arXiv:2308.10429v1 [math.AG] 21 Aug 2023

ON THE GEOMETRY OF A FAKE PROJECTIVE PLANE WITH 21
AUTOMORPHISMS

LEV BORISOV, MATTIE JI, YANXIN LI, AND SARGAM MONDAL

ABSTRACT. A fake projective plane is a complex surface with the same Betti numbers as CP? but not
biholomorphic to it. We study the fake projective plane P?akc = (a =7,p = 2,0,D327) in the Cartwright-
Steger classification. In this paper, we exploit the large symmetries given by Aut(IP’?ake) = C7 x C3 to
construct an embedding of this surface into CP5 as a system of 56 sextics with coefficients in Q(v/—7). For
each torsion line bundle T' € Pic(PZ, ), we also compute and study the linear systems |[nH + T)| with small
n, where H is an ample generator of the Néron—Severi group.

1. INTRODUCTION

A question by Severi asked whether there exists a complex surface homeomorphic to CP? but not bi-
holomorphic to it. A classical corollary in Yau’s proof of the Calabi-Yau conjecture [Yau77] answered this
question in the negative by showing that any complex surface homotopic to CP? must also be biholomorphic
to CP?. This prompted Mumford [Mum?79] to construct the first example of a complex surface with the
same Betti numbers as CP? but not biholomorphic to it. These surfaces are now called fake projective planes
(FPPs for short).

Fake projective planes have ample canonical bundle and hence are algebraic surfaces of general type by
Chow’s Theorem. They serve as canonical examples for complex surfaces of general type with the smallest
Euler characteristics. Studying their geometry and classification is a subject of interest for many algebraic
geometers.

For a fake projective plane X, the Hodge Theorem implies that H7(X,C) = €
follows from the Hodge symmetry that the Hodge numbers of X must be

WPa(X) = {Lif (p.4) € {(0,0), (1,1), (2,2)}

0, otherwise.

ey HP9(X). Tt then

Let ¢; and ¢ be the first and second Chern numbers of X respectively, Noether’s formula asserts that
2

= x(0) = (1R (X) = 1

J=0

2+ cy
12

Recalling that ¢ is equal to the topological Euler characteristics of X, it then follows that ¢? = 3cp and
hence the Bogomolov—Miyaoka—Yau inequality is an equality. A classical result in [Yau77] asserts that this
equality is true if and only if X is the quotient of the complex 2-ball B2 := {(z,w) € C? | |z|* + |w|? < 1} by
a torsion-free co-compact discrete subgroup of PU(2,1).

Much of the work in classifying all fake projective planes has been done by analyzing these quotients. In
the same paper by Mumford [Mum?79], he noted that there exist only finitely many fake projective planes up
to isomorphism. This is a consequence of Weil’s result [Wei60] that discrete co-compact subgroups of PU(2, 1)
are rigid. Later on, Prasad and Yeung [PY07] showed that all fake projective planes must fall into one of 28
distinct non-empty classes. Finally, Cartwright and Steger [CS10] obtained a complete classification of 50
conjugate pairs of fake projective planes into the aforementioned 28 different classes. For a comprehensive
survey on the history of classifying all fake projective planes, we refer the reader to the expository paper by
Yeung in [Yeu08].
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In this paper, we will study the fake projective plane ]P’%ake = (a=7,p=2,0,D327) in the Cartwright-
Steger classification. It is one of the only 3 pairs of fake projective planes whose automorphism group has
the largest cardinality, being the unique non-abelian semi-direct product C; x C3. The other two pairs
are respectively the fake projective plane (C20,p = 2,0, D327) and Keum’s fake projective plane [Keu(6]
(a=7,p=2,7,D327).

It is known that there exists a unique ample divisor class H on P%,, . such that its canonical class K is
equal to 3H, and the Picard group of PZ, is given by Pic(P%,.) = ZH & (Z/27)*. In [BK20], Borisov and
Keum produced an explicit construction of the P?ake in CP? as 84 cubic equations in 10 variables using the
10 global sections of H(PZ,  6H).

Our first goal is to study how the automorphism group Aut(P%,, ) = C7 x C; of PZ,, . acts on Pic(PZ,,).
Clearly any automorphism has to fix H, so the question amounts to investigating what happens on the torsion
subgroup. For each non-trivial torsion element 7' € Pic(P%, ), we will compute explicit representatives of
3H + T as non-reduced cuts in 6 H in Section 2. We focus on three torsion classes - D, D1, D + D1 - which
are representatives of the C7 orbits of the automorphism action.

Another question we are interested in is how the linear systems |[nH + T'| behave for n < 5 and torsion
line bundles T' € Pic(PZ,.). This is because as n increases, the expansion in dimensions tends to trivialize
phenomena in lower dimensions (for example, the Kodaira Vanishing Theorem becomes applicable for n > 4).
Specifically, we show that

Theorem 1.1. On the fake projective plane P%, . and for torsion line bundle T € Pic(P%,.),
(1) WO(B2,, 2H +T) = 0.
(2) 4H + T is basepoint free if and only if T is non-trivial.

(8) 5H + D is very ample, but 5H is not very ample.

Note that the case of T € {0,D} in Theorem 1.1(1) is a consequence of Theorem 5.3 in [GKS23].
Our contribution is for the other 14 torsion line bundles. As a consequence (or rather in the proof of)
Theorem 1.1(3), we also produce an explicit embedding of P2, as 56 sextics in CP5 with coefficients in

QWV=17).

For all fake projective planes X with known explicit equations (see [BK20], [Bor23], [BF20], and [BBF22]),
their embeddings were constructed in 6 Hx, where Hyx is the unique ample divisor class on X such that
3Hx = Kx the canonical divisor class. In [BL23], the authors were able to further embed Keum’s fake
projective plane with 5Hx. Whether or not 6 Hx is very ample for all fake projective planes X is still an
open question, but Theorem 1.1(3) shows that a similar conjecture is false for the case of 5Hx.

A common feature in the research on fake projective planes is liberal use of mathematical computing.
The proof of Theorem 1.1 depends heavily on the use of the computer algebra systems Mathematica [Inc],
Magma [BCP97], and Macaulay2 [GS]. Our code repository [BJLM] accompanying this paper is available on
GitHub and on our webpage.

1.1. Outline. In Section 2, we first describe a method of computing 3H + D,3H + D1,3H + D + D; and
determining the group relations of the torsion divisors. We then find the explicit quadratic polynomials
vanishing on 3H + T for each torsion divisor T'. In Section 3, we compute explicit representatives of 4H and
prove the “only if” of Theorem 1.1(2). In Section 4, we use the explicit representatives of |4H| to compute
explicit maps given by sections of 5H and 5H + D into CP® to prove Theorem 1.1(3), and we also compute
explicit equations for the zero locus of the C7-equivariant sections of 5H. In Section 5, we use the sections
of 5H to compute explicit equations for the zero locus of the sections 4H + T for T # 0 a torsion line
bundle. This proves the “if” direction of Theorem 1.1(2). In the same section, we also use this result to
prove Theorem 1.1(1).
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2. COMPUTING TORSION DIVISORS WITH 3H + T

In this section, we construct explicit non-reduced cuts representing 3H + T for each non-trivial torsion
line bundle T' € Pic(P%,.). This is done in two steps. We first find the cuts in a finite field with the code
3H-Reduction.txt in our code repository [BJLM]. We then lift the solutions back to Q(v/=7) in the first
part of the file 3H-Torsion.nb.

In addition, we also compute the group relations between the explicit representatives we found. Finally,
we also compute quadratic polynomials vanishing on each curve in the class of 3H 4 T in the embedding of
P2, in CP?. These calculations are done in the remainder of 3H-Torsion.nb.

2.1. Construction of the non-reduced cuts. We would like to construct the torsion classes of the Picard
group. Suppose T is a non-trivial torsion class, then Theorem 2.2 of [GKS23] asserts that H°(P%, 3H +T)
is one-dimensional. Suppose we take generator « € HY(P%, .,3H + T'), then since all non-trivial torsions of
the Picard group have order 2, we have a®? € H(PZ,,.,6H). Thus, we would like to construct 3H + T from
elements in H°(P?,,6H), whose zero is an nonreduced curve.

We can do this by examining how the automorphism group of ]P’%ake interacts with the torsion classes. In
[BK20], the automorphism group acts on the homogeneous coordinates of CP? as follows:

(1) g3(UQZU12U22U32U4ZU52U62U72U8ZUg):(UQZU22U3ZU12U5ZU62U4ZU82U92U7)

(2) g7(U0:U1:UQZU31U43U52U6:U72U8:U9)
= Uy : ¢OU, : COUy : C3Us : CUy 2 CPUs = U5 < CPU7 = CPUg = ¢*U),

where g3 and g; are generators of C5 and C7 respectively and ¢ is the 7-th root of unity exp(2mi/7). We
first observe that

Lemma 2.1. There are at least 3 non-trivial torsion classes of Pic(P3,.) that are invariant under the Cs
action.

Proof of Lemma 2.1. Up to scaling, clearly Uy in 6H is fixed by the entire automorphism group, so there
must exist some non-trivial torsion element D such that 3H + D corresponds to Uy as a non-reduced
curve in 6H. By Maschke’s Theorem, the one dimension given by D splits off and we are left with a
three dimensional representation of the automorphism group. There are 7 non-trivial elements in the three
dimensional representation, so there must exist some element here fixed by the C3 action. O

Lemma 2.1 suggests that we should be searching for Cs-invariant curves of the form
(3) Uo + a1(Uy + Uz + Us) + az(Us + Us + Us) + a3(Ur + Us + Uy)

Subsequently, we obtained the coefficients first in finite fields in the file 3H-Reduction.txt. We searched for
primes p for which —7 is a square in [F),, and then found using Magma that the smallest such prime for which
the reduction of the scheme preserves the Hilbert polynomial is 11. Then, we shuffled through all possible
a;’s in Fy1 to solve for the triples that produce unreduced schemes. We got three solutions, (0,0,0),(7,0,0)
and (8,7,7). The first one corresponds to 3H + D as it is fixed by the action of Aut(P%, ).

Next, we lifted the coefficients back to Q(y/—7) in 3H-Torsion.nb through the following procedure. We
obtained several points on the last two curves. Suppose one of them is z = [xq : ... : 29]. We can set without
loss of generality o = 1. Then we consider 2 tangent vectors of the form v = (vg, v1, ..., v9). We set similarly
vo = 0, and then v; = 1,v9 = 0 for one and v; = 0,v5 = 1 for the other to make them orthogonal. Then we
needed to make sure the tangent vectors stay in the TIP?akC, so we substituted in x; + v;t’s for U;’s for each
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of the 84 equations and the linear curve we obtained, and solved for conditions such that the coefficient of ¢
is zero, which means that the vector is orthogonal to the gradient of all these equations.

We then lifted the coefficients to mod 112. We substituted /—7 with appropriate values, and adjusted
the linear cuts by adding 11(a}(Ur + Uz + Us) + a4 (Uy + Us + Us) + a5(Uz 4+ Us 4 Uy)), for some unknown
(a},ah,as), which ensures that it agrees with the original cuts mod 11, and similarly the points on these
cuts and the tangent vectors at these points. Then we solved for the same equations modulo 11 to obtain the
unknown coefficients modulo 112. It is clear that we can go through the same process with the new data to
consecutively lift them to modulo any 11¢. In the end we obtained the coefficients for the cuts modulo 1121,
From these we recover the original coefficients in Q(v/—7) as follows. If an element a € Q(v/—7) satisfies an
integer relation c; + cov/—7 + cza = 0, it leads to ¢; + c2[v/=T7] + c3[a] = 0 for the corresponding 11-adic
numbers. If we have approximations [a];;21 and [v/—T7];121 of [a] and [v/—=7] respectively, then we get an
integer relation

c1+ CQ[\/—_7]1121 + Cg[a,]1121 + 041121 = 0.
If ¢1, co and c3 are small, then the above relation can be recovered by using the lattice reduction algorithm
to find equations of small norm in the lattice of integer relations on 1, [v/=7]121, [a]1121 and 1121

In this way, we obtained the two cuts to be
1
3H+ D1 =Uy+ 5(1 + V=7 (U1 + Uz + Us)
3H + Dg == Uy + (—5 =+ V —7)(U1 +Us + Ug) + (4 — 44/ —7)(U4 +Us + UG) — 4(U7 + Us + Ug)

We computed points on these cuts to see that they are nonreduced curves, so they are indeed the cuts
we were looking for. Notice that Dg = D + D1, and the three torsion classes D, D1, and Dg are the orbit
representatives of the C7 action on the non-trivial torsion classes of Pic(PZ,, ). Let’s also define Do, Ds, ..., D7
and Dg, D1, ..., D14 as the successive Cr-translates of D1 and Dg respectively using Equation (2).

(4)

2.2. Determination of the group relations. We would like to now determine the group relations of the
cuts we computed (and by extension, the torsion line bundles they corresponds to) in the torsion of the
Picard group of P%,, ..

Specifically, we want to determine when a triple of non-trivial torsion line bundles (Li, Lo, L3) satisfies
L1+ Ly 4+ Ly = 0. First we note this can only happen when all three line bundles are distinct. Let Ly =
L1+ Lo+ L3, and consider sections of 12H which are zero on the curves in the class 3SH+L1,3H + Lo, 3H + Ls.
This space is isomorphic to the space of sections on 3H + L4 and is therefore zero iff Ly is zero. We can
find these sections explicitly by computing random points on 3H + L, ..., 3H + L3 and looking for quadratic
polynomials vanishing on these random points. This is realized by constructing a matrix whose rows are the
evaluations the h°(P%, , 12H) = 55 quadratic monomials on the aforementioned random points. Recall that
for a torsion line bundle T - h%(PZ,, .,3H +T) = 0 if and only if 7T is trivial, hence this matrix has full rank
lf and only lf L1 —+ L2 + L3 = O

We computed the rank of these linear systems for every triple in the 15 non-trivial torsion classes to
determine the group laws in terms of these notations. The complete table is in the file 3H-Torsion.nb, here
we show how Dy, ..., D7 can be written in terms of the basis { D1, Da, D3}:

(5) Dy= D1+ Dy, Ds=Dy+Ds, Dg=D1+Dy+ D3, Dr=D;+ Ds

2.3. Quadratics vanishing on 3H + T. In this section, we will describe how to construct |3H + T for
each non-trivial torsion 7'. While we realized sections of 3H + T as non-reduced cuts in 6 H, taking random
linear cuts and computing its intersection with these non-reduced cuts would still produce points on 3H +T.
Hence, we can repeat a similar procedure as in Section 2.2.

In particular, for each of 3H + D,3H + D1,3H + D + D;, we computed numerically points on each
of the non-reduced cuts given and solved for the coefficients of quadratics in Uy, ..., Uy vanishing on them.
We can populate the quadratics on the other twelve 3H + D;’s by successively applying the C; action onto
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the quadratics computed already. For each 3H + T, we find 28 quadratics vanishing on its curve, which is
expected as dime H°(P%, ,12H — (3H + T)) = 28.

3. COMPUTING 4H

In this section, we compute the linear system |[4H|. This will prove a proof for the “only if” direction
of Theorem 1.1(2). We follow the general method of [BL23, Section 3.2] by Borisov and Lihn, where they
computed the linear system |[4H| on Keum’s fake projective plane. Our specific constructions are realized in
the file 4H.nb in our code repository [BJLM].

By the Riemann-Roch and the Kodaira vanishing theorems, we have dimc H°(P%,.,4H) = 3. The
C7 action on H O(P%ake, 4H) splits it into three one-dimensional Cr-eigenspaces, which, by the holomorphic
Lefschetz fixed-point formula, have eigenvalues &3, £, and €° respectively. Let 73,76, and 75 be the sections
generating each eigenspace. There’s also a C3 action that permutes r3 — rg — r5 — 73.

Let’s define s; = r?g fori=3,6,5and d = r3 ®1re®rs5. Note that sz, sg, s5,d € HO(]P’%ake, 12H) and thus
can be represented as quadratics in Uy, ..., Ug. Since s3 has C7 weight 3 x 3 =2 (mod 7) and d has weight
3+546=0 (mod 7) and is C3 invariant, we can write s3 and d as

sg = bsU1Us + b3Uj + bsUoUs + baUxUs + baUsUr + b UZ + bz UgUs + bgUsUy

6
( ) d:= elUg + 62(U1U4 + U2U5 + UgUG) + 63(U1U7 + U2U8 + UgUg)

Note that s5 and sg may be obtained as Cs-translates of ss.

Our goal is then to solve for s3 and d explicitly. Then we could solve for {s3 = d = 0} to obtain the
section r3 and use the C3 action to find r¢ and r5.

3.1. Solving for s3 and d. The overall idea is that we want to solve for the sextic equation s3s5s¢ —d> = 0.
We can do this by computing random points on P?ake with high accuracy and evaluating the expression
535556 — d> on these points. This will produce relations on the coefficients b1, ..., bs and e, e, e3, which we
can then solve in the Magma file 4H-Quadratic.txt.

However, the process above may take quite long computationally. To reduce the run-time, we also
compute some additional constraints on the coefficients before passing it down to the 4H-Quadratic.txt.
The additional constraints are calculated as follows:

e We observe that there are three C7 fixed points on PZ,  given by
p1:=1[0:0:0:0:0:0:0:1:0:0], p2:=[0:0:0:0:0:0:0:0:1:0],

7
(™) p3=[0:0:0:0:0:0:0:0:0:1]

We note that p2 must be in the curve {rs = 0}. This is because the only quadratic monomial that
does not vanish on py is U2, which has C7 weight 4 (mod 7). On the other hand, we observe that
S3 = rg’ has weight 2 (mod 7) and thus does not have a term on U827 so r3 must vanish on ps.
Similarly, we also have that ps € {rs = 0} as U has weight 1 (mod 7).

e It follows that ps, p3 vanish on s3 up to multiplicity 3. We then compute the order 3 formal
neighborhoods of ps and ps respectively (in practice, we only needed them up to order 2). Then we
solve for the conditions of s3 being identically zero on the formal neighborhoods of ps and p3 up to
order 2. This reduces the number of independent coefficients on s3 from 8 to 6.

After solving the relations on the remaining 9 coefficients produced by the random points, we obtain the
following solutions:

8

1/1 4 8
s3 == =(1—27V-)U1Us + — (101 — V-1)U2 + — (15 + V-1)UoUs + — (1 + 2 V-T)UsUs
- 8\ 29 29 29 29

1 1 1
+8UsUr — 4UgUs + 55 (101 = V- UoUs + £ (101 = V-1)UaUy + =2 V-7(101 - \/-7)U2Ug>
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1

9) d= g5 ((35—17\/—7)U02+(70—34\/—7)(U1U4+U2U5+U3U6)+(21+13\/—7)(U1U7+U2U8+U3U9))

Remark. While the authors of [BL23] solved the system s3s5s¢ — d®> = 0 using a finite field search and lifting
the coefficients back to Q(v/—7), we instead solve for the irreducible components of the ideal formed by the
equations in the file 4H-Quadratic.txt with Magma directly and found the exact solutions in Q(v/—7) within
a reasonable time.

3.2. Solving for r3. We find random points on r3 by computing random points on {s3 = d = 0} with high
accuracy. We then solve for the systems of quadratics vanishing on r3 and obtained dim¢ H O(P%ake, 12H —
4H) = 21 equations. The equations can be found in Equations/4H one_section.txt. Now we can give a
proof that 4H + 0 is not basepoint free.

Proof of “only if” direction of Theorem 1.1(3). Observe that the equations in Equations/4H one_section.txt
have no monomials of the form U72, U82, or U92. This means that p1, p2, ps € {rs = 0}. The C3 action on P?ake
permutes p; — pa — p3 — p1, so it follows that r5 and rg also vanish on these 3 points. O

4. COMPUTING 5H + D AND 5H

In this section, we prove Theorem 1.1(3). For 5H + D, we will construct an embedding of P2, in CP°
given by its sections to show it is very ample in Section 4.1. This simplifies the embedding of P%,  in [BK20]
dimension wise. For 5H, we will construct the image of P, . under its map and show the image is singular
in Section 4.2. We will also verify that 5H is basepoint free after we compute the quadratics vanishing on
the global sections of 5H in Section 4.3. Most of the relevant computations are laid out in the Mathematica
file 5H-Torsion.nb in our code repository [BJLM] except for the check that the sections of 5H do not have
any common zeros, which is done in the Magnma file 5H-intersection.txt.

4.1. For 5H + D. With the computations of 3H + D in Section 2 and 4H in Section 3, we can now find
six linearly independent sections on 5H + D. Observe that 12H = (5H + D) + (3H + D) + 4H, so we
can compute for linear combination of quadratic monomials vanishing on random points from both 4H and
3H + D. This produced 6 quadratics in variables Uy, ..., Ug that represent the 6 global sections of 5H + D.

These 6 quadratics produce a map P%,  — CP®, so we can enumerate random points of the image of
PZ,. in CP5. We then solved for sextic equations in terms of the 6 quadratic polynomials and found 56
sextics with coefficients in Q(v/=7). To check that this is indeed an embedding, we follow the verification
process carried out in [BL23]. The relevant verification files are in the folder Verification/5H+D.

4.2. For 5H. Because h°(P%, ,3H) = 0, we can’t use the method in Section 4.1 to find the sections of
5H. Instead, we observe that 30H = 5H + 4H + 2221(311 + D;), so we can look for linear combinations of
quintic monomials vanishing on random points enumerated on 4H,3H + D1, ...,3H + D7. This produced 6
quadratics in variables Uy, ..., Ug which we will name 71, ..., Zg.

Let X denote the image of PZ, in CP® given by Zi, ..., Zg. We can enumerate random points on X and
solve for sextics in variables Z1, ..., Zg that vanish on the image. This produced 59 (as opposed to 56) sextic
equations with coefficients in Q(v/—7). Moreover, the Hilbert polynomial of the quotient of the polynomial
ring in six variables by the ideal generated by the above 59 sextics is p(n) = (5n — 1)(5n — 2) — 3, which
is less than the dimension §(5n — 1)(5n — 2) of H(P%,.,5nH). By [Har77, Exercise I1.5.9(b)], this implies
that 5H is not very ample.

We investigated the image X of P?ake under this map further. We checked that there were no higher
degree equations besides the sextic equations calculated for X, because these 59 equations generate a prime
ideal, see Magma file BH-is-prime.txt. Furthermore, we checked that X is singular at the following 3 points:

(10) g1 =[1:0:0:0:0:0],¢2:=[0:1:0:0:0:0],g3:=[0:0:0:1:0:0]

by computing the rank of the Jacobian matrix at these points.
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Remark. We suspect that ¢1, g2, and g3 are the only singular points of X and that X is not normal at these
points.

4.3. Quadratics vanishing on 5H. For each quintic equation corresponding to each Z;, we can find random
roots of the quintic equation by computing the intersection of the quintic equation with random linear cuts.
Out of the roots we computed, we only keep the points that are non-zero on the equations of 4H and 3H + D;
for i = 1,...,7. The points left will then be on the section Z;.

We then solve for quadratics in Uy, .., Uy vanishing on the remaining points and finds h°(P%, ., 12H —
5H) = 15 quadratics equations defining Z;. We also check in the file 5H-intersection.txt that all 90
quadratics do not have any common zeros, so 5H is indeed basepoint free.

5. COMPUTING 4H + T

In this section, we use the results of Section 4.3 to compute quadratics vanishing on sections of 4H + T for
all non-trivial torsion classes T’ € Pic(PZ,,). These computations will also be used to prove Theorem 1.1(1)
and the “if” direction of Theorem 1.1(2). The relevant computations for the quadratics vanishing on 4H +T
and the proof of Theorem 1.1(1) can be found in the Mathematica file 4H-Torsion.nb from our code reposi-
tory [BJLM]. The checks that 4H + T is basepoint free are in the Magma file 4H-Torsion-intersection.txt.

It suffices for us to compute the quadratics on 4H + D, 4H + D;, and 4H + Dg, as the rest can be
generated by the C7 action. For L € {D, Dy, Ds}, we observe that 12H = (4H + L)+ (3H + L)+ 5H. We
can compute the quadratics vanishing on 4H + L in two steps:

(1) First, we can find the 3 sections of 4H + L as linear combinations of quadratics in Uy, ..., Uy vanishing
on random points of 3H + L and one section of 5H (in our case, we chose Z3).

(2) These sections are technically quadratic polynomials. Since we have computed explicit equations on
sections of 5H in Section 4.3 and of 3H + L in Section 2.3, we can take random cuts on each quadratic
polynomials, only keeping the points that are non-zero on these equations. The remaining points will
be random points on the sections of 4H + L as divisors. We can then find h°(P%,, ., 12H — (4H+L)) =
21 quadratics for each section.

Note that we also only need to do this on one section of 4H + L, as the other two can be populated by the
Cj5 action. Now we will finish the proofs of Theorem 1.1.

Proof of “if” direction of Theorem 1.1(2). It suffices for us to check this for 4H + D,4H + D;, and 4H + Ds.
Since we have computed the quadratics vanishing on each already, we can simply check that they don’t have
common zeros in the Magma file 4H-Torsion-intersection.txt. g

Proof of Theorem 1.1(1). The case for 2H and 2H + D is implied by Theorem 5.5 of [GKS23]. For the other
14 torison classes, it suffices for us to check this on 2H + D; and 2H + Dg because of the C7 action.

If hO(P%,.,2H + D1) # 0, then let « € H°(P?,.,2H + D;) be some non-trivial section. Consider the
section a ® r € HY(P%,.,6H) where r is any non-trivial section of H°(P%, ,4H + D;). Since the basis of
HO(P%,.,6H) is given by Uy, ..., Uy, this means that o @ r lies in some hyperplane in CP?. However, since
we have found random points on 4H + D; previously in this section, a direct check in 4H-Torsion.nb shows
that there exists 10 points of one section of H°(P%, ,4H + D;) whose determinant is non-zero, hence we
have a contradiction. A similar check is done for 4H + Dg to show that h%(PZ,,.,4H + Dg) = 0. O

Remark. Since h®(P%,,.,2H) = 0, we know that h°(PZ, ., H +T) = 0. This is because the existence of any
non-trivial section in h°(P%,., H + T') would imply h°(P%,.,2H) # 0 by tensoring with itself.
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