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Abstract—UAVs (unmanned aerial vehicles) or drones are
promising instruments for video-based surveillance. Various ap-
plications of aerial surveillance use object detection programs
to detect target objects. In such applications, three parameters
influence a drone deployment strategy: the area covered by the
drone, the latency of target (object) detection, and the quality of
the detection output by the object detector. Previous works have
focused on improving Pareto optimality along the area-latency
frontier or the area-quality frontier, but not on the combined
area-latency-quality frontier, because of which these solutions
are sub-optimal for drone-based surveillance.

We explore a three way tradeoff between area, latency, and
quality in the context of autonomous aerial surveillance of targets
in an area using drones with cameras and an object detection
program. We propose Vega, a drone deployment framework
that captures these tradeoffs to deploy drones efficiently. We
make three contributions with Vega. First, we characterize the
ability of the state-of-the-art mobile object detector, EfficientDet
[CPVR ’20], to detect objects from varying drone altitudes using
confidence and IoU curves vs. drone altitude. Second, based
on these characteristics of the detector, we propose a set of
two algorithmic primitives for drone-based maneuvers, namely
DroneZoom and DroneCycle. Using these two primitives, we
obtain a more optimal Pareto frontier between our three target
parameters — coverage area, detection latency, and detection
quality for a single drone system. Third, we scale out our findings
to a swarm deployment using higher-order Voronoi tessellations,
where we control the swarm’s spatial density using the Voronoi
order to further lower the detection latency while maintaining
detection quality.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) or drones are effective
surveillance agents, often equipped with on-board cameras,
and thus serving as aerial sentinels. Drone-based surveillance
has applications in security [1], [2], [3], [4], road traffic
monitoring [5], [6], and precise geo-localization of targets for
search and rescue [7], [8]. The drone feeds the video captured
from the camera to an onboard object detection program [9],
which identifies target objects in the area. We give an example
of a surveillance scenario that motivates our work in Fig. 1.

Traditional surveillance systems have been designed and
deployed considering a tradeoff between parameters like cov-
ered area and target detection latency [10]. A surveillance
agent deployed to continuously observe one location for any
abnormal activities will detect anomalous events with low
latency. However, if the agent is deployed to monitor two
different locations, the expected latency of detection increases
to the time taken by the agent to travel between the locations.
When a drone is used as a surveillance agent, the quality of
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Figure 1: The graphic describes a large area under surveillance where
targets (cars in this example) appear according to a spatial and time-
variant Poisson process with rate A\. The drone is bound by the
following tradeoffs during surveillance: From altitude h,, the drone
can detect both targets A, B, but with low quality. The drone at
altitude h;, can detect both targets with higher guality because of its
proximity, but needs to sacrifice detection latency because both A
and B do not come under its FoV from h;.

a detection output by the object detector, characterized by the
confidence and Intersection-over-Union (IoU) of the bounding
box output, is an additional parameter that plays an important
role in specific surveillance applications. For example, in case
of accurate geo-localization of targets, detections with high
IoU values are desired to achieve localization granularity of
the order of centimeters [7], [8]. In other applications like
area security, the object detector must output detections with
high confidence to confirm a possible breach [2], [3], [4].
Confidence and IoU values depend on the size of a target
in the image, where smaller targets are detected with lower
confidence and IoU values [11].

Prior works focused on improving Pareto optimality on the
coverage area-latency frontier or the coverage area-quality
frontier. The works on the area-latency frontier are focused
on path-planning models where the drone maps out the most
efficient path to complete pre-uploaded missions with mini-
mum latency but maximum rewards [12], [13]. The work on
the area-quality frontier is focused on building better object
detection programs that are tailor-made for aerial images [5],
[14], [15]. However, these two lines of work contribute indi-
vidually to improving the Pareto frontier from the perspective
of surveillance. In doing so, they do not leverage the joint
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Figure 2: DroneZoom Overview. A drone flying at height h,, (initial
altitude) with FoV (marked by blue lines) detects an object and
descends to hy (verification altitude) to verity if it is a false positive.
The FoV at h, (marked by orange lines) is much lower than at h,,.
Once the drone captures the object from h;, it ascends back to its
previous position at h,.

(three-way) optimization for the drone’s coverage area A,
latency A, and detection quality ¢. In Vega, we bridge this gap
by implementing algorithmic primitives that achieve Pareto
optimality in a three-way tradeoff among (A, A, q).

A. Solution Approach

We approach the problem by estimating the object detector’s
quality metrics for target objects of different sizes. We trained
the energy-efficient DO version of the EfficientDet model [9]
on a popular open source drone dataset [16]. We curated a
custom test dataset! using collected images from different
drone heights and from other open-source drone datasets [14].
Based on this test dataset, we compute quality metrics like loU
and class confidence of targets with respect to the distance of
the drone from the target. We describe these insights in detail
in Section III. Our observations of the quality metrics of the
detector indicate that the drone’s altitude is the most critical
factor controlling the tradeoff between (A, A, q).

Therefore, drone mobility in the third dimension is crucial
for an improved three-way Pareto frontier. When the drone is
at a higher altitude, it can observe a larger area at the expense
of detection quality. However, we observe that the drone can
get the best of both worlds - high area and high detection
quality - by detecting a target at a higher altitude h,, and
reactively descending to a lower altitude h; to observe the
same target with a higher detection quality. Based on this
observation, we propose a multi-altitude mobility primitive
called DroneZoom, explained in Fig. 2.

However, under a high target appearance frequency A, a
drone performing DroneZoom will be in a continuous de-
scent/ascent loop in order to detect targets with high quality.
This loop reduces the efficiency of DroneZoom because it
increases the average latency of detection over the area. To
address this concern, we develop DroneCycle, a technique to

! Available at https:/github.com/icanforce/Vega-Multi- Alt-Detection

create efficient cyclic trajectories at a single altitude. Based on
these two underlying primitives, we create a system Vega, an
object detector-based drone deployment system that adaptively
adjusts its deployment strategy as a function of the target ap-
pearance frequency \. Vega’s workflow is presented in Fig. 3.

We also extend Vega to a swarm setting where multiple
drones are deployed over an area for surveillance. We observe
that the overlap between coverage areas of two drones enables
an improved Pareto frontier between area and latency for high
target frequencies A. We control this overlap using a geometric
construct called a k-order Voronoi diagram (VD) [17], where
every point in the area is covered by a set of k drones.
The k drones covering a given section of area coordinate
amongst each other to detect multiple targets within the same
latency and quality SLOs, hence improving Vega’s application
to higher appearance frequencies A.

We evaluate our system by comparing the tradeoffs induced
by Vega w.rt. (A,A,q) against a baseline solution based
on single-altitude deployment and cyclic trajectories at that
altitude. The baseline is an accurate representation of prior
work [5] that optimizes on either the area-latency frontier or
the area-quality frontier, but do not consider a joint optimiza-
tion among all three parameters. Vega achieves a more optimal
Pareto curve between every pair of parameters. For example,
under a frequency A = 1 target/minute/2500m?2, Vega achieved
50% reduction in expected latency for equal detection quality
and coverage area as compared to the baseline.

We summarize Vega’s contributions.

1) We curate a custom test dataset with collected and
transformed images using which the detector’s quality
metrics from a drone altitude can be estimated, which
we will opensource upon acceptance.

2) We propose Vega, a target detection framework for
surveillance in dynamic scenarios, designed using two
algorithmic primitives: DroneCycle and DroneZoom. For
a coverage area of A = 30000 m? and IoU threshold of
0.9, we see a 50% reduction in detection latency for Vega
over the baseline.

3) We extend Vega to deploy a swarm using Voronoi dia-
grams to conduct surveillance over larger areas.

II. PRELIMINARIES

In this section, we describe the preliminaries of our setting
and all the components involved in the system.
Drone. We assume that the drones used in the system are
equipped with 3-D maneuverability and access a GPS-based
navigation system. The drones are also equipped with 3D
waypoint navigation, using which they can set waypoints and
navigate the area. For simplicity of analysis, we assume that
the drone moves with constant velocity v between waypoints.
Camera. We assume the drones possess a camera with fixed
aperture size. The camera is perpendicular to the ground plane
to get a bird’s eye view of the area underneath. The area
covered by the image captured by the drone at height h is
given by A = kh?, where k is a constant derived from the
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Figure 3: Vega’s workflow: Vega takes SLAs and uses multi-altitude object detection to deploy drones to achieve Pareto optimality.

FoV angle of the camera 6 and the aspect ratio a. The area
covered increases quadratically with the height h.

Targets. We assume that the targets appear in the area
according to a time-variant homogeneous Poisson process with
rate A and uniformly random location distribution. A Poisson
process is often used to model events in the real world, such
as natural disasters, accidents on highways, and intrusions in
an area [18]. We consider A as an input to our system.

Object Detection and quality metrics. The drone works with
an object detection program D to detect objects on the ground.
The detector D is based on Deep Neural Networks (DNNs) [9]
and is trained with a dataset [16] with sufficient examples
of the class of objects to detect. D outputs two parameters
as part of a detection: a) Confidence and b) A rectangular
box that contains the object called the bounding box whose
accuracy is measured using Intersection-over-Union (IoU).
High confidence is often necessary in an application like
surveillance to definitively identify targets without detecting
false positives [3]. High IoU indicates better identification
of the target’s location in the image and the area, which
is necessary for applications like geo-localization [7], [8]. .
Hence, we consider both confidence and IoU as metrics of
detection quality.

Detection latency. If a target appears at time ¢ in the area and
the drone detects at time ¢+ A, then we consider the detection
latency to be A.

Pareto frontier. Improving the three-way Pareto frontier
between (A, A, q) implies proposing an improved solution for
the following question: Given a coverage area and quality
targets (A, q), what is the minimum latency A with which the
drone can detect targets in the area? Similar questions framed
by interchanging (A, A, ¢) also have improved solutions under
an improved Pareto frontier.

Voronoi diagrams and tessellations. A k-order Voronoi
Diagram is a division of the area into regions called Voronoi
cells where each cell is defined by the k closest drones to
all the points in the cell. The deployment density of drones
increases with the order k£ because the amount of overlapping
area between drones increases with k. A k-order tessellation
is a special case of a VD where the drones are arranged using
regular shapes like square, triangle, and hexagon. We use the
help of symmetry in a tessellation to simplify analysis of a
swarm deployment. We give an example of a 4—order square
tessellation with side length a in the figure.
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Figure 4: 4-order Voronoi diagram: Each cell is defined by a closed
polygon, whose vertices are called critical points. The described
deployment is called a square tessellation, where drones are placed
equidistant to each other. The cell ¢ is covered by drones at positions
1,2,3,5.

1) A- Maximum detection latency within which detection must be
reported

2) A- Object appearance rate (Unit: m™
3) tq.- Time of descent

4) h, - Observation altitude h,, or upper altitude of the drone
5) hy - Confirmation altitude or bottom altitude.

6) 7ru,Du,Ts, b - Recall and precision at altitude h,, and hy,
respectively.

7) X - Observation rate from height h,. X' = %)\Au
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Figure 5: Notations used in derivations.

III. OBJECT DETECTION TRENDS

In this section, we describe the trends of detection confi-
dence and IoU of an energy-efficient version of the lightweight
object detector EfficientDet [9]. We empirically estimate the
detector’s confidence and IoU by running inference on a test
dataset with targets of varying sizes. We identify deployment
strategies that achieve better Pareto efficiency.
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Figure 6: The plot describes the confidence and IoU of the detector
with varying size of targets of the same class (cars in this case). We
observe that the confidence and IoU of the detector’s output reduce
with decreasing target size in the image. The test dataset has images
with 1,080x540 resolution.
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Figure 7: We generated the graph by setting a uniform confidence
threshold of 0.3 for all object sizes. The recall doesn’t drop below 0.9
for all objects greater than 500 pixels in size. The precision is also
close to 1 for all targets of size greater than 200 pixels. We use these
precision and recall values as inputs to our deployment algorithm

First, we trained EfficientDet-d0 on the VisDrone
dataset [16] containing images from outdoor sceneries and
target objects from classes like pedestrians, cars, and trucks.
Then, we curated a testing dataset consisting of bird’s eye view
images of cars collected from different drone positions. We
collected images of scenes starting from h = 15 m to h = 105
m, at a granularity of 15 m. The US FAA has an altitude limit
for drone flight at h,, =120m, which lower bounds the target
size in the dataset. Hence, we modified images from existing
datasets [14] to make them approximately look like they were
captured from greater heights.

The confidence of detections and the IoU values decrease
with decreasing target size, indicating that smaller targets are
detected with lower quality. Since we only consider a bird’s
eye view of targets, the drone’s altitude is the main factor that
controls the size of targets in the image.

q = f(hs) D

Confidence threshold and false positives. During deploy-
ment, the object detector is configured with a confidence
threshold to reject false positive detections. A high confidence
threshold during deployment ensures a high precision but low
recall. Conversely, a low confidence threshold ensures a high
recall but low precision. We generate a precision-recall plot by
setting a confidence threshold of 0.3 for the detector in Fig. 7.
In Section IV, we show that using DroneZoom, we can get
the best of both worlds: deploying at a high altitude and low
false positive rate by adjusting the confidence threshold at high
and low altitudes according to the trend in Fig. 6. We assume
that the precision and recall are functions of the drone altitude
denoted by P() and R().

IV. SYSTEM OVERVIEW
In this section, we describe DroneZoom and DroneCycle,
two mobility primitives for the efficient deployment of Vega.
A. DroneZoom

The primary advantage of deploying a drone at a higher
altitude is that it can get a higher coverage area than at a
lower altitude. Given the FoV angle of the drone’s camera
is 6 and the aspect ratio is a, the ground area covered by the
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drone is a rectangle with length | = and breadth
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== W' ssuming the drone 1s moving at speed v

m/sec, the rate of area covered is maximum when the drone
moves upward, perpendicular to the ground plane. Therefore,
mobility in the dimension perpendicular to the ground for
the same distance traveled results in the highest increase in
covered area.

The flip side of this increase in area is decreased target
resolution. As observed in Section III, the metrics for detection
quality - IoU and detection confidence reduce with increasing
drone altitude. To get the best of both worlds, we design
DroneZoom described in Fig. 2. DroneZoom is characterized
by the drone moving closer (to a lower altitude hp) to a
perceived target to detect it with higher quality. After detecting
it from hy, the drone moves back to its previous position at
height h, to continue observation over a larger area. For a
single target, the detection latency is the time the drone takes
to travel from altitude h, to h; while keeping the target in
the frame. The descent time and ascent time tq, are upper
bounded by the quantity w seconds. Hence, the
latency for detecting a single target is given as:

(hy — hb)sec(g)

Anfbin =14, < 2 (2)

[

However, when the target emergence rate A is high, the
expected latency of detection increases. We consider the
example of a target B that emerged at time ¢ < t 4 +t4, Where
t4 is the emergence time of target A at the point described
in Fig. 1. In this case, the drone is already in descent to confirm
target A’s detection. To confirm B’s detection, the drone has to
come back to height i, and then re-initiate descent to confirm
B’s detection. The latency of confirming B’s detection is given
by A < 3ty, —t where t is the inter-arrival time between target
A and target B, governed by the Poisson process with rate )\,
described in next paragraph. We deduce that the maximum
possible latency of detecting a target under DroneZoom is
JAN— m—:] 22t 4. This latency occurs when multiple targets
emerge in the area A, within a very short time.

Aﬂ”m,a: S ’—@122tdz (3)
by,

Determining 5, and h,. The altitude h; is selected from
the SLA requirement for quality expressed as threshold IoU
or threshold confidence. For example, suppose the application
desires an average IoU of y (or a confidence threshold of x). In
that case, we refer to Fig. 6 to identify the maximum height
hy from where the detector can still meet the required IoU
threshold.

hy = argmazp f(h) : f(h) > q 4

The function f is as defined in Eq. (1). If all the targets in
the area covered by the drone need to be detected, then the
confidence threshold of the detector must be lowered at higher
altitudes to maintain the same recall. This reduction in the
confidence threshold also results in an increased false positive
count. A false positive detection reported by the detector



when the drone is at height h, forces the drone to descend
to hy for verification. Thus, the parameter h, should be set
such that there is an optimal balance between the benefit of
covering a larger area and the drawback of detecting more false
positives. For a given h;, we choose h,, such that the expected
detection latency is minimum. Given that the precision and
recall at height h, are p, = P(h,) and r, = R(h,), the
object detector reports detections (both true positives and false
positives) at rate \' = T= ),

Expected detection lateuncy. Consider a target named A that
emerged in the area A, at time ¢. The expected latency of
detecting the target depends on how many outstanding targets
exist in the area at time ¢. To analyze this, we divide A4,
into intervals of 24, seconds each. We assume the probability
of detection latency being ktq, as py where k € [1, AZ%;ZI]
The expected latency is given by the sum of probabilities times
the latency.

A= kta.px

2
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We upper bound the probability p; by considering the
number of outstanding targets remaining to be detected by
the drone. For example, py denotes the probability that there
are no outstanding targets in the area by the time target A
emerges. pg can be calculated using the complement, which
states that pg = 1 —po where py is the probability with which
there is at least one outstanding target to be detected.

To calculate py, we calculate the sum of probabilities such
that the outstanding targets at time t are > 0. For this, we
create events Iy q,..., ;-1 where E; ; denotes the event
that greater than j targets emerged from time ¢t — A, 4, + 2it 4,
to time t — A0 +2(i+1)tq,. If E; ;1 is true, then there is no
way that there will be zero outstanding targets when A appears
because the drone will spend 2¢,, seconds in detecting each
target. Since the targets emerge according to a Poisson process,
the probability that & targets appear in area A, in time 2t4,
is given by the probability p = ¢~ 2 Auta: m,flki,t(“)k We get
the following expression for the expected latency.

), = Pr [U Y DN ]
Pk i€k, GX 14, GX —i+k

Pr(E; j] =1 — ¢ 2NtazAu (2X\tazAu)*
’ al
a€ll,j]
A= > kte(1-pr)
kel Spaz]
The latency A is a function of P(), R(), hy, g, A, f.
A =D(P), RO, hu,q, A, f) ©)

We observe that for low target emergence rates A, the benefits
of DroneZoom are maximum because the drone’s descent
procedure is triggered very sparsely, and all emerging targets
are detected with latency A,,;,. However, when the area is
crowded with targets, the DroneZoom procedure has a higher

expected latency because the drone spends a significant chunk
of time moving between altitudes h, and h;, because of
which it cannot take advantage of staying at a higher altitude
and observing a bigger area. Additionally, since DroneZoom
detects targets with a maximum latency of A,,,,, it is unable
to observe larger areas with the same quality in situations
where higher detection latency A is tolerable. To address
this limitation of DroneZoom, we propose a complementary,
single-altitude primitive called DroneCycle that has the prop-
erty of having maximum rate of area coverage.

B. DroneCycle

We propose a technique called DroneCycle where the drone
is deployed on a cyclic trajectory at height hj.DroneCycle is a
single-altitude mobility primitive where the drone completes a
cycle on an area within time 2A. We note two findings in this
section: a) The direction of drone’s velocity vector with respect
to its camera’s horizontal orientation(which we call angle of
heading «) influences the rate at which the drone covers area
on the ground [4], and b) The type of cyclic trajectory of the
drone influences the latency of detection of emerging targets.
Based on these observations, we propose an optimal primitive
that achieves the best tradeoff between covered area A and
detection latency A for a fixed quality q.
Setting angle of heading o. Consider the example of a
drone at h, moving at a speed of v m/sec. The direction of
the velocity vector of the drone influences the rate at which
the drone covers the ground area. We describe the problem
pictorially in Fig. 8. The area covered by the drone traveling
at ¥ from time ¢ to time ¢ 4 dt can be calculated by the area
covered by the blue parallelograms, denoted as p.

B 2hvtan(%)

Vita

Since 6 is a constant, we study the variance of p with respect
to a. On differentiating Eq. (6) with respect to o, we observe
that p is maximum when « is set to a = tan~'(a), where
a is the aspect ratio of the camera. Hence, we always set the
drone to move at o = tan~!(a): an angle perpendicular to
the diagonal of the rectangular FoV observed by the drone’s

camera. When o = tan~!(a), the rate of increase in covered
area

(cos(a) + asin(a)) (6)

p= 2hvtan(g) 7

Therefore, the drone’s camera and the drone’s velocity vector
¥ must always be at an angle o = tan~!(a) with respect to
each other to maximize coverage for a given cycle period A.
Setting cycle trajectory. A drone on a cyclic trajectory at
height h; with period A detects all objects in the area under
the cycle with expected latency A equal to half the period
of the cycle. We assume that the drone moves with constant
velocity v. Given that the length of the cycle is fixed to 2vA,
the area enclosed by the cycle is maximum when the cycle
is a circle with radius r = % [19]. Under DroneCycle, a
drone is on a circular trajectory around the point of interest

with radius r = % and oriented such that the diagonal of the
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Figure 8: The increase in covered area according to the velocity of
the drone 0. We calculate p with respect to « by calculating the area
in blue and divide the area by dt.

FoV is always perpendicular to the direction of motion of the
drone. The equation gives the area under surveillance by the
drone under this trajectory.

™ vA |,
AC = Z(hb tan9+ 7)

For non-circular polygonal areas, there are other techniques to
form a cycle, such as the mark and sweep technique or the
spiral formation technique [10]. Our optimization on heading
angle « applies to those techniques too.

C. DroneZoom vs DroneCycle

We evaluate the merits of both DroneZoom and DroneCycle
by analyzing the situations in which they perform the best.
We use altitude h, as observation altitude and h; as the
confirmation altitude for DroneZoom. For DroneCycle, we
set the drone on a mark and sweep trajectory to cover the
rectangular area A,,. We compare the latency of each approach
to analyze the resultant Pareto frontier. We see an at least 2x
better latency for DroneZoom under low A and at least 4x
better latency for DroneCycle compared to DroneZoom under
high A. We do a more in-depth comparison in the evaluation
section.

Vega controller. The controller of Vega decides how to
deploy the drone. Based on the input parameters of the sys-
tem, the controller chooses either DroneZoom or DroneCycle
depending on which method guarantees a higher covered area
under the given input parameters - (g, A, f, P(), R()). While
£, P(),R() are related to the object detector, (¢, A) are SLA
inputs to the system. A brief description of Vega’s algorithm
is provided in Algorithm 1. Based on f in Section III,
the controller first calculates the baseline height h;. Then
it evaluates the highest covered area possible A;, under
DroneZoom by calculating expected latency at all possible
h, > hy and verifying which h,’s have expected latency
< A. We discretize our deployable height space with a
granularity of §, = 20m to reduce the search space for
optimal h,. The controller also calculates the area covered
by DroneCycle method A,;. with expected latency < A and
compares it against Ay, computed by DroneZoom. Based on
the comparison, the drone is deployed at h,, usingADroneZoom

or at hy, on a cyclic trajectory with radius r = $=.

Algorithm 1 Pseudocode for Vega’s Controller

: INPUT: A, A, ¢, PO),R(O),f

: // Calculate confirmation altitude by using Eq. (1)

: hy =argmax,, f(h): f(h) > ¢

: // Calculate h, for DroneZoom meeting the A requirement

: /] Expected latency for DroneZoom should be less than A

hy = arg max;, D(h, hy, P(), R(), A, v) < A

Ag. = kh2 > k is a proportionality constant

: /] Expected latency for DroneCycle should be less than A

2 Age = F(hytan6 + %)2 > Deploy according to circular
trajectory

10: if Ay, > Ag4c then > Choose DroneZoom or DroneCycle based

on which primitive is better for higher covered area
11: Deploy drone using DroneZoom at h = h,,

12: end if

13: if Age > Ag. then

14: Deploy drone using DroneCycle at h = h,, on a circular
trajectory with radius r = %.

15: end if

D. Swarm deployment

The trivial approach to deploying a swarm of drones is to
separate their coverage areas and treat each drone as its own
separate system. However, we present an additional degree
of freedom in swarm deployments to control the tradeoff
between (A,A,q): the amount of overlapping area between
drones. Overlap between coverage areas allows the drones to
coordinate amongst themselves to detect targets with lower
expected latency. For example, consider the situation in Fig. 1.
The drone D; performing DroneZoom cannot detect targets
A and B with latency < A,,;, because they emerge within
time A,,;,. However, if another drone D is sharing coverage
of the area with Dy, the detection latency of B reduces to
A in even for higher target emergence rates A. Similarly, in
the case of DroneCycle, if two drones share coverage areas
with 7 phase difference between their cycles, the expected
detection latency is half the original expected latency. The
reduced detection latency comes at the expense of the swarm
density. This swarm density increase results from the drones
being placed close together for overlapping coverage areas.

We describe the overlap in coverage with the help of
regular k-order Voronoi tessellations. We consider tessellations
because of their symmetry and ease of theoretical analysis.
Three parameters characterize a swarm tessellation: side length
of the tessellation (or horizontal separation between drones),
the Voronoi order k£ deciding the number of drones sharing
coverage on every point in the area, and the shape of the
tessellation (Square, Hexagon, Triangle). The tessellation de-
scribed in Fig. 4 is a (a,4,square) tessellation with Voronoi
order k = 4.

Swarm deployment using DroneZoom and DroneCycle.
All drones in the swarm are deployed at height h,. However,
when a target emerges at point A belonging to cell ¢; covered
by its k closest drones, any one of the k drones can descend
to hy to detect the target. Therefore, k targets within a drone’s
FoV at height h, can be detected with latency A,,;,. The
expected latency changes to the following equation with p,



substituted in Eq. (5).
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With DroneCycle, all the drones in the swarm are deployed
at altitude h,. Since drones are performing cycles at the
same altitude, the expected latency of detection depends on the
phase difference of cycles between the drones. For example, in
a tessellation with Voronoi order k = 2, if the phase difference
between the two cycles is m, then the expected detection
latency is halved because every point is visited by at least
one drone in half the revolution time.

V. IMPLEMENTATION

We implement Vega as a hybrid module integrated with
a ground control station (GCS), a GPU running an object
detector, and an Android phone connecting to the controller.
We use a DJI Phantom 4 drone to collect images and test
Vega. The drone transmits a video feed to the GCS, which is
transferred to the object detector. The drone is controlled by
the GCS that receives commands from an API from DJI. A
positive detection from altitude h,, lets the controller calculate
the closest point at altitude h;, from where the drone can
observe the object. The objects detected by the client from
height h; will be output as a detection. The controller sends
commands to the drone as waypoints to navigate.

VI. EXPERIMENTS AND PERFORMANCE ANALYSIS

Evaluation setup. We evaluate Vega in a vehicle detection
task conducted in a parking lot of an office. The target
emergence rate A is normalized such that A\ = 1 implies there
is one emerged target per minute per 2500 square meters of
area. We trained an object detector based on EfficientDet [9],
on an aerial cars dataset [20] as specified in Section III.
Baseline solution. We compare our improvements in Drone-
Zoom and DroneCycle with a baseline solution following
Kouris et al.’s [5] solution. Kouris et al.’s solution does
not optimize based on either height or on cyclic trajectory,
which enables us to individually demonstrate the benefits of
DroneZoom and DroneCycle w.r.t. this baseline. We assume
the drone’s velocity v = 2 m/sec.

DroneZoom vs DroneCycle. We also evaluate the Drone-
Zoom and DroneCycle maneuvers individually and assess
the importance of each maneuver. The plots Figs. 9 and 10
describe the advantage of DroneZoom over DroneCycle under
a similar evaluation setup. DroneZoom vastly outperforms
DroneCycle in cases where the appearance rate A is rela-
tively lower by almost 2 improvement in expected latency.
Similarly, DroneZoom also achieves Pareto optimality on
the (A, A) frontier under low A. DroneZoom underperforms
relative to DroneCycle in cases where A is high. This is
primarily because the high frequency of descent and ascent
maneuvers makes the drone miss out on many detections
in area A, — Ap. Additionally, the area under surveillance
in DroneCycle increases linearly with the detection latency,
which is not the case with DroneZoom. DroneZoom’s area
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Figure 9: The graphic describes the expected latency of detection (or
delay) in detecting a target with DroneZoom, DroneCycle, and the
baseline. All three methods cover the same area of A = 30000m?2,
with quality ¢ denoted by an IoU value of at least 0.9. For A,
DroneZoom'’s latency is half that of the baseline solution. The latency
of DroneZoom jumps to 4z that of DroneCycle under high .
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Figure 10: The graphic describes the expected latency vs Covered
area curve for DroneZoom, DroneCycle, and the baseline. The quality
q is set as per a threshold confidence of 0.8 for all three. DroneZoom
is on the Pareto frontier for a low appearance rate A whereas
DroneCycle gives a better tradeoff between our target parameters
when the appearance rate A is high.

is saturated to A, even under high A. We also note that
the improvements made in DroneCycle give a better tradeoff
between (A, A) compared to the baseline solution.

DroneZoom is more suited to sparse events with low A
that need to be detected quickly, such as intrusion, forest fire
monitoring, and monitoring wildlife. The objects of interest
appear sparsely in these scenarios, but must be detected with
very low latency. On the contrary, DroneCycle is more suited
to high volume events with high A such as a traffic stop or a
parking lot where the event frequency is high, and the system
can tolerate higher levels of detection latency.

VII. RELATED WORK

Drones have been equipped with onboard cameras to capture
high-resolution images and videos of events of interests. Much
literature exists in object detection using drones, improving
accuracy [15], [21], [14], decreasing detection latency, and
energy-efficient computation [15]. Datasets based on images
captured from UAVs have been published [16], [14]. Bench-
marks have also been introduced, e.g., [22], where images
captured from UAVs are classified into easy, medium, and
hard, based on properties like height, occlusion, time of day,
and weather conditions.



Existing systems using UAVs [2], [7], [11], [8], [13], [4] for
specific tasks focus on training object detectors to recognize
different types of events of interest. Approaches that focus on
improving accuracy through new detector models [14], [15],
[21] also fall short in specifying their models’ functionality
under different drone deployments. Kouris et al. [5] described
an object detection model where the detector is trained on
images captured at different heights. This work focuses on
improving the accuracy of the detector at different drone
altitudes but does not use the drone’s mobility in combination
with the detector to increase coverage area.

Literature in sensor networks also focused on improving
tradeoffs in the Area-Quality frontier, where the trade-off
between coverage area and probability of event detection was
explored [23]. Specific works like Danilchenko et al. [24]
improve the Pareto efficiency on the Area-Latency frontier by
proposing a surveillance system using a static drone swarm.
The paper is based on unlimited 2D mobility for drones but
does not consider motion in the third dimension. Sharma et
al. [25] talk about cellular network coverage in a 3D setting
under a Random Waypoint Mobility model. Hence, this line
of work benefits directly from a three-way optimization of
area, latency, and quality. Specific works in robotics [13],
[12] use Reinforcement Learning (RL) to train the drone
to identify optimal drone maneuvers accomplishing a preset
goal. However, the context of surveillance is dynamic where
randomly appearing targets change the drone’s missions and
goals with time, which makes a direct application of RL to
surveillance very hard. This dynamic nature of surveillance
motivates Vega.

VIII. CONCLUSION

We develop a system Vega for efficient drone deployment
for drone-based surveillance with two algorithmic primi-
tives DroneZoom and DroneCycle, deployed interchangeably
to achieve Pareto optimality among the three parameters
(A, A, q), i.e., coverage area, latency, and detection quality.
Vega improves the Pareto frontier by reducing detection la-
tency by almost 2x for practical target emergence rates .
In the future, we will explore the coverage-related direction
where drones must coordinate to cover a given area of interest
fully, using concepts like probabilistic Voronoi diagrams.
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