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EXPLICIT EQUATIONS OF THE FAKE PROJECTIVE

PLANE (a = 7, p = 2, ∅, D3X7)

LEV BORISOV, MATTIE JI, AND YANXIN LI

Abstract. We find explicit equations of the fake projective plane
(a = 7, p = 2, ∅, D3X7), which lies in the same class as the fake
projective plane (a = 7, p = 2, ∅, D327) with 21 automorphisms
whose equations were previously found by Borisov and Keum. The
method involves finding a birational model of a common Galois
cover of these two surfaces.

1. Introduction

Fake projective planes (FPPs for short) are defined as complex al-
gebraic surfaces of general type with Hodge numbers equal to that of
CP2. The first example of an FPP was constructed by Mumford in
[Mu79] using the method of 2-adic uniformization. Efforts of multiple
researchers over the ensuing decades resulted in a complete classifica-
tion of these surfaces as free quotients of the complex 2-ball

B2 = {|z1|2 + |z2|2 < 1} ⊂ C2

by explicit discrete subgroups of PU(2, 1). We refer the reader to
[BK20] for the history of the field.

However, if one is given a fake projective plane B2/Γ with explicit
generators and relations of Γ, it is still a highly nontrivial problem
to write explicit equations of B2/Γ inside some projective space. The
issue here is that there is no known algorithm for calculating modu-
lar forms in a way that would allow one to find polynomial equations
among them. An extensive program of finding equations of fake projec-
tive planes, initiated in [BK20] and continued in [BF20, BBF20, Bo23,
BL23, BJLM23], has up until now produced explicit equations for 10
out of 50 conjugate pairs of FPPs. This paper describes a method
of obtaining one more pair, bringing the count up to 11. As is in all
other efforts of finding FPPs, heavy computer calculations are neces-
sary. We provide the code and the results in the supplementary mate-
rials [BJL23+]. Our primary tool is Mathematica [Math], with some
computations performed in Magma [Mag] and Macaulay2 [Mac].
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The fake projective plane X = (a = 7, p = 2, ∅, D3X7) lies in the
same class as the fake projective plane Y = (a = 7, p = 2, ∅, D327)
which implies that there is a surface Z which is an étale Galois cover
of both X and Y . Our construction hinges on the observation that
in this particular case the Galois groups in question are the dihedral
group D14 of 14 elements and the cyclic group C14. More precisely,
there exists the following diagram of maps of surfaces.

(1) Y
µ←− W

π←− Z
ρ−→ X

where

• µ is an unramified cyclic C2 quotient map;

• π is an unramified cyclic C7 quotient map;

• µ◦π is an unramified quotient map by the group isomorphic to
D14;

• ρ is an unramified cyclic C14 quotient map.

The above is, of course, a direct consequence of the relations among the
fundamental groups of these surfaces, which we denote by ΓX , . . . ,ΓW .
Note that all of them are finite index subgroups in the maximal arith-
metic subgroup Γ̄ computed in [CS11+].

The paper is organized as follows. In Section 2 we study the rela-
tionship between the subgroups ΓX ,ΓY ,ΓZ ,ΓW of Γ̄ which is key to
our approach. In Section 3 we describe how we obtain an embedding
of W in CP19 and a birational model of Z in CP12. In Section 4 we
describe the method which allowed us to pass from Z to an embedding
of X into CP9. Finally, in Section 5 we make a couple of comments
regarding possible further directions of this project.

Acknowledgements. This project sprang from the REU experi-
ence organized as part of the larger DIMACS REU at Rutgers Univer-
sity. This research was conducted while the second author was partic-
ipating in the 2023 DIMACS REU program at the Rutgers University
Department of Mathematics, mentored by the first author. We are
grateful to Lazaros Gallos, Kristen Hendricks, and Rutgers University
DIMACS for organizing the REU program and making this project
possible. We also thank Sargam Mondal for useful questions and com-
ments.
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2. Galois covers

As was pointed out in the Introduction, the fake projective plane
X = (a = 7, p = 2, ∅, D3X7) is in the same class (in the sense of
[PY07, PY10, CS10]) as the well-understood fake projective plane Y =
(a = 7, p = 2, ∅, D327) whose equations were constructed in [BK20].
This means that the corresponding subgroups ΓX and ΓY of PU(2, 1)
are finite index subgroups in some arithmetic group Γ̄. In our case, ΓY

is normal while ΓX is not, and both have index 21, see [CS11+].

While any two finite index subgroups contain a common normal
subgroup of finite index, this index can in general be quite large. For-
tunately, in our case, we found a subgroup ΓZ ⊂ Γ̄ which is a normal
subgroup of index 14 in both ΓX and ΓY , so that Z = B2/ΓZ is an
unramified Galois cover of both X and Y .

Proposition 2.1. The commutator subgroup ΓZ = (ΓX)
′ is a nor-

mal subgroup of Γ̄. Moreover, ΓZ is contained in both ΓX and ΓY .

The quotient group Γ̄/ΓZ has order 294 and is isomorphic to a certain

semidirect product (D14 × C7) ⋊ C3 with generators (t1, t2, t3, t4) and

relations

1 = t21 = t72 = (t1t2)
2 = t73, t1t3 = t3t1, t2t3 = t3t2,

1 = t34, t4t1t
−1

4 = t1, t4t2t
−1

4 = t42, t4t3t
−1

4 = t23.

Here D14 denotes the dihedral group of 14 elements generated by t1 and
t2 and the action of C3 is seen in the above relations.

Proof. The group Γ̄ is computed in [CS11+, bargammapresentations.txt]
as the finitely presented group with generators z and b and relations

z7, (b−2z)3, (b2z−2b2z2)3, (b2z−2b2z4)3, b3z−2b−1z2b−2z,

b3zb3z3bz2b−1z−1, b3z2b2z−2b−1z−1b−3zb−1z−1.

The subgroups ΓX and ΓY are generated by

b3, zb3z, bz2b−1z

and

b3, (zbz−1)3, bzb2z−2, zbz3b−1

respectively.

Magma [Mag] readily computes [BJL23+, Section2.txt] that ΓZ =
(ΓX)

′ is a normal subgroup of ΓY and Γ̄. After that, with some trial
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and error, we found generators of Γ̄/ΓZ (images of)

t1 = b3, t2 = bzb2z−2b3, t3 = bz2b−1z, t4 = b4

which satisfy the relations of the proposition. See [BJL23+, Sec-
tion2.txt] for the Magma verification. �

From now on we will tacitly identify the quotient Γ̄/ΓZ with the
above semidirect product.

Proposition 2.2. The quotients ΓX/ΓZ and ΓY /ΓZ are given by (C2×
C7)⋊{1} and (D14×{1})⋊{1} respectively, for an appropriate choice

of C2 ⊂ D14.

Proof. We verify in [BJL23+, Section2.txt] that the quotients ΓX/ΓZ

and ΓY /ΓZ are generated by {t1, t3} and {t1, t2} respectively. �

Corollary 2.3. The surfaces X and Y are given by X = Z/C14 and

Y = Z/D14.

Remark 2.4. The elements t3 and t4 generate the quotient group Γ̄/ΓY ,
isomorphic to C7 ⋊ C3. It is the automorphism group of Y and it acts
on the homogeneous coordinates of the embedding of Y into CP9 by
scaling and/or permuting the coordinates, see [BK20].

We will also be interested in the intermediate surface W = Z/C7

with the action of C7 coming from the normal subgroup ofD14 in Γ̄/ΓZ .
The corresponding group ΓW is an index two subgroup of ΓY generated
by ΓZ and t2. The surface W is the unramified double cover of Y which
corresponds to the unique nontrivial automorphism-invariant 2-torsion
line bundle on Y , see [BK20, BJLM23]. Indeed, both ΓW and ΓY

are normal in Γ̄ (see [BJL23+, Section2.txt]) and thus the index two
subgroup ΓW ⊂ ΓY is preserved by the conjugation action of Γ̄/ΓY .

In what follows we will need the following.

Proposition 2.5. The Hodge numbers of Z are h1,0(Z) = 0, h1,1(Z) =
14 and h2,0(Z) = 13.

Proof. The Euler characteristics ofOZ is 14, since Z → Y is unramified.
We used the Magma file [BJL23+, Section2.txt] to check that h1,0(Z) = 0
since the abelianization of Z is finite. This implies that h2,0(Z) = 13,
and h1,1(Z) = 14 follows from χtop(Z) = 14χtop(Y ) = 42. �
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Moreover, we can identify the representation of Γ̄/ΓZ on the 13-
dimensional space H0(Z,KZ). Let us first discuss the action of D14 ×
C7. Recall that D14 has two one-dimensional representations, which
we will call V+ and V− coming from C2 = D14/C7 and three two-
dimensional representations which we will call V1, V2 and V4. Specifi-
cally, the generator of C7 ⊂ D14 has eigenvalues ζ

±i
7 on Vi, and there is

a basis of C7 eigenvectors of Vi on which C2 ⊂ D14 acts as a permuta-
tion. Irreducible representations of D14 × C7 are then tensor products
of the above representations of D14 and a one-dimensional representa-
tion of C7, and we denote them accordingly. For example, V2,4 stands
for the tensor product of V2 with the representation of C7 that sends
its generator to ζ47 . It has a basis (r2,4, r−2,4) where subscripts denote
the weights modulo 7 with respect to the action of C7 × C7.

Proposition 2.6. As a representation of D14 × C7, after a choice of

a generator of {1}×C7, the space H0(Z,KZ) is isomorphic to a direct

sum of representations

V−,0 ⊕ V1,1 ⊕ V4,2 ⊕ V2,4 ⊕ V1,a ⊕ V4,2a ⊕ V2,4a

for some a ∈ {3, 5, 6}mod 7.

Proof. Since the actions of D14 and C14 have no fixed points and
H1(Z,KZ) = 0, the holomorphic Lefschetz fixed point formula im-
plies that H0(Z,KZ)⊕H2(Z,KZ) is a regular representation for both
of these groups. Since H2(Z,KZ) is a trivial one-dimensional represen-
tation, we see that H0(Z,KZ) is isomorphic to

V−,0 ⊕ V1,a1 ⊕ V1,a2 ⊕ V2,a3 ⊕ V2,a4 ⊕ V4,a5 ⊕ V4,a6

with (a1, . . . , a6) a permutation of (1, . . . 6).

By picking a generator of {1} × C7, we can assume without loss
of generality that the first two V -s are V1,1 and V1,a for some a 6∈
{0, 1} mod 7. Furthermore, we have the action of the group C3 which
conjugates Va,b into V4a,2b because of Proposition 2.1. This uniquely
determines the rest of the V -s. It remains to observe that a can not
be 2 or 4 either because it would contradict the above permutation
property. �

Remark 2.7. Since we can choose a generator of {1} × C7 so that V1,a

becomes V1,1 and V1,1 becomes V1,a−1 , we can further reduce to a = 3 or
a = 6 cases. We will later see that a = 3 case works. In principle, we
could have used more extensive Magma calculations and the holomor-
phic Lefschetz formula to fully specify the representation of Aut(Z) on
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H0(Z,KZ), but we find it easier to use this approach, which will be
enough for our purposes.

Corollary 2.8. There is a basis

(r0,0, r1,1, r−1,1, r4,2, r−4,2, r2,4, r−2,4, r1,a, r−1,a, r4,2a, r−4,2a, r2,4a, r−2,4a)

of H0(Z,KZ), indexed by subscripts in (C7)
2, with the following action

of the automorphism group of Z:

• the generator of C7 × {1} sends ri,j to ζ i7ri,j;

• the generator of {1} × C7 sends ri,j to ζj7ri,j;

• the generator of C2 ⊂ D14 sends r0,0 to (−r0,0) and interchanges

ri,j and r−i,j;

• the generator of C3 sends ri,j to r4i,2j.

Proof. Follows immediately from Proposition 2.6. �

3. Finding explicit equations of Z

In this section, we describe the rather lengthy process that allowed
us to construct a birational model of Z as a repeated cyclic cover of Y .

In the first step, we constructed the double cover W of Y as a
surface in its bicanonical embedding into CP19, cut out by 100 quadratic
equations. While it was already accessible via methods of [BK20], we
used a different approach. We note that W → Y corresponds to the
2-torsion divisor D on Y and H0(W, 2KW ) can be naturally identified
with H0(Y, 2KY ) ⊕ H0(Y, 2KY + D). The action of Aut(Y ) extends
to H0(Y, 2KY +D) and there is exactly one invariant section s on it,
which we find as follows.

Recall that there is a unique ample divisor class H on Y such that
3H = KY . In [BJLM23], we studied linear systems |nH+T | for small n
and torsion divisors T . Specifically, |4H +D| has three C7-equivariant
sections that are permuted by C3, and we know explicit equations of
these curves on Y . This allows us to find the curve {s = 0} on Y
by looking for an automorphism-invariant section of 6KY = 18H that
vanishes on the three aforementioned curves in |4H +D| linear system
and using

6H +D = 18H − 3(4H +D).

Once we have found this curve {s = 0}, we are able to find an Aut(Y )-
invariant section of 12H = 2(6H +D) which vanishes twice on it, i.e.
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it is equal to s⊗2, up to scaling, which we denote by U10. We can then
use s to embed sections of 2KY + D into H0(Y, 4KY ). Note that the
map of 55-dimensional spaces Sym2(H0(Y, 2KY )) → H0(Y, 4KY ) is an
isomorphism, and we can view sections of 4KY as quadratic polyno-
mials in the defining variables U0, . . . , U9 of Y in [BK20]. The image
of ⊗s : H0(2KY + D) → H0(4KY ) is the ten-dimensional space of
quadratic polynomials in U0, . . . , U9 which are zero on {s = 0}. We
pick a basis of it with a nice action of Aut(Y ) (the C7 acts by scaling
the basis elements and C3 acts by permuting them) and denote it by
U10, . . . , U19.

We constructed the basis (P0, . . . , P19) of H0(W, 2KW ) by looking
at Pi = Ui for i = 0, . . . , 9 and Pi =

Ui√
U10

for i = 10, . . . , 19. We then

picked random points on Y to find quadratic relations on Pi. Note that
the covering involution of W → Y acts by (+1) on P0, . . . , P9 and by
(−1) on P10, . . . , P19. We also had to be careful with the scaling of U10

to ensure that our model of W is defined over the field Q(
√
−7). More

precisely, we used

U10 =
(49 + 13i

√
7)

56

( 1

64
(−17− 7i

√
7)U2

0 + U1U4 + U2U5 + U3U6

+
1

8
(−1 + i

√
7)U1U7 +

1

8
(−1 + i

√
7)U2U8 +

1

8
(−1 + i

√
7)U3U9

)

,

see [BJL23+, Section3.nb].

Claim 3.1. The double cover W of Y is cut out by 100 quadratic
equations from [BJL23+, W equations.txt].

Remark 3.2. We did not try to do all of the formal checks on W , as
the number of variables is likely too high, although we did check its
Hilbert polynomial in [BJL23+, W check Hilbert.txt].

Remark 3.3. We choose to make a distinction between statements that
are verified by hand or by computer using symbolic manipulation,
as opposed to the statements that are derived by picking some ran-
dom points on the varieties in question, as is often the case in our
Mathematica calculations. We call the former propositions, lemmas,
et cetera, and use the term “claim” to indicate the latter.

The next step (passing from W to Z) is arguably the most techni-
cal in the entire process. It is similar to the method of [BF20]. Let
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r1,1, r−1,1, r1,a, r−1,a be sections of H0(Z,KZ) as in Corollary 2.8. Con-
sider

s1 = r1,1r−1,a, s2 = r−1,1r1,a, s3 = r1,1r−1,1, s4 = r1,ar−1,a.

These si are invariant with respect to C7 × {1} and therefore are pull-
backs of sections of H0(W, 2KW ). They must satisfy a number of re-
strictions.

• There holds s1s2 = s3s4.

• Sections s1 and s2 have weight (a+1) with respect to the {1}×
C7 action on W .

• Sections s3 and s4 have weight 2 and 2a respectively under the
above action.

• The covering involution of W → Y switches s1 and s2 and
preserves s3 and s4.

This information turns out to be sufficient to reconstruct si, up to
scaling.

Claim 3.4. For the choice of a = 3 we can pick

s1 =− P6 −
1

4
P9 −

1

4
(1 + i

√
7)P16 + P19, s2 = −P6 −

1

4
P9 +

1

4
(1 + i

√
7)P16 − P19,

s3 =P5, s4 =
1

8
(5 + i

√
7)P1.

Here Pi are the coordinates on CP19 in which W is embedded. There
are no solutions for a = 6.

Remark 3.5. If π : Z → W is a quotient map, we have

π∗OZ
∼=

6
⊕

i=0

T⊗i

where T is a 7-torsion line bundle on W . The above is also precisely
the splitting of π∗OZ into eigenbundles of the C7-action. Since ri,j are
eigenfunctions of the C7 × {1} action on KZ , they can be viewed as
sections of OW (3H) ⊗ T⊗i and this defines curves {ri,j = 0} in W .
Note that while we have not yet really constructed ri,j, we can indeed
construct these curves. For instance, r1,1 = 0 is the set of common
zeros of s1 and s3 on W .

Once all the si are found, there are multiple approaches to finding a
birational model of Z. We chose an approach that manifestly preserved
the C3 action, in addition to the D14×C7 action. Specifically, the field
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of rational functions of Z is a degree 7 cyclic extension of the field of
rational functions of W , and we can pick the basis of it to be

(2) (1,
r1,1
r0,0

,
r4,2
r0,0

,
r2,4
r0,0

,
r−1,1

r0,0
,
r−4,2

r0,0
,
r−2,4

r0,0
)

since these cover all possible first subscripts. We can then compute the
multiplication table and use it to find the polynomial relations among
ri,j. We take care to keep C3 action throughout.

For example, suppose we want to multiply
(

r4,2
r0,0

)(

r2,4
r0,0

)

. We know

that the product will be in the ζ67 eigenspace of C7 ⊂ D14, so we have
(r4,2
r0,0

)(r2,4
r0,0

)

= F
(r−1,1

r0,0

)

for some rational function F on W . Then F has simple zeros at {r2,4 =
0} and {r4,2 = 0} and poles at {r0,0 = 0} and {r−1,1 = 0}. This
determines F uniquely up to scaling, and it can be found explicitly as
follows. We know that the divisor of s3 is {r−1,1 = 0}+ {r1,1 = 0} and
the divisor of P10 is 2{r0,0 = 0}. Therefore, the divisor of Fs3P10 is

{r2,4 = 0}+ {r4,2 = 0}+ {r1,1 = 0}+ {r0,0 = 0}
which means that Fs3P10 is a global section of 2KW . Such sections
are given by quadratic polynomials in P0, . . . , P19 (we make sure to
look at a C3-invariant subset of degree two monomials that span the
complement to the space of 100 relations ofW ) and it is a simple matter
to put conditions of vanishing on random points of the above curves
to determine F . We then use C3 action to populate the multiplication
table appropriately.

Similarly, if we want to find the square of, for example, r2,4, we see
that

(r2,4
r0,0

)2

= F
(r4,2
r0,0

)

.

For the s′3 = r4,2r−4,2 (a C3-translate of s3) we see that the divisor of
Fs′3P10 is

2{r2,4 = 0}+ {r−4,2 = 0}+ {r0,0 = 0}.
We observe that F = 0 is singular at x ∈ {r2,4 = 0} if and only if the
gradient of F vanishes on the tangent space of x in W , which again
allows us to find F up to scaling.

Once the multiplication table is populated, up to scaling, the asso-
ciativity property is used to fix scalings (up to some natural ambiguity
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coming from C3-invariant scaling of ri,j). We can then compute (recall
that a = 3)

r1,3
r0,0

,
r4,6
r0,0

,
r2,5
r0,0

,
r−1,3

r0,0
,
r−4,6

r0,0
,
r−2,5

r0,0
in terms of the basis (2) and use multiplication table to compute the
relations among the 13 basis elements ri,j of H

0(Z,KZ). While we do
not get an embedding, we still get a birational model of Z in CP12.
The details can be found in [BJL23+, Section3.nb].

Remark 3.6. We used the notation

(Z0, . . . , Z12)

= (r0,0, r1,1, r4,2, r2,4, r−1,1, r−4,2, r−2,4, r1,3, r4,6, r2,5, r−1,3, r−4,6, r−2,5)

for the homogeneous coordinates on the birational model of Z which
hopefully does not cause confusion with Z itself. It is important that
C3 symmetry is maintained throughout the computation. We also have
control over the action of C2 ⊂ D14, which negates r0,0 and permutes
the rest of ri,j . Specifically, the action of generators g3 and g2 of the
respective cyclic groups is given by

g3(Z0, . . . , Z12) = (Z0, Z2, Z3, Z1, Z5, Z6, Z4, Z8, Z9, Z7, Z11, Z12, Z10),

g2(Z0, . . . , Z12) = (−Z0, Z4, Z5, Z6, Z1, Z2, Z3, Z10, Z11, Z12, Z7, Z8, Z9).

4. Finding explicit equations of X.

In this section, we explain how we obtained equations of X in its
bicanonical embedding.

Since X is obtained from Z by taking C14 quotient (by the C2 ⊂ D14

and {1} × C7) in principle one can take the C14-invariant global sec-
tions of 2KZ and look for polynomial equations among them. The only
difficulty that we had to overcome is the fact that Sym2(H0(Z,KZ)) →
H0(Z, 2KZ) is not surjective, and we can only get a dimension 7 sub-
space of the dimension 10 space H0(W, 2KW ) ∼= H0(Z, 2KZ)

C14 this
way. Specifically, these are given by linear combinations of

Z2

0 , Z12Z5 + Z2Z9, Z10Z6 + Z3Z7, Z11Z4 + Z1Z8,

Z10Z3 + Z6Z7, Z1Z11 + Z4Z8, Z12Z2 + Z5Z9.

We resolved this issue in a fairly straightforward way. Multiplication
by Z0 sends H0(Z, 2KZ)

C14 into the space of C7-invariant, C2-anti-
invariant sections of H0(Z, 3Z) which are zero on {r0,0 = 0} ⊂ Z.
While some of these are simply products of Z0 with a C14-invariant
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quadratic polynomials above, we got three additional basis elements,
specifically the C3 orbit of

Z1Z
2

10 −
1

4
(−7 + 3i

√
7)Z10Z2Z5 − 2Z1Z3Z5 +

1

2
(1− i

√
7)Z2

12Z6

+ 2Z2Z4Z6 − Z11Z
2

6 − Z1Z10Z7 + Z10Z4Z7 +
1

4
(−7 + 3i

√
7)Z2Z5Z7

− Z4Z
2

7 + Z2

3Z8 −
1

2
(1− i

√
7)Z3Z

2

9 ,

and then computed the 84 cubic equations on them.

The final verifications of the smoothness of the resulting surface
and of it being the fake projective plane in bicanonical embedding
were performed in [BJL23+, FPP M2.txt, FPP smoothness Hodge.txt]
using Magma [Mag] and Macaulay2 [Mac]. To lower the runtime of our
verification codes, we reduced the equations of X modulo p = 37 which
contains a square root of −7 and a non-trivial cubic root of 1. This
allowed us to apply a change of coordinates on the equations of X so
that the C3 action is diagonalized. This process eliminates roughly 2/3
of the monomials used in the original equations.

5. Further directions

Techniques of this paper might allow for the computation of explicit
equations of some other fake projective planes which are commensu-
rable to the ones with known equations. We leave this for further
REU projects, as this is a suitable training ground for young algebraic
geometers. The sticky point is whether we can find a common nor-
mal subgroup ΓZ in the two groups ΓX and ΓY in question that has a
solvable quotient ΓY /ΓZ . It is considerably more difficult to construct
Galois covers which are not repeated cyclic covers.

Finally, just as a teaser to the reader, we would like to point out that
we only know how to match complex conjugate pairs of fake projective
planes with their explicit embeddings, up to complex conjugation. For
example, we are not aware of any method that would allow one to
precisely say which choice of

√
−7 in our equations of X corresponds

to the specific choice of the generators of ΓX in [CS11+].
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