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EXPLICIT EQUATIONS OF THE FAKE PROJECTIVE
PLANE (a=7,p= 2,0, D;X7)

LEV BORISOV, MATTIE JI, AND YANXIN LI

ABSTRACT. We find explicit equations of the fake projective plane
(a = 7,p = 2,0, D3X7), which lies in the same class as the fake
projective plane (@ = 7,p = 2,0, D327) with 21 automorphisms
whose equations were previously found by Borisov and Keum. The
method involves finding a birational model of a common Galois
cover of these two surfaces.

1. INTRODUCTION

Fake projective planes (FPPs for short) are defined as complex al-
gebraic surfaces of general type with Hodge numbers equal to that of
CP?2. The first example of an FPP was constructed by Mumford in
[Mu79] using the method of 2-adic uniformization. Efforts of multiple
researchers over the ensuing decades resulted in a complete classifica-
tion of these surfaces as free quotients of the complex 2-ball

B2 = {|a] + |z)* < 1} c C?

by explicit discrete subgroups of PU(2,1). We refer the reader to
[BK20] for the history of the field.

However, if one is given a fake projective plane B?/T" with explicit
generators and relations of I', it is still a highly nontrivial problem
to write explicit equations of B?/I" inside some projective space. The
issue here is that there is no known algorithm for calculating modu-
lar forms in a way that would allow one to find polynomial equations
among them. An extensive program of finding equations of fake projec-
tive planes, initiated in [BK20] and continued in [BF20, BBF20, Bo23,
BL23, BJLM23], has up until now produced explicit equations for 10
out of 50 conjugate pairs of FPPs. This paper describes a method
of obtaining one more pair, bringing the count up to 11. As is in all
other efforts of finding FPPs, heavy computer calculations are neces-
sary. We provide the code and the results in the supplementary mate-
rials [BJL23+]. Our primary tool is Mathematica [Math], with some

computations performed in Magma [Mag] and Macaulay2 [Mac].
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The fake projective plane X = (a = 7,p = 2,0, D3X5) lies in the
same class as the fake projective plane Y = (a = 7,p = 2,0, D327)
which implies that there is a surface Z which is an étale Galois cover
of both X and Y. Our construction hinges on the observation that
in this particular case the Galois groups in question are the dihedral
group Dy, of 14 elements and the cyclic group C14. More precisely,
there exists the following diagram of maps of surfaces.

(1) Y& wdsz -5 X
where
e 4 is an unramified cyclic Cy quotient map;

e 7 is an unramified cyclic C7 quotient map;

e sy o7 is an unramified quotient map by the group isomorphic to
Dy;

e p is an unramified cyclic C4 quotient map.

The above is, of course, a direct consequence of the relations among the
fundamental groups of these surfaces, which we denote by I'yx, ..., Ty .
Note that all of them are finite index subgroups in the maximal arith-
metic subgroup I' computed in [CS11+].

The paper is organized as follows. In Section 2 we study the rela-
tionship between the subgroups I'x,I'y, Tz, Ty of I' which is key to
our approach. In Section 3 we describe how we obtain an embedding
of W in CP' and a birational model of Z in CP!2. In Section 4 we
describe the method which allowed us to pass from Z to an embedding
of X into CP?. Finally, in Section 5 we make a couple of comments
regarding possible further directions of this project.
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2. GALOIS COVERS

As was pointed out in the Introduction, the fake projective plane
X = (a = T7,p = 2,0,D3X7) is in the same class (in the sense of
[PY07, PY10, CS10]) as the well-understood fake projective plane Y =
(a = 7,p = 2,0, D327) whose equations were constructed in [BK20].
This means that the corresponding subgroups I'x and I'y of PU(2,1)
are finite index subgroups in some arithmetic group I'. In our case, I'y
is normal while I'y is not, and both have index 21, see [CS11+].

While any two finite index subgroups contain a common normal
subgroup of finite index, this index can in general be quite large. For-
tunately, in our case, we found a subgroup I'y C ' which is a normal
subgroup of index 14 in both 'y and Ty, so that Z = B?/T'z is an
unramified Galois cover of both X and Y.

Proposition 2.1. The commutator subgroup I'y = (I'x)" is a nor-
mal subgroup of [. Moreover, T'y is contained in both I'x and T'y.
The quotient group T'/T' has order 294 and is isomorphic to a certain
semidirect product (D14 x C7) x Cs with generators (ty,ts,t3,t4) and
relations

1 =17 =t§ = (tita)? = t3, tits = tsty, tats = Lst,
L=t tytity " =t1, tatot) ' =t3, tatst;' =13

Here D14 denotes the dihedral group of 14 elements generated by t1 and
to and the action of Cs is seen in the above relations.

Proof. The group I is computed in [CS11+, bargammapresentations.txt]
as the finitely presented group with generators z and b and relations

2 (h722)3, (022 20222)3, (B2 20220, bR 22,
W23 220220 7 P2t e e 3 L
The subgroups I'x and I'y are generated by
b3, 2032, b2°b7 2
and
b2, (2bz1)3 b2b?272, 2b2%b !

respectively.

Magma [Mag] readily computes [BJL23+, Section2.txt] that I'; =
(I'x)" is a normal subgroup of I'y and I'. After that, with some trial
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and error, we found generators of I'/T'; (images of)
tl = bg, t2 = be2Z_2b3, tg = bZ2b_1Z, t4 = b4

which satisfy the relations of the proposition. See [BJL23+, Sec-
tion2.txt] for the Magma verification. O

From now on we will tacitly identify the quotient I'/T'; with the
above semidirect product.

Proposition 2.2. The quotients T'x /T z and Ty /T are given by (Cy X
C7) x {1} and (D14 x {1}) x {1} respectively, for an appropriate choice
Of Cg C D14.

Proof. We verify in [BJL23+, Section2.txt] that the quotients I'x/T"
and I'y /T are generated by {t1,t3} and {t1, 12} respectively. O

Corollary 2.3. The surfaces X and Y are given by X = Z/Cy4 and
Y == Z/D14.

Remark 2.4. The elements t3 and ¢, generate the quotient group I'/Ty,
isomorphic to C; x (3. It is the automorphism group of Y and it acts
on the homogeneous coordinates of the embedding of Y into CP? by
scaling and/or permuting the coordinates, see [BK20].

We will also be interested in the intermediate surface W = Z/Cx
with the action of C; coming from the normal subgroup of Dy, in I'/T'5.
The corresponding group I'y is an index two subgroup of I'y generated
by I'z and t5. The surface W is the unramified double cover of Y which
corresponds to the unique nontrivial automorphism-invariant 2-torsion
line bundle on Y, see [BK20, BJLM23|. Indeed, both I'y, and T'y
are normal in [ (see [BJL23+, Section2.txt]) and thus the index two
subgroup I'yy C Iy is preserved by the conjugation action of I'/T'y.

In what follows we will need the following.

Proposition 2.5. The Hodge numbers of Z are h*°(Z) = 0, h"'(Z) =
14 and h*°(Z) = 13.

Proof. The Euler characteristics of Oy is 14, since Z — Y is unramified.
We used the Magma file [BJL23+, Section2.txt] to check that h'°(Z) = 0
since the abelianization of Z is finite. This implies that h*%(Z) = 13,
and h™(Z) = 14 follows from yop(Z) = 14x40p(Y) = 42. O
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Moreover, we can identify the representation of I'/T'; on the 13-
dimensional space H°(Z, Kz). Let us first discuss the action of Dy x
C7. Recall that D4 has two one-dimensional representations, which
we will call Vi and V_ coming from Cy = Dy4/C7 and three two-
dimensional representations which we will call V;, V5 and Vj. Specifi-
cally, the generator of C'; C Dy4 has eigenvalues (?Ei on V;, and there is
a basis of C; eigenvectors of V; on which Cy, C Dy, acts as a permuta-
tion. Irreducible representations of D4 x C'; are then tensor products
of the above representations of D4 and a one-dimensional representa-
tion of C7, and we denote them accordingly. For example, V54 stands
for the tensor product of V5 with the representation of C; that sends
its generator to (7. It has a basis (rg4,7_24) where subscripts denote
the weights modulo 7 with respect to the action of C; x C'.

Proposition 2.6. As a representation of D4 x C%, after a choice of
a generator of {1} x Cy, the space H*(Z, Kz) is isomorphic to a direct
sum of representations

Voo@Vig @ Via® Vas @ Vi @ Vioa @ Voua
for some a € {3,5,6} mod 7.

Proof. Since the actions of Dyy and C4 have no fixed points and
HY(Z,K;) = 0, the holomorphic Lefschetz fixed point formula im-
plies that H°(Z, Kz) ® H*(Z, K ) is a regular representation for both
of these groups. Since H?(Z, Kz) is a trivial one-dimensional represen-
tation, we see that H°(Z, Kz) is isomorphic to

V—,O S ‘/I,al S ‘/I,ag ) ‘/é,ag ) ‘/é,a4 > V;l,a5 > V;l,ag

with (aq,...,as) a permutation of (1,...6).

By picking a generator of {1} x C7, we can assume without loss
of generality that the first two V-s are V;; and V;, for some a ¢
{0,1} mod 7. Furthermore, we have the action of the group C3 which
conjugates V, into Vi, 9, because of Proposition 2.1. This uniquely
determines the rest of the V-s. It remains to observe that a can not
be 2 or 4 either because it would contradict the above permutation
property. L]

Remark 2.7. Since we can choose a generator of {1} x C7 so that Vj,
becomes V1 and V;; becomes V; ,-1, we can further reduce to a = 3 or
a = 6 cases. We will later see that a = 3 case works. In principle, we
could have used more extensive Magma calculations and the holomor-
phic Lefschetz formula to fully specify the representation of Aut(Z) on
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H°(Z,Kz), but we find it easier to use this approach, which will be
enough for our purposes.

Corollary 2.8. There is a basis

(7“0,0, 1,1, 7-11,74,2,7-42,724,7-24, 71,0y "—1,a5 T4,2a5 T—4,2a> 1"2,4a, 7“—2,4a)

of H(Z, Kz), indexed by subscripts in (C7)?, with the following action
of the automorphism group of Z:

e the generator of C7 x {1} sends r;; to Cir;j;
e the generator of {1} x Cy sends 1 to (iryj;

e the generator of Cy C Dyy sends rog to (—rop) and interchanges
Ti,j CLTLd T—i,j;

o the generator of Cs sends r; ; to 4 9;.
Proof. Follows immediately from Proposition 2.6. U

3. FINDING EXPLICIT EQUATIONS OF Z

In this section, we describe the rather lengthy process that allowed
us to construct a birational model of Z as a repeated cyclic cover of Y.

In the first step, we constructed the double cover W of Y as a
surface in its bicanonical embedding into CP'?, cut out by 100 quadratic
equations. While it was already accessible via methods of [BK20], we
used a different approach. We note that W — Y corresponds to the
2-torsion divisor D on Y and H°(W, 2Ky, ) can be naturally identified
with H°(Y,2Ky) & H°(Y,2Ky + D). The action of Aut(Y) extends
to H°(Y,2Ky + D) and there is exactly one invariant section s on it,
which we find as follows.

Recall that there is a unique ample divisor class H on Y such that
3H = Ky. In [BJLM23|, we studied linear systems |nH +7'| for small n
and torsion divisors T'. Specifically, |4H + D| has three Cr-equivariant
sections that are permuted by Cj5, and we know explicit equations of
these curves on Y. This allows us to find the curve {s = 0} on Y
by looking for an automorphism-invariant section of 6 Ky = 18 H that
vanishes on the three aforementioned curves in [4H + D] linear system
and using

6H +D =18H — 3(4H + D).
Once we have found this curve {s = 0}, we are able to find an Aut(Y)-
invariant section of 12H = 2(6H + D) which vanishes twice on it, i.e.
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it is equal to s®2, up to scaling, which we denote by U;g. We can then
use s to embed sections of 2Ky + D into H°(Y,4Ky). Note that the
map of 55-dimensional spaces Sym?(H°(Y,2Ky)) — H°(Y,4Ky) is an
isomorphism, and we can view sections of 4Ky as quadratic polyno-
mials in the defining variables Uy, ..., Uy of Y in [BK20]. The image
of ®s : H°(2Ky + D) — H°(4Ky) is the ten-dimensional space of
quadratic polynomials in Uy, ...,Us which are zero on {s = 0}. We
pick a basis of it with a nice action of Aut(Y’) (the C7 acts by scaling
the basis elements and C3 acts by permuting them) and denote it by
Ul(), cee Ulg.

We constructed the basis (Py, ..., Pigy) of H*(W,2Ky) by looking
at P, =U; fori=0,...,9 and P, = \/Z{J_w for : = 10,...,19. We then
picked random points on Y to find quadratic relations on P;. Note that
the covering involution of W — Y acts by (+1) on F,..., Py and by
(—=1) on P, ..., Pig. We also had to be careful with the scaling of Uy,
to ensure that our model of W is defined over the field Q(y/—7). More

precisely, we used

49+ 13iv/7) / 1
%(6_4(_17 — TiVT) U + UyUs + UpUs + UsUs

1 1 1
+ S (LU + (1 + VDU + S(~1+ 1ﬁ)U3U9),

Uro =

see [BJL23+, Section3.nb).

Claim 3.1. The double cover W of Y is cut out by 100 quadratic
equations from [BJL23+, W _equations.txt].

Remark 3.2. We did not try to do all of the formal checks on W, as
the number of variables is likely too high, although we did check its
Hilbert polynomial in [BJL23+, W_check_Hilbert.txt].

Remark 3.3. We choose to make a distinction between statements that
are verified by hand or by computer using symbolic manipulation,
as opposed to the statements that are derived by picking some ran-
dom points on the varieties in question, as is often the case in our
Mathematica calculations. We call the former propositions, lemmas,
et cetera, and use the term “claim” to indicate the latter.

The next step (passing from W to Z) is arguably the most techni-
cal in the entire process. It is similar to the method of [BF20]. Let
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T11,7-11, 1,4, "—1,a e sections of H°(Z, Kz) as in Corollary 2.8. Con-
sider
$1=T11"-1,a)52 = T-1,1T1,a,53 = T1,1T-1,1, 84 = "1,aT-1,a-

These s; are invariant with respect to C7 x {1} and therefore are pull-
backs of sections of H®(W, 2Ky, ). They must satisfy a number of re-
strictions.

e There holds s185 = s354.

e Sections s; and s, have weight (a+ 1) with respect to the {1} x
C'; action on W.

e Sections s3 and s4 have weight 2 and 2a respectively under the
above action.

e The covering involution of W — Y switches s; and sy and
preserves sz and sy.

This information turns out to be sufficient to reconstruct s;, up to
scaling.

Claim 3.4. For the choice of a = 3 we can pick
X
4
53 =PF5, 54 = %(5 +iﬁ)P1.

Here P; are the coordinates on CP' in which W is embedded. There
are no solutions for a = 6.

1 1 1
Sl:_PS_ZPQ_ 14 iV7)Pig + Pio, 52:_P6_ZP9+ 1+iV7)Pig — Pio,

1

Remark 3.5. If m: Z — W is a quotient map, we have

6
7T*OZ = @T@Z
1=0

where T is a 7-torsion line bundle on W. The above is also precisely
the splitting of 7,07 into eigenbundles of the C7-action. Since r; ; are
eigenfunctions of the C7 x {1} action on Ky, they can be viewed as
sections of Ow (3H) ® T®" and this defines curves {r;; = 0} in W.
Note that while we have not yet really constructed 7; ;, we can indeed
construct these curves. For instance, r1; = 0 is the set of common
zeros of s; and s3 on W.

Once all the s; are found, there are multiple approaches to finding a
birational model of Z. We chose an approach that manifestly preserved
the C3 action, in addition to the D4 x C; action. Specifically, the field
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of rational functions of Z is a degree 7 cyclic extension of the field of
rational functions of W, and we can pick the basis of it to be

11 T42 T24 T—11 T—42 T—24
(2) (1, ==, —=, —= )

Y

) ) ) )
To,0 To,0 Too 7To0 700 70,0

since these cover all possible first subscripts. We can then compute the
multiplication table and use it to find the polynomial relations among
;. We take care to keep (s action throughout.

70,0 70,0

For example, suppose we want to multiply (”—2> (”—4> We know
that the product will be in the (¢ eigenspace of C; C D14, so we have
() () -7 ()

70,0 70,0 70,0
for some rational function F' on W. Then F has simple zeros at {rq4 =
0} and {ryo = 0} and poles at {roo = 0} and {r_;; = 0}. This
determines F' uniquely up to scaling, and it can be found explicitly as

follows. We know that the divisor of s3is {r_11 =0} + {r;; =0} and
the divisor of Pjg is 2{rpo = 0}. Therefore, the divisor of F's3Pyq is

{7’274 = O} + {7’472 = O} + {7’171 = O} + {7’070 = O}

which means that F's3Pjy is a global section of 2Ky,. Such sections
are given by quadratic polynomials in Py, ..., P9 (we make sure to
look at a Cs-invariant subset of degree two monomials that span the
complement to the space of 100 relations of W) and it is a simple matter
to put conditions of vanishing on random points of the above curves
to determine F'. We then use C5 action to populate the multiplication
table appropriately.

Similarly, if we want to find the square of, for example, 754, we see

that
(%)2 _F (M_z)
70,0 70,0
For the s§ = ryor_45 (a Cs-translate of s3) we see that the divisor of
FSgPl(] is
2{’/“274 = 0} + {7’_472 = O} + {7“070 = O}
We observe that F' = 0 is singular at = € {ro4 = 0} if and only if the

gradient of F' vanishes on the tangent space of x in W, which again
allows us to find F' up to scaling.

Once the multiplication table is populated, up to scaling, the asso-
ciativity property is used to fix scalings (up to some natural ambiguity
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coming from Cj-invariant scaling of r; ;). We can then compute (recall

that a = 3)

™3 Tap T25 13 T-46 T-25

7’0,0’7’0,0’7“0,0’ 70,0 ’ 70,0 ’ 70,0
in terms of the basis (2) and use multiplication table to compute the
relations among the 13 basis elements r;; of H°(Z, Kz). While we do
not get an embedding, we still get a birational model of Z in CP!2.

The details can be found in [BJL23+, Section3.nb).

Remark 3.6. We used the notation
= (7“0,0,7’1,1,7’4,2,7’2,4,7’—1,1,7’—4,2,7“—2,4,7’1,?”7’4,6,7’2,5,7’—1,3,7“—4,6,7’—2,5)

for the homogeneous coordinates on the birational model of Z which
hopefully does not cause confusion with Z itself. It is important that
C3 symmetry is maintained throughout the computation. We also have
control over the action of Cy C Dy4, which negates 79 and permutes
the rest of r; ;. Specifically, the action of generators g3 and g, of the
respective cyclic groups is given by

g3(Z0a ey ZlZ) - (Z()7 227 Z37 Zl> Z57 267 Z47 ZS> ZQ) Z77 lea Z127 ZlO)a
92(Z07 tety Zl2) = (_Z07 Z47 Z57 Z67 Z17 Z27 Z37 Z107 le7 Z127 Z77 Z87 Zg)

4. FINDING EXPLICIT EQUATIONS OF X.

In this section, we explain how we obtained equations of X in its
bicanonical embedding.

Since X is obtained from Z by taking C14 quotient (by the Cy C D1y
and {1} x C7) in principle one can take the Cyy-invariant global sec-
tions of 2K 7 and look for polynomial equations among them. The only
difficulty that we had to overcome is the fact that Sym*(H%(Z, K,)) —
H(Z,2K7) is not surjective, and we can only get a dimension 7 sub-
space of the dimension 10 space HO(W,2Ky ) = H°(Z,2K7)“" this
way. Specifically, these are given by linear combinations of

ZS, Li9ls + ZayZy, ZigZLe + L3Zn, Zn1Za + 2123,
21043 + LgZn, L1211 + LyLs, Z1aZo + L5 Zy.

We resolved this issue in a fairly straightforward way. Multiplication
by Zy sends H°(Z,2K ;) into the space of Cr-invariant, Ch-anti-
invariant sections of H°(Z,3Z) which are zero on {roy = 0} C Z.
While some of these are simply products of Z, with a Cs-invariant
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quadratic polynomials above, we got three additional basis elements,
specifically the C3 orbit of

1 1
Z, 2, — 1(—7 + 3iVT) 2102225 — 221 Z3 75 + 5(1 — i1 Z% 7

1
+ 22,7, Z — Z11 2§ — ZhZroZr + Z1oZaZr + Z(_7 + 3iV7) Z2 25 2+

1
— 2,72 + 7375 — 51— iV7)Z3 22,
and then computed the 84 cubic equations on them.

The final verifications of the smoothness of the resulting surface
and of it being the fake projective plane in bicanonical embedding
were performed in [BJL.23+, FPP_M2.txt, FPP_smoothness_Hodge.txt]
using Magma [Mag| and Macaulay2 [Mac|. To lower the runtime of our
verification codes, we reduced the equations of X modulo p = 37 which
contains a square root of —7 and a non-trivial cubic root of 1. This
allowed us to apply a change of coordinates on the equations of X so
that the C3 action is diagonalized. This process eliminates roughly 2/3
of the monomials used in the original equations.

5. FURTHER DIRECTIONS

Techniques of this paper might allow for the computation of explicit
equations of some other fake projective planes which are commensu-
rable to the ones with known equations. We leave this for further
REU projects, as this is a suitable training ground for young algebraic
geometers. The sticky point is whether we can find a common nor-
mal subgroup I'z in the two groups ['y and I'y in question that has a
solvable quotient I'y /T'z. It is considerably more difficult to construct
Galois covers which are not repeated cyclic covers.

Finally, just as a teaser to the reader, we would like to point out that
we only know how to match complex conjugate pairs of fake projective
planes with their explicit embeddings, up to complex conjugation. For
example, we are not aware of any method that would allow one to
precisely say which choice of v/—7 in our equations of X corresponds
to the specific choice of the generators of I'y in [CS11+].
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