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Abstract. We propose a robust deep learning framework to simultane-
ously detect and localize seizure activity from multichannel scalp EEG.
Our model, called DeepSOZ, consists of a transformer encoder to gen-
erate global and channel-wise encodings. The global branch is combined
with an LSTM for temporal seizure detection. In parallel, we employ
attention-weighted multi-instance pooling of channel-wise encodings to
predict the seizure onset zone. DeepSOZ is trained in a supervised fash-
ion and generates high-resolution predictions on the order of each sec-
ond (temporal) and EEG channel (spatial). We validate DeepSOZ via
bootstrapped nested cross-validation on a large dataset of 120 patients
curated from the Temple University Hospital corpus. As compared to
baseline approaches, DeepSOZ provides robust overall performance in
our multi-task learning setup. We also evaluate the intra-seizure and
intra-patient consistency of DeepSOZ as a first step to establishing its
trustworthiness for integration into the clinical workflow for epilepsy.
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1 Introduction

Epilepsy is a debilitating neurological disorder characterized by spontaneous
and recurring seizures [17]. Roughly 30% of epilepsy patients are drug resistant,
meaning they do not positively respond to anti-seizure medications. In such
cases, the best alternative treatment is to identify and surgically resect the brain
region responsible for triggering the seizures, i.e., the seizure onset zone (SOZ).
Scalp electroencephalography (EEG) is the first and foremost modality used to
monitor epileptic activity. However, seizure detection and SOZ localization from
scalp EEG are based on expert visual inspection, which is time consuming and
heavily prone to the subjective biases of the clinicians [8].

Computer-aided tools for scalp EEG almost exclusively focus on the task of
(temporal) seizure detection. Early works approached the problem via feature en-
gineering and explored spectral [25,24], entropy-based [9], and graph-theoretic [1]
features for the task. In general, these methods extract features from short time
windows and use a machine learning classifier to discriminate between window-
wise seizure and baseline activity [25,1]. More recently, deep learning models
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have shown promise in extracting generalizable information from noisy and het-
erogeneous datasets. Deep learning applications to EEG include convolutional
neural networks (CNNs) [4,23,12,22], graph convolutional networks(GCNs) [21],
and a combination of attention-based feature extraction [10] and recurrent lay-
ers to capture evolving dynamics [4,20,15]. Transformers have also been used for
seizure detection, both in combination with CNNs [14] and directly on the EEG
signals and their derived features [18,11]. While these methods have greatly ad-
vanced the problem of seizure detection, they provide little information about
the SOZ, which is ultimately the more important clinical question.

A few works have explored the difficult task of localizing the SOZ via post

hoc evaluations of deep networks trained for seizure detection. For example, the
authors of [7,16] perform a cross-channel connectivity analysis of the learned
representations to determine the SOZ. In contrast, the method of [2] identifies
the SOZ by dropping out nodes of the trained GCN until the seizure detection
performance degrades below a threshold. Finally, the SZTrack model of [6] jointly
detects and tracks the spatio-temporal seizure spread by aggregating channel-
wise detectors; the predictions of this model are seen to correlate with the SOZ.
While valuable, the post hoc nature of these unsupervised analyses means that
the results may not generalize to unseen patients. The first supervised approach
for SOZ localization was proposed by [3] and uses probabilistic graphical models
for simultaneous detection and localization. The more recent SZLoc model [5]
proposes an end-to-end deep architecture for SOZ localization along with a set
of novel loss functions to weakly supervise the localization task from coarse
inexact labels. While these two methods represent seminal contributions to the
field, they are difficult to train and only report the localization performance on
short (i.e., < 2 minute) EEG recordings around the time of seizure onset.

In this paper, we present DeepSOZ, a robust model for joint seizure detection
and SOZ localization from multichannel scalp EEG. Our model consists of a spa-
tial transformer encoder to combine cross-channel information and LSTM layers
to capture dynamic activity for window-wise seizure detection. In parallel, we
use a novel attention-weighted multi-instance pooling to supervise seizure-level
SOZ localization at the single channel resolution. We curate a large evaluation
dataset from the publicly available TUH seizure corpus by creating SOZ labels
from the clinician notes for each patient. We perform extensive window-level,
seizure-level, and patient-level evaluations of our model. Additionally, we an-
alyze the consistency of predictions across seizure occurrences, which has not
previously been reported for SOZ localization. Quantifying the error variance is
the first step in establishing trust in DeepSOZ for clinical translation.

2 Methodology

Fig. 1 illustrates our DeepSOZ architecture. The inputs to DeepSOZ are mul-
tichannel EEG data for a single seizure recording segmented into one-second
windows. The outputs are a temporal sequence of predicted seizure versus base-
line activity (detection) and a channel-wise posterior distribution for the SOZ
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Fig. 1: Schematic of our DeepSOZ model. Left: Transformer encoder that uses
positional encoding and self attention to generate hidden representations. Top
Right: Bidirectional LSTM for seizure detection. Bottom Right: Attention
weighted multi-instance pooling for SOZ localization.

(localization). Formally, let xt
i denote the EEG data for channel i and time

window t. Clinical EEG is recorded in the 10-20 system, which consists of 19
channels distributed across the scalp. For training, let St ∈ {0, 1} denote the
seizure versus baseline activity label for time window t, and let y ∈ {0, 1}19×1

be a vector representing the clinician annotated SOZ. Below, we describe each
component of DeepSOZ, along with our training and validation strategy.

2.1 The DeepSOZ Model Architecture

Spatial Transformer Encoder: For each time window t, the multichannel
EEG data {xt

i}19i=1
is passed to a transformer encoder consisting of multi-head

attention (MHA) layers to generate both a global ht
0
and channel-wise {ht

i}19i=1

encodings. Since the spatial orientation of these channels is crucial for tracking
seizure activity, we add a positional embedding generated by a trainable linear
layer Wp, resulting in the modified input x̃t

i = xt
i +WT

p ✶(i), where ✶(i) is the
indicator function for a one hot encoding at element i.

The hidden representations are computed by the transformer encoder from
the modified multichannel input X̃t = [x̃t

1
. . . x̃t

19
] as follows:

Zt = LN(MHA(X̃t) + X̃t) ht
i = LN(FF (zti) + zti), (1)

where LN(·) denotes layer normalization, and FF (·) represents a learned two
layer feed-forward network with ReLU activation.
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The MHA(·) operation uses parallel self attentions to map the input data
into a set of projections, as guided by the other channels in the montage. For-
mally, let n index the attention head. The attention weights At

n ∈ R
20×20 cap-

tures global (1) and cross-channel (19) similarities via the key matrix Kt
n =

WK
n X̃t and query matrix Qt

n = WQ
n X̃

t as follows:

At
n = ξ

(

Qt
nK

tT
n√

d

)

, (2)

where ξ(·) represents the softmax function, and d is our model dimension. The
attention At

n is multiplied by the value matrix Vt
n = WV

n X̃
t to generate the

output for head n. These outputs are concatenated and fed into a linear layer
to produce MHA(·). Finally, these MHA outputs are passed into a two layer
feed forward neural network with ReLU activation, post residual connections
and layer normalization to generate the hidden encoding Ht ∈ R

20×200.
The matrices WQ

n , W
K
n , and WV

n are trained parameters of the encoder. For
simplicity, we set the model dimension d to be the same as our input xt

i (d = 200
in this work), and we specify 8 attention heads in the MHA operation.

LSTM for Temporal Seizure Detection: We use a bidirectional LSTM to
capture evolving patterns in the global encodings of the one-second EEG win-
dows, i.e., {ht

0
}Tt=1

. We use a single LSTM layer with 100 hidden units to process
the global encodings and capture both long-term and short-term dependencies.
The output of the LSTM is passed into a linear layer, followed by a softmax
function, to generate window-wise predictions Ŝt ∈ [0, 1]. Here, Ŝt represents
the posterior probability of seizure versus baseline activity at window t.

Attention-Weighted Multi-Instance Pooling for SOZ Localization: We
treat the localization task as a multi-instance learning problem to predict a
channel-wise posterior distribution for the SOZ vector {yi}19i=1

by computing a
weighted average of the hidden representations from the transformer. We first
map the channel-wise encodings {ht

i}19i=1
∈ R

200 to scalars ŷt
i using the same

linear layer across channels. We use the predicted seizure probability Ŝt as our
attention to compute the final SOZ prediction as follows:

ŷi = σ

(

∑T

t=1
Ŝt · ŷt

i
∑T

t=1
Ŝt

)

, i = 1, . . . , 19 (3)

where σ(·) is the sigmoid function. The final patient-level predictions are ob-
tained by averaging ŷi across all seizure recordings for that patient.

2.2 Loss Function and Model Training

We train DeepSOZ in two stages. First, the transformer and LSTM layers are
trained for window-wise seizure detection using weighted cross entropy loss:

Ldet = − 1

T

T
∑

t=1

(

(1− δ)(1− St) log(1− Ŝt) + δ · St log Ŝt

)

, (4)
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where the weight δ = 0.8 is fixed based on the ratio of non-seizure to seizure
activity in the dataset. DeepSOZ is then finetuned for SOZ localization. To
avoid catastrophic forgetting of the detection task, we freeze the LSTM layers
and provide a weak supervision for detection via the loss function:

Lsoz = 0.1 · Ldet −
1

19

19
∑

i=1

((1− yi) log(1− ŷi) + yi log ŷi) + ∥ŷ∥1, (5)

where the ||.||1 penalizes the L1 norm to encourage sparsity in predicted ŷ

2.3 Model Validation

We evaluate DeepSOZ using bootstrapped 5-fold nested cross validation. Within
each training fold, we select the learning rate and seizure detection threshold
through a grid search with a fixed dropout of 0.15. We use PyTorch v1.9.0
with Adam [13] for training with a batch size of one patient; early stopping is
implemented using a validation set drawn from the training data. We re-sample
the original 5-fold split three times and report the results across all 15 models3.

Seizure Detection: At the window level, we report sensitivity, specificity, and
area under the receiver operating characteristic curve (AU-ROC). At the seizure
level, we adopt the strategy of [4] and select a detection threshold that ensures
no more than 2 minutes of false positive detections per hour in the validation
dataset. To eliminate spikes, we smooth the output predictions using a 30 second
window and count only the contiguous intervals beyond the calibrated detection
threshold as seizure predictions. Following the standard of [4], we do not pe-
nalize post-ictal predictions. We report the false positive rate (FPR) per hour
(min/hour), the sensitivity, and the latency (seconds) in seizure detection.

SOZ Localization: By construction, DeepSOZ processes each seizure recording
separately to find the SOZ. Patient-level SOZ predictions are obtained by aver-
aging across all seizure recordings for that patient. The SOZ is correctly localized
if the maximum channel-wise probability lies in the neighborhood determined by
the clinician. We quantify the prediction variance at the seizure level by gener-
ating Monte Carlo samples during test via active dropout. At the patient level,
we compute the prediction variance across all seizures for that patient.

Baseline Comparisons: We compare the performance of DeepSOZ with one
model ablation and four state-of-the-art methods from the literature. Our ab-
lation replaces the attention-weighted multi-instance pooling in DeepSOZ with
a standard maxpool operation within the prediction seizure window (DeepSOZ-
max). Our baselines consist of the CNN-BLSTM model for seizure detection
developed by [4], the SZTrack model proposed by [6] that uses a convolutional-
recurrent architecture for each channel, the SZLoc model by [5] consisting of
CNN-transformer-LSTM layers, and the Temporal Graph Convolutional Net-
work (TGCN) developed by [2]. SZTrack and SZLoc are trained and evaluated

3 Our code and data can be accessed at https://github.com/deeksha-ms/DeepSOZ.git



6 Deeksha M. Shama et al.

Table 1: Description of patient demographics in the curated TUH dataset.
curated TUH dataset

Number of patients 120
Male/Female 55/65
Average age 55.2±16.6
Min/Max age 19/91

Seizures per patient 14.7±25.2
Min/Max seizures per patient 1/152

Average EEG duration per patient 79.8±135 min
Average seizure duration 88.0±123.5 sec
Min/Max seizure duration 7.5±1121 sec

Temporal/Extra-temporal Onset 72/48
Right/Left onset zone 59/61

for localization via the approach published by the authors which uses only 45

seconds of data around onset time. We modify the TGCN slightly to extract
channel-wise prediction for localization task but evaluate it on the full 10-minute
recordings like DeepSOZ. Finally, we note that the CNN-BLSTM can only be
used for seizure detection, and SZLoc is only trained for SOZ localization.

3 Experimental Results

Data and Preprocessing: We validate DeepSOZ on 642 EEG recordings from
120 adult epilepsy patients in the publicly available Temple University Hospital
(TUH) corpus [19] with a well characterized unifocal seizure onset. We use the
clinical notes to localize the SOZ to a subset of the 19 EEG channels. Table 1
describes the seizure characteristics across patients in our curated subset.

Following [4], we re-sample the raw EEG to 200 Hz for uniformity, filter the
signals between 1.6-30 Hz, and clip them at two standard deviations from mean
to remove high intensity artifacts. All signals are normalized to have zero mean
and unit variance. We standardize the input lengths by cropping the signals to
10 minutes around the seizure interval, while ensuring that the onset times are
uniformly distributed within this period. We segment the EEG into one second
non-overlapping windows to obtain the model inputs xt

i.

Seizure Detection Performance: Table 2 reports the seizure detection per-
formance averaged over the 15 bootstrapped testing folds. At the window level,
both aggregation strategies for DeepSOZ (weighted posterior and max pooling)
perform similarly and achieve higher AU-ROC values than the other baselines.
The TGCN and CNN-BLSTM baselines achieve notably worse AU-ROC values,
establishing the power of a transformer encoder in extracting more meaning-
ful features. SZTrack is trained using the published strategy in [6] and fails to
detect seizures effectively. The differences in AU-ROC between DeepSOZ and
TGCN, SZTrack, and CNN-BLSTM are statistically significant per a De Long’s
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Table 2: Temporal seizure detection performance on the TUH dataset. Window-
level metrics are calculated for each one-second windows. Seizure-level metrics
are aggregated over the duration of seizure after post-processing.

Model
Window-Level Seizure-Level

AU-ROC Sensitivity Specificity FPR Sensitivity Latency

DeepSOZ .901±.027 .679±.100 .890±.030 .44±.23 .808±.106 -18.45±15.67

DeepSOZ-max .907±.032 .676±.079 .909±.029 .288±.153 .700±.105 -15.39±9.91

TGCN [2] .887±.032 .711±.148 .835±.085 .808±.591 .869±.085 -36.01±29.49

SZTrack [6] .5202±.045 .464±.300 .535±.303 2.06±.844 .799±.135 -50.5±71.5

CNN-BLSTM [4] .876±.044 .664±.135 .876±.055 .351±.45 .42±.281 28.89±154.88

Table 3: SOZ localization metrics. The seizure-level results are calculated in-
dependently on all seizure recordings. Patient-level results are aggregated over
multiple seizures of the patients. Number of model parameters is also given.

Model
Seizure-Level Patient-Level

# Params
Accuracy Uncertainty Accuracy Uncertainty

DeepSOZ .731±.061 .009±.001 .744±.058 .142±.013 510K

DeepSOZ-max .513±.154 .0±.0 .411±.076 .023±.007 510K

TGCN [2] .479±.07 .0±.0 .486±.123 .153±.015 1.16M

SZTrack [6] .454±.065 .003±.001 .450±.142 .017±.007 19K

SZLoc [5] .682±.094 .008±.001 .740±.056 .074±.008 491K

test at p < 0.05. At the seizure level, DeepSOZ achieves a good balance be-
tween sensitivity (0.81) and FPR (0.44 min/hour). The negative latency of 18
seconds contributes towards the slightly elevated FPR. The TGCN and SZTrack
have a high sensitivity, which comes at the cost of much higher FPR, while the
CNN-BLSTM has a low detection sensitivity but comparable FPR.

SOZ Localization Performance: Table 3 summarizes the SOZ localization
performance across models. DeepSOZ performs the best at both patient and
seizure levels. In contrast, the SZTrack and TGCN baselines are confident in
their predictions but more often incorrect, once again highlighting the value of a
transformer encoder. While the SZLoc model performs the best of the baselines,
we note that both it and SZTrack have an unfair advantage of being trained
and evaluated on 45 second EEG recordings around the seizure onset time. In
contrast, DeepSOZ processes full 10-minute recordings for both tasks.

Fig. 2 aggregates the final predictions of DeepSOZ across the 120 patients
into quadrants. As seen, DeepSOZ is adept at differentiating right- and left-
hemisphere onsets but struggles to differentiate anterior and posterior SOZs.
We hypothesize that this trend is due to the skew towards temporal epilepsy
patients in the TUH dataset. A similar trend can be observed at the finer lobe-
wise predictions. Fig. 3 illustrate sample DeepSOZ outputs for two patients
in the testing fold. As seen, DeepSOZ accurately detects the seizure interval
in all cases but has two false positive detections for Patient 1. Nonetheless,
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Fig. 2: Confusion matrices between the max channel-wise posterior and the true
SOZ. Left: Quadrant-based aggregation (L: Left, R: Right, Ant: Anterior, Post:
Posterior). Right: Functional region-based aggregation (F: Frontal, FC: Fronto-
central, FT: Frontotemporal, T: Temporal, C: Central, P: Parietal, O: Occipital).

Fig. 3: Visualization for two testing patients. Top: Temporal seizure detection.
Blue lines correspond to the DeepSOZ prediction; horizontal orange lines denote
the seizure detection threshold from training; shaded region is the ground-truth
seizure interval. Bottom: Predicted SOZ for the above seizure projected onto a
topological scalp plot. Side: Patient-level SOZ with ground-truth below.

DeepSOZ correctly localizes the seizure to the left frontal area. The localization
for Patient 2 is more varied, which correlates with the patient notes that specify
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a right-posterior onset but epileptogenic activity quickly spreading to the left
hemisphere. Overall, DeepSOZ is more uncertain about this patient.

4 Conclusion

We have introduced DeepSOZ for joint seizure detection and SOZ localization
from scalp EEG. DeepSOZ leverages a self-attention mechanism to generate
informative global and channel-wise latent representations that strategically
fuse multi-channel information. The subsequent recurrent layers and attention-
weighted pooling allow DeepSOZ to generalize across a heterogeneous cohort. We
validate DeepSOZ on data from 120 epilepsy patients and report improved detec-
tion and localization performance over numerous baselines. Finally, we quantify
the prediction uncertainty as a first step towards building trust in the model.
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9. Güler, N.F., et al.: Recurrent neural networks employing lyapunov exponents for
eeg signals classification. Expert systems with applications 29(3), 506–514 (2005)



10 Deeksha M. Shama et al.

10. He, J., et al.: Spatial–temporal seizure detection with graph attention network
and bi-directional lstm architecture. Biomedical Signal Processing and Control 78,
103908 (2022)

11. Hussein, R., et al.: Multi-channel vision transformer for epileptic seizure prediction.
Biomedicines 10(7), 1551 (2022)

12. Khan, H., Marcuse, L., Fields, M., Swann, K., Yener, B.: Focal onset seizure predic-
tion using convolutional networks. IEEE Transactions on Biomedical Engineering
65(9), 2109–2118 (2017)

13. Kingma, D.P., et al.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Li, C., et al.: Eeg-based seizure prediction via transformer guided cnn. Measure-
ment 203, 111948 (2022)

15. Liang, W., Pei, H., Cai, Q., Wang, Y.: Scalp eeg epileptogenic zone recognition and
localization based on long-term recurrent convolutional network. Neurocomputing
396, 569–576 (2020)

16. Mansouri, A., et al.: Online eeg seizure detection and localization. Algorithms
12(9), 176 (2019)

17. Miller, J., et al.: Epilepsy. hoboken (2014)
18. Pedoeem, J., et al.: Tabs: Transformer based seizure detection. In: Biomedical

Sensing and Analysis: Signal Processing in Medicine and Biology, pp. 133–160.
Springer (2022)

19. Shah, V., et al.: The temple university hospital seizure detection corpus. Frontiers
in neuroinformatics 12, 83 (2018), https://isip.piconepress.com/projects/tuh eeg/
html/downloads.shtml

20. Vidyaratne, L., Glandon, A., Alam, M., Iftekharuddin, K.M.: Deep recurrent neural
network for seizure detection. In: 2016 International Joint Conference on Neural
Networks (IJCNN). pp. 1202–1207. IEEE (2016)

21. Wagh, N., et al.: Eeg-gcnn: Augmenting electroencephalogram-based neurological
disease diagnosis using a domain-guided graph convolutional neural network. In:
Machine Learning for Health. pp. 367–378. PMLR (2020)

22. Wei, Z., Zou, J., Zhang, J., Xu, J.: Automatic epileptic eeg detection using con-
volutional neural network with improvements in time-domain. Biomedical Signal
Processing and Control 53, 101551 (2019)

23. Yuan, Y., Xun, G., Jia, K., Zhang, A.: A multi-view deep learning framework for
eeg seizure detection. IEEE journal of biomedical and health informatics 23(1),
83–94 (2018)

24. Zandi, A.S., et al.: Automated real-time epileptic seizure detection in scalp eeg
recordings using an algorithm based on wavelet packet transform. IEEE Transac-
tions on Biomedical Engineering 57(7), 1639–1651 (2010)

25. Zhang, Y., et al.: Integration of 24 feature types to accurately detect and predict
seizures using scalp eeg signals. Sensors 18(5), 1372 (2018)


	black DeepSOZ: A Robust Deep Model for Joint Temporal and Spatial Seizure Onset Localization from Multichannel EEG Data

