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ABSTRACT

Hyperparameter tuning is critical to the success of federated learning applications. Unfortunately, appropriately

selecting hyperparameters is challenging in federated networks, as issues of scale, privacy, and heterogeneity

introduce noise in the tuning process and make it difficult to faithfully evaluate the performance of various

hyperparameters. In this work we perform the first systematic study on the effect of noisy evaluation in federated

hyperparameter tuning. We first identify and rigorously explore key sources of noise, including client subsampling,

data and systems heterogeneity, and data privacy. Surprisingly, our results indicate that even small amounts of

noise can have a significant impact on tuning methodsÐreducing the performance of state-of-the-art approaches to

that of naive baselines. To address noisy evaluation in such scenarios, we propose a simple and effective approach

that leverages public proxy data to boost evaluation signal. Our work establishes general challenges, baselines,

and best practices for future work in federated hyperparameter tuning.

1 INTRODUCTION

Hyperparameter tuningÐthe process of selecting the hyper-

parameters of a learning algorithmÐis crucial for achieving

high-performing models in machine learning. Hyperpa-

rameter (HP) tuning is essential for cross-device federated

learning (FL) applications, which consider training machine

learning models over large heterogeneous networks of de-

vices such as mobile phones or wearables (McMahan et al.,

2017). Although FL methods often rely on additional hyper-

parameters (Li et al., 2020b; Reddi et al., 2020; Charles et al.,

2021), the budget for tuning such parameters may be partic-

ularly small due to computational and privacy-related con-

straints. Developing methods for federated HP tuning has

thus been identified as a critical area of research (Kairouz

et al., 2021; Khodak et al., 2021).

Unfortunately, federated networks introduce the additional

challenge of noisy evaluation, which can prevent HP tuning

methods from properly evaluating HP performance. A clear

source of evaluation noise arises from client subsampling.

As data is distributed across potentially millions of intermit-

tently available clients, HP tuning algorithms must rely on

signals from only a small subset of a much larger validation

population (Bonawitz et al., 2019).
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Figure 1. Error (lower is better) of a CIFAR10 model found by

various HP tuning methods. With FL noise, more complex methods

underperform relative to simple random search (RS). RS on proxy

data is a strong baseline which is unaffected by noisy validation

data. Bars only show performance at 1/3rd of the tuning budget

to highlight faster convergence of HB and BOHB in the noiseless

setting; the online performance of methods is shown in Figure 8.

However, as we identify in this work, several additional

sources of noise may be present during federated evaluation,

such as data and systems-related heterogeneity and privacy

noise. These noise forms fundamentally alter the evalua-

tion process and, as a result, the performance of federated

hyperparameter tuning methods (Figure 1).

Although prior work has identified the issue of noisy evalu-

ation (Khodak et al., 2021; Wang et al., 2022), the impact

and magnitude of this issue on HP tuning remains unclear.

In this work, we systematically study the use of noisy evalu-

ation in federated HP tuning. Our study provides insights

into best practices for federated HP tuning and suggests

several directions for further study in this broad area. Our

results also lead us to propose simple baselines that can help
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to mitigate the effect of noisy evaluation in practical FL

applications. Overall, we make the following contributions:

• We identify and systematically explore key sources of

noise in federated evaluation, including client subsam-

pling, data, and systems heterogeneity, data privacy, and

the use of proxy data. We focus on cross-device FL (e.g.,

learning across hundreds to millions of phones). However,

our insights (particularly around privacy noise and proxy

data) may also extend to cross-silo settings (e.g., learning

across tens of hospitals).

• Across a range of large-scale federated learning datasets,

we show that even small amounts of noise in the evalu-

ation process can significantly degrade the performance

of hyperparameter tuning methods. Our results highlight

best practices for practical federated learning applications

(e.g., reverting to simple baselines in high-noise settings)

and demonstrate a need for future study in this area.

• Finally, we propose a simple approach for performing

hyperparameter tuning in high noise settings based on

the use of public proxy data. When available, our results

show that hyperparameter tuning on proxy data can be a

particularly effective solution in federated networks.

2 NOISY EVALUATION IN FL

We begin by taking a closer look at the process of federated

hyperparameter tuning: We give an overview of the cross-

device FL training/evaluation workflow (§2.1), identify key

sources of evaluation noise (§2.2), and summarize prior

approaches for hyperparameter optimization (§2.3). We

discuss closely related works throughout this section, and

defer a detailed discussion of prior work to Section 5.

2.1 Cross-Device Federated Learning

Federated learning (FL) considers collaboratively training

a machine learning model across a distributed network of

clients. In this work we focus on applications of cross-device

federated learning, which aim to learn across massive net-

works of remote clients such as mobile phones or wearable

devices. For these applications, avoiding the need to central-

ize data can be critical to reduce communication and storage

costs as well as improve privacy (McMahan et al., 2017; Li

et al., 2020a; Kairouz et al., 2021).

Although many works have studied how issues in cross-

device FL such as client subsampling, heterogeneity, and

privacy impact training, few have studied their effect on

evaluation (see Section 5). This is particularly problematic

because state-of-the-art approaches for FL often rely on

evaluating additional hyperparameters in the training pro-

cess (e.g. for momentum and regularization), despite having

relatively strict evaluation budgets (Khodak et al., 2021).

Developing methods that can efficiently and effectively eval-

uate/select HP configurations in FL is thus a key area of

practical importance (Kairouz et al., 2021).

Federated HP Tuning. Due to the scale of the net-

work and potentially small client datasets, the prevail-

ing procedure in cross-device FL is to split the data by

client (Bonawitz et al., 2019; Yuan et al., 2022). In this work,

the training and validation datasets Dtr and Dval are parti-

tioned across two disjoint client pools of size Ntr and Nval

respectively. Furthermore, practical constraints on commu-

nication and client availability limit each training/validation

round to sampling (without replacement) a subset of these

clients.

Because clients are randomly sampled, it is highly unlikely

that either the training or evaluation dataset is consistent

across rounds. More precisely, a typical federated training

algorithm with hyperparameters θ optimizes model parame-

ters w to minimize a weighted sum of the training clients’

losses (Eq. 1). Due to the aforementioned constraints in

cross-device FL, in practice the loss is estimated at each

round using a subsample (S ⊂ [Ntr]) of the training popula-

tion (S = [Ntr]).

Ftr(w) =
∑

k∈S

ptr,kFtr,k(w)
/

∑

k∈S

ptr,k (1)

During hyperparameter (HP) tuning, θ is tuned to minimize

a similar weighted sum 1 of validation clients’ errors (Eq 2).

The ideal procedure for tuning θ is to generate a set of

candidate configurations, evaluate them on the validation

population (S = [Nval]), and then select the best-performing

one. However, like in training, practical systems are limited

to a subset of the validation clients S ⊂ [Nval].

Fval(θ) =
∑

k∈S

pval,kFval,k(w(θ))
/

∑

k∈S

pval,k (2)

For the purposes of this work, we assume that θ is global

i.e. shared across all clients. Although tuning hyperparam-

eters which are personalized to specific clients has been

a focus of prior work in FL (see Section 5), supporting

such methods in cross-device FL may be impractical when

partitioning the data by client. Here, we instead start with

the simpler problem of optimizing global hyperparameters

and see that this already seemingly simple procedure can

become exceptionally difficult in light of noisy evaluation.

2.2 Sources of Evaluation Noise in FL

Below, we further describe challenges of subsampling and

introduce two other sources of noise: heterogeneity and

privacy. As summarized in Figure 2, these sources of noise

can contribute to noisy and unreliable evaluations.

1We evaluate HPs in two settings: uniform (pval,k = 1 ∀k) and
weighted (pval,k = the number of samples on validation client k).
For all experiments involving differential privacy, we use the uni-
form evaluation as to bound evaluation sensitivity independently
of any client’s local dataset size. Otherwise, we evaluate models
with the weighted objective. During training, we set ptr,k to match
the same scheme (uniform or weighted) as evaluation.
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Figure 2. Several factors contribute to noisy evaluation in cross-device federated learning. In the low-noise setting on the left, the green

configuration is correctly identified as the best-performing one. In the high-noise setting on the right, the presence of client subsampling,

client heterogeneity, and differential privacy results in a noisy evaluation which incorrectly ranks the red configuration over the green one.

1. Subsampling. Production cross-device FL systems

can face strict constraints on communication and client-

side computation. Additionally, clients themselves may

need to satisfy certain conditions (e.g., the phone being idle,

connected to WiFi, and charging, as indicated by phones

without red ‘X’s in Figure 2) in order to participate in evalu-

ation (Bonawitz et al., 2019). For these reasons, it is imprac-

tical to access all Nval validation clients and obtain a full

evaluation (Eq. 2, S = [Nval]) for every HP configuration.

Instead, we assume access to a noisy evaluation reported by

a subsampled set of validation clients S ⊂ [Nval].

2. Heterogeneity. As each device in a federated network

generates its own local data, data heterogeneity (i.e., non-

identically distributed data between clients) is a common

concern in FL (Li et al., 2020a; Kairouz et al., 2021). Such

heterogeneity may occur, for example, due to differing lo-

cations, linguistic styles, or usage patterns from one client

to another. As we show in Section 3.2, heterogeneity in the

data can take an already ‘noisy’ evaluation sample and bias

it further, as any two clients may rank the same set of con-

figurations differently. In our experiments, we demonstrate

this effect in both natural and synthetic datasets.

Beyond data heterogeneity, FL networks are also prone to

issues of systems heterogeneity, which refers to varying par-

ticipation capabilities across clients due to to differences in

hardware, network quality, and device availability (Li et al.,

2020b). These conditions may present as another source

of bias dictating how frequently clients participate in evalu-

ation. As a result, hyperparameter tuning algorithms may

be naturally biased towards selecting configurations which

perform well on high-participating clients, not necessarily

on the entire population (see Section 3.2).

3. Privacy. Finally, a key concern in FL is the privacy of

clients’ data. The predominant form of privacy considered

in cross-device FL is client-level differential privacy (Dwork

& Roth, 2013; McMahan et al., 2018), which at a high level

aims to mask whether or not a given client has participated

in training and/or validation. It is important to enforce pri-

vacy not only at training time (Abadi et al., 2016) but also

in the hyperparameter tuning process, as the model selected

can itself leak information about the clients that participated

in the tuning and validation process (Papernot & Steinke,

2022; Liu & Talwar, 2019; Chaudhuri et al., 2011). In order

to make the hyperparameter tuning algorithm private, the

server perturbs the aggregate evaluation statistic (e.g., the

accuracy) of each configuration with Laplace noise at each

iteration of the tuning procedure. Similar to issues of het-

erogeneity, client subsampling affects the noise introduced

by privacy. When more clients participate in evaluation, the

averaged evaluation loss is less sensitive to the loss of any

one particular client, and thus requires adding less noise

to achieve the same level of privacy. As we show in Sec-

tion 3.3, even generous privacy budgets can make evaluation

extremely noisy. In Section 4 we explore the use of public

proxy data (which may also be considered its own, separate

form of ‘noise’) to address high-noise evaluation.

2.3 Hyperparameter Tuning Methods

Given a HP search space and overall budget, HP tuning

methods aim to find configurations in the search space that

optimize some measure of quality (e.g., minimize error rate)

within a constrained budget (e.g., computational cost).

Classical HP tuning methods generate candidate HP con-

figurations over a grid (grid search) or at random (ran-

dom search). Each configuration is used to perform some

predetermined training routine, e.g., training for a fixed

number of epochs or until some fixed stopping criterion is

achieved (Bergstra & Bengio, 2012). Subsequently, each

configuration is evaluated and the best performing one is re-

turned. There exist two main strategies for improving upon

these classical approaches: adaptively generating configura-

tions (e.g., Bayesian optimization approaches), or adaptively

evaluating configurations (e.g., early stopping approaches).

In this work we explore representative candidates from each

category of HP tuning methodÐusing random search (RS)
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Figure 3. We run random search (RS) with a fixed budget (K = 16 configurations) while varying the subsampling rate from a single

client to the full validation client pool. We evaluate the error rate of the configuration found by RS on all clients and report a weighted

average. We plot the median and fill in quartiles over RS trials. ªBest HPsº shows performance of the best RS trial at full evaluation.

Larger datasets can mitigate the problem of subsampling as we can sample a larger raw number of clients.

as a classical/simple baseline which we compare to a more

sophisticated Bayesian optimization (TPE), early stopping

(Hyperband), and hybrid approach (BOHB) (Bergstra et al.,

2011; Li et al., 2017; Falkner et al., 2018). Prior work in

federated HP tuning often uses these classes HP tuning meth-

ods, but they do not explore the effect of noisy evaluation,

which we discuss further in Section 5. We provide a de-

tailed description of these methods in Appendix A, as well

as pseudocode for RS (Algorithm 1) and its FL counterpart

(Algorithm 2) in Appendix D.

3 EXPERIMENTS

In this section we present experiments detailing the effect of

noisy evaluation in federated settings. By analyzing these

sources of noise individually and in combination with one

another, we aim to answer the following questions:

Question 1: To what extent does subsampling validation

clients degrade the performance of HP tuning algorithms?

Question 2: How, and to what extent, do the factors of data

heterogeneity, systems heterogeneity, and privacy exacer-

bate issues of subsampling?

Question 3: In noisy settings, how do popular HP tuning

algorithms compare to simple baselines?

Datasets. We optimize HPs of deep learning models on

several standard FL benchmarks: CIFAR10 (Krizhevsky

& Hinton, 2009), FEMNIST (Caldas et al., 2018), Stack-

Overflow (The TensorFlow Federated Authors, 2019), and

Reddit2 (Caldas et al., 2018). We follow the method in Hsu

et al. (2019) of synthetically partitioning CIFAR10 accord-

ing to a Dirichlet distribution with parameter α = 0.1 in

order to generate imbalanced client labels. The other three

datasets have natural client partitions. We provide summary

statistics in Table 1, while Table 2 in the appendix contains

more detailed information.

2We use the December 2017 Reddit data from a larger pre-
existing dataset publicly available from pushshift.io.

#Clients #Examples

Dataset Train Eval Mean Total

CIFAR10 400 100 100 5K

FEMNIST 3.5K 360 203 73K

StackOverflow 10.8K 3.7K 391 5.6M

Reddit 40K 10K 19 1.1M

Table 1. Statistics of the datasets used in the experiments.

Training. On CIFAR10 and FEMNIST, we train 2-layer

CNNs to perform image classification. For StackOverflow

and Reddit we tokenize the text using the GPT2 tokenizer

(Radford et al., 2019) and train a 2-layer LSTM with an

embedding and hidden size of 128 to predict the next token

in a sequence with a maximum length of 25 tokens. On all

datasets, we uniformly sample 10 clients per training round.

We use FedAdam (Reddi et al., 2020) as the FL optimizer

and keep its HPs fixed within individual training runs.

Hyperparameters. We tune five HPs (search space in

Appendix B): three server FedAdam HPs (learning rate,

1st and 2nd moment decay rates) and two client SGD HPs

(learning rate and batch size). These are a natural set of

HPs to explore in the context of FL, with the client/server

learning rate and batch size being present in virtually all

federated optimization methods (Wang et al., 2021), and the

Adam-specific HPs having been shown to yield significant

improvements in practice (Reddi et al., 2020).

As discussed in Section 2.1, client HPs are not personalized,

i.e., all clients share the same learning rate and batch size.

As mentioned in Section 2.3, we evaluate a representative

set of methods: random search (as a simple baseline), Hy-

perband (an early stopping method), Tree Parzen Estimator

(a Bayesian optimization method), and BOHB (a hybrid of

TPE and HB). Each method is allocated a total budget of

6480 training rounds and a maximum of 405 rounds per HP

configuration. RS and TPE search K = 16 configurations,

while Hyperband and BOHB search through 5 brackets of

SHA with an elimination factor η = 3.
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Figure 4. We run RS on three separate validation partitions with varying degrees of data heterogeneity. Client subsampling generally

harms performance, but has a greater impact on performance when the data is heterogeneous (p = 0) rather than homogeneous (p = 1.0).
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Figure 5. Performance of RS as the training budget is used up.

Subsampling evaluation clients harms the performance-budget

tradeoff, and the gap between subsampling and full evaluation

grows as more of the budget is allocated.

Evaluation. In RS-only figures, we train random 128 HP

configs and then bootstrap 100 trials i.e. run RS on K = 16
HP configs that are resampled from the set of 128. In all

plots, we show the median full validation % error (Eq. 2,

S = [Nval]) and fill in the lower/upper quartiles. In other

words, all Nval validation clients are used to perform ªtest-

ingº, thus reusing the subset of clients sampled during HP

evaluation. We chose this form of evaluation as practical

cross-device settings may lack client partitions (Bonawitz

et al., 2019).

3.1 Client subsampling

Observation 1: High degrees of subsampling hurt HP

tuning performance.

To explore the effect of subsampling, we run random search

across all datasets while varying the evaluation client sam-

pling rate. Figure 3 shows that subsampling increases the

median error rate by up to 8% on CIFAR10 and up to 2%

on the other datasets. The upper quartile values increase

even more (e.g. 12% on CIFAR10), showing less reliable

performance. To recover performance levels close to full

evaluation on these datasets, sampling ∼100 clients is suffi-

cient, which is a favorable sign for production settings that

assume a small percentage but sizable raw number of clients

are available during a given round.

Observation 2: Allocating additional training budget can

mitigate the effects of subsampling, but only to an extent.

Due to resource limitations in federated learning, we are

concerned with not only the quality, but also the cost of

finding the best configuration. To show the tradeoff between

these two variables, we record the performance of RS as the

search budget (in training rounds) is used to train 16 config-

urations. Figure 5 shows these curves when RS evaluations

are performed with different subsampling rates. While all

runs start with similar performance, the gap between sub-

sampling and full evaluation grows as more of the budget

is allocated, eventually leading to the final performance

gaps previously shown in Figure 3. We observe that client

subsampling harms not only the final performance of RS,

but also its overall accuracy-budget tradeoff. On all four

datasets, sampling a single client harms convergence.

We note that there are several ways to measure the HP tun-

ing budget, such as the number of train/eval rounds (Khodak

et al., 2021), wall-clock time (Li et al., 2017), or compu-

tation load (Zhang et al., 2022). For simplicity, we do not

consider time spent on evaluation rounds and server-side op-

timization. We note that TPE, HB, and BOHB use more of

these two resources compared to RS. Despite our evaluation

being advantageous to these methods, we find they under-

perform against RS at higher levels of noise (see Figure 8).

Still, it is important to investigate efficient HP tuning under

different types of resource budgets in FL, a discussion of

which we defer to Section 6.
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Figure 6. We run RS on each dataset and bias the client sampling to reflect four degrees of systems heterogeneity. On CIFAR10 and

Reddit, performance degrades as sampling becomes more biased towards better-performing clients.
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Figure 7. We plot each configuration at the coordinates (x =
full evaluation error, y = minimum client error). On CIFAR10

and Reddit, many configurations have poor global performance

but extremely good performance on a few clients.

3.2 Heterogeneity

Observation 3: Data heterogeneity exacerbates the nega-

tive effects of subsampling.

Data heterogeneity. We analyze multiple forms of data

heterogeneity by running experiments on datasets with both

synthetic (CIFAR10) and natural (FEMNIST, StackOver-

flow, Reddit) partitions. In addition to testing multiple

datasets, we aim to quantify the impact of heterogeneity

by comparing iid and non-iid versions of the same dataset.

We keep the training data in its original partition and repar-

tition the evaluation client data. To repartition a naturally

heterogeneous (non-iid) federated dataset into a homoge-

neous (iid) version, we pool all of the eval data and let each

eval client resample the data in an iid manner. More specifi-

cally, all clients share a distribution where each data point

of the pooled dataset is equally likely to be sampled (Caldas

et al., 2018). We extend this method by resampling only

a fraction p ∈ [0, 1] of the validation data, which allows

us to vary the level of heterogeneity from naturally non-iid

(p = 0) to artificially iid (p = 1). We design our data het-

erogeneity experiments on a single dataset: The evaluation

client data is repartitioned at three levels of data heterogene-

ity p ∈ {0, 0.5, 1}. We run RS at multiple subsampling

rates on each of the three partitions.

We present the results in Figure 4. First, varying hetero-

geneity has no effect in the full evaluation setting. Second,

across all subsampling rates, RS, on average, finds better

configurations when running evaluations on the iid partition

compared to the non-iid partition. Finally, noisy evaluation

degrades performance even when subsampling on the p = 1
partition. We expect this degradation as a single client does

not capture the signal of the entire validation population.

Observation 4: Systems heterogeneity can be catastrophic

when there is sufficient underlying client heterogeneity.

Systems heterogeneity. In practical FL settings, high-end

devices may participate in training more often, which can

bias model performance towards these devices (Bonawitz

et al., 2019). The same participation bias exists during

validation, leading to overly optimistic model evaluations.

We simulate systems heterogeneity conditions by biasing

sampling towards clients who perform well on the current

model being evaluated. This bias assigns a weight (a+ δ)b

to each client (normalized to a probability vector), where

a is the client’s accuracy, δ is a small constant to ensure

non-zero probability, and b controls the degree of sampling

bias. We set δ = 10−4 and test b ∈ {0, 1, 1.5, 3}. Like the

prior experiments, we do not modify the training data and

only assume biased selection during evaluation.

Figure 6 shows the effect of systems heterogeneity com-

bined with lower subsampling rates. Although effects are

only noticeable on CIFAR10 and FEMNIST, the drop in

performance is catastrophic at low subsampling rates (90%

error rate on CIFAR10).

We surmise that differences across datasets are due to vari-

ations in data heterogeneity. Figure 7 plots 128 configu-

rations with (x, y) coordinates equal to the configuration’s

(global error, minimum client error) across validation clients.

For FEMNIST and StackOverflow, evaluations are ‘well-
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Figure 8. Performance of RS, HB, TPE, and BOHB in noiseless versus noisy (subsampling 1% of clients, ε = 100 privacy) settings. In

several cases, the quality of HB or BOHB degrades to that of random guessing. We plot the median and quartiles over 8 trials.
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Figure 9. We run RS with 5 different evaluation privacy budgets ε.

A smaller privacy budget requires sampling a larger raw number

of clients to achieve reasonable performance.

behaved’ because the variation among clients gradually de-

creases as the configuration’s global performance improves.

On the other hand, several configurations trained on CI-

FAR10 and Reddit have clients with zero error but perform

poorly overall, so biasing evaluation towards these clients

can be detrimental. These configurations appear in the lower

right corner of the plot.

3.3 Privacy

Observation 5: DP noise, even under a generous privacy

budget, severely deteriorates performance unless a sufficient

number of clients are sampled.

In order to understand the impact of differential privacy

on HP tuning, we modify the non-private HP algorithms

considered to be differentially private with respect to the

client evaluations. In particular, each HP tuning method

considered operates by evaluating the average accuracy (be-

tween 0 and 1) of a configuration on a set of clients. The

sensitivity of each evaluation (the impact of a single client

on the average accuracy of one configuration) is therefore

1/|S|, where |S| is the size of the set of clients sampled in

each evaluation call. Preserving privacy for a real-valued

query of sensitivity ∆ requires adding Laplace noise with

scale ∆/ε. The basic composition theorem (Dwork & Roth,

2013) allows us to allocate a privacy budget of M/ε to each

evaluation, where M is the total number of evaluations per-

formed. To satisfy ε-differential privacy, we thus add noise

sampled from Lap(M/(ε|S|)) to each evaluated accuracy.3

For an algorithm with a total number T of evaluation rounds,

we allocate a privacy budget of T/ε to each evaluation round.

We use the one-shot Laplace mechanism for top-k selection

(Qiao et al., 2021) to select the top configurations at each

3Although more sophisticated algorithms for private HP tuning
may reduce the overall impact of enforcing privacy, our goal is
to provide a straightforward baseline that demonstrates potential
issues that can arise in this setting, and we therefore implement
the simplest mechanism providing pure-ε DP.
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Figure 10. We plot full validation error on 4 pairs of datasets (one

pair for each plot). Each of the 128 points represents a single

hyperparameter configuration and its (x, y) coordinates show the

error of two models separately trained+evaluated on each dataset.

evaluation round. The one-shot Laplace mechanism adds

Laplace noise with scale 2Tkt

ε|S| to the evaluation accuracy for

each configuration and releases the identities of the top kt
evaluations at evaluation round t.

Figure 9 shows results of RS when varying the privacy bud-

get and subsampling rate. Noise from privacy clearly hurts

performance and makes HP tuning much more challenging

than in the non-private setting (ε = inf). For instance, when

subsampling < 1% of clients on any of the four datasets,

applying (ε = 1) privacy results in performance similar to

randomly choosing HPs. When the privacy level is even

more strict (ε = 0.1), RS often fails to find good HPs on

CIFAR10 even when using all 100 clients for evaluation.

On the other datasets, evaluations require least a stagger-

ing 30% of clients to avoid this catastrophic degradation in

performance.

Observation 6: In high-noise regimes, popular methods

may perform as poorly as naive baselines.

Finally, we test four HP tuning methods (RS, HB, TPE,

and BOHB) in a noisy setting with client subsampling (1%

of population) and DP evaluation (ε = 100). Comparing

noiseless to noisy evaluation in Figure 8, we generally see

an increase an error rate across all datasets and methods.

Furthermore, HB and BOHB disproportionately suffer from

subsampling and privacy noise due to the high number of

low-fidelity evaluations they use. On each dataset, the best

method under noiseless evaluation (either HB or BOHB)

becomes the worst under noisy evaluation.
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Figure 11. Results of one-shot proxy RS (searching over K = 16
HP configs using only proxy data) for different pairs of datasets.

4 PROXY DATA

In FL settings with extreme resource constraints, server-side

proxy data can be a valuable source of validation signal,

as it allows us to select HPs without accessing client data.

However, if we rely entirely on proxy data, HP quality

is largely determined by the similarity between the proxy

and client tasks. Furthermore, it is often difficult to find a

suitable proxy dataset for a specific FL dataset. Therefore,

we begin by exploring how well HPs transfer across the four

datasets used in our experiments.

Observation 7: Relying on proxy data can itself be con-

sidered a source of noise when there is significant mismatch

between proxy and client datasets.

We consider 4 dataset pairs in Figure 10. For a given

FedAdam HP configuration, we separately train and evaluate

a model on the two datasets. On the (CIFAR10, FEMNIST)

and (StackOverflow, Reddit) pairs, HPs can transfer very

well. An intuitive reason for this transfer is that these pairs

share the same type of task (image classification or next-

token prediction) and model architecture (2-layer CNN or

LSTM). In light of this observation, we propose a strong

two-step baseline which we call one-shot proxy RS:

1. Run RS using the proxy data to both train and evaluate

HPs. We assume the proxy data is both public and

server-side, so we can always evaluate HPs without

subsampling clients or adding DP noise.

2. The best configuration found is then used to train a

model on the client data. Since we pass only a single

configuration to this step, performance is unaffected by

any sources of evaluation noise in the client data.
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Figure 12. We show the performance vs. budget of RS at multiple values of privacy (subsampling 1% of the validation clients) and

compare it to choosing HPs with various proxy datasets (training a single model with the chosen HPs). As evaluation noise increases,

datasets which would normally be considered a poor match (e.g. using StackOverflow as a proxy for FEMNIST) become favorable

alternatives to using noisy evaluations on the true data.

Surprisingly, the results in Figure 11 show that tuning HPs

on proxy data is competitive with using the client dataset

(even without noisy evaluation). However, as expected,

if the datasets are mismatched, performance can become

worse than randomly selecting HPs.

Observation 8: In high-noise regimes, a suitable proxy

dataset can assist hyperparameter search.

In Figure 12, we compare HP tuning using noisy evaluations

against the one-shot proxy RS method described above. For

noisy evaluation, we run RS with a 1% client subsample

and vary the evaluation privacy budget. For all datasets, the

best possible proxy dataset is competitive with non-private

evaluation (ε = inf). However, as proxy data is unaffected

by noisy evaluation, even a suboptimal proxy dataset can be

helpful when evaluation is sufficiently noisy (ε = 1).

5 RELATED WORK

Federated hyperparameter tuning. Prior work in cross-

device FL identifies resource limitations as a major chal-

lenge in HP tuning (Kairouz et al., 2021). Proposed improve-

ments include extending adaptive optimization methods to

FL (Koskela & Honkela, 2018; Reddi et al., 2020), inter-

leaving HP and weight updates during training (Mostafa,

2019; Mlodozeniec et al., 2023), and selecting personalized

hyperparameters (Agrawal et al., 2021) for different clients.

In addition to resource limitations, other works address data

heterogeneity (Khodak et al., 2021), systems heterogeneity

(Zhang et al., 2022), and privacy (Chen et al., 2023) from

the perspective of federated HP tuning.

Existing works also attempt to benchmark HP tuning al-

gorithms on FL datasets. In addition to evaluating a large

number of HP tuning methods and datasets, Wang et al.

(2022) experimentally show that lower sampling rates can

mitigate straggler issues in settings with poor network qual-

ity. Holly et al. (2022) benchmark random/grid search and

GP-UCB in an federated learning setting where sufficiently

similar clients can share their data with each other.

Finally, another line of work more suited to the cross-silo

setting has each client perform local hyperparameter tuning

and shares their results with other clients or the server (Dai

et al., 2020; Zhou et al., 2021). These methods work well

when there are a relatively few number of clients and each

client has adequate data to perform both the training and

validation required for local tuning.

Unlike prior work in federated HP tuning, we do not focus

on modifications that interleave model training with HP op-

timization. Instead we point out that heterogeneous data

distributed across a federated network results in noisy eval-

uations of the same model and attempt to isolate the impact

of noisy evaluations on the HP search procedure. We show

that under realistic constraints, the seemingly simple task

of evaluating a global configuration poses challenges which

have not received sufficient attention.

Noisy hyperparameter tuning. Noisy evaluation can also

be problematic in centralized hyperparameter tuning due to

randomness in the training process. Most HP tuning algo-

rithms do not explicitly consider noise, and simple tricks

such as sampling more or resampling previously seen con-

figurations (Hertel et al., 2020) vary in effectiveness.

Bayesian optimization (BO) is a class of methods for sample-

efficient optimization (Frazier, 2018). Perhaps the most

widely-used BO method is the expected improvement (EI)

criterion (Snoek et al., 2012; Mockus et al., 1978). TPE uses

kernel density estimation to model HP quality and optimizes

EI to select candidate points. However, in its naive form,

EI assumes noiseless evaluations and is known to suffer

in the presence of noise (see, e.g., S6.2 of Balandat et al.

(2020)). Alternative BO approaches that pay attention to

noisy evaluation include the knowledge gradient (Frazier

et al., 2008) and noisy expected improvement (Letham et al.,

2019). A main drawback shared by both methods is that

they are more computationally expensive than EI and do not

scale well to settings where high parallelism is desired.

Rather than viewing noise as an issue, multi-fidelity HPO
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methods improve efficiency by purposefully using cheap

but noisy and/or biased evaluations to inform HP selection.

Such methods limit the number of iterations (Li et al., 2017;

Falkner et al., 2018), dataset size (Klein et al., 2017), or both

(Wu et al., 2020) that are used to train a model. However,

these approaches rely on the ability to also evaluate the

highest fidelity setting (e.g., low noise or zero bias), which

is not always possible in the context of FL. In addition,

correctly modeling the impact of a low fidelity evaluation

on the optimal configuration at the highest fidelity requires

optimizing a one-step ªlookaheadº acquisition function and

quickly becomes computationally expensive (Poloczek et al.,

2017; Wu et al., 2020). As these methods (e.g,. Hyperband

and BOHB) already rely on noise to improve efficiency, we

suspect the additional noise from noisy evaluation saturates

the methods and is a major reason for the poor performance

of these approaches in our experiments.

Private hyperparameter tuning. Enforcing differential

privacy (Dwork & Roth, 2013) requires adding randomiza-

tion to the hyperparameter tuning process. In this paper,

our focus is not on developing new algorithms for private

hyperparameter tuning but on the impact of randomness

on the performance of tuning algorithms, so we focus on

a straightforward implementation of differential privacy.

However, there are a number of prior papers that explore

more sophisticated algorithms for private hyperparameter

tuning. One line of work (Chaudhuri et al., 2011; Liu &

Talwar, 2019; Papernot & Steinke, 2022) focuses on effi-

cient private selection from a discrete set of configurations.

Chaudhuri & Vinterbo (2013) design an efficient procedure

for hyperparameter selection under a stability assumption

on the scoring function. Further works (Kusner et al., 2015;

Dai et al., 2021) develop differentially private versions of

Bayesian optimization to handle hyperparameter tuning.

6 DISCUSSION & FUTURE WORK

As we have shown, realistic FL settings present several

sources of evaluation noise which can severely impact HP

tuning methods. Our work highlights several best practices

to mitigate the effects of noisy evaluation:

1. Use simple baselines. Noisy evaluation can harm more

sophisticated methods which perform early stopping or

model the HP space.

2. Obtain sufficiently large subsamples of validation clients.

For the datasets we consider, ∼100 is a reasonable num-

ber for non-private evaluation. However, these require-

ments grow with heterogeneity and privacy.

3. Evaluate as representative a set of clients as possible.

Biased selection can lead to catastrophic drops in perfor-

mance when client data is heterogeneous.

4. Consider tuning HPs on proxy data. If significant noise is

expected, proxy data may be the most practical approach.

As we show, even seemingly unrelated proxy data can be

effective in high-noise regimes.

Beyond these key take-aways, our work also identifies sev-

eral areas of future work, which we describe below.

Early stopping in FL. In the resource-constrained context

of FL, early stopping methods are highly desirable for effi-

cient HP tuning. However, as we show in this work, noisy

evaluation can ruin the performance of these algorithms. We

suspect this is due to the fact that these approaches (e.g. Hy-

perband, BOHB) already introduce their own source of noise

to improve efficiency. Therefore, a promising direction may

be to extend early stopping methods to handle additional

sources of noise or tailor them to federated settings.

Noisy BO. Another future direction is considering ‘noisy

BO’ techniques such as KG and NEI in the federated setting.

One challenge to overcome is selecting a surrogate model

that is able to accommodate the high levels of noise that we

observe in FL. Another is that these acquisition functions

are expensive to optimize: for KG, the time to suggest new

configurations can be on the order of several minutes (Ba-

landat et al., 2020). Depending on the relative time needed

to evaluate a particular configuration, this can introduce a

computational bottleneck on the server side.

Resource-Aware HP Tuning. More generally, the num-

ber of evaluations (e.g. early stopping) or the server-side

overhead (e.g. BO) can significantly vary across methods,

highlighting the need for resource-aware comparisons be-

tween complex tuning methods. Further, as resource con-

straints can vary across FL systems, a direction for future

study is designing HP tuning methods which are aware of

resource tradeoffs (Zhang et al., 2022). In extreme cases,

it would be beneficial to develop FL methods that avoid or

reduce the need for HP tuning at all (Kairouz et al., 2021).

Heterogeneity-Aware HP Tuning. While we model sys-

tem heterogeneity with biased client sampling, more refined

models should account for the inter-dependence of data

and system heterogeneity (Maeng et al., 2022). Although

we have focused on the effects of HP tuning on average

performance, it would be useful to explore the effect of

heterogeneity in HP evaluation on tail performance as well,

mirroring work in fair federated training (Mohri et al., 2019;

Li et al., 2020c).

Tuning via Proxy Data. Finally, a key takeaway from

our experiments is that proxy data (even seemingly unre-

lated) can be useful when faced with high-noise evaluation.

However, it would be useful to further study this area to

develop tools for easily determining if/when proxy data is

appropriate. Our work also suggests that public data, used to

improve private training of large models (Li et al., 2022; Yu

et al., 2021; De et al., 2022), may also be useful to improve

private evaluation in a similar way.
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A METHOD DETAILS.

HP Tuning Methods. We consider two classes of meth-

ods: model-free and model-based. Random and grid search

are examples of the simplest model-free methods which

do not make any assumptions about the function being op-

timized besides the HP space to search over. To generate

candidate configurations, grid search discretizes the hyperpa-

rameter space into a multi-dimensional grid, while random

search samples hyperparameter values from a predefined dis-

tribution, typically discrete or (log-)uniform/normal. Both

methods sample a set of candidates in an iid fashion, eval-

uate them, and return the best-performing configuration.

More complex examples of model-free methods include

Hyperband (HB) (Li et al., 2017) and Population-Based

Training (Jaderberg et al., 2017).

Model-based methods iterate between fitting a surrogate

model of the hyperparameter response function f(θ) on pre-

viously tested configurations and selecting the next query

configuration θ∗ by optimizing some criterion on the current

surrogate. A classic instantiation selects θ∗ by optimizing

expected improvement on a Gaussian process (GP) surro-

gate model. The tree-structured Parzen estimator (TPE) is

an alternative model that has been shown to outperform GPs

in certain cases (Bergstra et al., 2011). Finally, it is also

possible to combine model-based methods with the early

stopping techniques in model-free methods. For example,

BOHB uses TPE to select candidate configurations for Hy-

perband (Falkner et al., 2018). We now describe HB, TPE,

and BOHB as we use them in our experiments.

HB is an extension of random search which eliminates

poorly-performing configurations early in training, allowing

more resources to be allocated on promising configurations.

A subroutine called Successive Halving (SHA) performs the

eliminations; it takes as input n configurations, an elimina-

tion rate η (typically set to η = 3), and a minimum resource

r0. After training all n configurations for r0 iterations, SHA

eliminates all but the top ⌊n/η⌋ configurations and scales

up their resource budgets ri+1 = riη. This step repeats

until less than η configurations remain. Hyperband can be

described as a wrapper algorithm which runs multiple con-

figurations of SHA(n, η, r0) to balance between exploration

(partially training many configurations) and exploitation

(fully training a few configurations).

TPE models p(θ|y) with two densities ℓ(θ) and g(θ):

p(θ|y) =

{

ℓ(θ) if y < y∗,
g(θ) if y ≥ y∗

TPE splits the current observations {(θ(i), y(i))} into two

groups based on the threshold y∗: observations with y(i) <
y∗ are used to estimate ℓ(θ) while those with y(i) ≥ y∗

are used to estimate g(θ). Optimizing EI for this model is

equivalent to minimizing the quantity g(x)/ℓ(x), which is

done by taking a minimum over random samples from ℓ(x).

BOHB replaces the default random sampling in HB with

the TPE acquisition function. BOHB starts with random

sampling, uses low-fidelity evaluations to form the TPE den-

sities, and gradually switches to higher fidelity evaluations

as they become available.

B HP SEARCH SPACE.

Server (FedAdam) hyperparameters:

log10 lr : Unif[−6,−1]

(1st moment decay) β1 : Unif[0, 0.9]

(2nd moment decay) β2 : Unif[0, 0.999]

(lr decay) γ : 0.9999

Client (SGD) hyperparameters:

log10 lr : Unif[−6, 0]

momentum : Unif[0, 0.9]

weight decay : 0.00005

batch size : [32, 64, 128]

epochs : 1
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Figure 13. We run RS with a large budget (K = 128) in a high-

noise (1 client subsample, ε = 10 privacy) and noiseless setting.

The x-axis varies (from left to right, smallest to largest) the range

of searched FedAdam server learning rates. Searching a larger HP

space is beneficial in noiseless settings, but can counterintuitively

harm performance in noisy settings.
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C ADDITIONAL TABLES AND FIGURES

HP Space Experiment. We include an additional experi-

ment in Fig. 13 to investigate how the choice of HP space

interacts with noisy evaluation. Intuitively, if there is a

sufficient tuning budget, enlarging the search space offers

more opportunities to improve performance (as long as

the globally optimal HPs have not already been identified).

However, depending on the selection of these HP spaces,

this observation can be reversed when evaluation is noisy.

We consider nested search intervals for the server learning

rate, which we observed to be the most sensitive HP. All

other HP ranges match Appendix B. The search is centered

on 10−3 and the range [ηmin, ηmax] is adjusted such that

log10(ηmax/ηmin) ∈ {1, 2, 3, 4}. 1 is the smallest range

([10−4.5, 10−3.5]) while 4 is the largest ([10−6, 10−2]).

Extra Figures. Table 2 shows additional dataset informa-

tion. Figure 14 shows configuration performance on the two

dataset pairs not shown in Section 4. Figures 15 and 16

compare the performance across HPO methods under sub-

sampling and privacy noise. Figure 15 shows performance

when 1/3rd of the budget is used up, while Figure 16 shows

performance at the full budget.

Algorithm 1 Random Search (RS) for centralized data

Require: Θ (hyperparameter space)

K (num. of HP configs to search)

R (training epochs per HP config).

Dtr (training dataset)

Dval (validation dataset)

Dtest (testing dataset)

OPT() (optimization method e.g. SGD.)

for k = 1, ...,K do

Sample HP config θk ∼ Θ uniformly at random.

Initialize model parameters wk.

# Training

for r = 1, ..., R do

# OPT() trains wk for one ‘epoch’.

# Batching is handled by OPT() and θk.

wk ← OPT(wk, Dtr; θk)

end for

# Evaluation

Lk = Error rate of w on Dval

end for

k∗ ← argminkLk

return θk∗

# Report L = Error rate of wk∗ on Dtest.

D RANDOM SEARCH PSEUDOCODE

We show examples of how RS is used to choose HPs in

centralized vs. federated learning in Algorithms 1 and 2.

To generally adapt traditional HP tuning methods (e.g. RS,

TPE, HB, and BOHB) to FL, we simply replace the original

training / evaluation subroutines with federated versions.

These subroutines are highlighted in red in the RS example.

Algorithm 2 RS for subsampled FL clients

Require: Θ (hyperparameter space)

K (num. of HP configs to search)

R (training rounds per HP config).

str (num. of clients sampled per train round)

sval (num. of clients sampled per eval round)

Ntr (total num. of training clients)

Nval (total num. of validation clients)

{Dtr,i}
Ntr

i=1 (training clients’ data)

{Dval,i}
Nval

i=1 (validation clients’ data)

{pval,i}
Nval

i=1 (validation clients’ weights)

ServerOPT() (model aggregation method)

ClientOPT() (local optimization method)

for k = 1, ...,K do

Sample HP config θk ∼ Θ uniformly at random.

Initialize model parameters wk.

# Federated Training

for r = 1, ..., R do

Sample clients a1, ..., astr
where ai ∼ [Ntr] is sam-

pled uniformly without replacement.

for i = 1, ..., str do

w′
ai
← ClientOPT(wk, Dtr,ai

; θk)

end for

wk ← ServerOPT(wk, {w
′
ai
}str

i=1; θk)
end for

# Federated Evaluation

Sample clients a1, ..., asval
where aj ∼ [Nval] is sam-

pled uniformly without replacement.

for j = 1, ..., sval do

Fval,ak
← Error rate of wk on client data Dval,aj

end for

Lk = (
∑sval

j=1 pval,aj
Fval,aj

)/
∑sval

j=1 pval,aj
(Eq. 2)

end for

k∗ ← argminkLk

return θk∗

# Report the full validation error rate:

for j = 1, ..., Nval do

Fval,aj
← Error rate of wk∗ on client data Dval,aj

end for

Report L = (
∑Nval

j=1 pval,aj
Fval,aj

)/
∑Nval

j=1 pval,aj
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Clients # Examples (images/sequences)

Dataset Task Train Eval Mean Min Max Total

CIFAR10 Image Classification 400 100 100 83 131 5K

FEMNIST Image Classification 3,507 360 203 19 393 73K

StackOverflow Next Token Prediction 10,815 3,678 391 1 194,167 5.6M

Reddit Next Token Prediction 40,000 9,928 19 1 14,440 1.1M

Table 2. More detailed dataset statistics.
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Figure 14. Error rate of configurations used to train separate models on CIFAR10/Reddit and FEMNIST/StackOverflow.
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Figure 15. Performance of RS, HB, TPE, and BOHB at 2000 allocated training rounds. The hatched bars show degradation from two

sources of noise (subsampling 1% of clients and ε = 100 privacy).
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Figure 16. Identical to Figure 15, but at 6480 allocated training rounds (the full budget).
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E ARTIFACT APPENDIX

E.1 Abstract

We provide several Python scripts to tune FedAdam and a

Jupyter Notebook to analyze the results. A machine

with a single CUDA-supported GPU and 4-core CPU is suf-

ficient to validate results on CIFAR10 / FEMNIST. We rec-

ommend using multiple GPUs to run trials of StackOverflow

/ Reddit in parallel.

E.2 Artifact check-list (meta-information)

• Algorithm: Random search, Tree-structured Parzen Estima-
tor, Hyperband, BOHB, FedAdam

• Data set: CIFAR10, FEMNIST, StackOverflow, Reddit

• Hardware: NVIDIA GeForce GTX 1080 Ti

• How much disk space required (approximately)?: 50GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (ap-
proximately)?: 1000 GPU hours (full experiments). 1 hour
(analysis only).

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache License 2.0

• Data licenses (if publicly available)?: BSD-2-Clause li-
cense (LEAF), Creative Commons Attribution-ShareAlike
3.0 Unported License (StackOverflow)

• Workflow framework used?: VSCode

• Archived (provide DOI)?: 10.48550/arXiv.2212.08930

E.3 Description

E.3.1 How delivered

The artifacts and step-by-step experiment instructions are lo-
cated at the Github repository: https://github.com/

imkevinkuo/noisy-eval-in-fl. we additionally provide
a copy of the artifacts at Zenodo (Kuo, 2023).

E.3.2 Hardware dependencies

The experiments require 4 to 12GB of memory (4GB for image,
12GB for text) on a CUDA-enabled GPU and 4GB of memory
on the host machine. 50GB of disk space is needed to store the
datasets and results. The GPU runtime is approximately split 25 /
25 / 650 / 300 hours across CIFAR10 / FEMNIST / StackOverflow
/ Reddit respectively.

E.3.3 Software dependencies

All code is written in Python (3.9.12). The critical Python
libraries required for training are PyTorch (1.11.0) and Numpy
(1.22.3). Additionally, we use CUDA (11.6) which allows
PyTorch to perform tensor operations on CUDA-enabled GPUs.
A complete list of package requirements can be found in the Github
repository’s environment.yml.

E.3.4 Data sets

E.4 Installation

To set up the code, pull the Github repository and follow the instruc-
tions in README.md. We will provide pre-processed versions of
the datasets which can be downloaded within an hour. Otherwise,
setting up the datasets from scratch can take up to 5 hours.

E.5 Experiment workflow

The main scripts have a prefix of fedtrain *.py and have a
suffix of either simple, bohb, or tpe. simple trains a single
model for a given FedAdam HP configuration. These runs are
used in analysis.ipynb to simulate the outcome of RS and
HB. bohb and tpe run the respective HP tuning algorithms and
depend on simple for model training and evaluation.

A set of helper scripts have a prefix of init *.py. Each init
script is a wrapper which runs multiple trials of the corresponding
fedtrain script. To complete the training portion of the experi-
ments, run each of init scripts once. The number of trials can
lowered within the init files.

After training the models, plots can be generated by running all
the cells in analysis.ipynb.

E.6 Evaluation and expected result

We briefly describe the expected results which correspond to each
major observation we make in the main paper:

1. (Subsampling) The curves should trend towards a lower
error rate as the number of subsampled clients increases.
Best HPs should be a horizontal line below each curve.

2. (Budget) The curves should trend towards a lower error rate
as training rounds increases. There should be a noticable gap
between the 1 client and 100% client curves.

3. (Data Heterogeneity) Curves with niid data (p = 1) should
have a higher error rate than those with iid data (p = 0).

4. (Systems Heterogeneity) On CIFAR10 and Reddit, curves
with a larger value of b should have a larger error rate.

5. (Privacy) Curves with a smaller value of ε should have a
larger error rate.

6. (HPO Degradation) RS and TPE should degrade less than
HB and BOHB do when applying subsampling (1%) and DP
evaluation (ε = 100).

7. (Proxy Data) The scatter plots for CIFAR10/FEMNIST and
StackOverflow/Reddit should show a positive correlation
between a configuration’s error rate on the two datasets.

8. (Proxy Data vs. Noisy Eval) Tuning with the best proxy
dataset should outperform tuning with subsampling (1%) and
DP evaluation (ε = 1).

E.7 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/

submission-20190109.html
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• http://cTuning.org/ae/

reviewing-20190109.html

• https://www.acm.org/publications/

policies/artifact-review-badging


