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Abstract

In the 15-puzzle game, 15 labeled square tiles are recon-
figured on a 4 × 4 board through an escort, wherein each
(time) step, a single tile neighboring it may slide into it, leav-
ing the space previously occupied by the tile as the new es-
cort. We study a generalized sliding-tile puzzle (GSTP) in
which (1) there are 1+ escorts and (2) multiple tiles can move
synchronously in a single time step. Compared with popu-
lar discrete multi-agent/robot motion models, GSTP provides
a more accurate model for a broad array of high-utility ap-
plications, including warehouse automation and autonomous
garage parking, but is less studied due to the more involved
tile interactions. In this work, we analyze optimal GSTP
solution structures, establishing that computing makespan-
optimal solutions for GSTP is NP-complete and developing
polynomial time algorithms yielding makespans approximat-
ing the minimum with expected/high probability constant fac-
tors, assuming randomized start and goal configurations.

1 Introduction
The 15-puzzle (Loyd 1959) is a sliding-tile puzzle in which
fifteen interlocked square tiles, labeled 1-15, and an empty
escort square are located on a 4× 4 square game board (see
Fig. 1). In each time step, a tile neighboring the escort may
slide into it, leaving an empty square that becomes the new
escort. The game’s goal is to reconfigure the tiles to realize
a row-major ordering of the labeled tiles. We study a natural
generalization of the 15-puzzle, in which the game board
is an arbitrarily large rectangular grid with 1+ escorts. In
addition, tiles can move synchronously in a given time step
assuming no collision under uniform movement. We call this
problem the generalized sliding-tile puzzle or GSTP.

GSTP provides a high-fidelity discretized model for
multi-robot applications operating in grid-like environ-
ments, including the efficient coordination of a large num-
ber of robots in warehouses for order fulfillment (Wurman,
D’Andrea, and Mountz 2008; Mason 2019), motion plan-
ning in autonomous parking garages (Guo and Yu 2023),
and so on. A particularly important feature of GSTP is that,
given two neighboring tiles sharing a side, one tile may
only move in the direction toward the second tile if the sec-
ond tile moves in the same direction. Otherwise, if the sec-
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Figure 1: Start and goal configurations of a 15-puzzle in-
stance. In GSTP, there can be 1+ escorts and multiple tiles
may move synchronously, e.g., tile 3 and 9 may move to the
right in a single step in the left configuration.

ond tile moves in a perpendicular direction, a collision oc-
curs, which we call the corner following constraint or CFC.
Consideration of CFC renders GSTP different from popu-
lar multi-agent/robot pathfinding (MAPF) problems (Stern
et al. 2019) in which a classical formulation allows the sec-
ond tile to move in a direction perpendicular to the moving
direction of the first tile. Ignoring CFC significantly reduces
the steps required to solve a tile reconfiguration problem,
making computing optimal solutions less challenging, but is
less accurate in modeling many real-world applications.

Given the strong connections between GSTP and today’s
grid-based multi-robot applications seeking ever more opti-
mal solutions, we must have a firm grasp on the fundamen-
tal optimality structure of GSTP. Towards achieving such
an understanding, this work studies the induced optimal-
ity structure in computing makespan-optimal solutions for
GSTP, and brings forth the following main contributions:

• We establish that computing makespan-optimal solutions
for GSTP is NP-complete with or without an enclosing
grid. The problem remains NP-complete when there are
⌊|G|ϵ⌋ escorts, where |G| is the grid size (i.e., the total
number of grid cells) and 0 < ϵ < 1 is a constant.

• We establish tighter makespan lower bounds for GSTP
for all possible numbers of escorts. On an m1 × m2

grid with k escorts, in expectation, solving GSTP re-
quires Ω(m1m2

k ) steps for 1 ≤ k < min(m1,m2) and
Ω(m1 +m2) steps for k ≥ min(m1,m2).

• We establish tighter makespan upper bounds for GSTP
for all possible numbers of escorts that match the corre-
sponding makespan lower bounds, asymptotically, thus
closing the makespan optimality gap for GSTP. This
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leverages a key intermediate result showing that GSTP
instances on 2 × m and 3 × m grids can be solved in
O(m) steps. For all upper bounds, via careful analysis,
we further provide a constant factor that is relatively low,
considering CFC’s severe restrictions on tile movements.

Some proofs are sketched or omitted; see supplementary
materials for additional details.

2 Related Work
Modern studies on MAPF and related problems originated
from the investigation of the generalization of the 15-puzzle
(Loyd 1959) to the (N2 − 1)-puzzle, with work address-
ing both computational complexity (Ratner and Warmuth
1990) and the computation of optimal solutions (Culber-
son and Schaeffer 1994, 1998). Gradually, graph-theoretic
abstractions emerged that introduced non-grid-based envi-
ronments and allowed more escorts (i.e., there can be more
than one empty vertex on the underlying graph). Whereas
such problems are solvable in polynomial time if only a fea-
sible solution is desired (Kornhauser, Miller, and Spirakis
1984; Auletta et al. 1999; Yu 2013), computing optimal solu-
tions are generally NP-hard (Wilson 1974; Goldreich 2011;
Surynek 2010; Yu and LaValle 2013; Demaine et al. 2019).
With the graph-based generalization, CFC is generally not
enforced as the geometric constraint lengthens a motion plan
and complicates the reasoning.

Due to its close relevance to a great many high-impact
applications, e.g., game AI (Pottinger 1999), warehouse au-
tomation (Wurman, D’Andrea, and Mountz 2008; Mason
2019), great interests started to develop in quickly com-
puting (near-)optimal solutions for MAPF (Silver 2005).
With this development, a variant of the (N2 − 1)-puzzle
was introduced, which does not require the presence of es-
corts (Standley 2010). In other words, in the most well-
studied MAPF formulation, any non-self-intersecting chain
of agents may potentially move synchronously, one fol-
lowing another, in a single step. In (Standley 2010), a bi-
level algorithmic solution framework, operator decompo-
sition (OD) + independence detection (ID), is built upon
the general idea of decoupling (Erdmann and Lozano-Perez
1987), which treats each agent individually as if other agents
do not exist and handles agent-agent interactions on demand.
A super-majority of modern MAPF methods have generally
adopted a bi-level decoupling search approach. Representa-
tive work along this line includes increasing cost-tree search
(ICTS) (Sharon et al. 2013), conflict-based search (CBS)
and variants (Sharon et al. 2015; Barer et al. 2014; Li, Ruml,
and Koenig 2021), priority inheritance with backtracking
(PIBT) (Okumura et al. 2022), and most recently, lazy con-
straints addition search for MAPF (LaCAM) (Okumura
2023). Besides search-driven methods, reduction-based ap-
proaches have also been proposed (Surynek 2012; Erdem
et al. 2013; Yu and LaValle 2016).

In contrast, MAPF formulations similar to GSTP, i.e.,
considering CFC, have received relatively muted attention.
On the side of computational complexity, besides the hard-
ness result of the (N2 − 1)-puzzle (Ratner and Warmuth
1990) and a recent followup (Demaine and Rudoy 2018), it

has been shown that computing total distance-optimal solu-
tions with CFC is NP-complete in environments with spe-
cially crafted obstacles (Geft and Halperin 2022). We note
that sliding-tile puzzles can easily become PSPACE-hard
in non-grid-based settings (Hopcroft, Schwartz, and Sharir
1984), even for unlabeled tiles (Solovey and Halperin 2015).
While of practical importance, hardness for computing op-
timal solutions for GSTP in obstacle-free settings has not
been established. On the side of computational efforts in ad-
dressing GSTP, CFC has been studied partially as part of
k-robustness (Atzmon et al. 2018). A recent SoCG competi-
tion has been held (Fekete et al. 2022) that addresses exactly
the GSTP problem but with a focus on computing solutions
for a set of benchmark problems. A variation of GSTP was
studied in (Guo and Yu 2023) targeting autonomous park-
ing garage applications. These computational studies largely
leave unanswered fundamental questions on GSTP, includ-
ing computational complexity and optimality bounds.

3 Preliminaries
3.1 The Generalized Sliding-Tile Puzzle
In the generalized sliding-tile puzzle (GSTP), on a rectangu-
lar m1×m2 grid G = (V,E) lies n < m1m2 tiles, uniquely
labeled 1, . . . , n. A configuration of the tiles is an injec-
tive mapping from {1, . . . , n} → V = {(vy, vx)} where
1 ≤ vy ≤ m1 and 1 ≤ vx ≤ m2. Tiles must be reconfigured
from a random configuration S = {s1, . . . , sn} to some goal
configuration G = {g1, . . . , gn}, usually a row-major order-
ing of the tiles, subject to certain constraints. Specifically,
let the path of tile i, 1 ≤ i ≤ n, be pi : N0 → V , and so
GSTP seeks a feasible path set P = {p1, . . . , pn} such that
the following constraints are met for all 1 ≤ i, j ≤ n, i ̸= j
and ∀t ≥ 0:
• Continuous uniform motion: pi(t+1) = pi(t) or (pi(t+
1), pi(t)) ∈ E,

• Completion: pi(0) = si and pi(T ) = gi for some T ≥ 0,
• No meet collision: pi(t) ̸= pj(t),
• No head-on collision: (pi(t) = pj(t + 1) ∧ pi(t + 1) =
pj(t)) = false,

• Corner-following constraint: let ei(t) = pi(t+1)−pi(t)
be the movement direction vector. If pi(t + 1) = pj(t),
then ei(t) ̸⊥ ej(t).

Let TP be the smallest T ≥ 0 such that the completion
constraint is met for a given path set P . Naturally, it is de-
sirable to compute P with minimum TP . We define the de-
cision version of makespan-optimal GSTP as follows.

MOGSTP
INSTANCE: A GSTP instance and a positive integer K.
QUESTION: Is there a feasible path set P with TP ≤ K?

3.2 2/2/4-SAT
We will need a specialized SAT instance called 2/2/4-SAT
for our hardness result, defined as follows.

2/2/4-SAT
INSTANCE: A boolean satisfiability instance with n vari-
ables x1, . . . xn and n clauses c1, . . . cn. Each clause cj has



4 literals, and each variable xi appears across all clauses ex-
actly 4 times in total, twice negated and twice unnegated.
QUESTION: Is there an assignment to x1, . . . , xn such that
each clause ci has exactly two true literals?

2/2/4-SAT was shown to be NP-complete in (Ratner and
Warmuth 1990), which is subsequently employed to show
the hardness of the (N2 − 1)-puzzle.

3.3 Feasibility and Known Makespan Bounds
It is well-known that the (N2 − 1)-puzzle may not always
have a solution (Loyd 1959) due to the configurations form-
ing two connected graphs. More formally, it can be shown
that the configurations of an (N2−1)-puzzle are partitioned
into two groups, each of which is isomorphic to the alter-
nating group AN2−1 (Wilson 1974). Because moves on a
GSTP instance on an N×N grid with a single escort can be
“slowed down” to equivalent moves on an (N2 − 1)-puzzle,
they share the same feasibility. The same remains true for
rectangular grids. Checking feasibility can be performed in
linear time (Wilson 1974). On the other hand, also clear from
(Wilson 1974), when there are two or more escorts, a GSTP
instance is always feasible. To summarize,

Lemma 3.1. GSTP with a single escort may be infeasible.
The feasibility of GSTP with a single escort can be checked
in linear time. GSTP with two or more escorts is feasible.

Given a feasible (N2 − 1)-puzzle, each tile can be moved
to its goal in O(N) steps since a tile is within O(N) dis-
tance to its goal and O(1) steps are needed to switch two
tiles. This suggests an O(N3) algorithm, which readily ex-
tends to an O(m1m2 max(m1,m2)) step algorithm on an
m1 ×m2 grid. This is also an upper bound for GSTP with
a single escort. GSTP with more escorts is studied in the
context of automated garages (Guo and Yu 2023), with re-
sults on Θ(m1m2) escorts and (2m1+2m2−4) escorts. To
summarize, the following is known:

Number of escorts Makespan upper bound
1 O(m1m2 max(m1,m2))

(2m1 + 2m2 − 4) O(m1m2)
Θ(m1m2) O(max(m1,m2))

It is easy to see that Ω(max(m1,m2)) is a makespan
lower bound in expectation. It can be shown that the
makespan lower bound is close to (m1+m2) with high prob-
ability when there are Ω(m1m2) tiles (Guo and Yu 2022).

3.4 The Rubik Table Algorithm
A notable tool, Rubik tables (Szegedy and Yu 2023), has
been applied to derive polynomial-time, 1.x-optimal solu-
tions to classical MAPF problems on grids (Guo and Yu
2022). This tool will also be employed in this work. We will
use the following theorem with an associated algorithm.

Theorem 3.2 (Rubik Table Algorithm for 2D Grids
(Szegedy and Yu 2023)). Let an m1×m2 grid be filled with
tiles labeled 1, . . . ,m1m2. A row (resp., column) shuffle can
arbitrarily permute a row (resp., column) of tiles. Then, the
tiles can be rearranged from any configuration to the row-
major configuration using m1 row shuffles, followed by m2

column shuffles, and then m1 row shuffles. Alternatively, the
tiles can be rearranged using m2 column shuffles, followed
by m1 row shuffles, and then another m2 column shuffles.

Fig. 2 illustrates running the Rubik table algorithm over a
4× 3 grid, using a row-column-row shuffle sequence.
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Figure 2: Applying the Rubik table algorithm to rearrange
tiles on a 4 × 3 grid using a sequence of row shuffles, fol-
lowed by column shuffles, followed by row shuffles.

4 Intractability of MOGSTP
We proceed in this section to establish the NP-completeness
of MOGSTP on square grids, which will show
Theorem 4.1. MOGSTP is NP-complete, with or without
an enclosing grid.

First, we sketch the proof to provide key ideas behind the
reduction of hardness. Then, detailed constructions of the
required gadgets and the full instance construction follow.

4.1 Proof Outline
We prove via a reduction from 2/2/4-SAT (Ratner and War-
muth 1990) defined in Sec. 3.2. Our reduction constructs an
MOGSTP instance to force a flow of literal tiles from vari-
able gadgets to clause gadgets in matching pairs, forming
a truth side of literals and a false side of literals (realized
through a gadget train, see Fig. 3(a) for a sketch and ex-
planation). For each variable xi, 1 ≤ i ≤ n, there are four
sliding tiles labeled x1

i , x
2
i , x̄

1
i , x̄

2
i that correspond to the four

literals for xi, the first pair positive and the second pair nega-
tive. When the context is clear, we simply say literals instead
of literal tiles. A variable gadget (see Fig. 3(b) and Fig. 5)
is constructed that forces the pair of unnegated literals (e.g.,
x1
i and x2

i , “+” tiles in the figure) to only exit together from
one side of the gadget (e.g., left) while forcing the pair of
negated literal (e.g., x̄1

i and x̄2
i , , “-” tiles in the figure) to

exit together from the opposite side, each passing through
limited openings of the rails that flank the train and move in
the opposite direction. After all 4n literals exit from the n
variable gadgets, there are 2n each on the left and right side
of the rails. These literals are then routed into clause gadgets
(see Fig. 3(c) and Fig. 6), each allowing at most two literals
to enter from each side. The overall MOGSTP instance is
constructed such that if the 2/2/4-SAT is satisfiable, then in
the MOGSTP, the 2n literal tiles that move to the left side
of the train can be chosen to be the true literals in the given
truth assignment, and so all literal tiles can then be readily
routed to the clause gadgets. Similarly, in the other direc-
tion of the reduction, because exactly n pairs of literal tiles
must be on the left side in a makespan-optimal solution, the



corresponding 2n literals can be set to positive to satisfy the
2/2/4-SAT instance.
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(a) (b) (c) (d)
Figure 3: Pieces of MOGSTP. (a) Sketch of the train-
like MOGSTP instance split into two halves. The upward-
moving gadget train is surrounded by two (red) rails of tiles
that move strictly downwards, with a few gaps (not shown
here, see Fig. 4) to allow tiles to exit/enter. The train, from
top to bottom, contains a front padding car Pf , variable
cars x1, . . . , xn, a security car S, a middle padding car Pm,
clause cars c1, . . . , cn, and a rear padding car Pr. (b) A vari-
able gadget (center 10 × 3 portion) is constructed to force
unnegated (“+”) and negated (“-”) literal tiles to exit from
different sides. The exited titles will be outside the rails. (c)
A clause gadget is constructed to allow at most two literals
to come in from each side of the rails. (d) The security car
where the upper four purple tiles will exit to block variable
exits on the rails (see Fig. 4). The lower two light purple
blocks are goals for two tiles initially on the rails (Fig. 4).

4.2 Gadgets
Our gadgets consist of preset tiles that move in a fixed direc-
tion throughout the solution routing process. The up (resp.,
down) tiles move one step up (resp., down) at each time step,
which can be forced by setting their goals a distance up-
wards (resp. downwards) equal to the given makespan of the
MOGSTP instance.

Rail (Gadget) A MOGSTP instance contains two sym-
metric rails (red strips on the two sides in Fig. 3, with more
details in Fig. 4) consisting of down tiles with gaps, which
are 3 × 1 blocks of escorts. Each rail contains three gaps,
separated into two groups: two lower gaps are designated as
variable exits, and a single upper gap functions as a clause
entrance. A down tile separates the variable exits. The four
purple tiles from the security car will enter the middle of
these gaps and then move with the rails until the end. There
are two (purple) tiles initially in the entrance gaps that will
later enter the security car. These gaps will be explained in
more detail.
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↰
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variable exit gaps clause entrance gaps

Figure 4: Part of the rails, rotated 90 degrees clockwise from
Fig. 3(a), showing the variable exit and clause entrance gaps.

Variable Car (Gadget) A variable car (x1, . . . , xn blocks
in Fig. 3) is an upwards moving 10 × 3 block whose start
configuration is shown in Fig. 3(b). For the variable car cor-
responding to xi, besides the (blue) up tiles as marked, there
are two unnegated literal tiles (the two “+” tiles) correspond-
ing to x1

i and x2
i , and two negated literal tiles (the two “-”

tiles) corresponding to x̄1
i and x̄2

i . These tiles must be moved
to some clause cars to be introduced shortly. There are also
(pink) single-delay up tiles that must pause in place exactly
once throughout the execution of the MOGSTP instance.
Additionally, there are eight obstacle tiles (the x tiles) whose
goal configurations are three spots lower within the same
variable car. These obstacle tiles help ensure that the pairs
of positive and negative literals split up onto different sides.
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Figure 5: Illustration of how (green) literal tiles may exit a
variable gadget in pairs. The bottom left subfigure shows the
four lower gaps on the rails, each a 3× 1 block.

Lemma 4.2. As a variable car passes by the variable exits
on the rails, the positive and negative literals can only exit
to different sides of the rails.

Proof Sketch. Only literal and obstacle tiles may move out-
side a variable car (the 10 × 3 grid). It can be shown that
obstacle tiles should not change columns. Because of this,
unnegated (resp., negated) literals can only exit from the
3th (resp., 7th) row. This forces the obstacle tiles to become
asymmetric on the two sides of a variable car, resulting in
the unnegated literals exiting from one side of the car and
the negated literals exiting from the opposite side. One such
exit sequence is illustrated in Fig. 5.

Clause Car (Gadget) As shown in Fig. 3(c), the clause
car is an upward-moving 10 × 3 subgrid entirely composed
of up tiles and requires 4 literal tiles corresponding to ci in
the goal configuration. With two symmetric 3 × 1 gaps on
the rail, it is clear that at most two literals can enter from
each side, as shown in Fig. 6.

Security Car (Gadget) Shown in Fig. 3(d), the security
car is an upward-moving 10 × 3 subgrid whose frame con-
sists of up tiles with four additional purple tiles at rows 3 and
5 that need to be injected into the middle of the four variable
exits on the rails (see Fig. 4 for reference) as they pass by.
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Figure 6: Green literal tiles entering a clause car gadget.

This prevents these gaps from being used by clause gadgets.
It will receive the two purple tiles that are initially inside the
clause entrances (see Fig. 4) to go to row 8.

4.3 Complete Specification and Reductions
We construct the MOGSTP instance as follows. Let d =
24n+38; our upwards moving train is a d×3 block; from top
to bottom, the three padding cards have 4, 4n, and 24 rows
of up tiles, respectively. The middle padding car allows the
literal tiles to reorder before entering the clause cars. Ini-
tially, the bottoms of the rails are aligned with the bottom
of the gadget train. The variable exit openings occupy rows
d+2 to d+4 and d+6 to d+8 from the bottom. The clause
entrance opening occupy rows d+14n+12 to d+14n+14.
While a grid is not needed, we can select our grid G to be
of size 4d × 4d with the construct positioned in the middle
horizontally, with the bottom of the construct starting at the
(d + 1)th row from the bottom of G. The makespan bound
K is set to d. The MOGSTP instance is fully specified.

Proof of Thm. 4.1. If the 2/2/4-SAT instance is satisfiable,
we can select the positive (resp., negative) literals to exit to
the left (resp., right) of the rails from the variable cars, when
they pass by the literal exit gaps. Then, these literals can re-
order and enter into the clause gadgets as required, reaching
the target goal configuration with a makespan of d.

Similarly, in the other direction, if the MOGSTP in-
stance has a solution with a makespan of d, then the up/down
tiles must move uninterrupted. In this case, four literals must
exit a variable car in pairs of the same truth value to differ-
ent sides. Subsequently, these literals reorder and enter the
clause cars as described. Therefore, we can pick literal tiles
on one side of the rails, e.g., left, and make their correspond-
ing literals positive, ensuring all clauses are true. This yields
a satisfying assignment for the 2/2/4-SAT instance.

MOGSTP is in NP since the existence of a solution can
be readily checked, and a feasible solution can be computed
in polynomial time similar to how (N2 − 1)-puzzles are
solved. Thus, MOGSTP is NP-complete.

MOGSTP remains NP-hard when we specify that there
are exactly ⌊|G|ϵ⌋, 0 < ϵ < 1 escorts (where |G| is the
number of cells of the grid) by blowing up the grid by a
polynomial amount and filling the extra space with station-
ary tiles to achieve the desired number of escorts. Then note
that 2/2/4-SAT is still simulated through the movement of
the literal tiles around the preset tiles, and in addition, a so-
lution routing can be constructed in the same manner from a
truth assignment.

5 Tighter Makespan Lower & Upper Bounds
In this section, we first establish a tighter makespan lower
bound as a function of the number of escorts. Then, we
proceed to the more involved efforts of deriving tighter
makespan upper bounds again as a function of the avail-
able number of escorts. The new and tighter lower and upper
bounds are summarized in the table below. We further pro-
vide an exact constant for all upper bounds as a more precise
characterization. In all cases, our upper and lower bounds
match asymptotically, eliminating the gaps left by previ-
ous studies on GSTP. All upper bounds come with low-
polynomial-time algorithms for computing the actual plan,
which is clear from the corresponding proofs.

k, the number of escorts Makespan lower bound
k < min(m1,m2) exp. Ω(

m1m2

k
)

k ≥ min(m1,m2) h.p. Ω(max(m1,m2))

k, the number of escorts Makespan upper bound
k = 1 (81 + o(1))m1m2

k = 2 (18 + o(1))m1m2

2 < k < min(m1,m2) (22 + o(1))
m1m2

⌊k/2⌋
k ≥ m1 +m2 − 1 34max(m1,m2)

Table 1: Our matching makespan lower and upper bounds.

For convenience, instead of viewing GSTP through
batched tile movements, we focus on the movement of
the escorts, which encodes tile motion more concisely. A
straight contiguous train of tiles moving in a single step may
be equivalently viewed as a jump of an escort. Since the new
escort position must remain in the same row or column, we
call the jump a row jump or column jump, respectively. In ad-
dition, we use rectangular shift or r-shift, as a fundamental
motion primitive in which the escort cycles through the four
corners of a rectangle, thus shifting all boundary elements
by one tile in the opposite direction. We call the rectangular
shift cwr-shift (resp., ccwr-shift) if the escort traverses the
corners in the counterclockwise (resp., clockwise) direction.

5.1 Tighter Makespan Lower Bounds
Using escort jumps instead of tile moves lets us see im-
mediately that a single time step can only change the sum
of the Manhattan distances by kmax(m1,m2), where k is
the number of escorts. The observation readily leads to a
tighter makespan lower bound than the previously estab-
lished Ω(m1 +m2) (or Ω(max(m1,m2))).

Lemma 5.1. The expected minimum makespan for GSTP
on m1 ×m2 grids with k escorts is Ω(m1m2

k ).

Proof. Consider the sum of Manhattan distances S of each
tile’s start and goal positions. Over all possible start and goal
configurations, each tile is expected to have a Manhattan dis-
tance of Ω(m1 +m2) = Ω(max(m1,m2)) (Santaló 2004).
Because there are m1m2−k tiles, we have S = Ω((m1m2−
k)max(m1,m2)), in expectation. Because each of the k es-
corts can jump a distance of max(m1,m2) within the same
row/column, altering the Manhattan distance contribution by



1 for each tile in its jump path, in a single time step, S
can only change by at most kmax(m1,m2). Thus, at least

S
kmax(m1,m2)

= Ω(m1m2

k ) steps are needed to solve the in-
stance in expectation.

Combining with the previously known lower bounds
yields a tighter makespan lower bound of Ω(m1m2

k ) for k ≤
min(m1,m2) and Ω(max(m1,m2)) for k ≥ min(m1,m2),
which match our developed upper bounds, established next.

5.2 Tighter Makespan Upper Bounds: Outline
We leverage RTA (Sec. 3.4) to establish tighter makespan
upper bounds for GSTP. Each round of row/column shuf-
fles in RTA can be executed in parallel, potentially leading
to a significantly reduced makespan. However, the shuffles
do not readily translate to feasible sliding-tile motion; per-
forming in-place permutation of tiles in a single row/column
is impossible. To enable the application of RTA, instead
working with one grid row/column, we simulate row/column
shuffles by grouping multiple rows or columns together.
Therefore, at a high level, we derive better upper bounds by:

• Applying RTA to obtain three batches of row or column
shuffles (see, e.g., Fig. 2) with escorts treated as labeled
tiles. Each batch of shuffles will be executed to comple-
tion (via simulations according to rules of GSTP) before
the next batch is started.

• In a given batch of row/column shuffles, adjacent
rows/columns will be grouped together (e.g., two or three
rows per group), on which tile-sliding motions will be
planned to realize the desired shuffles.

Performing efficient tile-sliding motions with the CFC
constraint is key to establishing tighter upper bounds. We
first describe subroutines for solving GSTP with 1 or 2 es-
corts on 3×m and 2×m grids. These subroutines will then
be used to solve general GSTP instances.

5.3 Upper Bounds for 2-3 Rows with 1-2 Escorts
Our GSTP algorithms will build on subroutines for sorting
multiple rows. We first prove such a routine on 3×m grids.

Lemma 5.2. Feasible GSTP instances with a single escort
on a 3×m grid can be solved in 120m steps.

Proof. We give a procedure that sorts the right 1
3 of the 3×m

grid in O(m) steps. A recursive application of the procedure
then yields an overall O(m + 2

3m + 4
9m + . . .) = O(m)

makespan.
To start, we move the escort to the bottom left corner for

both the start and goal configurations, which takes 4 steps.
These will be the new start/goal configurations. From here,
for tiles on a 3 ×m grid, let B denote the set of tiles corre-
sponding to the ⌊m−2

3 ⌋ rightmost columns in the goal con-
figuration. We refer to these tiles as B tiles and the rest as W
tiles. We will treat the boundary cells as a circular highway
moving clockwise and the inner middle line as a workspace
to move B tiles to their destination. As an example, the B
(resp., W ) tiles are shown in dark gray (resp., light gray)
in Fig. 7(b)-(g). The algorithm operates in three stages: (1)
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Figure 7: Sorting right 1
3 on a 3 × 8 grid with one escort.

(a) and (h) are the start and goal configurations. (b)→(c): A
cwr-shift inserts B tile 8 to the circular highway. (c)→(d)→
. . . →(e): A series of r-shifts orders B tiles in the workspace.
(e)→(g): Additional r-shifts move B tiles to goals.

move B tiles to the highway, (2) arrange B tiles properly in
the workspace, and (3) move B tiles to goals.

To execute the first stage, if a B tile in the workspace
has a W tile above it, then execute a cwr-shift to insert the
leftmost such B tile into the highway to not affect tiles to the
right (Fig. 7(b)-(c)). Otherwise, apply adjustment cwr-shifts
to the circular highway until a B tile in the workspace has
a W tile above it. Because there are m − 2 B tiles, at most
m−2 adjustments are needed to move a W tile over each B
tile, and so the total number of steps for this stage is at most
4[(m− 2) + (m− 2)] = 8m− 16.

The second stage uses the same operation to insert the
B tiles into the workspace. The difference is that B tiles
are now being inserted in the exact spot in the workspace
corresponding to the desired permutation. Through the pro-
cess, a tile in B never makes a full lap around the circu-
lar highway. Therefore, at most 2m + 1 adjustments are
needed, with at most m− 2 B tile insertions, taking at most
4[(2m+ 1) + (m− 2)] = 12m− 4 steps.

In the third stage, apply r-shifts to move B tiles to their
goals as shown in Fig. 7(e)-(g), taking 4[m− ⌊m−2

3 ⌋] steps.
Now, approximately the right third of the grid has been

solved in 4[6m− 5− ⌊m−2
3 ⌋] steps; we recurse in the same

manner for m ≥ 5 and solve the base case of m = 4 in 53
times steps (Korf 2008) by treating the problem as a normal
(n2 − 1)-puzzle instance. Through careful counting, we can
conclude that 120m steps are always sufficient.

The 120m makespan can be significantly reduced with
more careful analysis, which we omit due to limited space.
The important takeaway is Lemma 5.2 shows GSTP on
3 ×m grids can be solved in O(m) steps, sufficient for es-
tablishing the upper bounds in our claimed contribution. In
what follows, we describe related results needed to get the
constant factors stated in Table 1 omitting the proofs.

If we have two escorts, we can cycle them on opposite



corners of their respective r-shifts to allow two cwr-shifts to
happen simultaneously, leading to the following.

Corollary 5.3. GSTP instances with two escorts on a 3×m
grid can be solved in 60m steps.

With significant additional efforts but following a similar
line of reasoning, we can establish on 2×m grids that

Lemma 5.4. Feasible GSTP instances with a single escort
on a 2×m grid can be solved in 58m steps.

While simulating two row or column permutations at once
can be useful in solving GSTP faster, the limited amount of
space may prevent us from doing so. Instead, simulating the
permutation of one row or column will be much more useful.

Corollary 5.5. Given a single escort, a 2 × m grid can be
permuted to fill one of its rows arbitrarily in 27m steps.

With two escorts, we get significantly faster algorithms.

Lemma 5.6. GSTP instances with two escorts on a 2 ×m
grid can be solved in 10m− 13 steps.

Corollary 5.7. Given two escorts on the left of the top row
of a 2×m grid, the bottom row can be arbitrarily permuted
in 6m−1 time steps, maintaining the position of the escorts.

Corollaries 5.5 and 5.7 will be instrumental in paralleliz-
ing row and column permutations necessitated by the RTA
Shuffles without wasting additional steps in permuting the
other row.

5.4 Tighter Makespan Upper Bounds for GSTP
We are now ready to tackle solving full GSTP instances. For
GSTP, we will only examine the case in which grid dimen-
sions are at least 2; the problem is otherwise trivial.

Theorem 5.8. Feasible single-escort GSTP instances can
be solved in 81m1m2 + 6m1 + 9m2 − 3 steps.

Proof. First, move the escort to the top left for start/goal
configurations to get new start/goal configurations. Then,
RTA is applied in a row-column-row fashion to yield three
batches of row/column shuffles. Each batch requires sort-
ing m1 or m2 rows or columns. In the 4 × 4 grid shown in
Fig. 8(a), a batch of row shuffles must permute each of the
four rows highlighted in different colors. We are done if we
can successfully perform each batch of shuffles.

To execute a batch of shuffles, e.g., performing the four
row shuffles on the 4 × 4 grid shown in Fig. 8(a), we move
the escort to the top left of the bottom two rows and apply
Corollary 5.5 sort the last row. The procedure is repeated
with the escort moved one row above, until there are only
two top rows, at which point Lemma 5.4 is invoked to ar-
range the two rows simultaneously. The top two rows may
not be solved exactly because not all (N2 − 1)-puzzles are
solvable, but the issue will resolve on its own if the GSTP
instance is solvable. Other shuffles are executed similarly.

Counting all steps, the total number is at most 81m1m2+
6m1 + 9m2 − 3.

Theorem 5.9. A two-escort GSTP instance can be solved
in 18m1m2 − 4m1 − 5m2 − 29 steps.

(a) (b) (c) (d)

Figure 8: Illustrating performing a batch of row shuffles on
a 4 × 4 grid with a single escort. (a). The (updated) start
configuration, in which each row must be permuted. (b). To
prepare for running Corollary 5.5, the escort is moved to
the top left of the last two rows. (c). After applying Corol-
lary 5.5 to sort the last row, the escort is shifted above for the
next application. (d) The top two rows will be sorted using
Lemma 5.4. Note that the top (resp., left) two rows (resp.,
columns) may not be fully solvable in the first two batches
of shuffles, which is fine for the next set of column shuffles.

Proof Sketch. The proof is similar to the single escort case;
with two escorts, we invoke Lemma 5.6 and Corollary 5.7
to speed up the process. The entire instance can be solved in
2[(m1−2)(6m2−1)+10m2−13]+[(m2−2)(6m1−1)+
10m1 − 13] + 4 = 18m1m2 − 4m1 − 5m2 − 29 steps.

Theorem 5.10. A GSTP instance containing 2 ≤ k <
min(m1,m2) escorts, where k is even, can be solved with
a makespan less than 44m1m2

k +m1(5− 24
k ) + 15m2 − 29.

Proof Sketch. The main strategy is distributing the escorts
across the rows/columns to introduce parallelism in solving
a batch of row/column shuffles. For example, given k = 2ℓ
escorts, to solve a batch of m1 row shuffles, we can distribute
two escorts per m1

ℓ rows. For each such m1

ℓ rows, we invoke
Lemma 5.6 and Corollary 5.7 to solve them, in parallel. This
allows the entire batch of row shuffles to be completed in
O(m1

ℓ )O(m2) = O(m1m1

ℓ ) = O(m1m1

k ) steps. Tallying
over the three phases, the total number of steps required is
bounded by 44m1m2

k +m1(5− 24
k ) + 15m2 − 29.

Note that if k is odd, we can simply ignore one escort. It
is also clear the results continue to apply for kmin(m1,m2)
by ignoring extra escorts, but we can get additional speedups
when k ≥ m1 + m2 − 1 due to enough room to use 5.6
straightforwardly by having escorts along the top row and
left column. Compiling everything so far yields the claimed
bounds given in Table. 1.

6 Conclusion and Discussion
We show that it is NP-complete to compute makespan-
optimal solutions for the generalized sliding-tile puz-
zle (GSTP). We further establish matching asymptotic
makespan lower and upper bounds for GSTP for all possible
numbers of escorts, and provide concrete constants for all
makespan upper bounds. In ongoing and future work, we are
examining (1) computing optimal solutions for other objec-
tives for GSTP, (2) related variations of the GSTP formula-
tion, and (3) developing practical algorithms for computing
different optimal solutions for large-scale GSTP instances.



Acknowledgement
We thank the reviewers and editorial staff for their insight-
ful suggestions. This work is supported in part by the DI-
MACS REU program NSF CNS-2150186, NSF award CCF-
1934924, NSF award IIS-1845888, and an Amazon Re-
search Award.

References
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2018. Robust multi-agent path finding. In
Proceedings of the International Symposium on Combinato-
rial Search, volume 9(1), 2–9.
Auletta, V.; Monti, A.; Parente, M.; and Persiano, P. 1999.
A linear-time algorithm for the feasibility of pebble motion
on trees. Algorithmica, 23(3): 223–245.
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Proceedings of the
International Symposium on Combinatorial Search, volume
5(1), 19–27.
Culberson, J.; and Schaeffer, J. 1994. Efficiently searching
the 15-puzzle. Technical report, University of Alberta. Tech-
nical report TR94-08.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence, 14(3): 318–334.
Demaine, E. D.; Fekete, S. P.; Keldenich, P.; Meijer, H.; and
Scheffer, C. 2019. Coordinated Motion Planning: Recon-
figuring a Swarm of Labeled Robots with Bounded Stretch.
SIAM Journal on Computing, 48(6): 1727–1762.
Demaine, E. D.; and Rudoy, M. 2018. A simple proof that
the (n2 - 1)-puzzle is hard. Theoretical Computer Science,
732: 80–84.
Erdem, E.; Kisa, D.; Oztok, U.; and Schüller, P. 2013. A gen-
eral formal framework for pathfinding problems with multi-
ple agents. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 27(1), 290–296.
Erdmann, M.; and Lozano-Perez, T. 1987. On multiple mov-
ing objects. Algorithmica, 2: 477–521.
Fekete, S. P.; Keldenich, P.; Krupke, D.; and Mitchell,
J. S. 2022. Computing coordinated motion plans for robot
swarms: The cg: shop challenge 2021. ACM Journal of Ex-
perimental Algorithmics (JEA), 27: 1–12.
Geft, T.; and Halperin, D. 2022. Refined Hard-
ness of Distance-Optimal Multi-Agent Path Finding.
arXiv:2203.07416.
Goldreich, O. 2011. Finding the shortest move-sequence in
the graph-generalized 15-puzzle is NP-hard. Springer.
Guo, T.; and Yu, J. 2022. Sub-1.5 Time-Optimal
Multi-Robot Path Planning on Grids in Polynomial Time.
arXiv:2201.08976.
Guo, T.; and Yu, J. 2023. Toward Efficient Phys-
ical and Algorithmic Design of Automated Garages.
arXiv:2302.01305.
Hopcroft, J. E.; Schwartz, J. T.; and Sharir, M. 1984. On the
Complexity of Motion Planning for Multiple Independent

Objects; PSPACE-Hardness of the” Warehouseman’s Prob-
lem”. The international journal of robotics research, 3(4):
76–88.
Korf, R. E. 2008. Linear-time disk-based implicit graph
search. Journal of the ACM (JACM), 55(6): 1–40.
Kornhauser, D.; Miller, G.; and Spirakis, P. 1984. Coordi-
nating Pebble Motion On Graphs, The Diameter Of Permu-
tation Groups, And Applications. In 25th Annual Sympo-
sium onFoundations of Computer Science, 1984., 241–250.
IEEE.
Li, J.; Ruml, W.; and Koenig, S. 2021. Eecbs: A bounded-
suboptimal search for multi-agent path finding. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 35(14), 12353–12362.
Loyd, S. 1959. Mathematical puzzles, volume 1. Courier
Corporation.
Mason, R. 2019. Developing a profitable online grocery
logistics business: Exploring innovations in ordering, fulfil-
ment, and distribution at ocado. Contemporary Operations
and Logistics: Achieving Excellence in Turbulent Times,
365–383.
Okumura, K. 2023. Lacam: Search-based algorithm for
quick multi-agent pathfinding. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37(10),
11655–11662.
Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
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