We describe the relevant details of this
attack in Section 2.2.

Our solution. We propose a novel defense called FLAIR -
FederatedLearningwith EmbeddedAdversarial InjectionRobustness
against untargeted model poisoning attacks (Figure 1), which uses
a stateful model to reduce the contributions by suspicious clients to
the global model update. We show that where all prior Byzantine-
resilient federated learning approaches fail against the directed-
deviation attack, FLAIR is able to recover the test accuracy of the
trained model. This benefit applies even when the attack knows
the algorithm and all the parameters of our defense, i.e., an adap-
tive white-box attack. FLAIR is based on a simple intuition that
for a well-chosen small learning rate, as the model approaches an
optima in a benign setting, a large number of gradients do not flip
their direction with large magnitudes, that is, a degree of inertia is
maintained. Our intuition is shown graphically through a sample
experiment in Figure 2. We capture this quantitatively in a metric

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia Atul Sharma, Wei Chen, Joshua Zhao, Qiang Qiu, Saurabh Bagchi, and Somali Chaterji

Figure 1: FLAIR’s architecture where 𝑐 out of𝑚 clients

are malicious and send carefully crafted values of their

local models to throw the global model off conver-

gence. FLAIR weighs the gradients, received from the

clients, by their reputation scores before aggregation

represented by varying thicknesses of arrows from the

clients.

that we introduce, called flip-score, in Eqn. 1, which is calculated
for each client in every round. It is the sum of square of gradient
magnitudes of all those parameter updates which suggest a flip
in the gradient direction from their previous global update. Our
defense is secure by design against any possible untargeted model
poisoning attack. The fundamental principle underlying such at-
tacks is to generate gradients that move the model away from the
estimated optima. It invariably requires coordinated flipping the
gradient direction of the model parameters by multiple clients. We
strike at the root cause of this class of attacks by preventing gra-
dient flips that push the global model away from optima. We find
that our intuition and correspondingly our defense FLAIR holds
for all untargeted model poisoning attacks, as well as against label
flipping attacks (Appendix § A.2, Figure 8). In our evaluation, we
focus on the directed deviation, untargeted model poisoning attack
as that has been shown in multiple publications to be the most
damaging of the set mentioned above [5, 12].
In summary, FLAIR makes the following contributions.

(1) We use our simple intuition to detect malicious clients that
attack federated learning using the SOTA attack model. Our
intuition is that certain patterns of flips of the signs of gra-
dients across multiple parameters and multiple clients are
rare under benign conditions.

(2) We use a stateful suspicion model to keep the history of
every client’s activity and use that as a weighting factor in
the aggregation. We theoretically prove the convergence
of FLAIR that uses the weighted averaging and establish a
convergence rate.

(3) We evaluate FLAIR on DNNs trained on MNIST and FEM-
NIST, ResNet-18 on CIFAR-10, and GRU on the Shakespeare
dataset. We comparatively evaluate our defense against six
baselines, including the most recent ones, FABA [16], Fools-
Gold [6], and FLTrust [4] and show that FLAIR remains
robust even against an adaptive white-box attacker. While

Figure 2: The averageflip-score acrossmalicious clients in red

and across benign clients in green shown over time as a moti-

vating experiment where a DNN is trained on MNIST for 500

iterations with 80 benign and 20malicious clients. In (a), only

benign updates were aggregated into the global model using

FedSGD, and in (b), only malicious updates were aggregated,

depicting the two extreme cases of federated learning in a

malicious setting. These results show that when the global

model update is benign (as in (a)), the malicious clients send

gradients with high flip-scores to deviate the model from

reaching convergence. However, when the global model up-

date itself was poisoned (as in (b)), the benign clients send

high flip-score gradients for recovery whereas the malicious

clients maintain the direction of the already-poisonedmodel.

Thus the intuition is that too high and too low flip-scores in

a coordinated manner are red flags.

several of the existing defenses shine under specific configu-
rations (combination of attacks and datasets/models), FLAIR
is the only one whose protection transfers well across config-
urations. For example, all existing defenses fail when more
than 30% of the clients are malicious, where FLAIR remains
robust upto a malicious client percentage of 45%.

We release the source code, the attack scripts, the trained mod-
els, and the test harness for the evaluation at https://github.com/
icanforce/federated-learning-flair. The rest of the paper is orga-
nized as follows. We describe in Sec 2 the threat model, the SOTA
attack, and why all existing Byzantine-resilient federated learning
approaches are susceptible. We present FLAIR’s design in Sec 3 and
convergence analysis in Sec 4. We describe the baselines and the
datasets in Sec 5, and evaluation in Sec 6.

2 BACKGROUND

Our formulation of federated learning consists of𝑚 clients, each
with its own local data, but with the same model architecture and
SGD optimizer, out of which 𝑐 are malicious. The parameter server
is benign and secure, and assumes that a maximum of 𝑐𝑚𝑎𝑥 number
of clients can be malicious, 𝑐 ≤ 𝑐𝑚𝑎𝑥 in any given round. The
clients run one local iteration, send their gradients (in unencrypted
form) to the server, which updates the global model for the clients
to download in a synchronous manner.

2.1 Byzantine-resilient Federated Learning

Here we describe the leading defenses briefly, which are all shown
recently to be vulnerable to the SOTA untargeted model poisoning
attacks.

https://github.com/icanforce/federated-learning-flair
https://github.com/icanforce/federated-learning-flair

FLAIR: Defense against Model Poisoning Attack in Federated Learning ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia

(1) FedSGD [9] is the simplest aggregation technique and does a
simpleweightedmean aggregation of the gradients, weighted
by the number of data samples each client holds. FedSGD can
be attacked by a single malicious client that sends boosted
malicious gradients.

(2) Trimmed mean and Median [18] aggregate the parame-
ters independently, where the former trims 𝑐𝑚𝑎𝑥 number of
values each at the lower and higher extremes of every pa-
rameter and the latter takes the median of every parameter
update across the gradients received from all the clients. The
Full-Trim attack [5] is specifically designed toward these
aggregations rules.

(3) Krum [2] selects one local model as the next global model.
The client that has the lowest Euclidean distance from its
closest (𝑚−𝑐𝑚𝑎𝑥 − 2) neighbors is chosen as the local model.
The full-Krum attack [5] is tailored to attack Krum.

(4) Bulyan [10] combines the above approaches by running
Krum iteratively to select a given number of models, and
then running Trimmed Mean over the selected ones. The
Full-Trim attack is also transferable to Bulyan.

(5) FABA [16] iteratively filters out models farthest away from
themean of the remaining unfilteredmodels, 𝑐𝑚𝑎𝑥 number of
times before returning the mean of the remaining gradients.

(6) FoolsGold [6] was motivated to defend against poisoning
attacks by Sybil clones, and thus, it finds clients with similar
cosine similarity to be malicious, penalizes their reputation,
and returns a weighted mean of the gradients, weighed by
their reputation.

(7) FLTrust [4] bootstraps trust in the clients by assuming that
the server has access to a clean validation dataset, albeit
small, and returns a weighted mean of the gradients weighed
by this trust. In our setting, we do not see a realistic method
to access such a clean dataset, especially considering the
non-iid nature of the local datasets at the clients.

2.2 Threat model: State-of-the-Art Model

Poisoning Attack

Our threat model consists of a scenario where an adversary com-
promises a fraction of all clients participating in federated learning.
We assume that having compromised the clients, the adversary also
has access to the gradient vector sent by the benign clients to the
server. An attacker agnostic to the server aggregation technique, is
not as powerful as the one that knows what aggregation algorithm
the server is running. In our threat model, we allow the attacker to
know this piece of information. We focus on the SOTA untargeted
model poisoning attacks, the Fang attack [5] and the Shejwalkar
attack [12], both of which can be classified as directed deviation
attacks that bypass all known defenses 1 The DDA changes the local
models on the compromised worker devices. This change is done
strategically (through solving a constrained optimization problem)
such that the global model deviates the most toward the inverse
of the direction along which the benign global model would have
changed. Their intuition is that the deviations accumulated over

1There is no overlap between the authors of this current submission and of the SOTA
attacks [5, 12].

multiple iterations would make the learned global model differ from
the benign one significantly.

The Fang attack has two variants, one specialized to poison
Krum (transferable to Bulyan, we call this the Full-Krum attack), the
other specialized for TrimmedMean (transferable toMedian, we call
this the Full-Trim attack), respectively. We assume a full-knowledge
(white-box) attack where the attackers have access to the current
benign gradients. They themselves compute the benign gradients
on their local data (on the compromised devices) as well, and thus
estimate, for each parameter, the benign direction by averaging the
benign gradients across all clients. This value is stored in a vector 𝑠
of size equal to the number of model parameters.

𝑠 (𝑡, ·) = 𝑠𝑖𝑔𝑛(𝑠𝑢𝑚
𝑖

(▽𝐿𝑀𝑖 (𝑡, ·)),

where ▽𝐿𝑀𝑖 (𝑡, ·) is the gradient updates of client 𝑖 at time 𝑡 .
Full-Krum attack: Having estimated 𝑠 , the attackers send gra-

dients in the opposite direction, all with a magnitude 𝜆, with some
added noise to appear different but still maintaining a small Eu-
clidean distance from one another. The upper bound of 𝜆 is com-
puted in every iteration as a function of𝑚,𝑐, |𝑃 |,𝐺𝑀 (𝑡, ·),▽𝐿𝑀𝑖 (𝑡 +
1, ·), where 𝑐 out𝑚 participating clients are malicious, |𝑃 | is the
number of parameters in the global model𝐺𝑀 . 𝜆 is then iteratively
decreased until the attackers make sure (using a local estimate) that
the parameter server would have chosen the attacked model, using
the Krum aggregation technique.
Full-Trim attack: The Trim attack while following the same fun-
damental principle of flipping the gradient direction, attempts to
skew the distribution of every parameter 𝑗 toward the inverse of
the direction that 𝑠 (𝑡, 𝑗) suggests in order to attack a mean-like
aggregation. It does so by randomly sampling gradient magnitudes
from a range that has been computed by the attackers, guaranteed
to skew the gradient distribution of every parameter, without ap-
pearing as obvious outliers (which would be caught by a method
such as Trimmed Mean). Therefore, the attacked gradients here
look more diverse than those in the Full-Krum attack.

The Shejwalkar attack is basically a more optimized DDA
than the Fang attack. It computes themalicious gradient as▽𝑏+𝛾▽𝑝
where ▽𝑏 is the reference benign aggregate, ▽𝑝 is a perturbation
vector, and 𝛾 is a scaling coefficient that is optimized for maximum
damage as well as stealth. [12] describes three types of perturbation,
namely, inverse unit vector, inverse standard deviation, and inverse
sign. All of these are based on the general principle of opposing the
direction of the benign gradients, and differ only in the gradient
magnitudes. They present a white-box attack that is tailored to spe-
cific aggregation techniques, and a gray-box attack that is agnostic
to the aggregation algorithm being used. While the Fang attack
is not too effective when the aggregation algorithm is unknown,
the Shejwalkar-agnostic attack is powerful enough to increase
the error rate to completely random levels (10% accuracy for 10
image classes), as reported in Table 3. In our work, we evaluate
FLAIR against the more powerful attacker that has the knowledge
of aggregation. We create the worst case scenario and experimen-
tally show the success of FLAIR even in this worst case. Overall,
DDA at its core takes advantage of the fact that none of the existing
aggregation techniques such as FABA and FoolsGold looks at the
change in gradient directions to identify malicious gradients in a

ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia Atul Sharma, Wei Chen, Joshua Zhao, Qiang Qiu, Saurabh Bagchi, and Somali Chaterji

robust way. FLTrust compares the cosine similarity of a client’s
gradient with a ground truth gradient vector generated on a trusted
root dataset, but such a root dataset cannot be practically collected,
given the privacy concerns of the clients. Even estimating a root
dataset is difficult because of the non-IIDness in the data distribu-
tion among the clients in any realistic setting. FLAIR highlights the
importance of gradient direction during the aggregation stage and
shows that byzantine-robustness can be achieved without the need
of a ground truth root dataset. This makes FLAIR different from
all existing defenses. We describe this in more details in the next
section.

3 DESIGN

FLAIR uses a reputation-based scheme to compute the aggregation
weights of the participating clients. Reputation-based schemes have
been widely used in the literature. For example, [7] and [21] make
use of reputation score as an incentive mechanism for clients to
remain in the system. [6] and [1] compute reputation score from
the pairwise cosine similarity of the gradients between clients, [4]
does that by computing the cosine similarity of the client gradients
with reference to trusted gradients calculated on a clean validation
dataset at the server. We compute reputation-score in a different
way by using flip-score of the local gradients, as described below.
FLAIR assumes that a maximum of 𝑐𝑚𝑎𝑥 (< 𝑚

2) clients can be ma-
licious, where 𝑚 is the total number of clients participating. It
penalizes 2𝑐𝑚𝑎𝑥 clients (with too large and too small flip-score) and
rewards the rest in every iteration by an amount W(𝑖, 𝑡) based on
their flip-score (details described below) and updates their reputa-
tion score, where 𝑖 is the client ID and 𝑡 is time. We present the
pseudocode in Algorithm 1.

W(𝑖, 𝑡) =
{
−(1 − 2𝑐𝑚𝑎𝑥

𝑚), 𝑖 𝑓 𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑.
2𝑐𝑚𝑎𝑥

𝑚 , 𝑖 𝑓 𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑.

These values make sure that that the expectation of the reputation
score of a client is zero if their flip-scores belong to a uniform
random distribution (shown later in this section). This means that
in an ideal benign setting with IID data distribution, all clients
have the same expected reputation score after a sufficiently large
number of rounds. It is interesting to observe that, for 𝑐𝑚𝑎𝑥 < 𝑚

4
the absolute value of penalty higher than the reward. This means
that recovery for penalized clients is difficult when the benign
clients are in a larger majority (> 75%). Even with a higher fraction
of malicious nodes, although the recovery of a penalized client is
relatively faster, FLAIR remains robust as long as 𝑐 ≤ 𝑐𝑚𝑎𝑥 < 𝑚

2 .
This is because the rewarded clients are always prioritized as we
will see in the defense policy below. The reputation score of a client
𝑖 is initialized and updated as follows -

𝑅𝑆 (𝑖, 0) = 0.
𝑅𝑆 (𝑖, 𝑡) = 𝜇𝑑𝑅𝑆 (𝑖, 𝑡 − 1) +W(𝑖, 𝑡), 𝑡 > 0.

where 0 ≤ 𝜇𝑑 ≤ 1 is the decay parameter, and 𝑅𝑆 is the reputation
score. A low 𝜇𝑑 gives more importance to the present ranking
of a client based on its flip-score and a high 𝜇𝑑 gives significant
importance to the past performance of a client. This decay operation
also helps bound the maximum and minimum reputation score for
the clients as 𝜇𝑑 < 1 (proven later in the section). We choose a

default value of 𝜇𝑑 = 0.99 to give significant importance to the
past history of the clients. We normalize this reputation score using
softmax into reputationweights𝑊𝑅 so that the sum of theseweights
equal one across all the clients. Softmax normalization is chosen
so as to map all positive and negative reputaion scores to a value
between 0 and 1. It also helps the server minimize the contribution
of clients with large negative reputation scores while increasing
the contribution of clients with positive reputation. We use this𝑊𝑅
as weights to do a weighted mean aggregation. However, a user
can also choose to use reputation score or even the flip-score to
directly filter out the suspicious gradients and use an aggregation
rule of one’s choice to aggregate the benign-classified clients in
that training round. Hence, our method of computing flip-score is
not restricted to any single aggregation technique.
Flip-score. We compare the present updates Δ𝐿𝑀𝑖 (𝑡 + 1, ·) =

𝜂▽𝐿𝑀𝑖 (𝑡 + 1, ·) = 𝐿𝑀𝑖 (𝑡 + 1, ·) − 𝐺𝑀 (𝑡, ·) sent by local model 𝑖
with the gradient direction of the global model at time 𝑡 , 𝑠𝑔 (𝑡, ·) =
𝑠𝑖𝑔𝑛(𝐺𝑀 (𝑡, ·) − 𝐺𝑀 (𝑡 − 1, ·)). We define flip-score as the sum of
square of the gradient magnitudes of all parameters that experience
a change in their gradient direction, that is,

𝐹𝑆𝑖 (𝑡 + 1) =
|𝑃 |−1∑︁
𝑗=0

(Δ𝐿𝑀𝑖 (𝑡 + 1, 𝑗))2×

(𝑠𝑖𝑔𝑛(Δ𝐿𝑀𝑖 (𝑡 + 1, 𝑗)) ≠ 𝑠𝑔 (𝑡, 𝑗)),

(1)

where |𝑃 | is the total number of trainable parameters in the model
being used. A low flip-score thus suggests that the gradient updates
are approximately in the same direction as the previous iteration.
In contrast, a high flip-score suggests a deviation from the previous
update. This could mean either a large number of parameters have
flipped direction, or a small number of parameters have flipped
direction with large magnitudes, or both. It is to be noted that the
flip-score is proportional to the square of the learning rate used by
a client. Therefore, the relative flip-score, and thereby the ranking
of clients based on their current flip-score values is more important
than the absolute value of the same. We have made use of this fact
in our defense policy by trimming out the low and high-ranked
clients in every round.

As observed in Figure 2, if the previous global update was benign,
a malicious client will tend to have a high flip-score. However, if the
previous update itself was poisoned, the flip-score of benign clients
will be high and those of malicious clients will be low showing sup-
port to the already poisoned direction. Therefore, we penalize 𝑐𝑚𝑎𝑥
number of clients at either end of the current flip-score distribution.
This allows our system to have a higher detection coverage irrespec-
tive of whether the global model was poisoned in one iteration or
not. If there is a trusted root dataset available at the server that can
be used to generate the benign gradients with certainty, we only
need to trim out the gradients with high flip-score as compared to
the trusted updates. However, when is is not know what gradients
are benign, the uncertainty requires penalizing both high and low
flip-score updates, and rewarding updates with flip-score close to
the median value in that given round. Based on the previous global
update being benign or malicious, the 𝑐 malicious nodes will all
occupy the higher end or the lower end of the flip-score distribution
respectively in the given iteration. The𝑚 − 𝑐 benign clients occupy
the rest of the spectrum. FLAIR allows a benign node to redeem

FLAIR: Defense against Model Poisoning Attack in Federated Learning ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia

itself whenever it has a non-extreme flip-score, i.e., it is among the
𝑚−2𝑐𝑚𝑎𝑥 clients that are away from the extremes and closer to the
median value. It is also to be noted that we do not discourage low
or high absolute values of flip-score moves as we do not impose any
hard threshold on permissible flip-score but use the current median
to identify the suspicious updates. When required, for example, at
the time of convergence, the entire flip-score distribution shifts to
a lower range, and the aggregated update will therefore also have a
low flip-score and favor convergence. On the other extreme, when
it is needed for the global model to escape a local minima, and
such a move is supported by a majority of the clients, the entire
distribution, and thereby the median will shift to a higher range to
favor a shift in the gradient direction to come out of the minima.

Algorithm 1 Federated learning with FLAIR

Output: Global model 𝐺𝑀 (𝑡 + 1, ·)
Input: Local model updates𝑤 = Δ𝐿𝑀𝑖 (𝑡 + 1, ·)
Parameters:𝑚, 𝑐𝑚𝑎𝑥 , 𝜇𝑑
0 : Initialize reputation 𝑅𝑆𝑖 (0) = 0 for every client 𝑖
1 : Initialize global direction 𝑠𝑔 (0) to a zero vector
2 : for every client 𝑖 compute flip-score:
3 : 𝐹𝑆𝑖 (𝑡 + 1) = ∑ |𝑃 |−1

𝑗=0 (Δ𝐿𝑀𝑖 (𝑡 + 1, 𝑗))2×
(𝑠𝑖𝑔𝑛(Δ𝐿𝑀𝑖 (𝑡 + 1, 𝑗)) ≠ 𝑠𝑔 (𝑡, 𝑗))

4 : Penalize 𝑐𝑚𝑎𝑥 clients on either end of FS spectrum as:
𝑅𝑆 (𝑖, 𝑡 + 1) = 𝜇𝑑𝑅𝑆 (𝑖, 𝑡) − (1 − 2𝑐𝑚𝑎𝑥

𝑚)
6 : Reward the rest of the clients as:
𝑅𝑆 (𝑖, 𝑡 + 1) = 𝜇𝑑𝑅𝑆 (𝑖, 𝑡) + 2𝑐𝑚𝑎𝑥

𝑚

7 : Normalize reputation weights:𝑊𝑅 = 𝑒𝑅𝑆∑
𝑒𝑅𝑆

8 : Aggregate gradients: Δ𝐺𝑀 (𝑡 + 1, ·) = 𝑤𝑇𝑊𝑅
9 : Update global direction: 𝑠𝑔 (𝑡 + 1, ·) = 𝑠𝑖𝑔𝑛(Δ𝐺𝑀 (𝑡 + 1, ·))
10: Update global model and broadcast:
𝐺𝑀 (𝑡 + 1, ·) = 𝐺𝑀 (𝑡, ·) + Δ𝐺𝑀 (𝑡 + 1, ·)

Penalty and reward selection Our design policy penalizes 2𝑐𝑚𝑎𝑥
out of𝑚 clients in every iteration. Considering a completely benign
scenario, we want the expected value of the reputation score of a
client that has been penalized 𝑒 fraction of times to be zero, where
𝑒 =

2𝑐𝑚𝑎𝑥

𝑚 . Let a client 𝑖 be penalized 𝑒𝑛 number of times in 𝑛
iterations. There are

(𝑛
𝑒𝑛

)
ways to select the iterations where the

client is penalized. After 𝑛 iterations, the reputation score of client
𝑖 is given by:

𝑅𝑆 (𝑖, 𝑛) =
𝑛∑︁
𝑡=0

𝜇𝑛−𝑡
𝑑

W(𝑖, 𝑡) . (2)

where W(𝑖, 𝑡) is a sequence of penalty and reward over time for
client 𝑖 . Let 𝑝 and 𝑟 denote the absolute penalty and reward val-
ues. The expected value of this reputation score over all possible

sequences 𝑗 ∈
(𝑛
𝑒𝑛

)
is

E
𝑗
[𝑅𝑆 (𝑖, 𝑛)] = 1(𝑛

𝑒𝑛

) ∑︁
𝑗

𝑅𝑆 (𝑖, 𝑛)

=
1(𝑛
𝑒𝑛

) ∑︁
𝑗

∑︁
𝑡

𝜇𝑛−𝑡
𝑑

W(𝑖, 𝑡)

=
1(𝑛
𝑒𝑛

) ∑︁
𝑡

𝜇𝑛−𝑡
𝑑

∑︁
𝑗

W(𝑖, 𝑡)

=
1(𝑛
𝑒𝑛

) ∑︁
𝑡

𝜇𝑛−𝑡
𝑑

(−(𝑝𝑒𝑛
(
𝑛

𝑒𝑛

)
) + (𝑟 (1 − 𝑒)𝑛

(
𝑛

𝑒𝑛

)
)

Our setting with 𝑟 = 𝑒 =
2𝑐𝑚𝑎𝑥

𝑚 and 𝑝 = 1 − 𝑟 makes the above
quantity to be zero thus ensuring that its expected reputation score
increment is zero. This proof assumes that it is a random process
through which (benign) clients generate their flip scores. Thus, if
a client is penalized 2𝑐𝑚𝑎𝑥

𝑚 fraction of times, they are expected to
have a net neutral reputation score.
Reputation score bounds From the above expression, it is obvious
that if 𝜇𝑑 = 0, that is, onlythe current flip-score is considered by
ignoring the past, then −𝑝 ≤ 𝑅𝑆 ≤ 𝑟 . When 0 < 𝜇𝑑 < 1, the upper
and lower bounds can be computed by assuming the extreme cases
where a client was only rewarded or penalized respectively in every
iteration. Assuming that the number of iterations tends towards
infinity, equation (1) forms an infinite geometric sequence, that can
be solved to obtain −𝑝

1−𝜇𝑑 ≤ 𝑅𝑆 ≤ 𝑟
1−𝜇𝑑 . It should be noted that

these reputation scores are normalized using softmax to compute
the reputation weights. If the absolute value of the lower bound is
not large enough (if 𝜇𝑑 is set to be too small), then even after perfect
detection, a malicious client can still have a significant reputation
weight after softmax normalization. If 𝜇𝑑 is set to a value closer to
1, then the absolute value of the lower and upper bounds increase,
bringing down the contribution of malicious clients to almost zero.
At the same time, redemption becomes difficult for a client in this
case. This trade-off needs to be kept in mind when setting the decay
parameter. We have used 𝜇𝑑 = 0.99 in our experiments in order to
remain conservative andmake recovery difficult for a client that has
been penalized a lot of times. However, this is a design parameter
that the user can decide.
Defense instantiation FLAIR helps in maintaining byzantine-
robustness at all phases of federated training. Therefore, we recom-
mend instantiating FLAIR right from the beginning of the training.
At 𝑡 = 0, we initialize the reference global direction 𝑠𝑔 as a vector of
zeros. The (𝑚 − 2𝑐𝑚𝑎𝑥) clients with flip-score closer to the median
at time 𝑡 = 1 are classified as benign by FLAIR. The mean of the
updates from these clients at 𝑡 = 1 will set the global reference
direction for the next round. As long 𝑐 ≤ 𝑐𝑚𝑎𝑥 , the reference direc-
tion is expected to represent the correct benign direction, and one
could ideally work with FLAIR by trimming only the high flip-score
values. However, for extra caution against any false-negative mali-
cious detection of clients, we remain conservative anticipating an
adaptive whitebox attack and trim from both the ends. This keeps
FLAIR robust as it can help the training process recover even after
the attackers succeed in a certain round.

ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia Atul Sharma, Wei Chen, Joshua Zhao, Qiang Qiu, Saurabh Bagchi, and Somali Chaterji

4 CONVERGENCE ANALYSIS

We denote the local objective function of client 𝑘 by 𝐹𝑘 , 𝑘 =

0, 1, 2, ...𝑚 − 1 and make the following assumptions on it, part of
which are adapted from [8].

(1) 𝐹𝑘 are all L-smooth, that is, for all 𝑣 and𝑤 , 𝐹𝑘 (𝑣) ≤ 𝐹𝑘 (𝑤) +
(𝑣 −𝑤)𝑇▽𝐹𝑘 (𝑤) + 𝐿

2 ∥𝑣 −𝑤 ∥22.
(2) 𝐹𝑘 are all 𝜇-strongly convex, that is, for all 𝑣 and𝑤 , 𝐹𝑘 (𝑣) ≥

𝐹𝑘 (𝑤) + (𝑣 −𝑤)𝑇▽𝐹𝑘 (𝑤) + 𝜇
2 ∥𝑣 −𝑤 ∥22.

(3) Let 𝜉𝑘𝑡 be sampled uniformly at random from the local data
of the 𝑘 − 𝑡ℎ client, then the variance of stochastic gra-

dients of each client is bounded, that is, E ∥▽𝐹𝑘 (w𝑘𝑡 , 𝜉𝑘𝑡) −
▽𝐹𝑘 (w𝑘𝑡)∥2 ≤ 𝜎2

𝑘
for 𝑘 = 1, 2, ...𝑚.

(4) The expected squared norm of stochastic gradients is
uniformly bounded, that is, E ∥▽𝐹𝑘 (w𝑘𝑡 , 𝜉𝑘𝑡)∥2 ≤ 𝐺2 for 𝑘 =

1, ...𝑚, and 𝑡 = 0, ..𝑇 − 1.
(5) Within 𝐾 iterations, the reputation score of malicious clients

drop at least by 𝛿𝑚𝑎𝑙 , and reputation score of benign clients
increase at least by 𝛿𝑏𝑒𝑛 , that is, |𝑅𝑆𝑡𝑚𝑎𝑙 − 𝑅𝑆

𝑡−𝐾
𝑚𝑎𝑙

| ≥ 𝛿𝑚𝑎𝑙

and |𝑅𝑆𝑡
𝑏𝑒𝑛

−𝑅𝑆𝑡−𝐾
𝑏𝑒𝑛

| ≥ 𝛿𝑏𝑒𝑛 , for 𝑡 = 0, ..𝑇 −1. We empirically
show this in Figure 4.

Assumptions #1 and #2 are standard and apply to 𝑙2-norm regular-
ized linear regression, logistic regression, and softmax classifier.
Assumptions #3 and #4 have been also made by [14, 15, 19, 21]. In
our problem setting, Assumption #3 claims that the gradient with a
subset of local data is bounded from the gradient with whole batch
for all clients. Assumption #5 means that after every 𝐾 iterations
in our algorithm, the reputation scores of malicious and benign
clients will diverge further.
Theorem1 - Let Assumptions (1)-(5) hold and𝐿, 𝜇, 𝜎𝑘 ,𝐺, 𝐾𝛿𝑚𝑎𝑙 , 𝛿𝑏𝑒𝑛
be defined therein. Choose 𝛾 = 𝑚𝑎𝑥{8𝐿𝜇 , 1}, and 𝜂𝑡 = 2

𝜇 (𝛾+𝑡) . Let
𝐺𝑀 denote the global objective function and let 𝐺𝑀∗ and 𝐹 ∗

𝑘
be the

minimum value of 𝐺𝑀 and 𝐹𝑘 respectively, then:

E[𝐺𝑀 (w𝑇)] −𝐺𝑀∗ ≤ 2
𝜇2

· 𝐿

𝛾 +𝑇 (
𝑚∑︁
𝑘=1

𝑝2
𝑘
𝜎2
𝑘
+ 6𝐿Γ + 8𝐺2

+8𝐺2
𝑐∑︁
𝑘=1

𝑝𝑘,0 +
𝜇2

4
∥𝑤0 −𝑤∗∥2).

where 𝑇 is the total number of iterations, 𝑝𝑘,0 is the initial weight
for the clients, and Γ = 𝐺𝑀∗ −∑𝑚

𝑘=1 𝑝𝑘𝐹
∗
𝑘
, that effectively quanti-

fies the degree of non-iidness according to [8]. This shows that a
weighted mean aggregation is guaranteed to converge in federated
learning as long as a defense mechanism ensures that Assumption
5 holds, that is, the weights of the malicious and benign clients keep
diverging with time. The convergence speed is 𝑂 (1

𝑇
). The proof

for the theorem is available in Appendix § A.1.

5 IMPLEMENTATION

We have simulated the federated learning on a single machine with
a Tesla P100 PCIe GPU with 16GB memory, using PyTorch, with as
many clients as can be handled by our machine. The data was dis-
tributed with a non-IID bias of 0.5 (default), except for Shakespeare
where the data was distributed sequentially among the clients and
FEMNIST where the data was distributed by the writer, both of

Figure 3: Left shows the test loss curve comparing FLAIR

with the benchmark aggregation algorithms against the Full-

Krumattack.We see that the attack generates sporadic spikes

in training, best handled by FLAIR, evident from its smooth

test loss curve. Right shows the comparison of FABA and

FLAIR across diverse datasets for 𝑐/𝑚 = 0.3. FABA begins to

fail with a higher fraction of malicious clients, while FLAIR

remains robust.

which constitute non-IID distributions. In our simulation, all clients
run one local iteration on a batch of its local data before commu-
nicating with the parameter server in a synchronous manner. The
clients sample their local data in a round-robin manner, send their
local gradients to the parameter server, and download the updated
global model before running the next local iteration. The malicious
clients attack every iteration of training. We assume 𝑐 = 𝑐𝑚𝑎𝑥 , that
is, the extreme case of 𝑐 ≤ 𝑐𝑚𝑎𝑥 to test the limits of our defense.
For the Shejwalkar attack, the perturbation type is chosen to be
unit vector.

Baselines and datasets. The baseline aggregation rules used are
Krum, Bulyan, TrimmedMean, andMedian.We also compare FLAIR
with the recent defense techniques of FABA [16], FoolsGold [6],
and FLTrust [4]. We evaluate FLAIR on 4 different datasets (Table 1).
MNIST, CIFAR-10, and FEMNIST are image datasets, Shakespeare is
an NLP dataset. The DNN trained on MNIST has 2 conv layers with
30 and 50 channels respectively, each followed by a 2 × 2 maxpool
layer, then by a fully connected layer of size 200, and an output layer
of size 10. We use a constant learning rate, except for CIFAR-10
where we start with zero, reach the peak at one-fourth of the total
iterations, and slowly get down to zero again. The CNN trained on
the FEMNIST dataset follows the same network architecture as [3].

Non-IID data generation.We distribute the data among the clients
as described in [5]. This method requires a non-IID bias 𝑏, 0 < 𝑏 < 1.
Given𝑚 clients and a dataset with 𝐶 classes, we group the clients
into 𝐶 groups uniformly. The complete dataset is iterated through,
one data sample at a time. A data sample with class label 𝑙 is sent to
group 𝑙 with probability 𝑏 and to any other group with a uniform
probability 1−𝑏

𝑙−1 . Within a group, all data samples are distributed
among the clients uniformly. This non-IID distribution is thus based
on the label skew and is very useful in analyzing federated learning
algorithms on skewed dataset distributions.

FLAIR: Defense against Model Poisoning Attack in Federated Learning ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia

Table 1: Datasets with the number of classes (𝑛𝑐) and training samples (𝑛𝑠), the models and model parameters (𝑃), training

rounds (𝑛𝑟), batch_size (𝑏), learning rate (𝑙𝑟), total number of clients (𝑚), number of malicious ones (𝑐), and decay parameter (𝜇)

used in FLAIR. (
∗
: variable learning rate, peaks at 0.1.)

Dataset 𝑛𝑐 𝑛𝑠 Model 𝑃 𝑛𝑟 𝑏 𝑙𝑟 𝑚 𝑐 𝜇𝑑
MNIST 10 60k DNN 0.51M 500 32 0.01 100 20 0.99

CIFAR-10 10 50k ResNet-18 5.2M 2000 128 0.1∗ 10 2 0.99
Shakespeare 100 - GRU 0.14M 2000 100 0.01 10 2 0.99
FEMNIST 62 805k DNN 6.6M 2000 32 0.1 35 7 0.99

Table 2: Attack impact - Test accuracy for Directed Deviation model poisoning attacks (Full-Krum; Full-Trim), on different

datasets with 𝑐/𝑚 = 0.2. For the Shakespeare dataset, test loss has been reported. We verify the damaging impact of the Full-Trim

attack on mean-like aggregations (FedSGD, Trimmed mean, Median) and Full-Krum attack on Krum-like aggregations (Krum,

Bulyan). We also observe that the existing defenses—FABA, FoolsGold, and FLTrust—seem to defend against this attack in some

cases, and fail in others, whereas FLAIR consistently shines in all cases.

Attack Defense Test accuracy (%) / Test loss (only for Shakespeare)

MNIST+ CIFAR-10+ Shakespeare+ FEMNIST+
DNN ResNet-18 GRU DNN

None FedSGD 92.45 71.17 1.62 83.60
FLAIR 92.52 66.92 1.64 83.58
FABA 91.77 69.94 1.76 82.69

FoolsGold 91.20 70.71 1.63 83.80

FLTrust 87.70 68.08 1.62 82.72
Full- FedSGD 82.97 39.68 1.62 29.87
Krum Krum 8.92 9.81 11.98 5.62

Bulyan 10.14 13.24 9.23 9.91
FLAIR 87.73 61.26 1.64 80.19

FABA 86.99 55.96 1.75 55.61
FoolsGold 47.12 42.28 1.63 0.07
FLTrust 82.50 65.25 1.67 79.53

Full- FedSGD 65.25 47.32 1.74 32.34
Trim Trim 36.36 55.25 3.28 13.03

Median 28.37 50.54 3.30 45.6
FLAIR 90.55 67.65 1.66 82.51
FABA 91.84 67.31 1.64 79.66

FoolsGold 91.61 69.24 1.66 83.09

FLTrust 34.20 64.23 1.68 79.28

Table 3: Test accuracy for FLAIR under Shejwalkar attack

with and without the knowledge of the aggregator as com-

pared with the baseline FedSGD performance on MNIST and

CIFAR-10.

AGR AGR-knowledge MNIST CIFAR-10
no 10.10 10.00

FedSGD yes 10.09 10.00
no 92.25 69.35

FLAIR yes 92.83 69.98

Table 4: Fraction of malicious or benign clients allotted non-

negligible weights (> 10−4) averaged over 500 iterations. The

weakness of FoolsGold and FLTrust stems in part from the

fact that they assign negligibleweight to a significant fraction

of benign clients for high detection coverage.

Defense Mal/ Benign Full- Full-
Ben trim krum

FoolsGold 𝑛𝑏𝑒𝑛 0.29 0.30 0.10
𝑛𝑚𝑎𝑙 - 0.00 0.64

FLTrust 𝑛𝑏𝑒𝑛 0.48 0.45 0.49
𝑛𝑚𝑎𝑙 - 0.52 0.63

FLAIR 𝑛𝑏𝑒𝑛 0.75 0.75 0.63
𝑛𝑚𝑎𝑙 - 0.00 0.08

ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia Atul Sharma, Wei Chen, Joshua Zhao, Qiang Qiu, Saurabh Bagchi, and Somali Chaterji

6 EVALUATION

6.1 Macro Experiments

In Table 2, we compare the test accuracy achieved by various ag-
gregation techniques in benign and malicious conditions under the
Fang attack. We do not claim to provide optimal model architec-
tures that can achieve the best test accuracy, but we provide fair
comparison of all the defenses on the same model with the same
training parameters. For Shakespeare, which is an NLP dataset, we
report the test loss; for all others, we report test accuracy, where
the training and test datasets are disjoint. The final reported test
loss value does not capture the training dynamics, which can be
observed in Figure 3 for the more damaging Full-Krum attack. We
see that FLAIR is the winner or 2nd place finisher in 7 of the 12 cells
((benign + two attacks) × 4 datasets). This on the surface appears
to be not very promising, till one looks deeper. The baseline proto-
cols that finish first in one configuration fare disastrously in other
configurations, indicating that they are tailored to specific attacks
or datasets (whether by conscious design or as an artifact of their
design). For example, FoolsGold does creditably for the Full-Trim
attack but is vulnerable against the Full-Krum attack.

Averaging across the configurations, it appears FABA is the
closest competitor to FLAIR. We observe that FABA, although it
performed well for 𝑐/𝑚 = 0.2, failed to defend when the number of
attackers grew to 𝑐/𝑚 = 0.3, evident from the results in Figure 3(b).
We have used F-MNIST, Ch-MNIST, and Breast cancer Wisconsin
Dataset here to show the effect on diverse datasets. As the number
of attackers increases, the mean starts to shift more toward them.
One false positive detection by FABA can cause it to trim out a
benign local update, which causes the mean to shift further toward
the malicious updates iteratively, and fail. On the other hand, FLAIR
is guaranteed to defend against the attack as long as 𝑐 ≤ 𝑐𝑚𝑎𝑥 < 𝑚

2 .
We find empirically that FABA degrades fast, and much faster than
FLAIR, when the fraction of malicious clients increases. Where
FABA fails at 𝑐/𝑚 = 0.3, we show in Figure 6 that FLAIR remains
stable until 𝑐/𝑚 = 0.45. We also show in Figures 7(a) and (b) that
FLAIR remains robust across a wide range of non-IID bias, i.e., 0.1
to 0.8. FLAIR and FABA require an estimate of the upper bound
of number of malicious clients, 𝑐𝑚𝑎𝑥 to be known. FoolsGold and
FLTrust, on the other hand, make use of cosine similarity among
clients, and with a trusted cross-check dataset at the server, respec-
tively, to identify suspicious clients. We have found that both of
these techniques unnecessarily penalize many benign clients and
assign them a zero weight in order to conservatively defend against
an attack, as can be seen in Table 4. This can have a significantly
negative impact on a practical system where one wishes to learn
from data that the different clients hold locally. On the other hand,
FLAIR allows all clients to contribute to the global model update
that do not have a large negative reputation score. Figure 4 shows
the evolution of the average reputation score of malicious and be-
nign clients. When benign and malicious clients start from the same
point, the weights of malicious clients decrease with time tending
to zero, while those of the benign clients increase.

Table 3 shows for the Shejwalkar attack, the test accuracy
achieved in the presence and absence of FLAIR when the white-
box and gray-box variants of the attack are used on the MNIST

Figure 4: The figure demonstrates the typical training dynam-

ics of clients’ reputation weights against time with FLAIR,

showing an increase in average reputation of benign clients

and decrease in that of malicious clients as the training pro-

gresses.

and CIFAR-10 datasets. The attack achieves higher error rate in
the absence of a defense even when the aggregation algorithm is
unknown, proving to be a stronger attack compared to the Fang
attack. This is because it better optimizes the attacked gradient
magnitudes. However, it also relies on gradient flips to achieve
its target and the malicious behavior gets flagged by FLAIR that
restores the training to benign standards.

6.2 Adaptive attack

Having shown the performance of FLAIR against the above attacks,
we proceed to analyze an adaptive attack scenario, i.e., one where
the attacker has full knowledge of FLAIR, including the dynamic
value of the cutoff flip-scores. Thus, at iteration 𝑡 + 1, the attacker
knows 𝐹𝑆𝑙𝑜𝑤 (𝑡) and 𝐹𝑆ℎ𝑖𝑔ℎ (𝑡) beyond which the clients were pe-
nalized at iteration 𝑡 . The Adaptive-Krum attack first computes the
target malicious gradients at 𝑡 + 1 using Full-Krum algorithm, and
if its flip-score goes above 𝐹𝑆ℎ𝑖𝑔ℎ (𝑡), it reverses the attack on its
less important parameters, i.e., parameters that would have had
low magnitude updates without attack. It does this by replacing
5% of the attacked parameters, at a time, with their benign values
until the flip-score is brought down to ensure stealth. Since the
stealthy attack will be less powerful than the original intended
attack, the global model will only be partially poisoned, and the
attackers are not expected to occupy the lower spectrum of the
flip-score. This has been verified in our experiments as well. All the
malicious clients send these attacked parameters with some added
randomness in order to support one other. We observe a trade-off
between stealth and attack impact in this case, as can be seen in
Figure 5, that the attack loses its impact as it tries to evade the
defense in a stealthy manner.

The Adaptive-Trim attack is a smarter and collaborative attack.
Its target is to generate attacked gradients 𝑣𝑖 , 𝑖 = 0, 1, · · · 𝑐−1. It first
computes the Full-Trim target attack 𝑢𝑖 for every malicious client

FLAIR: Defense against Model Poisoning Attack in Federated Learning ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia

Figure 5: Performance of FLAIR against adaptive white-box

attacks, specifically designed to attack FLAIR, evaluated on

MNIST and CIFAR-10. We observe a significant improvement

in test accuracy, compared to the base case impact of Full-

Krum on Krum and Full-Trim on FedSGD, as reported in

Table 2.

𝑖 . Then, it initializes 𝑣0 to 𝑢0 and modifies it, until 𝑣0 generates a
flip-score that is less than 𝐹𝑆ℎ𝑖𝑔ℎ (𝑡). This modification is done in a
manner similar to that of Adaptive-Krum, as explained above. Client
𝑖 = 1 then updates its target attack from 𝑢1 to 𝑣1 = 𝑢1 + (𝑢0 − 𝑣0)
in order to compensate for a sub-optimal attack created by client
𝑖 = 0 because of the flip-score-evasion constraint. This is how the
malicious clients collude among themselves. A malicious client,
however may not necessarily find a solution as the target grows
and the flip-score constraints may become too hard to solve for the
updated target. The attacker hopes to attain

∑𝑐−1
𝑖=0 𝑢𝑖 =

∑𝑐−1
𝑖=0 𝑣𝑖 in

order to have the original intended attack impact.
The performance of FLAIR against this adaptive white-box attack

is shown in Figure 5. We find that the adaptive attacks are not very
effective against FLAIR, where for comparison, the benign accuracy
for the two datasets are 92.45% and 71.17%. This happens due to
multiple reasons: 1) the attack loses in strength while trying to gain
in stealth, 2) the attackers need not be allotted equal reputation
weights, so the weighted sum of the attacked gradients 𝑣 do not
match with the weighted sum of the target attack𝑢, 3) the flip-score
distribution is dynamic, as can be seen in Figure 2, and changes
from time 𝑡 to 𝑡 + 1, and when it decreases in consecutive iterations
by a significant amount, the attackers can still be blocked as the
attack was crafted to evade the cutoff flip-score at time 𝑡 that is
accessible to the attackers, which could still be higher than the
cutoff flip-score at time 𝑡 + 1.

To counter the second point mentioned above, we have also
created a more knowledgeable attacker, by modifying the above
constraint with a weighted sum, weighted by the reputation scores.
Here, the adversary even has the knowledge of its own reputation
weight (𝑊𝑅). It uses this information to come up with attacked
gradients with better chances of a successful attack. We call this a
“Weighted-Adaptive-Trim" attack. The modified constraint becomes

𝑐−1∑︁
𝑖

𝑊𝑅,𝑖𝑣𝑖 =

𝑐−1∑︁
𝑖=0

𝑊𝑅,𝑖𝑢𝑖

FLAIR successfully defends even against this attack. We show the
experimental results on on MNIST in Figure 6. With FLAIR, the test
accuracy reaches 90% while in the baseline case with FedSGD and
the vanilla attack, it only reaches upto around 58% test accuracy.
For context, without any attack, the model reaches an accuracy

Figure 6: Figure (left) shows the test accuracy of FLAIRwhen

evaluated on MNIST dataset under the default conditions

with 𝑚 = 100, 𝑐 = 20 where the adversary launches the

Weighted-Adaptive-Trim attack on the system, compared

with the baseline performance of FedSGD against the Full-

Trim attack. FLAIR successfully defends against this attack

to achieve a 90% test accuracy. Figure (right) shows the per-

formance of FLAIR on MNIST with increasing 𝑐. We see that

FLAIR is stable across a large range and breaks only above

𝑐 = 0.45 which is close to the theoretical limit of 𝑐 = 0.5− .

of 92.45%. The effectiveness of FLAIR against this attack can be
attributed to reasons (1) and (3) given above.

6.3 Robustness of FLAIR

Here, we provide additional evaluation of FLAIR in two specific
situations. We stress-test it first by subjecting it to a higher number
of malicious clients to find the breaking point of FLAIR, when
trained on MNIST dataset in the presence of Full-trim attack. We
assume that the number of compromised clients is still not greater
than 𝑐𝑚𝑎𝑥 , and to that end, we set 𝑐 = 𝑐𝑚𝑎𝑥 to test FLAIR in the
extreme condition. Since FLAIR requires 𝑐𝑚𝑎𝑥 < 𝑚

2 , we have swept
𝑐 upto 49 where𝑚 was fixed at 100. We observe in Figure 6 that
FLAIR is stable upto 𝑐/𝑚 = 0.45 whereas the rest of the defense
techniques broke below 𝑐/𝑚 = 0.30 as can be seen in Table 2 and
Figure 3 with 𝑐 = 𝑐𝑚𝑎𝑥 set for all the defense techniques that require
a knowledge of 𝑐𝑚𝑎𝑥 . This shows that FLAIR remains robust across
a wider range of malicious conditions as compared to any other
previous defense techniques.

Figures 7(a) and (b) show the performance of FLAIR on MNIST
dataset distributed among 100 clients with varying degrees of non-
IIDness. We observe that, except for the extreme case of 𝑏𝑖𝑎𝑠 = 0.9,
FLAIR remains exceptionally stable. This is because FLAIR does not
discriminate against clients with unique data unless the gradients
they send consistently oppose the benign direction, in which case,
the global model would most likely be hurt by incorporating those
gradients.

7 DISCUSSION AND CONCLUSION

We have presented FLAIR, a secure parameter server for federated
learning, robust to any untargeted model poisoning attack. FLAIR
uses a stateful algorithm to allocate reputation scores to the partic-
ipating clients to lower the contribution of maliciously behaving
clients. We define malicious behavior using a metric, flip-score,

ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia Atul Sharma, Wei Chen, Joshua Zhao, Qiang Qiu, Saurabh Bagchi, and Somali Chaterji

Figure 7: Figures (a) and (b) show the test accuracy of FLAIR

on MNIST dataset distributed with varying non-IID bias

across 100 clients in benign and malicious cases respectively.

FLAIR can be seen to be robust enough for a wide range of

bias, 0.1–0.8, with a small dip in test accuracy occurring at

𝑏𝑖𝑎𝑠 = 0.9.

which when too high or too low, captures attacks that try to di-
vert the global model away from convergence. This makes FLAIR
a robust defense, no matter when it is instantiated, although we
recommend enabling FLAIR right from the start. FLAIR can also
be used to just filter out clients solely based on their flip-score,
so that an aggregation of the user’s choice (other than weighted
mean) can be used. We also add the fairness attribute to FLAIR by
allowing clients to redeem themselves and contribute to the global
model if they act benign. This is done using a user-defined 𝑑𝑒𝑐𝑎𝑦
parameter to control the importance of the past performance of a
client and thereby its speed of redemption. We evaluate the benefits
of FLAIR compared to the fundamental FL aggregation FedSGD and
state-of-the-art defenses, namely Krum, Bulyan, FABA, FoolsGold,
and FLTrust. We evaluate using full knowledge untargeted model
poisoning attacks that have recently been found to be most damag-
ing against FL. We find that different existing defenses shine under
specific combinations of attacks and datasets/models. However,
FLAIR provides transferable defense with accuracy competitive
with respective winners under all configurations. Further, FLAIR
holds up better than its closest competitor, FABA, when the fraction
of malicious clients increases (beyond 20%). Finally, an adaptive
white-box attacker with access to all internals of FLAIR, including
dynamically determined threshold parameters, cannot bypass its
defense.

All of our evaluation is limited to a synchronous setting with
no gradient encryption, as FLAIR requires the server to be capable
of accessing unencrypted client updates so that it can classify the
update as benign or suspicious based on its flip-score. Gradient
encryption is also less relevant in a cross-device scenario due to
its high computational overhead [20]. However, these limitations
present logical avenues for our future work.

8 ACKNOWLEDGMENTS

This material is based in part upon work supported by the Na-
tional Science Foundation under Grant Numbers CNS-2038986 and
CNS-2146449 (NSF CAREER award), and a contract from the Army
Research Lab (ARL) W911NF-2020-221. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
sponsors. We would also like to thank Dipesh Tamboli and Ashwini

Panda for their FLTrust re-implementation for its use as one of the
baselines for FLAIR and for ResNet-18’s implementation to train
the CIFAR-10 dataset respectively.

REFERENCES

[1] Sana Awan, Bo Luo, and Fengjun Li. 2021. CONTRA: Defending against Poisoning
Attacks in Federated Learning. In European Symposium on Research in Computer
Security. Springer, 455–475.

[2] Peva Blanchard, Rachid Guerraoui, and Julien Stainer. 2017. Machine learning
with adversaries: Byzantine tolerant gradient descent. In Advances in Neural
Information Processing Systems. 119–129. Krum paper.

[3] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný,
H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2019. LEAF: A
Benchmark for Federated Settings. arXiv preprint arXiv:1812.01097 (2019).

[4] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2021. FLTrust:
Byzantine-robust Federated Learning via Trust Bootstrapping. Network and
Distributed System Security Symposium (2021), 1–18.

[5] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2020.
Local Model Poisoning Attacks to Byzantine-Robust Federated Learning. In
29th USENIX Security Symposium (USENIX Security 20). Boston, MA. https:
//www.usenix.org/conference/usenixsecurity20/presentation/fang

[6] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. 2020. The Limitations
of Federated Learning in Sybil Settings. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020). USENIX Association, San
Sebastian, 301–316. https://www.usenix.org/conference/raid2020/presentation/
fung

[7] Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Junshan Zhang. 2019.
Incentive mechanism for reliable federated learning: A joint optimization ap-
proach to combining reputation and contract theory. IEEE Internet of Things
Journal 6, 6 (2019), 10700–10714.

[8] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2020.
On the Convergence of FedAvg on Non-IID Data. In International Conference on
Learning Representations. https://openreview.net/forum?id=HJxNAnVtDS

[9] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In AISTATS.

[10] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. 2018. The hidden
vulnerability of distributed learning in byzantium. In Proceedings of the 35th
International Conference on Machine Learning (ICML). 3521–3530. Bulyan paper.

[11] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th
ACM workshop on artificial intelligence and security. 27–38.

[12] Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the Byzantine: Op-
timizing Model Poisoning Attacks and Defenses for Federated Learning. Internet
Society (2021), 18.

[13] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. 2017.
Federated multi-task learning. In Advances in Neural Information Processing
Systems. 4424–4434.

[14] Sebastian U Stich. 2018. Local SGD converges fast and communicates little. arXiv
preprint arXiv:1805.09767 (2018).

[15] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. 2018. Sparsified
SGD with memory. Advances in Neural Information Processing Systems 31 (2018).

[16] Qi Xia, Zeyi Tao, Zijiang Hao, and Qun Li. 2019. FABA: An Algorithm for Fast
Aggregation against Byzantine Attacks in Distributed Neural Networks.. In IJCAI.
4824–4830.

[17] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine
learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 1–19.

[18] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.
Byzantine-robust distributed learning: Towards optimal statistical rates. In Inter-
national Conference on Machine Learning. PMLR, 5650–5659.

[19] Hao Yu, Sen Yang, and Shenghuo Zhu. 2019. Parallel restarted SGD with faster
convergence and less communication: Demystifying why model averaging works
for deep learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 5693–5700.

[20] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. 2020.
Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning.
In 2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20). 493–506.

[21] Yuchen Zhang, John C Duchi, and Martin J Wainwright. 2012. Communication-
efficient algorithms for statistical optimization. In 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC). IEEE, 6792–6792.

https://www.usenix.org/conference/usenixsecurity20/presentation/fang
https://www.usenix.org/conference/usenixsecurity20/presentation/fang
https://www.usenix.org/conference/raid2020/presentation/fung
https://www.usenix.org/conference/raid2020/presentation/fung
https://openreview.net/forum?id=HJxNAnVtDS

FLAIR: Defense against Model Poisoning Attack in Federated Learning ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia

A APPENDIX

A.1 Proof for Theorem 1

Proof -

Let the 𝑘-th client hold 𝑛𝑘 training data batches: 𝑥𝑘,1, ...𝑥𝑘,𝑛𝑘 .
The local objective function 𝐹𝑘 (·) is given by

𝐹𝑘 (w) = 1
𝑛𝑘

𝑛𝑘∑︁
𝑗=1

𝑙 (w;𝑥𝑘,𝑗),

where 𝑙 (·; ·) is the specified loss function for each client.
The global objective function is defined as

𝐺𝑀𝑘,𝑡 (w) =
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 𝐹𝑘 (w).

The global model is updated as

w𝑘𝑡+1 = w𝑘𝑡 − 𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡▽𝐹𝑘 (w𝑘𝑡),

where 𝑝𝑘,𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑅𝑆𝑘,𝑡) is the softmax of reputation score of
client 𝑘 at time 𝑡 .

We update the weights by averaging the weights from selected
clients w̄𝑡 =

∑𝑚
𝑘=1 𝑝𝑘,𝑡w

𝑘
𝑡 . For convenience, we also define 𝑔𝑡 =∑𝑚

𝑘=1 𝑝𝑘,𝑡∇𝐹𝑘 (w
𝑘
𝑡 , 𝜉

𝑘
𝑡), where 𝜉𝑘𝑡 is the selected local data.

A.1.1 Analysis on consecutive steps. To bound the expectation
of the global objective function at time𝑇 from its optimal value, we
first consider to analyze the global weight from the optimal weights
by calculating single step SGD:

∥w̄𝑡+1−w∗∥2 = ∥w̄𝑡 − 𝜂𝑡𝑔𝑡 −w∗ − 𝜂𝑡𝑔𝑡 + 𝜂𝑡𝑔𝑡 ∥2

=∥w̄𝑡 −w∗ − 𝜂𝑡𝑔𝑡 ∥2 + 2𝜂𝑡 ⟨w̄𝑡 −w∗ − 𝜂𝑡𝑔𝑡 , 𝑔𝑡 − 𝑔𝑡 ⟩
+ 𝜂2𝑡 ∥𝑔𝑡 − 𝑔𝑡 ∥2 .

(3)

The first term of Equation. 3 can be expressed as

∥w̄𝑡 −w∗ − 𝜂𝑡𝑔𝑡 ∥2 = ∥w̄𝑡 −w∗∥2 − 2𝜂𝑡 ⟨w̄𝑡 −w∗, 𝑔𝑡 ⟩ + 𝜂2𝑡 ∥𝑔𝑡 ∥2 .
(4)

The second term of Equation. 4 can be expressed as

−2𝜂𝑡 ⟨w̄𝑡 −w∗, 𝑔𝑡 ⟩ = − 2𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ⟨w̄𝑡 −w∗,∇𝐹𝑘 (w𝑘𝑡)⟩

= − 2𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ⟨w̄𝑡 −w𝑘𝑡 ,∇𝐹𝑘 (w𝑘𝑡)⟩

− 2𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ⟨w𝑘𝑡 −w∗,∇𝐹𝑘 (w𝑘𝑡)⟩.

(5)

By Cauchy-Schwarz inequality and AM-GM inequality, we have

−2⟨w̄𝑡 −w𝑘𝑡 ,∇𝐹𝑘 (w𝑘𝑡)⟩ ≤
1
𝜂𝑡

∥w̄𝑡 −w𝑘𝑡 ∥2 + 𝜂𝑡 ∥∇𝐹𝑘 (w𝑘𝑡)∥2 . (6)

By the 𝜇-strong convexity of 𝐹𝑘 (·), with 𝑣 = w∗ and𝑤 = w𝑘𝑡 , we
have

−⟨w𝑘𝑡 −w∗,∇𝐹𝑘 (w𝑘𝑡)⟩ ≤ −(𝐹𝑘 (w𝑘𝑡) − 𝐹𝑘 (w∗)) − 𝜇

2
∥w𝑘𝑡 −w∗∥2 .

(7)

By the convexity of ∥ · ∥ and the L-smoothness of 𝐹𝑘 (·), we can
express third term of Equation. 4 as

𝜂2𝑡 ∥𝑔𝑡 ∥2 ≤ 𝜂2𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥∇𝐹𝑘 (w𝑘𝑡)∥2 ≤ 2𝐿𝜂2𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) − 𝐹 ∗𝑘).

(8)
Combining Equations. 4 − 8, we have

∥w̄𝑡 −w∗ − 𝜂𝑡𝑔𝑡 ∥2 ≤ ∥w̄𝑡 −w∗∥2

+ 𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (
1
𝜂𝑡

∥w̄𝑡 −w𝑘𝑡 ∥2 + 𝜂𝑡 ∥∇𝐹𝑘 (𝑤𝑘𝑡)∥2)

− 2𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ((𝐹𝑘 (w𝑘𝑡) − 𝐹𝑘 (w∗)) + 𝜇

2
∥w𝑘𝑡 −w∗∥2)

+ 2𝐿𝜂2𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) − 𝐹 ∗𝑘)

=(1 − 𝜇𝜂𝑡)∥w̄𝑡 −w∗∥2 +
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥w̄𝑡 −w𝑘𝑡 ∥2

+ 2𝐿𝜂2𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) − 𝐹 ∗𝑘)

+ 𝜂2𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥∇𝐹𝑘 (w𝑘𝑡)∥2 − 2𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) − 𝐹𝑘 (w∗))

≤(1 − 𝜇𝜂𝑡)∥w̄𝑡 −w∗∥2 +
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥w̄𝑡 −w𝑘𝑡 ∥2

+ 4𝐿𝜂2𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) − 𝐹 ∗𝑘) − 2𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) − 𝐹𝑘 (w∗)),

(9)

where we use the L-smoothness of 𝐹𝑘 (·) in the last inequality,
and Jensen inequality on w𝑘𝑡 with 𝜙 (𝑥) = ∥𝑥 − 𝑤∗∥2 in the 2nd
inequality.

4𝐿𝜂2𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) − 𝐹 ∗𝑘) − 2𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) − 𝐹𝑘 (w∗))

= − 𝛾𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) −𝐺𝑀∗) − 𝛾𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐺𝑀∗ − 𝐹 ∗
𝑘
)

+ 2𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w∗) − 𝐹 ∗
𝑘
)

= − 𝛾𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) −𝐺𝑀∗) − 𝛾𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐺𝑀∗ − 𝐹 ∗
𝑘
)

+ 2𝜂𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐺𝑀∗ − 𝐹 ∗
𝑘
)

= − 𝛾𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) −𝐺𝑀∗) + (2𝜂𝑡 − 𝛾𝑡)
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐺𝑀∗ − 𝐹 ∗
𝑘
)

= − 𝛾𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) −𝐺𝑀∗) + 4𝐿𝜂2𝑡 Γ,

(10)

ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia Atul Sharma, Wei Chen, Joshua Zhao, Qiang Qiu, Saurabh Bagchi, and Somali Chaterji

where Γ =
∑𝑚
𝑘=1 𝑝𝑘,𝑡 (𝐺𝑀

∗ − 𝐹 ∗
𝑘
) = 𝐺𝑀∗ − ∑𝑚

𝑘=1 𝑝𝑘,𝑡 𝐹
∗
𝑘
, and 𝛾𝑡 =

2𝜂𝑡 (1 − 2𝐿𝜂𝑡).
The first term of Equation. 10

𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) −𝐺𝑀∗) =
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) − 𝐹𝑘 (w̄𝑡))

+
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w̄𝑡) −𝐺𝑀∗)

≥
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ⟨∇𝐹𝑘 (w̄𝑡),w𝑘𝑡 − w̄𝑡)⟩ +
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w̄𝑡) −𝐺𝑀∗)

=

𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ⟨∇𝐹𝑘 (w̄𝑡),w𝑘𝑡 − w̄𝑡)⟩ +𝐺𝑀 (w̄𝑡) −𝐺𝑀∗

≥ −1
2

𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝜂𝑡 ∥𝐹𝑘 (w̄𝑡)∥2 +
1
𝜂𝑡

∥w𝑘𝑡 − w̄𝑡 ∥2)

+𝐺𝑀 (w̄𝑡) −𝐺𝑀∗

≥ −
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝜂𝑡𝐿(𝐹𝑘 (w̄𝑡) − 𝐹 ∗𝑘) +
1
2𝜂𝑡

∥w𝑘𝑡 − w̄𝑡 ∥2)

+𝐺𝑀 (w̄𝑡) −𝐺𝑀∗,
(11)

where the first inequality results from the convexity of 𝐹𝑘 (·), the
second inequality from AM-GM inequality and the third inequality
from L-smoothness of 𝐹𝑘 (·).

Therefore, Equation. 10 becomes

− 𝛾𝑡
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) −𝐺𝑀∗) + 4𝐿𝜂2𝑡 Γ

≤𝛾𝑡 (
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝜂𝑡𝐿(𝐹𝑘 (w̄𝑡) − 𝐹 ∗𝑘) +
1
2𝜂𝑡

∥w𝑘𝑡 − w̄𝑡 ∥2))

− 𝛾𝑡 (𝐺𝑀 (w̄𝑡) −𝐺𝑀∗) + 4𝐿𝜂2𝑡 Γ

=𝛾𝑡 (
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝜂𝑡𝐿(𝐹𝑘 (w̄𝑡) −𝐺𝑀∗) + 1
2𝜂𝑡

∥w𝑘𝑡 − w̄𝑡 ∥2))

+ 𝛾𝑡𝜂𝑡𝐿Γ − 𝛾𝑡 (𝐺𝑀 (w̄𝑡) −𝐺𝑀∗) + 4𝐿𝜂2𝑡 Γ

=𝛾𝑡 (𝜂𝑡𝐿 − 1)
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w̄𝑡) −𝐺𝑀∗)

+ 𝛾𝑡

2𝜂𝑡

𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥w𝑘𝑡 − w̄𝑡 ∥2 + (4𝐿𝜂2𝑡 + 𝛾𝑡𝜂𝑡𝐿)Γ,

(12)

With 𝐺𝑀 (w̄𝑡) −𝐺𝑀∗ > 0 and 𝜂𝑡𝐿 − 1 < 0, we have

𝛾𝑡 (𝜂𝑡𝐿 − 1)
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w̄𝑡) −𝐺𝑀∗) ≤ 0, (13)

and recall 𝛾𝑡 = 2𝜂𝑡 (1 − 2𝐿𝜂𝑡), so 𝛾𝑡
2𝜂𝑡 ≤ 1 and 4𝐿𝜂2𝑡 + 𝛾𝑡𝜂𝑡𝐿 ≤ 6𝐿𝜂2𝑡 .

Therefore,
−𝛾𝑡

𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (𝐹𝑘 (w𝑘𝑡) −𝐺𝑀∗) + 4𝐿𝜂2𝑡 Γ

≤
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥w𝑘𝑡 − w̄𝑡 ∥2 + 6𝐿𝜂2𝑡 Γ.
(14)

Thus, Equation. 9 becomes
∥w̄𝑡 −w∗ − 𝜂𝑡𝑔𝑡 ∥2 ≤(1 − 𝜇𝜂𝑡)∥w̄𝑡 −w∗∥2 + 2

𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥w𝑘𝑡 − w̄𝑡 ∥2

+ 6𝐿𝜂2𝑡 Γ.
(15)

A.1.2 Bound for variance of gradients. Next, to bound the gradient,
using assumption 3, we have
E∥𝑔𝑡 − 𝑔𝑡 ∥2 =E∥

𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 (∇𝐹𝑘 (w𝑘𝑡 , 𝜉𝑘𝑡) − ∇𝐹𝑘 (w𝑘𝑡))∥2

=

𝑚∑︁
𝑘=1

𝑝2
𝑘,𝑡
E∥∇𝐹𝑘 (w𝑘𝑡 , 𝜉𝑘𝑡) − ∇𝐹𝑘 (w𝑘𝑡)∥2

≤
𝑚∑︁
𝑘=1

𝑝2
𝑘,𝑡
𝜎2
𝑘
.

(16)

A.1.3 Bound for divergence of weights. Based on Assumption
5, for malicious clients 𝑘 = 1, 2, . . . , 𝑐 , we have

𝑝𝑘,𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑅𝑆𝑡𝑘𝑚) = 𝑒𝑅𝑆
𝑡
𝑘𝑚∑𝑚

𝑖=1 𝑅𝑆
𝑡
𝑖

=
𝑒𝑅𝑆

𝑡−𝑀
𝑘𝑚

−𝛿𝑚∑𝑐
𝑖=1 𝑒

𝑅𝑆𝑡−𝑀
𝑖

−𝛿𝑚 +∑𝑚
𝑖=𝑐+1 𝑒

𝑅𝑆𝑡−𝑀
𝑖

+𝛿𝑏

=
𝑒𝑅𝑆

𝑡−𝑀
𝑘𝑚∑𝑐

𝑖=1 𝑒
𝑅𝑆𝑡−𝑀

𝑖 +∑𝑚
𝑖=𝑐+1 𝑒

𝑅𝑆𝑡−𝑀
𝑖

+𝛿𝑏+𝛿𝑚

≤ 𝑒𝑅𝑆
𝑡−𝑀
𝑘𝑚∑𝑐

𝑖=1 𝑒
𝑅𝑆𝑡−𝑀

𝑖 +∑𝑚
𝑖=𝑐+1 𝑒

𝑅𝑆𝑡−𝑀
𝑖

= 𝑝𝑘,𝑡−𝑀 .

(17)

To bound the weights, we assume within 𝐸 communication steps,
there exists 𝑡0 < 𝑡 , such that 𝑡 − 𝑡0 ≤ 𝐸 − 1 and w𝑘𝑡0 = w̄𝑡0 for all
𝑘 = 1, 2, . . . ,𝑚. And we know 𝜂𝑡 is non-increasing and 𝜂𝑡0 ≤ 2𝜂𝑡 .
With the fact E∥𝑋 −E𝑋 ∥2 ≤ E∥𝑋 ∥2 and Jensen inequality, we have

E
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥w̄𝑡 −w𝑘𝑡 ∥2 ≤E
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥w̄𝑡0 −w𝑘𝑡 ∥2

≤
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡E
𝑡−1∑︁
𝑡0

(𝐸 − 1)𝜂2𝑡 ∥𝐹𝑘 (w𝑘𝑡 , 𝜉𝑘𝑡)∥2

≤
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡E
𝑡−1∑︁
𝑡0

(𝐸 − 1)𝜂2𝑡0𝐺
2

≤
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡E(𝐸 − 1)2𝜂2𝑡0𝐺
2

=

𝑐∑︁
𝑘=1

𝑝𝑘,𝑡E(𝐸 − 1)2𝜂2𝑡0𝐺
2 +

𝑚∑︁
𝑘=𝑐+1

𝑝𝑘,𝑡E(𝐸 − 1)2𝜂2𝑡0𝐺
2

≤
𝑐∑︁
𝑘=1

𝑝𝑘,𝑡E(𝐸 − 1)2𝜂2𝑡0𝐺
2 + 4𝜂2𝑡 (𝐸 − 1)2𝐺2

≤4
𝑐∑︁
𝑘=1

𝑝𝑘,𝑡𝜂
2
𝑡 (𝐸 − 1)2𝐺2 + 4𝜂2𝑡 (𝐸 − 1)2𝐺2

≤4
𝑐∑︁
𝑘=1

𝑝𝑘,0𝜂
2
𝑡 (𝐸 − 1)2𝐺2 + 4𝜂2𝑡 (𝐸 − 1)2𝐺2,

(18)

FLAIR: Defense against Model Poisoning Attack in Federated Learning ACM ASIACCS ’23, July 10–14, 2023, Melbourne, Australia

where 𝑝𝑘,0 is the initial weight assigned to the 𝑘th client.

A.1.4 Convergence bound. Combining Equations.(3), (15), (16),
and (18), we have

∥w̄𝑡+1 −w∗∥2 =∥w̄𝑡 −w∗ − 𝜂𝑡𝑔𝑡 ∥2

+2𝜂𝑡 ⟨w̄𝑡 −w∗ − 𝜂𝑡𝑔𝑡 , 𝑔𝑡 − 𝑔𝑡 ⟩ + 𝜂2𝑡 ∥𝑔𝑡 − 𝑔𝑡 ∥2

≤(1 − 𝜇𝜂𝑡)∥w̄𝑡 −w∗∥2 + 2
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥w𝑘𝑡 − w̄𝑡 ∥2 + 6𝐿𝜂2𝑡 Γ

+ 2𝜂𝑡 ⟨w̄𝑡 −w∗ − 𝜂𝑡𝑔𝑡 , 𝑔𝑡 − 𝑔𝑡 ⟩ + 𝜂2𝑡 ∥𝑔𝑡 − 𝑔𝑡 ∥2 .
(19)

Since E[𝑔𝑡] = 𝑔𝑡 , Therefore,

E∥w̄𝑡+1 −w∗∥2 ≤(1 − 𝜇𝜂𝑡)E∥w̄𝑡 −w∗∥2 + 2E
𝑚∑︁
𝑘=1

𝑝𝑘,𝑡 ∥w𝑘𝑡 − w̄𝑡 ∥2

+ 6𝐿𝜂2𝑡 Γ + 2𝜂𝑡E⟨w̄𝑡 −w∗ − 𝜂𝑡𝑔𝑡 , 𝑔𝑡 − 𝑔𝑡 ⟩
+ E𝜂2𝑡 ∥𝑔𝑡 − 𝑔𝑡 ∥2

≤(1 − 𝜇𝜂𝑡)E∥w̄𝑡 −w∗∥2 + 8
𝑐∑︁
𝑘=1

𝑝𝑘,0𝜂
2
𝑡 (𝐸 − 1)2𝐺2

+ 8𝜂2𝑡 (𝐸 − 1)2𝐺2 + 6𝐿𝜂2𝑡 Γ + 𝜂2𝑡
𝑚∑︁
𝑘=1

𝑝2
𝑘,𝑡
𝜎2
𝑘

=(1 − 𝜇𝜂𝑡)E∥w̄𝑡 −w∗∥2

+ 𝜂2𝑡 [8
𝑐∑︁
𝑘=1

𝑝𝑘,0 (𝐸 − 1)2𝐺2 + 8(𝐸 − 1)2𝐺2

+ 6𝐿Γ +
𝑚∑︁
𝑘=1

𝑝2
𝑘,𝑡
𝜎2
𝑘
]

(20)

We set 𝜂𝑡 =
𝛽
𝑡+𝛾 for some 𝛽 > 1

𝜇 and 𝛾 > 0, such that 𝜂1 ≤
𝑚𝑖𝑛{ 1𝜇 ,

1
4𝐿 } = 1

4𝐿 and 𝜂𝑡 ≤ 2𝜂𝑡+𝐸 . We want to prove E∥w̄𝑡 −

w∗∥2 ≤ 𝑣
𝛾+𝑡 , where 𝑣 = 𝑚𝑎𝑥{ 𝛽2𝐵

𝛽𝜇−1 , (𝛾 + 1)E∥w̄1 − w∗∥2} and
𝐵 = 8

∑𝑐
𝑘=1 𝑝𝑘,0 (𝐸 − 1)2𝐺2 + 8(𝐸 − 1)2𝐺2 + 6𝐿Γ +∑𝑚

𝑘=1 𝑝
2
𝑘,𝑡
𝜎2
𝑘
.

Firstly, the definition of 𝑣 ensures that E∥w̄1 − w∗∥2 ≤ 𝑣
𝛾+1 .

Assume the conclusion holds for some 𝑡 , we have

E∥w̄𝑡+1 −w∗∥2 ≤(1 − 𝜇𝜂𝑡)E∥w̄𝑡 −w∗∥2 + 𝜂2𝑡 𝐵

≤(1 − 𝛽𝜇

𝑡 + 𝛾)
𝑣

𝑡 + 𝛾 + 𝛽2𝐵

(𝑡 + 𝛾)2

=
𝑡 + 𝛾 − 1
(𝑡 + 𝛾)2

𝑣 + [𝛽2𝐵

(𝑡 + 𝛾)2
− 𝛽𝜇 − 1

(𝑡 + 𝛾)2
𝑣]

≤ 𝑣

𝑡 + 𝛾 + 1
.

(21)

By the 𝐿-smoothness of𝐺𝑀 (·), E[𝐺𝑀 (w̄𝑡)] −𝐺𝑀∗ ≤ 𝐿
2E∥w̄𝑡 −

w∗∥2 ≤ 𝐿
2

𝑣
𝛾+𝑡 .

Figure 8: FLAIR’s Performance against the targeted and un-

targeted label flipping attacks on the MNIST dataset. We

observe that the attacks have some damage on the model,

but FLAIR is able to remedy this for both attacks.

Thus we have

E[𝐺𝑀 (w𝑇)] −𝐺𝑀∗

≤ 2
𝜇2

· 𝐿

𝛾 +𝑇 (
𝑚∑︁
𝑘=1

𝑝2
𝑘
𝜎2
𝑘
+ 6𝐿Γ + 8𝐺2 + 8𝐺2

𝑐∑︁
𝑘=1

𝑝𝑘,0

+ 𝜇2

4
∥𝑤0 −𝑤∗∥2).

A.2 Label Flipping

The attack that we target, the directed-deviation attack, has been
shown to be the most powerful attack in federated learning [5],
and specifically claims to be more effective than state-of-the-art
untargeted data poisoning attacks for multi-class classifiers, that is,
label flipping attack, Gaussian attack, and back-gradient optimiza-
tion based attacks [11]. They show that the existing data poisoning
attacks are insufficient and cannot produce a high testing error
rate, not higher than 0.2 (at least on MNIST) in the presence of
byzantine-robust aggregation techniques (Krum, trimmed mean,
and median).

We have validated in our experiments that both state-of-the-art
targeted and untargeted label flipping attacks (that fall under the
class of data poisoning attacks) are not powerful enough on the
CIFAR-10 and FEMNIST datasets and have neglible damage that is
not significant enough to be observed in the test accuracy plot. The
attacks, however, do have some damaging impact on the MNIST
dataset, as observed in Figure 8 but when FLAIR is used, the damage
is completely mitigated, as seen in Figure 8. Thus, we verify the
claims from [5] and show that FLAIR’s intuition is general enough
to counteract both the more powerful directed deviation attacks
and the weaker state-of-the-art data poisoning attacks.

	Abstract
	1 Introduction
	2 Background
	2.1 Byzantine-resilient Federated Learning
	2.2 Threat model: State-of-the-Art Model Poisoning Attack

	3 Design
	4 Convergence Analysis
	5 Implementation
	6 Evaluation
	6.1 Macro Experiments
	6.2 Adaptive attack
	6.3 Robustness of FLAIR

	7 Discussion and Conclusion
	8 Acknowledgments
	References
	A Appendix
	A.1 Proof for Theorem 1
	A.2 Label Flipping

