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Abstract—
Standard ML relies on training using a centrally collected

dataset, while collaborative learning techniques such as Fed-
erated Learning (FL) enable data to remain decentralized at
client locations. In FL, a central server coordinates the training
process, reducing computation and communication expenses
for clients. However, this centralization can lead to server
congestion and heightened risk of malicious activity or data
privacy breaches. In contrast, Peer-to-Peer Learning (P2PL)
is a fully decentralized system where nodes manage both local
training and aggregation tasks. While P2PL promotes privacy
by eliminating the need to trust a single node, it also results in
increased computation and communication costs, along with
potential difficulties in achieving consensus among nodes. To
address the limitations of both FL and P2PL, we propose a
hybrid approach called Hubs-and-Spokes Learning (HSL). In
HSL, hubs function similarly to FL servers, maintaining con-
sensus but exerting less control over spokes. This paper argues
that HSL’s design allows for greater availability and privacy
than FL, while reducing computation and communication costs
compared to P2PL. Additionally, HSL maintains consensus and
integrity in the learning process.

1. Introduction

1.1. Federated Learning (FL)

Figure 1: Left: Federated Learning (FL) network; Right: Peer-to-Peer
Learning (P2PL) network. In FL, clients receive a global model, train
it locally, and send model gradients to the server for aggregation and
global model updates. In P2PL, clients exchange trained models with

neighbors and independently aggregate received models.

An FL system, as shown in Figure 1, consists of a server
that communicates periodically with n client nodes. The
server initiates training by distributing the same model to all
clients. Clients (all or a subset) train the model locally on
their private data and periodically share model updates with
the server, which aggregates them and returns the global

model. This iterative process optimizes the global objective
function 1

n

∑n
i fi(x), where fi represents the expectation

of client i’s local objective, averaged over data batches in
its dataset Di, using the model x received from the server.
The server ensures exact consensus among all nodes at the
synchronization points by sharing the updated global model
to all clients. The FedSGD algorithm optimizes FL in its
most basic form [1].

Since its introduction in 2017 [1], FL has attracted
research interest in various areas, such as theoretical ML [2],
systems [3], and security [4]. The learning community has
studied different learning objectives [5] and optimizers [6] to
improve the convergence of the learning process. Computer
systems studies have also proposed multiple aggregation
algorithms [7], [8] to handle heterogeneous clients in asyn-
chronous systems. A large portion of the literature is also
devoted to the study of FL systems under defined threat
models [9], [10], [11].

1.2. Peer-to-peer Learning (P2PL)

P2PL is a fully decentralized system where the nodes
communicate as peers without the need for a central server,
as illustrated in Figure 1. This eliminates the need for
a single point of trust in the system, enabling greater
personal control and transparency at the nodes. As edge
devices become increasingly computationally powerful,
model aggregation can be delegated to the learning nodes
themselves rather than being restricted to a single server.
The Decentralized-SGD (D-SGD) [12] algorithm optimizes
vanilla P2PL. In each learning round, connected node
pairs gossip, exchange models, and update their models to
the average of the received models, including their own.
Gossip averaging helps maintain approximate consensus
among nodes, achieving exact consensus only when every
pair of nodes is connected. However, Assran et al. [13]
demonstrated that exact consensus is not necessary, and
nodes can collaboratively learn with differing models. To
avoid chaos, consensus distance among nodes must be
bounded, ensuring that local models are relatively similar
and in approximate agreement on the learning trajectory.
Kong et al. [14] recommends controlling consensus by
incorporating multiple gossip averaging steps in each
communication round. This ensures that consensus remains



within calculated bounds for different phases of training.

Mixing matrix W for gossip learning. - In gossip
learning, nodes exchange and combine their model informa-
tion with others. A “mixing matrix” (W ) helps determine
how much importance a node gives to each received model.
The mixing weights in the matrix add up to 1, ensuring
that the combined model maintains the appropriate scale.
The mixing weights for node i are placed in the ith row of
a matrix, forming the mixing matrix W . If X is a matrix
where row i represents the model weights of node i, the
updated model weights after a single gossip round can be
represented by the matrix WX . When nodes participate
in multiple gossip rounds, the mixing matrix is raised to
the power of the number of rounds (g). (Two rounds of
gossip would result in W (WX) = W 2X .) As the number
of rounds increases, the matrix becomes denser, leading to
better mixing of local models. This helps nodes maintain
an approximate agreement, even when they do not have the
exact same model information [14].

Column stochasticity of W . - The sum of column j
in the mixing matrix W represents node j’s contribution in
a single gossip round, based on the weights assigned to j’s
model by all nodes. Recent works [12], [14] recommend
constraining W to be doubly stochastic. This means that
both the row and column sums of matrix W should equal
1, ensuring fairness and balance in the gossip learning
process. By requiring both row and column sums to equal
1, the doubly stochastic constraint guarantees that: Each
node’s updated model is an equal combination of the re-
ceived models, ensuring that no single model dominates the
learning process. Each node’s contribution to the system is
equal, preventing any node from disproportionately influ-
encing the overall learning process. Further, this constraint
of column stochasticity makes it simpler to mathematically
analyze the complex learning process in a decentralized
setting, even when the network topologies are changing [12].
Specifically, a doubly stochastic W has the property that
1TW = 1T , where 1 is a column vector of one with the
same dinension as the number of rows in W . The operator
1T is useful in analyzing sum-like functions such that the
average model weights after gossiping can be expressed as
1
n1TWX = 1

n1TX . If W is column stochastic, the operator
eliminates W .

Although column stochasticity is useful in analyzing
convergence in simplified cases, it is not a necessary con-
dition for a P2PL system’s convergence, as evident from
practical experiments. This is significant because imposing
column stochasticity means constraining the contribution of
every node to be equal, which would involve artificially
increasing the contribution of less popular nodes and lim-
iting that of more popular nodes. In a malicious setting
or a non-IID setting, it is not advisable to require equal
contributions from all nodes, as this may not be the most
optimal approach.

TABLE 1: A comparison of Federated Learning (FL), Peer-to-Peer
Learning (P2PL), and the proposed HSL Hubs-and-Spokes Learning

(HSL) architecture for collaborative learning. FL provides high
integrity but limited privacy and availability assurances. P2PL delivers
high availability and privacy but incurs high communication costs and
challenges in consensus maintenance. HSL allows configurable levels
of availability, consensus, and communication cost while preserving

privacy and integrity.

2. Enlarged Attack Surface of P2PL

Here we first describe the fundamental reasons that
enable attacks on an FL system, and then move forward to
describe how it is even more difficult to maintain security
in P2PL because of inexact consensus. Table 1 summarizes
the features of FL and P2PL and compare them with HSL.

FL availability. - Federated Learning (FL) systems
have a critical vulnerability in that the server node repre-
sents a single point of failure in the network topology. To
reduce congestion and prevent failure, servers use intelligent
client selection algorithms [15]. While necessary for system
availability, this approach can negatively impact the speed
of convergence.

FL integrity. - The server also holds a high level
of trust relative to the client nodes with clients that do
not trust one another, resulting in communication solely
with the server. Clients must trust the server to be both
benign and capable of maintaining byzantine-robustness in
the face of malicious client nodes. If a server succumbs
to a poisoning attack [16], it could disseminate the in-
fected model to all clients, potentially derailing the entire
training process. Current research focuses on maintaining
byzantine-robust model aggregation algorithms, ensuring the
integrity of the global model at the server. State-of-the-art
defense techniques [4], [11] defend against directed devia-
tion attacks [16], [17], which are the most advanced model
poisoning attacks. While FL system integrity is currently
considered a solved problem, the ongoing cycle of attack
and defense may require increasingly robust aggregation
techniques in the future.



FL privacy. - Privacy risks arise when clients train
the server-provided model on their local data, as a curious
server could attempt to reconstruct a client’s local data,
breaching privacy. Such attacks are possible when an entity,
like the server, has knowledge of a client’s initial and final
model states during local training. In the case of FL, this
is directly accessible to the server since the initial model is
sent by the server and the update is also sent back to the
server. Optimization-based data reconstruction attacks [18],
[19], [20] can recover data samples during the FedSGD
process, while analytic data reconstruction attacks [21],
[22], [23] can work in the FedAvg setting and under se-
cure aggregation [24]. Adding random noise [25] can help
obscure reconstruction but degrades utility. Homomorphic
encryption techniques [26] can also enhance privacy but
are limited to mean aggregation, which is not byzantine-
resilient.

The root cause of privacy attacks is the high level
of trust enjoyed by the server, which affords it sufficient
power to potentially extract privacy-sensitive information
from clients. P2PL provides an opportunity to remove this
level of trust from a single node and distribute it among
multiple neighboring nodes, provided that neighbors do not
collectively collude maliciously.

P2PL availability. - P2PL systems inherently lack
a central server, eliminating a single point of failure. While
the graph formed by collaborating nodes may have critical
edges, P2PL generally offers higher availability than FL
at the cost of transferring the aggregation responsibility to
participating nodes, which communicate directly with each
other.

P2PL integrity. - In P2PL, maintaining the integrity
of the local models is each node’s responsibility. Nodes
can opt to use byzantine-robust aggregations from the FL
domain, but extending such aggregations to P2PL is non-
trivial and has not yet been explored in the literature. Some
FL algorithms [11], [27] preserve byzantine-robustness by
assuming an upper bound on the fraction fmax of potentially
malicious or compromised client nodes, beyond which no
guarantees can be made for model integrity. However, in
the P2P setting, the distribution of malicious nodes does
not need to be uniform. Given a non-uniform distribution
of malicious nodes, conservatively setting fmax higher than
the actual fraction of malicious nodes in the entire collab-
orating population may still leave some nodes unable to
maintain byzantine-robustness due to a higher concentration
of malicious nodes in their neighborhood. This problem is
more easily addressed in FL, where the server communicates
with all other nodes. In P2PL, collaborating nodes, limited
by the number of connections they can have, must cope
with a variable fraction of malicious nodes in each neigh-
borhood. Other FL algorithms [4], [28] solve the integrity
problem by computing some anomaly statistic for the nodes
and detecting variable number of malicious nodes based
on certain rules. However, controlling consensus in such
systems is challenging. As shown in [11], these algorithms
can be overly conservative, leading to high false positive
malicious detection rates, reduced mixing, and increased dis-

sensus among nodes, which eventually classify an increasing
number of non-consensus nodes as malicious.

Freedom vs control in P2PL. - When a node cannot
trust any neighboring nodes, it requires freedom of choice in
assigning mixing weights. Such freedom requires relaxation
of at least the doubly stochastic constraint on the mixing
matrix W , which makes mathematical analysis complex.
Unrestricted freedom in selecting mixing weights can result
in a W that exacerbates dissensus and potentially leads
to chaos. Maintaining byzantine-robustness becomes even
more difficult when each node demands the freedom to
choose weights. Further research in P2PL is needed to iden-
tify the permissible properties matrix W should possess for
the system to be byzantine-robust and for benign nodes to
achieve approximate consensus. To summarize, maintaining
consensus and byzantine-robustness simultaneously in P2PL
is difficult due to the absence of a controlling structure. We
use this argument to motivate a two-layered HSL structure
discussed later in the paper.

P2PL privacy. - P2PL offers a means to maintain
local data privacy at the nodes. Each node iteratively trains
the locally aggregated model on its data before gossiping
with neighbors. By not disclosing their mixing weights,
nodes can conceal their locally aggregated models after each
gossiping step. Although the final state of the model after
local training is still shared with neighbors, concealing the
mixing weights hides the initial model state, preventing data
reconstruction attacks and privacy breaches. However, this
reintroduces the challenge of guaranteeing consensus when
nodes have unrestricted freedom to choose their mixing
weights. The extent of mixing occurring after each gossip
round depends on the matrix W , specifically its spectral
gap [14]. Without oversight on consensus or on W , it cannot
be ensured that the models for each node will not diverge
and that they will mix well to learn the same model. It
is evident that diverging models are negatively affected by
collaboration unless sufficient mixing happens. Thus, we un-
derstand that ensuring consensus is an important aspect for
maintaining both byzantine-robustness and privacy in any
form of collaborative learning. Bearing these considerations
in mind, we propose a promising direction to address some
of these challenges.

3. Promising Solution Direction

We have now seen that FL and P2PL are two extreme
forms of collaborative learning, each with its own limita-
tions. In FL, a powerful server enforces exact consensus
and Byzantine-robustness. However, this same authority also
heightens the risk of breaching client privacy. On the other
hand, the completely decentralized network topology in
P2PL makes maintaining integrity and privacy challenging
due to the non-zero consensus distance among peer nodes.

To overcome these challenges, we propose a hybrid
Hubs-and-Spokes-Learning (HSL), as shown in Figure 2.
HSL is composed of two layers: a layer of client-like nodes
(spokes) and another of server-like nodes (hubs). This inno-



Figure 2: This figure illustrates HSL’s Hubs-and-Spokes Learning
(HSL) topology for collaborative learning. Each spoke communicates
with two or more hubs, while hubs gossip with each other. Spokes do

not directly communicate with one another. Hubs receive locally
trained models from the spokes, engage in gossip for model mixing,

and transmit aggregated models to connected spokes.

vative architecture fosters collaboration while maintaining
privacy and integrity.

Privacy in HSL. - In HSL, spokes communicate ex-
clusively with their parent hubs, while hubs can gossip with
one another. A many-to-many connection exists between the
hubs and spoke layers. Each spoke receives models from its
parent hubs (with a recommended minimum of two) and
locally aggregates them using private mixing weights. This
approach prevents a single hub from dictating its model
to a child spoke, which is the root cause of data leakage
attacks. By keeping mixing weights private, spokes can hide
their model’s initial state and share the final state after local
training without any privacy concerns. We assume that the
hubs are not fully connected, because an exact consensus
among hubs will result in identical models at all hubs,
irrespective of the mixing weights used by spokes.

Hubs, similar to FL servers, do not perform local train-
ing, but are responsible for Byzantine-robust aggregation
of models received from spokes. Hubs primarily act as
a conduit for spokes to exchange information effectively.
After aggregation, hubs gossip among themselves to reach
approximate consensus.

Consensus control. - The collaborative HSL archi-
tecture can be viewed as multiple, interconnected FL sys-
tems, where the number of hubs can be orders of magnitude
smaller than the number of spokes. The fundamental concept
used in our design is that consensus among spokes can be
controlled through consensus among hubs. As every spoke’s
model is a weighted mean of hub models, consensus among
hubs bounds the consensus among spokes without imposing
constraints on the spokes’ mixing weights. Achieving con-
sensus through repeated gossiping among a smaller popula-
tion of nodes (hubs)compared to a larger one (spokes) also
significantly lowers computation and communication costs.

Figure 3 demonstrates the improvement in collaborative
learning with HSL using 64 spokes and 5 hubs, with 5
edges among hubs and 128 edges between spokes and hubs
(satisfying the minimum requirement of 2 hubs per spoke)
compared to a P2PL system with 150 randomly sampled
edges. This improvement, observed with a 0.5 non-IID bias
and 1 gossip step per round on CIFAR-10, is attributable to
better consensus control in HSL.

Availability and communication cost. - It is im-
portant to note that HSL with a single hub is functionally
equivalent to FL, while HSL with n spokes and n hubs with
one-to-one connections functionally represents P2PL. HSL
serves as a more generalized framework that encompasses
FL and P2PL. By adjusting the number of hubs, HSL can be
configured to meet specific availability and communication
cost objectives, given finite individual budgets.

Integrity in HSL. - HSL incorporates three levels of
Byzantine-robust aggregation. Although hubs may become
compromised if malicious spokes are concentrated in certain
neighborhoods, we propose a gossip mechanism that allows
hubs to provide feedback to each other. This mechanism
enables hubs to increment their fmax if they suspect a higher
number of malicious spokes. Failure to act on the feedback
could result in a hub being identified as malicious by its
peer hubs. In addition, the spokes have access to their own
model as a benign ground truth for robust aggregation. Since
consensus among hubs ensures consensus among spokes,
the system is less likely to spiral into chaos, unlike a P2PL
system.

Figure 3: Comparison of the average performance of HSL (5 hubs,
133 edges) and P2PL (150 edges), illustrating test accuracy candles for

64 spokes training ResNet-18 on CIFAR-10 with a single gossip step
per round. HSL achieves significant improvement due to superior

consensus, even at a lower communication cost compared to P2PL.

4. Conclusion

In this paper, we have highlighted the inherent structural
and functional vulnerabilities within the two most prevalent
forms of decentralized machine learning, Federated Learn-
ing (FL) and Peer-to-Peer Learning (P2PL). We argue that
these two forms represent the extremes on a spectrum,
motivating our hybrid architecture as a potential resolution
to these existing challenges. We have discussed with logical
arguments how this proposed architecture addresses the
current issues in FL and P2PL. With this discussion, we
aim to inspire further research toward more pragmatic forms
of collaborative learning, steering away from the extremes.



Further, we have also emphasized the need and possibility
for such solutions to be secure in terms of privacy, integrity,
and availability for harnessing the potential of large volumes
of data and ubiquitous computing.
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