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Abstract. Connectomics has emerged as a powerful tool in neuroimag-
ing and has spurred recent advancements in statistical and machine learn-
ing methods for connectivity data. Despite connectomes inhabiting a
matrix manifold, most analytical frameworks ignore the underlying data
geometry. This is largely because simple operations, such as mean estima-
tion, do not have easily computable closed-form solutions. We propose a
geometrically aware neural framework for connectomes, i.e., the mSPD-
NN, designed to estimate the geodesic mean of a collections of symmetric
positive deőnite (SPD) matrices. The mSPD-NN is comprised of bilinear
fully connected layers with tied weights and utilizes a novel loss function
to optimize the matrix-normal equation arising from Fréchet mean esti-
mation. Via experiments on synthetic data, we demonstrate the efficacy
of our mSPD-NN against common alternatives for SPD mean estimation,
providing competitive performance in terms of scalability and robust-
ness to noise. We illustrate the real-world ŕexibility of the mSPD-NN in
multiple experiments on rs-fMRI data and demonstrate that it uncov-
ers stable biomarkers associated with subtle network differences among
patients with ADHD-ASD comorbidities and healthy controls.

Keywords: Functional Connectomics · SPD Manifolds · Fréchet Mean
Estimation · Geometry-Aware Neural Networks

1 Introduction

Resting state functional MRI (rs-fMRI) measures steady state patterns of co-
activation [11] (i.e., connectivity) as a proxy for communication between brain
regions. The ‘connectome’ is a whole-brain map of these connections, often rep-
resented as a correlation or covariance matrix [16] or a network-theoretic object
such as adjacency matrix or graph kernel [10]. The rise of connectomics has
spurred many analytical frameworks for group-wise diagnostics and biomarker
discovery from this data. Early examples include statistical comparisons of con-
nectivity features [16], aggregate network theoretic measures [10], and dimen-
sionality reduction techniques [14,8]. More recently, the őeld has embraced deep
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neural networks to learn complex feature representations from both the connec-
tome and the original rs-fMRI time series [2,18,7]. While these approaches have
yielded valuable insights, they largely ignore the underlying geometry of the
connectivity data. Namely, under a geometric lens, connectomes derived from
rs-fMRI data lie on the manifold of symmetric positive deőnite (SPD) matrices.
A major computational bottleneck for developing geometrically-aware general-
izations [19,1] is the estimation of the geodesic mean on SPD manifolds. This is a
far more challenging problem than statistical estimation in Euclidean data spaces
because extensions of elementary operations such as addition, subtraction, and
distances on the SPD manifold entail signiőcant computational overhead [17].

The most common approach for estimating the geodesic mean on the SPD
manifold is via gradient descent [20]. While this method is computationally ef-
őcient, it is highly sensitive to the step size. To mitigate this issue, Riemannian
optimization methods [12], the majorization-maximization algorithm [25], and
őxed-point iterations [4] can be used. While these extensions have desirable
convergence properties, this comes at the cost of increased computational com-
plexity, meaning they do not scale well to higher input dimensionality and larger
numbers of samples [3]. In contrast, the work of [3] leverages the approximate
joint diagonalization [21] of matrices on the SPD manifold. While this approach
provides guaranteed convergence to a őxed point, the accuracy and stability of
the optimization is sensitive to the deviation of the data from the assumed com-
mon principal component (CPC) generating process. Taken together, existing
methods for geodesic mean estimation on the SPD manifold poorly balance ac-
curacy, robustness and computational complexity, which makes them difficult to
fold into a larger analytical framework for connectomics data.

We propose a novel end-to-end framework to estimate the geodesic mean
of data on the SPD manifold. Our method, the Geometric Neural Network
(mSPD-NN), leverages a matrix autoencoder formulation [9] that performs a
series of bi-linear transformations on the input SPD matrices. This strategy en-
sures that the estimated mean remains on the manifold at each iteration. Our
loss function for training approximates the őrst order matrix-normal condition
arising from Fréchet mean estimation [17]. Using conventional backpropagation
via stochastic optimization, the mSPD-NN automatically learns to estimate the
geodesic mean of the input data. We demonstrate the robustness of our frame-
work using simulation studies and show that mSPD-NN can handle input noise
and high-dimensional data. Finally, we use the mSPD-NN for various groupwise
discrimination tasks (feature selection, classiőcation, clustering) on functional
connectivity data and discover consistent biomarkers that distinguish between
patients diagnosed with ADHD-Autism comorbidities and healthy controls.

2 Biomarker Discovery from Functional Connectomics

Manifolds via the mSPD-NN

Let matrices {Γn}
N
n=1 ∈ M be a collection of N functional connectomes be-

longing to the manifold M of Symmetric Positive Deőnite (SPD) matrices of



A Geometrically Aware Neural Framework 3

Fig. 1. The mSPD-NN architecture: The input is transformed by a cascade of
2D fully connected layers. The matrix logarithm function is used to obtain the matrix
normal form, which serves as the loss function for mSPD-NN during training.

dimensionality P × P , i.e. M ∈ P+
P (and a real and smooth Reimannian mani-

fold). We can deőne an inner product that varies smoothly at each vector TΓ(M)
in the tangent space deőned at any point Γ ∈ M. Finally, a geodesic denotes the
shortest path joining any two points on the manifold along the manifold surface.

Geodesic Mappings: The matrix exponential and the matrix logarithm maps
allow us to translate geodesics on the manifold back and forth to the local
tangent space at a reference point. The matrix exponential mapping translates
a vector V ∈ TΦ(M) in the tangent space at Φ ∈ M to a point on the manifold
Γ ∈ M via the geodesic emanating from Φ. Conversely, the matrix logarithm
map translates the geodesic between Φ ∈ M to Γ ∈ M back to the tangent
vector V ∈ TΦ(M). Mathematically, these operations are parameterized as:

Γ = ExpmΦ(V) = Φ1/2expm(Φ−1/2VΦ−1/2)Φ1/2 (1)

V = LogmΦ(Γ) = Φ1/2logm(Φ−1/2ΓΦ−1/2)Φ1/2 (2)

Here, expm(·) and logm(·) refer to the matrix exponential and logarithm re-
spectively, each requiring an eigenvalue decomposition of the argument matrix,
a point-wise transformation of the eigenvalues, and a matrix reconstruction.

Distance Metric: Given two connectomes Γ1,Γ2 ∈ M, the Fisher Information
distance between them is the length of the geodesic connecting the two points:

δR(Γ1,Γ2) = ||logm(Γ−1
1 Γ2)||F = ||logm(Γ−1

2 Γ1)||F , (3)

where ||·||F denotes the Frobenius norm. The Reimannian norm of Γ is the
geodesic distance from the identity matrix I i.e. ||Γ||R = ||logm(Γ)||F
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2.1 Geodesic Mean Estimation via the mSPD-NN:

The geodesic mean of {Γn} is deőned as the matrix GR ∈ M whose sum of
squared geodesic distances (Eq. (3)) to each element is minimal [17].

GR({Γn}) = argmin
GR

L(GR) = argmin
GR

∑

n

||logm(G−1
R Γn)||

2

F (4)

A pictorial illustration is provided in the green box in Fig 1. While Eq. (4) does
not have a closed-form solution for N > 2, it is also is convex and smooth with
respect to the unknown quantity GR(·) [17]. To estimate population means from
the connectomes, mSPD-NN makes use of Proposition 3.4 from [17].

Proposition 1: The geodesic mean GR of a collection of N SPD matrices
{Γn} is the unique symmetric positive-deőnite solution to the nonlinear matrix

equation
∑

n logm(G
−1/2
R ΓnG

−1/2
R ) = 0. 0 is a P × P matrix of all zeros.

Proof: The proof follows by computing the őrst order necessary (and here,
sufficient) condition for optimality for Eq. (4). First, we express the derivative

of a real-valued function of the form H(S(t)) = 1
2 ||logm(C−1S(t))||

2
F with re-

spect to t. In this expression, the argument S(t) = GR
1/2expm(tA)GR

1/2 is

the geodesic arising from GR in the direction of ∆ = Ṡ(0) = GR
1/2AGR

1/2,
and the matrix C ∈ P+

P is a constant SPD matrix of dimension P . By using
the cyclic properties of the trace function and the distributive equivalence of
logm(A−1[B]A) = A−1[logm(B)]A, we obtain the following condition:

H(S(t)) =
1

2
||logm(C−1/2S(t)C−1/2)||

2

F

By the symmetry of the term logm(C−1/2S(t)C−1/2) we have that:

∴

d

dt
H(S(t))

∣

∣

∣

t=0
=

1

2

d

dt
Tr

(

[logm(C−1/2S(t)C−1/2)]2
)∣

∣

∣

t=0

∴

d

dt
H(S(t))

∣

∣

∣

t=0
= Tr

(

[logm(C−1GR)G
−1
R ∆]

)

= Tr[∆logm(C−1GR)G
−1
R ]

∴ ∇H = logm(C−1GR)G
−1
R = G−1

R logm(GRC
−1)

Notice that since ∇H is symmetric, it belongs to the tangent space SP of P+
P .

Therefore, we express the gradient of L(GR) deőned in Eq. (4), as follows:

L(GR) =
∑

n

||logm(G−1
R Γn)||

2

F =⇒ ∇L(GR) = G−1
R

∑

n

logm(GRΓ
−1
n )

∴ argmin
GR

L(GR) =⇒
∑

n

logm(GRΓ
−1
n ) =

∑

n

logm(G
−1/2
R ΓnG

−1/2
R ) = 0

The őnal step uses the property that L(GR) is a sum of convex functions, with
the őrst order stationary point is the necessary and sufficient condition being the

unique minima. Denoting G
−1/2
R = V ∈ P+

P , the matrix multiplications in the

argument of the logm(·) term can be efficiently expressed within the feed-forward

operations of a neural network with unknown parameters V.
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2.2 mSPD-NN Architecture

The mSPD-NN uses the form above to perform geodesic mean estimation. The
architecture is illustrated in Fig. 1. The encoder of the mSPD-NN is a 2D fully-
connected neural network (FC-NN) [5] layer Ψenc(·) : P

+
P → P+

P that projects
the input matrices Γn into a latent representation. This mapping is computed
as a cascade of two linear layers with tied weights W ∈ RP×P , i.e., Ψenc(Γn) =
WΓnW

T The decoder Ψdec(·) has the same architecture as the encoder, but
with transposed weights WT . The overall transformation can be written as:

mSPD-NN(Γn) = Ψdec(Ψenc(Γn)) = WWT (Γn)WWT = V(Γn)V (5)

where V ∈ RP×P and is symmetric and positive deőnite by construction. We
would like our loss function to minimize Eq. (4) in order to estimate the őrst

order stationary point as V = G
−1/2
R , and therefore devise the following loss:

L(·) =
1

P 2

∣

∣

∣

∣

∣

∣

1

N

∑

n

logm
[

WWT (Γn)WWT
]
∣

∣

∣

∣

∣

∣

2

F

(6)

Formally, an error of L(·) = 0 implies that the argument satisőes the matrix

normal equation exactly under the parameterization V = WWT = G
−1/2
R .

Therefore, Eq. (6) allows us to estimate the geodesic mean on the SPD manifold.
We utilize standard backpropagation to optimize Eq. (6). From an efficiency
standpoint, the mSPD-NN architecture maps onto a relatively shallow neural
network. Therefore, this module can be easily integrated into other deep learning
inference frameworks for example, for batch normalization on the SPD manifold.
This ŕexibility is the key advantage over classical methods, in which integrating
the geodesic mean estimation within a larger framework is not straightforward.
Finally, the extension of Eq. (6) to the estimation of a weighted mean (with
positive weights {wn}) also follows naturally as a multiplier in the summation.

Implementation Details: We train mSPD-NN for a maximum of 100 epochs
with an initial learning rate of 0.001 decayed by 0.8 every 50 epochs. The tol-
erance criteria for the training loss is set at 1e−4. mSPD-NN implemented in
PyTorch (v1.5.1), Python 3.5 and experiments were run on an 4.9 GB Nvidia
K80 GPU. We utilize the ADAM optimizer during training and a default Py-
Torch initialization for the model weights. To ensure that W is full rank, we add
a small bias to the weights, i.e., W̃ = W+ λIP for regularization and stability.

3 Evaluation and Results

3.1 Experiments on Synthetic Data

We evaluate the scalability, robustness, and ődelity of mSPD-NN using simu-
lated data. We compare the mSPD-NN against two popular mean estimation
algorithms, the őrst being the Riemannian gradient descent [20] on the objec-
tive in Eq. (4) and the second being the Approximate Joint Diagonalization Log
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Euclidean (ALE) mean estimation [3], which directly leverages properties of the
common principal components (CPC) data generating process [21].

Our synthetic experiments are built off the CPC model [13]. In this case, each
input connectome Γn ∈ RP×P is derived from a set of components B ∈ RP×P

common to the collection and a set of example speciőc (and strictly positive)
weights across the components cn ∈ R(+)P×1. Let the diagonal matrix Cn be
deőned as Cn = diag(cn) ∈ R(+)P×P . From here, we have Γn = BCnB

T .

Evaluating Scalability: In the absence of corrupting noise, the theoretically
optimal geodesic mean of the examples {Γn}

N
n=1 can be computed as: G∗

R =

B expm
[

1
N

∑N
n=1 logm(B−1ΓnB

−T )
]

BT [3]. We evaluate the scalability of

each algorithm with respect to the dataset dimensionality P and the number of
examples N by comparing its output to this theoretical optimum.

We randomly sample columns of the component matrix B from a standard
normal, i.e., B[:, j] ∼ N (0, IP ) ∀ j ∈ {1, . . . , P}, where IP is an identity matrix
of dimension P . In parallel, we sample the component weights cnk according to

c
1/2
nk ∼ N (0, 1) ∀ k ∈ {1, . . . , P}. To avoid degenerate behavior when the inputs

are not full-rank, we clip cnk to a minimum value of 0.001. We consider two
experimental scenarios. In Experiment 1, we őx the data dimensionality at P =
30 and sweep the dataset size as N ∈ {5, 10, 20, 50, 100, 200}. In Experiment

2, we őx the dataset size at N = 20 and sweep the dimensionality as P ∈
{5, 10, 20, 50, 100, 200}. For each parameter setting, we run all three estimation
algorithms ten times using different random initializations.

We score performance based on the correctness of the solution and the exe-
cution time in seconds. Correctness is measured in two ways. First is the őnal
condition őt L(Gest

R ) from Eq. (6), which quantiőes the deviation of the solution
from the őrst order stationary condition (i.e., L(Gest

R ) = 0). Second is the nor-

malized squared Riemannian distance dmean = d2R(G
est
R ,G∗

R)/||G
∗

R||
2
R between

the solution and the theoretically optimal mean. Lower values of the condition
őt L(GR) and deviation dmean imply a better quality solution.

Fig. 2 illustrates the performances of mSPD-NN, gradient descent and ALE
mean estimation algorithms. Figs. 2(a) and (d) plot the őrst-order condition
őt L(Gest

R ) when varying the dataset size N (Experiment 1) and the matrix
dimensionality P (Experiment 2), respectively. Likewise, Figs. 2(b) and (e) plot
the recovery performance for each experiment. We observe that the őrst order
condition őt for the mSPD-NN is better than the ALE for all settings, and
better than the gradient descent for most settings. We note that the recovery
performance of mSPD-NN is better than the baselines in most cases while being
a close approximation in the remaining ones. Finally, Figs. 2(c) and (f) illustrate
the time to convergence for each algorithm. As seen, the performance of mSPD-
NN scales with dataset size but is nearly constant with respect to dimensionality.
In all cases, it either beats or is competitive with ALE.

Robustness to Noise: Going one step further, we evaluate the efficacy of the
mSPD-NN framework when there is deviation from the ideal CPC generating
process. In this case, we add rank-one structured noise to obtain the input data:
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Fig. 2. Evaluating the estimates from mSPD-NN, gradient descent and ALE according
to (a) and (d) őrst-order condition őt (Eq. 6) (b) and (e) deviation from the
theoretical solution (c) and (f) execution time for varying dataset size N and

data dimension P respectively

Fig. 3. Performance of the mSPD-NN, gradient descent and ALE estimation under
increasing additive noise: (a) First order condition őt (Eq. 6) (b) Pairwise distance
between the recovered mSPD-NN solutions across random initializations.

Γn = BCnB
T + 1

P xnx
T
n . As before, the bases and coefficients are randomly

sampled as B[:, j] ∼ N (0, IP ) and c
1/2
nj ∼ N (0, 1) ∀ j ∈ {1, . . . , P}. In a

similar vein, the structured noise is generated as xn ∼ N (0, σ2IP ) ∈ RP×1,
with σ2 controlling the extent of the deviation. For this experiment, we set
P = 30, N = 20 and vary the noise over the range [0.2 − 1] in increments of
0.1. One caveat in this setup is that the theoretically optimal mean deőned
previously and cannot be used to evaluate performance. Hence, we report only
the őrst-order condition őt L(GR) We also calculate the pairwise concordance
dweights of the őnal mSPD-NN weights for different initializations.

Fig. 3(a) illustrates the őrst-order condition őt L(Gest
R ) across all three meth-

ods for increasing noise σ. As seen, L(Gest
R ) for the mSPD-NN is consistently
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lower than the corresponding value for the gradient descent and ALE algorithm,
suggesting improved performance despite increasing corruption to the CPC pro-
cess. The ALE algorithm is designed to utilize the CPC structure within the
generating process, but its poor performance suggests that it is particularly sus-
ceptible to noise. Fig. 3(b) plots the pairwise distances between the geodesic
means estimated by mSPD-NN across the 10 random initializations. As seen,
mSPD-NN produces a consistent solution, thus underscoring its robustness.

3.2 Experiments on Functional Connectomics Data

Dataset: To probe the efficacy of the mSPD-NN for representation learning on
real world matrix manifold data, we experiment on several groupwise discrimi-
nation tasks (such as group-wise discrimination, classiőcation and clustering) on
the publicly available CNI 2019 Challenge dataset [23] consisting of preprocessed
rs-fMRI time series, provided for 158 subjects diagnosed with Attention Deőcit
Hyperactivity Disorder (ADHD), 92 subjects with Autism Spectrum Disorder
(ASD) with an ADHD comorbidity [15], and 257 healthy controls. The scans were
acquired on a Phillips 3T Achieva scanner using a single shot, partially parallel,
gradient-recalled EPI sequence with TR/TE = 2500/30ms, ŕip angle 70, voxel
resolution = 3.05× 3.15× 3mm, with a scan duration of either 128 or 156 time
samples (TR). A detailed description of the demographics and preprocessing can
be found in [23]. Connectomes are estimated via the Pearson’s correlation ma-
trix, regularized to be full-rank via two parcellations, the Automated Anatomical
Atlas (AAL) (P = 116) and the Craddocks 200 atlas (P = 200).

Groupwise Discrimination: We expect that FC differences between the ASD
and ADHD cohorts are harder to tease apart than differences between ADHD
and controls [23,15]. We test this hypothesis by comparing the geodesic means
estimated via mSPD-NN for the three cohorts. For robustness, we perform boot-
strapped trials for mean estimation by sampling 25 random subjects from a
given group (ADHD/ASD/Controls). We then compute the Riemannian dis-
tance d(GR({Γg1}),GR({Γg2})) between the mSPD-NN means associated with
groups g1 and g2. A higher value of d(·, ·) implies a better separation between
the groups. We also run a Wilcoxon signed rank test on the distribution of d(·, ·).

Fig. 4 illustrates the pairwise distances between the geodesic means of co-
horts g1 − g2 across bootstrapped trials (t-SNE representations for the group
means are provided in Fig. 5(c)). As a sanity check, we note that the mean es-
timates across samples within the same cohort (ADHD-ADHD) are closer than
those across cohorts (ADHD-controls, ASD-controls, ADHD-ASD). More inter-
estingly, we observe that ADHD-controls separation is consistently larger than
that of the ADHD-ASD groups for both parcellations. This result conőrms the
hypothesis that the overlapping diagnosis for the two classes translates to a re-
duced separability in the space of FC matrices and indicates that mSPD-NN is
able to robustly uncover population level differences in FC.

Classification: Building on the observation that mSPD-NN provides reliable
group-separability, we adopt this framework for classiőcation. Using the AAL
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Fig. 4. Groupwise discrimination between the FC matrices estimated via the (a) AAL
(b) Craddock’s 200 atlas, for the ADHD/ASD/Controls cohorts according to pairwise
distances between the mSPD-NN mean estimates. Results of pairwise connectivity
comparisons between group means for (c) ADHD-Controls (d) ADHD-ASD groups
for the AAL parcellation. The red connections are signiőcant differences (p < 0.001).

parcellation, we randomly sample 25 subjects from each class for training, and set
aside the rest for evaluation with a 10%/90% validation/test split. We estimate
the geodesic mean for each group across the training samples via 10 bootstrapped
trials, in which we sub-sample 80% of the training subjects from the respective
group. Permutation testing is performed on the mean estimates [24], and func-
tional connections (i.e., entries of GR({Γn})) that differ with an FDR-corrected
threshold of p < 0.001 are retained for classiőcation. Finally, a Random Forest
classiőer is trained on the selected features to classify ADHD vs Controls. The
train-validation-test splits are repeated 10 times to compute conődence intervals.

We use classiőcation accuracy and area under the receiver operating curve
(AU-ROC) as metrics for evaluation. The mSPD-NN feature selection plus Ran-
dom Forest approach provides an accuracy of 0.62 ± 0.031 and an AU-ROC
of 0.60 ± 0.04 for ADHD-Control classiőcation on the test samples. We note
that this approach outperforms all but one method on the CNI challenge leader-
board [23]. Moreover, one focus of the challenge is to observe how models trained
on the ADHD vs Control discrimination task translate to ASD (with ADHD co-
morbidity) vs Control discrimination in a transfer learning setup. Accordingly,
we apply the learned classiőers in each split to ASD vs Control classiőcation
and obtain an accuracy of 0.54± 0.044 and an AU-ROC of 0.53± 0.03. This re-
sult is on par with the best performing algorithm in the CNI-TL challenge. The
drop in accuracy and AU-ROC for the transfer learning task is consistent with
the performance proőle of all the challenge submissions. These results suggest
that despite the comorbidity, connectivity differences between the cohorts are
subtle and hard to reliably capture. Nonetheless, the mSPD-NN+RF framework
is a őrst step to underscoring stable, yet interpretable (see below) connectivity
patterns that can discriminate between diseased and healthy populations.

Qualitative Analysis: To better understand the group-level connectivity dif-
ferences, we plot the most consistently selected features (top 10 percent) from
the previous experiment (ADHD-control feature selection) in Fig. 4(c). We uti-
lize the BrainNetViewer Software for visualization. The blue circles are the AAL
nodes, while the solid lines denote edges between nodes. We observe that the
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Fig. 5. Pairwise differences between mSPD-NN group means for (a) ADHD-Controls
(b) ADHD-ASD groups across bootstrapped trials. Signiőcant differences marked in
red (p < 0.001). t-SNE plots for group means from experiment on (c) Groupwise
Discrimination using mSPD-NN (d) After data-driven clustering via the mSPD-EM

highlighted connections appear to cluster in the sensorimotor and visual areas
of the brain, along with a few temporal lobe contributions. Altered sensorimotor
and visual functioning has been previously reported among children and young
adults diagnosed with ADHD [6]. Adopting a similar procedure, we additionally
highlight differences among the ASD and ADHD cohorts in Fig. 4(d). The se-
lected connections concentrate around the pre-frontal areas of the brain, which is
believed to be associated with altered social-emotional regulation in Autism [22].
We additionally provide an extended version of the group connectivity difference
results across trials in Fig. 5 (a) ADHD vs Controls and (b) ADHD vs ASD.
Across train-test-validation splits, we observe that several connectivity differ-
ences appear fairly consistently. Overall, the patterns highlighted via statistical
comparisons on the mSPD-NN estimates are both robust as well as in line with
the physiopathology of ADHD and ASD reported in the literature.

Data-Driven Clustering: Finally, we evaluate the stability of the mapping be-
tween the functional connectivity and diagnostic spaces via a geometric cluster-
ing experiment. We use the geodesic mean estimates from the groupwise discrim-
ination experiment (generated using the ground truth Controls/ASD/ADHD la-
bels and mSPD-NN) as an initialization and track the shift in the diagnostic
assignments upon running an unsupervised Expectation-Maximization (EM)
algorithm. At each iteration of the mSPD-EM, the E-Step assigns cluster mem-
berships to a given subject according to the geodesic distance (Eq. (3)) from
the cluster centroids, while the M-Step uses the mSPD-NN for recomputing the
centroids. Upon convergence, we evaluate the alignment between the inferred
clusters and diagnostic labels. To this end, we map each cluster to a diagnos-
tic label according to majority voting, and measure the cluster purity (fraction
of cluster members that are correctly assigned). mSPD-EM provides an overall
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cluster purity of 0.59 ± 0.05 (Controls), 0.52 ± 0.12 (ADHD), ASD 0.51 ± 0.09
(ASD), indicating that there is considerable shift in the assignment of diag-
nostic labels from ground truth. We also visualise the cluster centroids using
t-Stochastic Neighbor Embeddings (t-SNE) at initialization and after conver-
gence of the mSPD-EM in Fig. 5 (c) and (d) respectively. We provide 3-D plots
to better visualise the cluster separation. Again, we observe that the diagnos-
tic groups overlap considerably and are challenging to separate in the functional
connectivity space alone. One possible explanation may be that the distinct neu-
ral phenotypes between the disorders are being overwhelemed by other rs-fMRI
signatures. Given the migration of diagnostic assignments from the ground truth,
the strict diagnostic criteria used to separate the diseased and healthy cohorts
group may need to be more critically examined.

4 Conclusion

We have proposed a novel mSPD-NN framework to reliably estimate the geodesic
mean of a collection of functional connectivity matrices. Through extensive
simulation studies, we demonstrate that the mSPD-NN scales well to high-
dimensional data and can handle input noise when compared with current it-
erative methods. By conducting a series of experiments on group-wise discrimi-
nation, feature selection, classiőcation, and clustering, we demonstrate that the
mSPD-NN is a reliable framework for discovering consistent group differences be-
tween patients diagnosed with ADHD-Autism comorbidities and controls. The
mSPD-NN makes minimal assumptions about the data and can potentially be
a useful tool to advance data-scientiőc and clinical research.
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