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Abstract

Neural rendering is fuelling a unification of learning, 3D geometry and video
understanding that has been waiting for more than two decades. Progress, however,
is still hampered by a lack of suitable datasets and benchmarks. To address this gap,
we introduce EPIC Fields, an augmentation of EPIC-KITCHENS with 3D camera
information. Like other datasets for neural rendering, EPIC Fields removes the
complex and expensive step of reconstructing cameras using photogrammetry, and
allows researchers to focus on modelling problems. We illustrate the challenge of
photogrammetry in egocentric videos of dynamic actions and propose innovations
to address them. Compared to other neural rendering datasets, EPIC Fields is better
tailored to video understanding because it is paired with labelled action segments
and the recent VISOR segment annotations. To further motivate the community, we
also evaluate three benchmark tasks in neural rendering and segmenting dynamic
objects, with strong baselines that showcase what is not possible today. We also
highlight the advantage of geometry in semi-supervised video object segmentations
on the VISOR annotations. EPIC Fields reconstructs 96% of videos in EPIC-
KITCHENS, registering 19M frames in 99 hours recorded in 45 kitchens, and is
available from: http://epic-kitchens.github.io/epic-fields

Video Object Segmentation

Figure 1: We propose EPIC Fields that extends EPIC-KITCHENS with 3D information, including
full frame-rate camera pose trajectories (top). These are directly obtained from dynamic sequences
of object interactions (sampled frames) without additional modalities or pre-scans. We showcase
EPIC Fields through several benchmarks (bottom) that use the fusion of geometric and semantic cues.
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1 Introduction

Recent breakthroughs in neural rendering [57, 37] have enabled a deeper integration of machine
learning in geometric tasks like 3D reconstruction and rendering, creating a new opportunity to bring
3D geometry and video understanding closer together. By representing videos in 3D we can explain
away the variability induced by the camera motion, which is dominant especially in egocentric videos.
We can also integrate information extracted from each frame independently into a global, consistent
interpretation of the video, as demonstrated by semantic neural rendering [81, 63, 23, 74, 24, 14, 66].
However, such successes have been mostly limited to static scenarios, where only the camera moves.
Indeed, 3D reconstruction still struggles with dynamic content and much work remains before we
can have a 3D understanding of dynamic phenomena like actions and activities.

An obstacle to further progress in 3D video understanding is the lack of suitable development data.
In this paper, we address this gap by introducing EPIC Fields, an extension of the popular EPIC-
KITCHENS [7] dataset which adds reconstructed 3D cameras and new benchmark tasks assessing
both 3D reconstruction and semantic video understanding.

We choose to build on EPIC-KITCHENS because it is an established benchmark for 2D video
understanding with rich annotations. Furthermore, it contains egocentric videos which are likely to
benefit from 3D understanding, but which also challenge existing 3D reconstruction techniques due to
their highly dynamic content and long duration (up to one hour). Dynamics include the motion of the
actor and of the objects that they manipulate, as well as object transformations (e.g., slicing a carrot).
Furthermore, most objects are mostly static, moving only during brief spells of active manipulation.
These challenges push the limits of current dynamic 3D reconstruction methods, which are usually
restricted to short videos or focus on one class of objects [49, 45, 43, 29, 25, 58].

Obtaining camera information for EPIC-KITCHENS is challenging since structure-from-motion
methods often fail on such complex videos. By solving this problem, we make it much easier for other
researchers to start on 3D video understanding even when they are not experts in 3D vision, similar
to what the setup and data introduced in works like NeRF [37] has done for static 3D reconstruction.
Furthermore, while we propose specific benchmark tasks, we anticipate that researchers will be able
to use our dataset to investigate many more questions than the ones we investigate here.

In summary, our first contribution is to augment EPIC-KITCHENS with camera information. To
overcome the limitations [19] of traditional structure-from-motion pipelines [53], which struggle
with egocentric videos, we introduce a pre-processing step that intelligently sub-samples frames from
these videos, resulting in higher reconstruction reliability and speed. Our second contribution is to
introduce new benchmark tasks that require or can benefit from the 3D cameras: dynamic novel
view synthesis (i.e., reconstructing unseen frames given a subset of frames from a monocular video);
identifying and segmenting objects that move independently from the camera; and semi-supervised
video object segmentation. These benchmarks use and extend the VISOR [10] annotations to provide
dense ground-truth semantic labels. We report a number of baselines and conclude that, while 3D
reconstruction can indeed benefit video understanding, existing approaches are challenged by the
dynamic aspects of EPIC Fields.

2 Related work

Egocentric action understanding using 3D. Some egocentric datasets [42, 9, 17] contain static
3D scans of the recording locations. These typically do not contain actions, or the environments are
scanned post-hoc, usually with an additional step. For instance, [42] uses stereo egocentric cameras,
but no activities, and in [9, 17], reconstruction is done afterwards via hardware or additional dedicated
scans. These scans are costly, which is why just 13% of Ego4D [17] data comes with a 3D scan. In
contrast, we provide a pipeline for estimating camera poses from egocentric data without additional
hardware or scans, which we demonstrate on an existing, challenging dataset EPIC-KITCHENS.

Inferring cameras in egocentric videos. In this work, we perform the challenging task of re-
constructing 3D camera poses from egocentric videos that show dynamic activities from a single
camera. Since the EPIC-KITCHENS [8] dataset is unscripted, the videos show natural interactions
by participants in their homes, who act swiftly due to familiarity. Prior work [19, 39, 59] on these
videos highlights the challenge. In [19], where ORB-SLAM was used to find short clips where the
camera pose was stable, the authors note that bundle adjustment failed and reconstructions lasted for



just 7 second intervals. Using [19], [39] found hot-spots, but commented that just 44% of the frames
could be registered. Others have used additional hardware information; for instance, [59] proposed
using IMU data to establish short-term trajectories. In contrast, this work shows how to reconstruct
cameras for full videos in EPIC-KITCHENS, without additional assumptions, data, or hardware.

Multi-view videos. A different approach to enabling neural rendering is calibrated multiview setups.
Many of these datasets, however, capture humans in a “blank context”, including HumanEva [56],
Human3.6M [21], AIST++ [65, 27], and ZJU-Mocap [47]. There are datasets capturing humans
in complex environments, such as the Immersive Light Field dataset [2], NVIDIA Dynamic Scene
Datasets [77], UCSD Dynamic Scene Dataset [32], and Plenoptic Video datasets [28]. However,
these videos are short (1-2 min) and, due to the capture setup, show actions outside of their natural
environment. In contrast, EPIC-KITCHENS is captured with an egocentric camera and shows long
captures of indoor activities. Our contribution of reconstructing the cameras over time turns the
egocentric data into the multiview data needed while retaining the naturalness of the data.

NeRF and dynamics. NeRF extensions to dynamic data can be roughly divided into approaches
that add time as an additional dimension of the radiance fields [36, 64, 71, 15, 69, 28, 52, 3] and
those that instead model explicitly 3D flow and reduce the reconstruction to a canonical (static)
one [49, 43, 77, 44, 68, 62, 29, 11, 79, 58, 20, 13, 30, 34]. While these methods demonstrate
successes, their success depends on the dominance of camera motion over scene motion [16]. Scene
motion by dynamic objects is not always common in existing datasets. Our proposed EPIC Fields
contains both camera motion and fast continuous motion by the actor visible in the camera’s field of
view.

NeRF and semantics. Authors have already noted that neural rendering and 3D geometry can be
helpful allies of video understanding. For instance, Semantic NeRF [81, 66] proposes to predict dense
semantic labels in addition to RGB colours, while [24, 14, 55, 67] consider panoptic segmentations
(things and stuff). [63, 23, 31] propose to fuse semantic features from pre-trained ViTs [5, 26, 61] into
a neural reconstruction. [74, 80] represent a scene as a composition of static objects given their 2D
masks. Several studies employ neural rendering to separate scenes into objects and background either
without or with weak supervisory signals [12, 72, 78, 64, 54, 41, 38, 70]. With a few exceptions [64,
, 70], howeyver, little work has been done on decomposing dynamic scenes into objects.

3 The EPIC Fields dataset

We introduce here the new EPIC Fields dataset. We first describe the content of the dataset and then
the process of constructing it, including several technical innovations that made it possible.

3.1 EPIC Fields in a nutshell

EPIC Fields extends EPIC-KITCHENS to include camera pose information. EPIC-KITCHENS
contains videos of cooking activities collected using a head-mounted camera in 45 different kitchens.
It has semantic annotations for fine-grained actions and their action-relevant objects, including
90K start-end times of actions [8]. VISOR [10] adds 272K manually annotated masks and 9.9M
interpolated masks of hands and active objects. With EPIC Fields, we further contribute camera
extrinsic parameters for each video frame as well as camera intrinsic parameters. Using the technique
described in Section 3.2, we successfully processed 671 videos spanning all 45 kitchens, resulting in
18,790,333 registered video frames with estimated camera poses.

Motivation. Our camera annotations facilitate reconstructing and interpreting videos in 3D. Figure 2
illustrates this point by mapping some 2D action annotations from EPIC-KITCHENS to the 3D space.
Lifting annotations to 3D puts them in the wider context of the environment where actions occur,
and enables studying the relevance of 3D egocentric trajectories to actions (for anticipation), objects
(for understanding object state changes), and hand-object understanding. The figure also illustrates
mapping hand meshes extracted using [51] to the 3D context of the kitchen.

Ethics, licensing, data protection. EPIC-KITCHENS was collected with ethics approval by the
University of Bristol and explicit consent from the participants. The data does not contain per-
sonal identifiable information or offensive content and is provided under a non-commercial license.
EPIC Fields is released under the same terms.
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Figure 2: EPIC Fields unlocks applications that combine interactions with 3D information. We
showcase examples of actions grounded in 3D (top row), and examples of integrating single-image
3D hands [51] into the kitchen reconstruction during interactions (bottom row).

3.2 Dataset construction

Because EPIC-KITCHENS videos were not collected with 3D reconstruction in mind they are
difficult to reconstruct. For instance, they contain many dynamic objects: hands are visible in 95% of
the frames and the focus of attention is often an object actively manipulated. Standard reconstruction
pipelines operate under the assumption that the scene is static and are thus only moderately robust to
dynamic objects. Other challenges include the video length (~9 mins on average) and the skewed
distribution of viewpoints: videos alternate phases of small motion around hot-spots (e.g., cooking at
a hob or washing at the sink) and fast motion between hot-spots (e.g., moving the pot to the sink).

We address these challenges by: (1) filtering videos to reduce the number of redundant frames,
computational cost, and skew; (2) using structure from motion (SfM) to reconstruct the scene from
the filtered frames; (3) registering the remaining frames to the sparse reconstruction. We accept a
video’s reconstruction if 70% or more of its frames are registered successfully. In this manner, we
can reconstruct 96% of all EPIC-KITCHENS videos. We next describe each step, with details in the
supplement.

Frame filtering. The goal of frame filtering is to downsample a video to reduce redundancy and
skew while maintaining sufficient viewpoint coverage for accurate reconstruction. We filter frames
by seeking temporal windows where frames have substantial visual overlap and then only keep one
frame per window, similar to redundant frame mining [53, 60] and other SfM or SLAM pipelines.
Overlap between frames is measured by estimating homographies by matching SIFT features [35].
Given a homography H between two frames, we define their visual overlap 7 to be the fraction of
the first frame area covered by the quadrilateral formed by warping the second frame corners by H.
Windows are formed greedily, finding runs of frames (i + 1,...,4 + k) with overlap 7 = 0.9 to the
first frame ¢ and discarding them. Filtering discards on average about 82% of frames in each video
while also retaining a sufficient number of frames in the critical transitions between hot-spots.

Sparse reconstruction. The filtered frames are fed to an off-the-shelf structure-from-motion pipeline.
Among these, we found COLMAP [53] to be more effective than VINS-MONO [50], which suffered
from frequent drifts and restarts.

In Table 1 we analyse the effectiveness of the homography-based filtering algorithm by comparing
it to a naive filter that subsamples frames uniformly. We use 30 randomly selected videos for this
experiment and report two standard SfM metrics [53]: the average reprojection error and the number
of 3D points in the reconstruction. The first metric is a proxy for the accuracy of the reconstruction,
and the second for its coverage. Both filtering techniques reduce the number of frames equally and
thus result in similar computational complexity. However, homography-based filtering also addresses
the skew and results in a significantly better success rate, increased coverage, and reduced reprojection
error compared to uniform subsampling. Besides considering the number of points reconstructed,
Figure 3 shows qualitatively the notably improved coverage obtained by homography-based filtering.

Dense reconstruction, automated verification, and restart. After obtaining the sparse reconstruc-
tion from the filtered subset of video frames, we use COLMAP to register the remaining frames
against it, which is computationally cheap. We accept the final reconstruction if 270% of the video’s
frames, at full frame rate, are registered successfully. This process succeeds in 90% (631 videos)



Table 1: Impact of frame filtering on the reconstruction quality. We compare the sparse reconstruc-
tion of 30 videos using either homography-based or uniform frame filtering. Naive uniform sampling
results in only 27 of the 30 videos being reconstructed successfully (i.e., dense registration rate
> 70%). Furthermore, the successful reconstructions have significantly reduced coverage (-16.64%)
and increased reprojection error (+4.76%) compared to homography-based filtering.

Frame sampling Avg. #3D  Avg. Repr. Avg. Reg. Successful

Points Error Rate Reconstructions
Homography-based (ours) 27,763 0.798 98.6% 30/30
Uniformly 23,142 0.836 89.0% 27/30
Relative change -16.64% 4.76% 9.77% -10 %

®

Uniform sampling

Our sampling

Figure 3: 3D reconstructions with different sampling. We compare three scenes reconstructed
using either uniform frame selection or our homography-based pipeline. Uniform sampling yields
partial reconstructions with limited coverage. Ours demonstrates superior performance, resulting in
better coverage by registering successfully more viewpoints.

of cases. When a video is rejected, the reconstruction process is attempted again with a higher
threshold 7 = 0.95; this usually doubles the number of frames that COLMAP needs to process for
the reconstruction, but increases the success rate to 96%. We discuss reasons for the failure of the last
29 EPIC-KITCHENS videos in the supplement.

Application to other egocentric videos. While we developed our reconstruction pipeline by con-
sidering the EPIC-KITCHENS data, the approach we obtained is general and applies equally well
to other egocentric video collections such as Ego4D [18], at least for indoor locations. We give
examples of these reconstructions in the supplement.

4 The EPIC Fields benchmarks, experiments and results

We define three benchmarks on EPIC Fields that probe 3D video understanding. Annotations,
evaluation code and baselines are released as part of EPIC Fields; further details are in the supplement.

4.1 Dynamic New-View Synthesis (D-NVS)

Given a subset of video frames as input, the goal of dynamic new-view synthesis (D-NVS) is to
predict other video frames given only their timestamps and camera parameters. While other D-NVS
benchmarks exist, EPIC Fields is more challenging due to the first-person perspective and the large
number of dynamic objects. In Table 2 we compare EPIC Fields to commonly used datasets in
D-NVS. EPIC Fields offers a significant step up in complexity and scale with significantly longer
videos and associated semantics. For detailed statistics, please refer to the supplement.

Video selection. Due to the computational cost of most D-NVS algorithms, we limit the D-NVS
benchmark to a subset of 50 videos (14.7 hours and 2.86M registered frames) extracted from the
train/val set of VISOR [10] (this selection includes 96.1% of the frames annotated in VISOR).



Table 2: Comparison of datasets commonly used in dynamic new-view synthesis.

Dataset #Scenes Seq. Length Monocular Semantics
Nerfies [44] 4 8-15 sec X X
D-NeRF [49] 8 1-3 sec X X
Plenoptic Video [28] 6 10-60 sec X X
NVIDIA Dynamic Scene Dataset [77] 12 1-5 sec 4/12 X
HyperNeRF [45] 16 8-15 sec 13/16 X
iPhone [16] 14 8-15 sec 7/14 X
SAFF [31] 8 1-5sec X v
EPIC Fields [D-NVS] (ours) 50 6-37 min (Avg 22) 50/50 v

O time
Figure 4: Definition of the three difficulty levels for the task of dynamic new-view synthesis.
Validation and test frames are selected to meet three reconstruction difficulty levels. In-Action frames
(Hard) happen during an action and are harder to reconstruct due to the dynamics.

happen outside an action, but are far from a train frame. Out-of-Action (Easy)
frames are near train frames. Frames in a bounding box (orange) represent either val/test frames.
Frames marked with a cross are discarded to create a larger time gap around each val/test frame
(medium and hard levels). All other frames can be used for training.

Frame selection. For each video in the D-NVS benchmark, we select the video frames to be
used as input to the system (training) and those that remain unseen and are used for evaluation
only (validation/testing). Specifically, we propose categorising evaluation frames into three tiers of
difficulty (easy, medium, hard — visualised in Figure 4), determined by the type of motion and the
temporal gap between the evaluation and training frames. In-Action frames correspond to common
‘put’, ‘take’, and ‘cut’ actions annotated in EPIC-KITCHENS, based on their start-stop times; they
are characterised by substantial object motion due to hand-object interactions and are thus more
difficult to reconstruct. In pursuit of a greater challenge, for the In-Action (Hard) set of frames,
we exclude frames from the training set occurring within 1 second of a test frame. OQut-of-Action
frames occur outside action segments, where there is no appreciable motion except for the camera,
making these frames generally easier to reconstruct. For the Out-of-Action (Medium) set, we sample
70% of the out-of-action frames with the same time gap as above. The Out-of-Action (Easy) set
corresponds to the remaining 30% without removing the neighbouring training frames. The reasoning
is that it is generally easier to predict a frame temporarily close to a training one. We assign every
other evaluation frame to the validation and test sets, respectively. The average time gap between
consecutive evaluation frames is 3.73 seconds. Further statistics are provided in the supplement.

Benchmark methods. To demonstrate how EPIC Fields can be used and to probe the limits of
the state of the art in such challenging scenarios, we consider three neural rendering approaches:
NeRF-W [36], NeuralDiff [64], and T-NeRF+, an extended version of T-NeRF [16].

NeuralDiff [64] is a method tailored to egocentric videos. It uses three parallel streams to separate the
scene into the actor, the transient objects (that move at some point in the video), and the background
that remains static. We combine the predictions of the actor and transient objects to predict our
dynamic and semi-static objects, which will be relevant in Section 4.2.

NeRF-W [36] augments NeRF with the ability to ‘explain’ photometric and environmental (non-
constant) variations by learning a low-dimensional latent space that can modulate scene appearance
and geometry. As a result, NeRF-W also separates static and transient components. We follow the
modification from [64] to render NeRF-W applicable to video frames and the D-NVS task.



Table 3: Dynamic new-view synthesis. We compare different neural rendering approaches for frames
from different difficulty levels (easy, medium, hard). We report PSNR considering all pixels in each
test frame. Given the mask annotations from VISOR for In-Action frames, we also report PSNR on
background (BG) and foreground (FG) pixels separately for the hard (In-Action) setting.

Method Easy Medium Hard

All BG FG
NeRF-W [36] 21.13 19.3 17.93 18.99 13.54
T-NeRF+ [16] 21.58 19.81 18.44 19.73 13.74
NeuralDiff [64] 22.14 19.88 18.36 19.54 13.37

T-NeRF+ [16] was proposed as a baseline to evaluate state-of-the-art NeRFs on dynamic scenes.
It was shown to outperform other methods in terms of the quality of the synthesised images. We
extend T-NeRF by adding another stream to the time-conditioned NeRF architecture that models the
background (static parts of the scene).

Results. To measure performance on this task, we report the Peak Signal-to-Noise Ratio (PSNR) of
the test frame reconstructions, which is a proxy for the quality of the underlying 3D reconstructions
with the key advantage of not requiring 3D ground-truth for evaluation. We report results in Table 3
for the three levels of difficulty. There is a strong relationship between PSNR and difficulty: PSNR is
consistently lower for all methods when rendering views during actions (hard) compared to outside
actions (medium, easy). Some limitations of rendering these hard test frames are shown in Figure 5.
For example, the bottom row shows that no 3D baseline renders the person’s arm correctly, since
all models struggle to interpolate the person’s movement between frames. We further observe a
significant gap in rendering quality if we calculate PSNR separately for foreground and background
regions. We use the VISOR annotations of hands and active objects for In-Action frames to obtain
this separation. These results not only highlight the existing limitations of current methods but also
offer a valuable benchmark for assessing potential improvements in a targeted manner.

4.2 Unsupervised Dynamic Object Segmentation (UDOS)

The goal of Unsupervised Dynamic Object Segmentation (UDOS) is to identify which regions in
each frame correspond to dynamic objects. This task can be approached in 2D only but is a good
proxy to assess 3D methods as well, and can, in fact, be boosted by 3D modelling. Here, we extend
the setting introduced in [64], using 20X more data and adopting a more nuanced evaluation protocol.

Video and frame selection. We use the same selection of videos as for the D-NVS task, but only
use the In-Action frames with VISOR annotations, as they provide ground-truth dynamic object
segmentations. We convert VISOR masks into a foreground-background mask for each frame in
three ways, depending on objects that are currently moving, or those that have moved at a different
time in the video. In the dynamic objects only setting, the foreground contains hands and other
visible body parts as well as object masks only for objects that are currently being moved. We use
the VISOR contact annotations to identify these objects and augment these with additional manual
masks for visible body parts including torsos, legs, and feet. More details are in the supplement. In
the semi-static only setting, we consider only objects that moved at some point during the video,
but not during the current frame. We select these objects by watching the video and identifying all
objects that have moved at least once. VISOR contains annotations of these objects only on frames
where they are considered active. We employ an automated method to propagate the annotations to
cover all frames, resulting in a set of semi-static object masks. This is the complete set of masks for
all objects that have moved at any point in the video, even if they are temporarily static. More details
can be found in the supplement. We combine both to report the dynamic and semi-static setting.

Benchmark methods. We use NeuralDiff and NeRF-W from the NVS task, since, by design, they
decompose scenes into static and dynamic components. Additional considerations are necessary to
make 7-NeRF+ applicable to UDOS. In order to disentangle the modelling of both radiance fields
in terms of temporal variation, we apply the uncertainty modelling from [36] to model a change in
observed colours of pixels that occur due to dynamic effects inside the scene. This extension enables
T-NeRF+ to learn a decomposed radiance field.

We also consider a 2D baseline, Motion Grouping (MG) [75], a state-of-the-art method for self-
supervised video object segmentation. It trains a segmentation model using an autoencoder-like
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Figure 5: Dynamic new-view synthesis. We compare the outputs of 3D methods NeRF-W [30],
T-NeRF+ [16], and NeuralDiff [63], for novel viewpoints, across three different complexity levels.
The predictions are more accurate with less difficult motion as shown in the first and second row. The
task becomes more challenging for our hard samples.

framework. The model has two output layers; one layer represents the background, and the other
layer identifies one or more moving objects in the foreground, including their opacity layers. These
layers are then linearly composed and optimised to reconstruct the input image. Since this approach
is unsupervised, it can be compared fairly to the 3D baselines for this task.

Results. To evaluate performance, we measure 2D segmentation accuracy on test frames using mean
average precision (mAP) as in [64]. Table 4 compares unsupervised 2D baselines and 3D baselines.
Depending on the type of observed motion, 3D-based methods offer advantages over 2D methods
and vice versa. For example, 3D-based methods are better suited for discovering semi-static objects
that are not currently in motion, i.e., they have been moved at different times within a video. This is
evident by the improved segmentation performance when considering this type of motion (i.e., SS+D
and purely SS). However, we note that none of the 3D-based methods explicitly consider motion.
Consequently, MG, which takes as input optical flow, performs better on purely dynamic motion, but
struggles to segment objects that are temporarily not moving. This drawback of 3D-based methods,
compared to 2D motion-based methods, underscores the current challenge in capturing dynamics in
neural rendering. Addressing this limitation is an open question for future research.

Figure 6 shows qualitative results. We observe that MG performs particularly well on objects that are
constantly in motion, for example, the moving body parts of the person. Among the 3D methods,
NeuralDiff is better at capturing dynamic objects, and, unlike MG, both NeuralDiff and T-NeRF+ are
able to segment various semi-static objects as well since they do not rely on continuous motion.



Table 4: Unsupervised dynamic object segmentation. We report the mean average precision (mAP)
on segmenting the semi-static (SS) and dynamic components of the scene, and also their union
(SS+Dyn). All methods are trained without explicit supervision, i.e., no masks are used during
training, only for evaluation.

Method 3D SS+Dyn SS Dynamic
MG [75] X 55.53 12.78 64.27
NeRF-W [36] v 45.62 20.97 28.52
T-NeRF+ [16] v 64.91 24.48 44.27

NeRF-W (3D) T-NeRF+ (3D) NeuralDiff (3D)

SS+Dyn

SS

Dynamic

Figure 6: Unsupervised dynamic object segmentation. We compare three 3D baselines (NeRF-
W [36], T-NeRF+ [16] and NeuralDiff [63]) and one 2D baseline (MG [75]) with three motion types.
The 2D baseline captures the person and does well on the purely dynamic (short-range motion) setting.
3D models do this and also segment semi-static (SS) components (long-range motion, i.e., objects
that were moved some time ago). In SS+Dyn, the evaluation includes SS and dynamic components.

4.3 Semi-Supervised Video Object Segmentation (VOS)

Semi-Supervised Video Object Segmentation (VOS) is a standard semi-supervised video understand-
ing task: given the mask for one or more objects in a reference frame, the goal is to propagate the
segments to subsequent frames. For this task, we use the train/val splits published as part of the
VISOR VOS benchmark (See [10] Sec. 5.1). VOS is usually approached by using 2D models. Here,
we explore how the 3D information in EPIC Fields can be used for it instead.

Benchmark methods. We evaluate two naive baselines for this task, one in 2D and another in 3D.
For completeness, we also compare these to existing, trained 2D VOS models.

Fixed in 2D. We make the assumption that the pixels in the first frame remain constant throughout the
entire sequence. This naive baseline is prone to failure when the camera undergoes movement.

Fixed in 3D. To better understand the potential of 3D information for VOS, we compare the 2D
baseline above to a 3D one. In the 3D baseline, an object mask is projected to 3D and its position in
3D is fixed throughout the sequence. The mask is then re-projected to other frames using the available
camera information. This works well for static objects and achieves two effects. First, objects can
be reliably tracked over occlusions. Second, detecting when these objects are in or out of view is a
by-product of estimated camera poses.

Trained 2D models. We also evaluate two state-of-the-art models for video object segmentation,
STM [40] and XMEM [6]. These are trained on the train set of VISOR.

Results. We compare the baselines on the VISOR benchmark using the evaluation metrics defined
in [48] which are the region similarity 7 and contour accuracy J. We also distinguish the set of
objects that are static, such as ‘fridge’, ‘floor’, and ‘sink’, and report the above metrics separately
for these and all other movable objects (SS+Dyn). Table 5 shows the results where the Fixed in
3D clearly outperforms the Fixed in 2D by a significant margin for the anticipated static objects



Table 5: Semi-Supervised VOS. We compare naive baselines in 2D and 3D, as well as pretrained/fine-
tuned models on static and dynamic objects on the validation set of VISOR VOS. *: two videos from
the validation set are excluded as they don’t have successful reconstructions.

Method 3D VISOR VAL[10] Static SS + Dyn
J&F T F J&F T F J&F T F

Fixed in 2D X 12.5 134 116 178 238 11.6 12.0 119 120
Fixed in 3D * v 31.3 305 322 484 522 446 29.6 27.8 315
Pretrained STM X 63.0 60.8 652 643 654 63.1 63.7 60.8 65.5
Fine-tuned STM X 76.4 742 78.6 76.8 7177 760 76.6 73.8 795
Pretrained XMEM X 64.0 61.5 664 632 64.0 625 64.1 61.1 67.1
Fine-tuned XMEM X 71.3 752 794 T717.0 717 774 78.0 753 80.7

XMEM-finetuned

Fixed 2D Fixed 3D XMEM-pretrained
Reference

Figure 7: Semi—Supervised Video Object Segmentation. We compare our baselines on two frames
from the same sequence. The Fixed in 3D baseline can track the bin over camera motion and recognise
in/out-of view. Pretrained models usually suffer from false positives in the out-of-view scenes.

(+30.6%) but also improves results for the remaining semi-static and dynamic (+17.6%) objects. This
is because such objects do remain unmoved for some duration of the videos. This highlights the
additional value derived from representing objects in 3D. Figure 7 visualises one example where
the bin is successfully propagated using the Fixed in 3D baseline, including when out of view. The
pretrained models struggle to propagate masks for the novel objects in the dataset or for masks that
go out of the scene. These are cases that the Fixed in 3D baseline successfully handles. However, the
fine-tuned models are quantitatively and qualitatively superior as they are trained on the dataset. No
prior work has utilised 3D information along with learnt models for the task of semi-supervised VOS.
We hope our novel benchmark can trigger new VOS approaches that tackle the combined challenge
of keeping track of static objects in 3D and dynamic objects through trained propagation of objects
during motion and transformations.

5 Conclusions

We introduced EPIC Fields, a dataset to study 3D video understanding. We addressed the difficult
challenge of reconstructing cameras in EPIC-KITCHENS videos, introducing filtering and other tech-
niques that are portable to other similar reconstruction scenarios. Using these pre-computed cameras
facilitates working on 3D video understanding even without significant expertise in photogrammetry.

With EPIC Fields we also defined three benchmark tasks: dynamic new-view synthesis, unsupervised
dynamic object segmentation, and video object segmentation. Our results show that the performance
of state-of-the-art dynamic neural reconstruction/rendering methods strongly depends on the type of
motion. In particular, the gap in reconstruction quality between the dynamic and the static parts of the
videos show that there is ample margin for further improvements in the handling of dynamic objects.
Similar findings apply to the segmentation of objects, where 3D-based models can assist unsupervised
video object segmentation and propagate masks of static objects over time. We hope that these
results, the proposed benchmark data and code (comprising evaluation, camera reconstruction, and
baselines) will assist the community in investigating further methods that combine geometry and
video understanding.

Societal impact. While we expect that our benchmark will lead to positive impact, including
applications to augmented and mixed reality including AR assistants, there are potential negative
impacts as well: better AR may be used for deception and many capabilities powering an assistant
may also aid surveillance.
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Board (IRB) approvals, if applicable? [N/A] There are no participant risks for this
paper. The dataset we use, however, was collected with ethics board approval.
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(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We did not have any paid participants or
workers.
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In this supplementary material, we first describe the companion video that provides an overview of
our dataset (Appendix A) and then detail how the data was released (Appendix B) along with taking
stock of additional information specifically promised in the checklist (Appendix C). Next, we provide
additional details on the dataset construction (Appendix D) and on the benchmarks (Appendix E).
We devote a final section (Appendix F) to showing that the EPIC Fields pipeline could be applied to
reconstructing videos from the Ego4D dataset.

A Supplementary video

We provide a short video in the form of a trailer at https://youtu.be/RcacE26e0DbE. It allows to
visually assess how challenging the reconstruction problem is and hints at how frame filtering helps.
The video also illustrates how the new camera poses complement the existing semantic annotations
for this dataset (hands and active objects), showcasing the potential of marrying 3D geometry and
video understanding. Additionally, we provide a couple of qualitative results for static and dynamic
novel view synthesis, one of the benchmark tasks we describe in the paper.

B Released data

Our dataset is now publicly available with visualisation scripts that enable exploring all the recon-
structions and camera poses.

The data can be downloaded from http://epic-kitchens.github.io/epic-fields. We re-
leased the camera parameters along with sparse point clouds (light-weight version of 10-20MB/video)
as well as the full COLMAP database of dense registrations (heavy-weight version). The latter enables
comparisons with the dense registrations in EPIC Fields, and also allows the use of the COLMAP
library and interface for visualisation and exploration.

The webpage also includes links to the visualisation code and to the code to replicate training,
inference and evaluation for our benchmarks.

C Dataset and benchmark details mentioned in the checklist

Data splits. We provide information about the data splits used in the benchmark in Appendix D.3.

Annotations. We offer two additional sets of manual annotations, on top of those available in
VISOR [10] to facilitate the assessment of the MG, NeuralDiff, T-NeRF+, and NeRF-W benchmarks.
We employ these annotations as ground truth for evaluation on the UDOS task; nevertheless, we
anticipate that they may prove valuable for various applications in future research endeavors.

The first set of annotations serves the dynamic objects. We provide human body annotations for all
evaluation frames, as VISOR exclusively annotates the hands but not the other visible parts of the
body. To achieve this, we identify up to 3 frames per video with visible body parts of the camera
wearer. Using manual points, we employ SAM [22] to generate a total of 143 automated human-body
annotations. These frames serve as reference frames for the DeAOT [76] model pre-trained on
YT-VOS to propagate the masks across all evaluation frames.

The second set of annotations is dedicated to semi-static objects. VISOR primarily addresses active
objects within specific segments of the video, whereas our method aims to evaluate semi-static objects
that may have moved at any point during the video. To achieve this, we utilize a fine-tuned MS-
DeAOT [76] on VISOR along with a maximum of 10 VISOR ground truth annotations as reference
frames to extend the coverage of semi-static objects across all evaluation frames. As a result, all
objects that have moved during the video are annotated by a mask, on every evaluation frame.

Hyperparameters. We provide information about the baselines used in our benchmark and their
hyperparameters in Appendix E.

Total compute used. Estimating the precise computational budget of a multi-institution project of
this scope is challenging. However, we report the actual computational time specifying the machine
used in each case. All resources used were local. The main components of this project were:

* Reconstruction: As described in Appendix D.2, the reconstruction corresponds to a total of
2264 hours of compute, 1695 hours for the sparse reconstructions and 569 for registration.
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Figure 8: Filtering frames before reconstruction. We apply a 2D frame filtering technique to
mitigate the oversampling of highly overlapping views (viewpoint distribution skews mentioned in
Section 3.2 of the main paper) and to reduce the complexity of the SfM reconstruction. (Left) For
a reference frame ¢, we show two of the ignored frames, the next frame after filtering, and their
respective overlap r score with the original frame. Filtering discards 1044 frames (ca. 17 seconds) in
this case. (Right) Histogram of the distances between frames after filtering (for one video).

This was parallelised across two machines with two GPUs each (two 11GB NVIDIA
GeForce RTX 2080 Ti for the first machine, 12GB NVIDIA TITAN X and 11GB NVIDIA
GeForce GTX 1080 Ti for the second machine).

* NVS, UDOS Benchmarks: We estimate that running the 3D baselines for D-NVS and
UDOS benchmarks required 2400 GPU hours. Experiments on the D-NVS benchmark
were carried out using several NVIDIA GPUs on a cluster, including P40, M40, V100,
RTX8k and RTX6k. The training required up to 10GB of GPU memory for each experiment.
The models for both benchmarks required a total of about 2400 GPU hours. We ran the
experiments in parallel on 24 GPUs, resulting in a training time of 4.17 days. Both D-NVS
and UDOS required each 50% of the total computation.

* MG (UDOS Benchmark): We ran this baseline on a single 16GB V100 GPU. The total
training time is about 5.5 days.

* VOS Benchmark: The Fixed in 3D baseline requires next-to-no compute — homography
fitting on SIFT features is calculated during the reconstruction step. However, training STM
and XMEM took 1.2 and 1.4 days respectively on a single 16GB V100 GPU.

We expect that by providing both sparse and dense reconstructions to the whole community, this
effort will greatly reduce computation time for all the dataset users.

D Additional details on the dataset construction

D.1 Frame filtering

As discussed in Section 3.2 in the main paper, we downsampled videos to reduce the viewpoint skew
that is common for ego-centric videos. The filtering discards on average 81.8% of all frames and
allows the SfM pipeline to focus on more diverse views. Figure 8 visualises the filtering process
using an example. The shown frame range contains many views that are similar to each other. The
filtering discards 1044 redundant frames between frames j = 9583 and j = 10627. The figure also
shows a histogram of distances between filtered frames.

D.2 Dataset statistics

How do we accept/reject a reconstruction? After producing the sparse reconstructions, we register
all the frames; we then consider the videos with at least 70% dense registration rate. The histogram
for both sparse and dense reconstructions is depicted in Figure 9. The majority of our reconstructions
exhibit a dense registration rate exceeding 80%. In total, we successfully reconstructed 671 out of the
700 EPIC-KITCHENS videos, with average registration rates of 84.1% and 92.0% for the sparse and
the dense reconstructions respectively. This is because we specifically select frames during transitions
between kitchen hotspots for accurate reconstruction. This explains the higher registration rate for
dense reconstructions.

Metrics for reconstruction quality. We use the common SfM metrics to assess the quality of the
reconstructions. Figure 10 shows the histogram of the reprojection error of all the reconstructions.
The average and maximum reprojection errors are 0.87px and 1.3px respectively. We use an image
resolution of 456256 to obtain the reconstructions and to calculate the reprojection errors.

How long does the reconstruction pipeline take? In Figure 11, for different video durations, we re-
port the time required for the sparse reconstruction, for registration to obtain the dense reconstruction,
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Figure 9: Percentages of registered frames. The dashed line specifies the threshold of the minimum
dense registration rate to accept the reconstruction, otherwise, it would be considered a failure.
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Figure 10: Average reprojection error of EPIC Fields. The majority of our reconstructions have an
average reprojection error lower than 1.

and the total reconstruction time. As the length of the videos increases, the sparse reconstruction time
follows a non-linear growth pattern. Overall, the sparse reconstruction and the registration processes
took 1695 and 569 computation hours, respectively. We parallelise the pipeline on 2 machines with 2
GPUs each.

How large are these reconstructions? Figure 12 displays a histogram representing the number
of 3D points in the sparse reconstructions, along with three example point clouds derived from
reconstructions with varying numbers of points. These demonstrate the complexity of our recon-
structions, which are capable of covering entire kitchens with fine-grained details. On average, each
reconstruction consists of around 45,000 3D points.

Reasons for the reconstruction failures. While our reconstruction failure rate is only 4%, we
examined the primary causes of these failures. These are mainly attributed to very short videos with
large scene coverage, and challenging lighting conditions. (1) In the case of very short videos with
large scene coverage, e.g., a person just walking through the kitchen to retrieve one item and then
walking out again, COLMAP often encounters difficulties due to the insufficient quantity of features
and viewpoints. The median duration for the unsuccessful reconstructions is 1.5 minutes, compared
to 6 minutes for the successful ones. This problem is exacerbated when the brief video captures a
multitude of different locations within the kitchen, switching rapidly between these. (2) A couple
of failure cases were linked to videos recorded under very low lighting, which led to a poor quality
set of features to match. The average number of observed features per image for these unsuccessful
videos was 198, compared to an average of 358 features per image for successful reconstructions.
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Figure 11: Reconstruction time per video length. We plot time for the sparse reconstruction (blue),
registration time to obtain the dense camera poses (orange) and total reconstruction time (green) for
different video durations. While the time for registration is almost linear, the reconstruction time
increases non-linearly as a function of the video length, mainly because of bundle adjustment.
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Figure 12: Number of 3D points histogram. The majority of our reconstructions generate fewer
than 40,000 points that are enough to represent the kitchen. However, some reconstructions have
more than 100,000 points, we include the point clouds for each points range showing the fine details
covered by having more points.

Distribution of camera orientations. Figure 13 displays histograms representing the distribution of
relative camera orientations of all EPIC Fields frames. Each frame uses the mean camera orientation
within the video as reference. The histograms reveal that EPIC Fields contains diverse camera
motions that are a result of natural head motions, such as looking up/down or tilting left/right. It
is important to note the distinction between the camera orientations due to the particular camera
mounting in EPIC-KITCHENS, illustrated in the figure. We thus particularly note camera motions
and how they correspond to head motion given the specified mounting.

In summary, the figure shows larger head motion looking up (compared to the average camera
orientation) than looking down, a balanced tilting as well as full 360 coverage of the kitchen by the
body and/or head rotating in the scene.
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Figure 13: Camera mounting arrangement (a) and the log-scale polar histogram of the three camera
orientation parameters in the dataset (b-d).

D.3 Statistics of the benchmark splits

We provide statistics of the splits for the D-NVS task of our benchmark in Table 6. In UDOS, the
objective is to segment dynamic and semi-static objects in videos without relying on supervision from
ground-truth segmentations during training. Thus, all frames are observed during training. Evaluation
frames are the same as for the D-N'VS task. For the VOS task, we use the train/val splits published as
part of the VISOR VOS benchmark (See [10] Sec. 5.1).

For D-NVS, we divide the evaluation frames for each video equally between the validation and test
sets, taking every other frame from both In-Action and Out-of-Action frames. Each video contains
evaluation frames spanning all difficulty tiers (easy, medium, hard). The size of the validation and
test sets corresponds to only a fraction of the number of training frames due to strict constraints on
the sampling of evaluation frames, which include high variability in viewpoints and a minimum time
gap between the training and test/validation frames as described in Section 4.1 of the main paper.

For the Hard (In-Action) and Medium (Out-of-Action) settings, this time gap is set to 1s, which
introduces increased difficulty for rendering novel views, since a significant portion of an activity
might have taken place and neural rendering approaches would have to interpolate motion to account
for this. While this is indeed a challenging task, it provides a unique opportunity for further
explorations in neural rendering. We can account for the ambiguity that this choice introduces in two
ways: resort to an evaluation protocol that accounts for that (e.g., best-of-K prediction) or accept
that pixel predictions will have to be approximate for dynamic pixels and still measure the PSNR
score. While the latter is not perfect, it is still reasonable for most 1s gaps and is much simpler than
alternatives. The preference for this choice is also common in other ambiguous prediction tasks; for
example, in the GTA-IM benchmark, where 3D path error is estimated after 0.5, 1, 1.5, and 2s [4],
the TrajNet benchmark, where prediction is estimated for 4.8s from the observed frame [!], and the
future hand prediction task in Ego4D, which uses a time gap of 1.5s from the observed frame [17].

For the Easy (Out-of-Action) setting, there is no temporal gap between training and evaluation frames
and no specific action taking place. Consequently, both the complexity for rendering novel views
and the ambiguity in evaluation are reduced for this subset of frames. This simplified setup parallels
existing NVS benchmarks.

E Additional training details for benchmarks

We now provide precise hyperparameters for the baselines used in the NVS and UDOS benchmarks.
We provide full code for reproducing these results with the publication.

NeRF-W, T-NeRF+, NeuralDiff. We base our implementation of all 3D baselines on the codebase
from NeuralDiff [64] and merge the other two approaches into the same PyTorch [46] codebase
to align all training and evaluation details between models. We use the same training setup as in
NeuralDiff, which involves training one model per baseline on each scene, taking approximately
12 hours using one NVIDIA Tesla P40 per experiment. Furthermore, the models are trained with
hierarchical sampling (with a coarse and fine model as in the typical NeRF setting) and with a batch
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Table 6: EPIC Fields splits statistics. We summarise the frame count and average frames per video
for each split and for different difficulties (Easy, Medium, Hard). The number of frames for the
validation and test sets is only a fraction of the training frames. This is due to strict constraints on
the sampling of evaluation frames such as a high variety of viewpoints and the minimum time frame
between train and test/validation frames. The train frames are fixed, regardless of the difficulty level.

In-Action (Easy)  Out-of-Action (Medium) Out-of-Action (Hard) Total
#frames average #frames average #frames  average  #frames average
Train — — — — — — 103,571 2071.42
Val 3,448 68.96 657 13.14 305 6.1 4,410 88.2
Test 3,461 69.22 695 13.9 289 5.78 4,445 88.9
Reference Fixed 3D Fixed 2D
i = : :
w\ :
Frame 1 (ref)’ Frame 22 Frame 107 Frame 22 Frame 107 Frame 22 Frame 107
Frame 1 (ref) Frame 31 Frame 96 Frame 31 Frame 96 Frame 31 Frame 96
: l :
Frame 1 (ref) Frame 41 Frame 107 Frame 41 Frame 107 Frame 4 Frame 107

Figure 14: Qualitative results for Semi-Supervised VOS. We show samples with multiple objects.
In scenarios (a) and (b), the Fixed 3D baseline effectively handles static objects, whereas the Fixed
2D falters due to camera movement. Conversely, in scenario (c), both strategies prove unsuccessful
as the objects are in motion, invalidating the presumption of fixed objects in either 3D (Fixed 3D) or
2D (Fixed 2D), hence their failure.

size of 1024. We train with the Adam optimizer for 10 epochs and an initial learning rate of 5 X 107
that is adjusted during the training with a cosine annealing schedule.

MG. We use the provided code and train the model on our training split frames, jointly, for 135k
iterations with a batch size of 32 and a learning rate of 5 X 107"

STM and XMEM. For STM, we finetune a pretrained COCO [33] model on VISOR for 400K
iterations with a batch size of 32 and a learning rate of 1 X 10™°. For XMEM, we use the pretrained
YoutubeVOS [73] model published in the XMEM paper and finetune it on VISOR for 100K iterations,
with a batch size of 16 and a decaying learning rate initialised with 1 X 107°

In the main paper, we include some qualitative results for the VOS challenge for a single object. We
add more examples showing multi-object segmentation in Figure 14. The figure shows samples of
failures of Fixed 2D in scenarios (a) and (b) and a case when both Fixed 2D and Fixed 3D fail to
segment the dynamic objects (c).

F EPIC Fields pipeline for Ego4D videos

While our reconstruction pipeline addresses several difficulties that are inherent to the videos of EPIC-
KITCHENS [8], we can also apply it to other ego-centric videos such as the ones from Ego4D [18].
Using the pipeline as is, we can estimate camera poses for Ego4D videos that are about cooking
and construction/building. We showcase this through an example in Figure 15 and two videos of
reconstructions and camera tracks:

* Task: Construction —- 35 minutes of decorating and refurbishment. The video at https:
//youtu.be/EZlayZIwNgQ contains situations of challenging camera pose estimation
including the camera wearer on a ladder (01:29, 05:07), kneeling down (16:14), as well as
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Figure 15: Visualisation of the 3D reconstruction for one video of the Ego4D dataset capturing
building and refurbishment activities, with camera estimated using the EPIC Fields pipeline

drinking and navigating the scene (27:25) amongst many interesting poses. (Ego4D video
a2dd8a8f-835f-4068-be78-99d38ad99625, source: CMU US)

* Task: Cooking —- 10 minutes. The corresponding video can be found at https://youtu.
be/GfBsLnZoFGs (Ego4D video 18f5¢c2be-cb79-46fa-8ff1-e03b7e26c986).
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