
Choosing Our Computing Birthplace: VSCode
vs Colab as GenEd IDEs∗

Elena Miller, Katy Shaw, and Zachary Dodds
Computer Science Department

Harvey Mudd College
Claremont, CA 91711

{elmiller, kshaw, dodds}@g.hmc.edu

Abstract

First impressions are important. The initial environment in which
our computing students express themselves helps shape their founda-
tional understanding of what computing is, what it’s for, and who partic-
ipates. This work distills experiences and insights from offering Comp1
and Comp21 with two different IDEs: Microsoft’s VSCode and Google’s
Colab. We identify and describe several axes along which we compare
our students’ experience of these two. This effort has changed the way we
offer Comp1, a degree requirement of all students at our institution, and
Comp2, an optional follow-up course, required by some computationally-
themed programs.

1 Choosing our hometown?

Our birthplace exerts a powerful and lifelong force[8]. Although it does not
grow roots as deep as our first language, culture, and family, our computing
birthplace – the initial environment in which we express ourselves executably –

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1In this work, Comp1 and Comp2 are generic CS1/CS2 names. At our institution,
Comp1 is a GenEd degree requirement of every student. Comp2 is a choice, required by
some programs.

103



has outsized impact on our students’ relationship with computing. As a forma-
tive experience, it echoes long after the syntax - and instructor - of “Comp1"
have faded.

Even for computing identities born elsewhere, we choose a present-day envi-
ronment for our students to share: a computational hometown, perhaps. That
environment sets the stage for shared experiences, community-building, and
students’ computational identity and self-efficacy.

In light of Comp1’s evolution toward the role of universal GenEd at more
and more institutions and programs, this work asks, “How do we decide on a
hometown - or birthplace - for our students?"

2 VSCode and Colab

Let’s acknowledge: the topic of computing environments is fraught! This truth
shows the importance of our computational birthplaces. We may explore - even
settle - in other realms, but we are enduringly shaped by our first.

What’s more, there are many factors that influence the choice of computa-
tional birthplace (or hometown). Not all these factors are under our control.
Indeed, it’s worth asserting that the natural analogy always holds: We don’t
have to decide! Sometimes, holding on as the world spins is all the agency we
have, and we are right to allow ambient forces to decide for us.

Other times, we have more agency. As a part of a consortium of small
schools, we found the opportunity to run our introductory-computing courses,
Comp1 and Comp2, in two different ecosystems: Microsoft’s Visual Studio
Code (VSCode)[6] and Google’s Colaboratory (Colab)[3]. Briefly, VSCode is
a widely-used professional editor/integrated development environment (IDE);
Colab is a widely-used notebook interface supporting interlaced context and
code cells. The next section shares the axes along which we have compared
these two (and other) IDEs for introductory college computing, especially when
a GenEd required of all students.

Our conclusion is not unexpected: There are only good birthplaces.
Yet we find there are also real differences in the specific strengths and draw-

backs a particular IDE conveys as an initial experience. In sharing our (on-
going) journey, we hope these axes can help other schools and instructors as,
together, we invite all students into their computational futures.

3 Our Opportunity Map

Figure 1 shows a large number of code-editors and IDEs across two important
axes: the size of the community of current users and the ubiquity/suitability
for professional settings. There is more than a little subjective judgment along

104



both axes. Yet we found these comparisons helpful in conceptualizing the
landscape of possibilities.

Figure 1: A comparison of several editors and IDEs (i.e., computational birth-
places), especially ones that might be used for Python/GenEd, along axes
representing the relative size of the user base (horizontal) and ubiquity/suit-
ability for professional practice (vertical). There is more than a little subjective
judgment here: this provides a conceptual map of a “zeroth-order" landscape
of possibilities.(Seasoned cs’ers and software engineers will appreciate that vim
and emacs share a single point.)

For us, the important features of Figure 1 were (a) that both VSCode
and Colab offer large communities of fellow users, and (b) that they differ in
fundamental purpose. VSCode intends to serve software engineers well. It
does. Colab intends to contextualize and share computational exploration. It
does.

Because both environments are so successful, and because there are so many
considerations that comprise a large, important, and widely shared college
course, we expanded the dimensionality of our space. Figure 2 provides the
twelve criteria, or “axes," along which we have contrasted VSCode and Colab.
They are grouped into four rubrics: (1) sharability, important in establishing
a campus-wide baseline for computing work, (2) suitability, that is, suitability
for college students new to computing, (3) “sanity-preservation," which assesses
logistical support for instructors and instructional realities, and (4) salability,
i.e., how internal and external audiences feel about - and make themselves felt

105



through - the interfaces.

Figure 2: An expanded set of axes by which we have compared the characteris-
tics of VSCode and Colab as introductory computing environments for all stu-
dents. The twelve considerations naturally group into categories of sharability,
Comp1- suitability, logistics support (instructors and students), and "salability"
for each.

The next section elaborates on our - and our students’ - experiences along
each of these considerations.

4 Axes to Grind

4.1 Sharing is Caring

Introductory courses provide experiences shared by an entire class – in our case,
an entire class-year. This common experience is important for creating connec-
tions and strengthens the sense of community within the class. Of course, any
commonly used environment serves the purpose of enabling shared work
in subsequent courses. For us, Colab and VSCode both have strong down-
stream proponents, with computational courses leaning toward VSCode and
applied-science courses toward Colab notebooks. Even if there is a bigger-
picture shift between years of changing code editors, the current class still

106



shares their introduction to CS experience with all of their peers in their class.
We find this an enormous advantage. On this axis: Toss Up

Sharing is caring and communication of ideas and work products
opens the door to collaborations and community-building. As a Google docu-
ment, Colabs have strong sharing features: multiple people can see and access
a Colab at one time, though only one can edit at a time. As a local editor, VS-
Code does not support this capability out-of-the-box. However, its substantial
library of extensions offers Live Share[4], a capable shared-editing experience
– one we use extensively in CS3, as it requires additional set up/configura-
tion. For our introductory Comp1/Comp2 experiences, the ease of Colab tops
VSCode’s deep bench. On this axis: Colab

The chance to actively personalize/customize one’s environment goes
a long way to establishing a sense of ownership over the work done there.
Both VSCode and Colab offer color themes for tuning the editing experience.
Here, VSCode’s extensions are an accessible plus, with easy opportunities to
try many options. VSCode-pets are an especially wonderful option[7]! Colab
requires extensions for colorful skinning and has built-in surprises like power
mode, a “Colab crab," (with Corgi and Kitty siblings, wandering the menu
bar), and the marquee function. These allow additional connections between
professors/TAs and students; they add elements of fun and elements of control
for the students when learning CS might seem unduly unnatural On this axis:
Toss Up

4.2 Suitability for Intro Computing

We have encountered strong student sentiment that College Computing/
Comp1/Comp2 courses should build different skills – and should feel different
- from learning-to-code sites like Scratch and Tynker sometimes encountered in
(pre)secondary settings. We find students receptive to required computing, as
long as the toolsets and skillsets employed are authentically representative
of today’s downstream work environments along post-comp1 paths. In-
deed, VSCode represents the consensus look-and-feel: its interface is the go-to
background for media conveying “software development." What is more, VS-
Code holds today’s plurality (though not majority) IDE use[5]. Colab, while
not reminiscent of any particular learn-to-code site, is closer to pre-college ex-
periences: its “cushioning," interleaving context with code cells, is popular in
many data-science and natural-science contexts. We believe that Colab will be
the look-and-feel of the future. For the present, on this axis: VSCode

That “cushioning" has a deeper implication: Colab does not offer students
hands-on access to their own filesystems (or a local filesystem, in any case).
VSCode provides access - in fact, insists on access - to the local filesystem, a
conceptual model that is valuable for some future paths, though not only the

107



ones with “computational" in their name. In short, VSCode offers a path into
the universe of computing resources; Colab offers a well-padded abstraction of
them. This is where audience-focus will likely carry the day: at our consortium,
it’s where the largest differences hinge. On this axis: Toss Up

In a large class, it is important to consider the difference between present-
ing and creating results. Instructors seek to stage demos smoothly, which is
where Colab shines - it is easy to set up and present results. However, when
creating entire projects, VSCode wins. By having explanatory instructions
intermixed with the executable code, Colab can become convoluted and con-
fusing in demonstration settings. VSCode offers the context in a tab or panel
beside the execution, a juxtaposition our students have come to expect . It is
difficult to declare a clear winner here, as Colab is better for reading results,
and VSCode shines when presenting results. On this axis: Toss Up

4.3 Logistical Axes: Keeping things running...

Whatever future workplaces might use, the constraints of the academic envi-
ronment are important to instructors here-and-now. Grading, regardless of
the philosophy or norms by which it is pursued[2], is a necessary part of a
Comp1/CS1 experience. How do each of these platforms facilitate grading?
Having edited and executed within VSCode, our students typically upload .py
files for review. Autograders are used to grade some assignments, but far
from all. As Colab is online and can be updated - and entirely lost, as does
happen - we have learned to ask students to downloaded a snapshot of their
notebook and submit that, instead of only its URL. This has the added advan-
tage of maintaining a local copy on their own machines! (and ours!) Further,
our Comp1 intersperses reading-responses and other types of content-creating
alongside the software: Colab makes this natural. On this axis: Colab

Our Comp1 does ask students to run executable artifacts from their own
machines. VSCode installation and upgradability has varied in ease over
many semesters, but it has never been painless. Maybe this is a shared experi-
ence of frustration, unifying students and instructor against a common enemy,
or maybe it’s time poorly spent. Either way, Google Colab doesn’t require set-
up, and students can familiarize themselves with Colab as they work through
their first few computational challenges. On this axis: Colab

ChatGPT and other AI-assistants, e.g., github copilot, are currently bet-
ter integrated within VSCode. Given the uncertainty around their incorpora-
tion into academic courses, this may be a plus or a minus. What’s more, we
suspect that sooner rather than later, AI-assistance will be normalized, avail-
able, and configurable in both IDEs. For the moment, on this axis: VSCode

108



4.4 Commercial Concerns

VSCode and Google Colab represent not only two different companies, but
two distinct commercial ecosystems and philosophies re: computing’s fu-
ture role. Microsoft owns VSCode, whereas Google owns Google Colab; Google
seeks to become the computational engine that builds bridges from all disci-
plines’ day-to-day work (via Drive and Docs) to support instances where script-
ing can help (via Colab). VSCode is converging to the same place, but from a
software-centric starting point, expanding to embrace their users as they find
themselves, perhaps unexpectedly, in the role of computational exploration.
Bottom-up may not be how educational institutions are organized, but it is
how education, and especially GenEd, is experienced: On this axis: Colab

Where the commercial ecosystems are least hidden is in the editors’ default
behaviors, which are especially important in students’ earliest experiences.
Both Colab and VSCode target an audience with experience, for example,
with default popups that explain the parameters of built-in functions, such as
print. Pedagogically, these are authentic, but unhelpful. The silver lining to
their insistent attention-grabbing is that the vast majority of students auto-
matically and unconsciously tune them out.2 VSCode profiles allow instructors
to smoothly customize their students’ environments. Colab would benefit from
a similar capability. On this axis: VSCode

Accessibility and price are crucial considerations. Not only is the price
important when considering requiring a large number of students to use a par-
ticular platform, but it is also important after the class ends: an expensive
toolset is less likely to be woven into future pursuits, even if it might help[1].
Both VSCode and Google Colab are free, for the moment. Because of their
value to each titan’s ecosystem, it seems likely they will be free for the fore-
seeable future. Both offer paid versions and extensions, whose capabilities are
not important for either a GenEd introduction or, in our experience, anywhere
in the undergraduate curriculum. Rather, they are far more likely to serve as
a natural and familiar bridge to additional compute-resources, if - or when -
those might be needed. The "...you’re the product..." quip does apply, more
for cloud-based Colab than locally-run VSCode. Yet fifteen years of that quip’s
normalization leads us to conclude, on this axis: Toss Up

5 Verdict and Evolution

If we were keeping score across the prior section’s twelve axes, for our institution
and cohorts, VSCode emerges the better choice on three of them, Colab on four
of them, with “Toss Up" the most common categorization!

2Indeed, watching these message-boxes consistently fail to make it beyond their viewers’
retinas is one of the silver linings of their otherwise depressingly quotidian presence.

109



For our situation, the experiment with using both Colab and VSCode for
our GenEd Comp1 and its successor Comp2 has resulted in the following out-
comes within our consortium:

• The Comp1 taken by all undergraduate students across all academic
disciplines is best served by using Colab as its “computational home-
town." Colab’s ease of access, immediacy of exploration, and structural
support for interlacing computing with context, explanation, and reflec-
tion – all of these well serve the foundational engagement the institu-
tion and students seek, regardless of the details of their future paths.
For these students, Comp2 is also best served with Colab - or another
jupyter notebook scaffolding, in order to build on the foundation estab-
lished in Comp1. (VSCode offers an exceptionally capable environment
for jupyter-notebooks; Comp2 can be horizon-expanding in platform, as
well as computationally.)

• For the same reason, the Comp1 and Comp2 taken by our consortium’s
masters-degree students and other graduate students – in nominally non-
cs disciplines – is also best served by a Colab-based introduction. In
those programs, computing is not part of the program’s identity, but
a potentially valuable resource, brought to bear on problems and tasks
insofar as it adds value. Here, facilitating and contextualizing exploration
are the crucial criteria.

• On the other hand, the Comp1 taken by all students across all STEM
academic disciplines is better served by a hybrid set of experiences. VS-
Code is our initial foundation for local file-interaction and execution,
supplemented later with Colab-based explorations where that platform
better supports exploration (e.g., turtle graphics) or when communicat-
ing contextualized results. A mix of environments is a challenge, but for a
STEM cohort it is a worthwhile challenge per se: we hear from our sibling
STEM departments that, because they already leverage so many different
systems, their students benefit disproportionately from the adaptability
that comes with successfully picking up new computational-authoring en-
vironments and solving problems in them. This is precisely our approach
- and philosophy for Comp1/Comp2. (Incidentally, it’s also our approach
for CS1/CS2 and all the rest of our CS curriculum.)

It is not a surprise that one size does not fit all: there is no need!
All deliberately scaffolded introductions-to-computing have the opportu-

nity to be positive. The considerations here have helped us converge on this
moment’s deliberate approaches, as we seek to make computing’s Cambrian
explosion as comfortable and positive as possible, for our students and our-
selves.

110



6 Perspective

It would seem there is a verdict, but that the verdict is less about the “right”
choice of computational IDEs and more about how rapidly computing’s role
is evolving in higher education. This work’s taxonomy has been prompted, in
part, by the momentum our institutions sense, both bottom-up and top-down,
behind making Comp1 a universal General Education requirement.

As more institutions and students make computational authorship part of
the fundamental literacies students practice in their college/university expe-
rience, the IDEs they use will continue to mature. The axes outlined here,
we hope, will help assess such resources as we all respond, proactively, to the
changes before us.

As computing instructors, we have the opportunity - and responsibility - of
choosing our students’ computational birthplace. Let’s choose wisely!

Acknowledgements

The authors gratefully thank and acknowledge the support of NSF CISE
Project #2142780 and support from Harvey Mudd College.

References

[1] S Bhattacharyya. “Is Matlab losing its Charm?” In:
Analytics India Magazine (2022). https : / / analyticsindiamag .
com/is-matlab-losing-its-charm/.

[2] Dan Garcia et al. “Achieving" A’s for All (as Time and Interest Allow)"”.
In: Proceedings of the Ninth ACM Conference on Learning@ Scale. 2022,
pp. 255–258.

[3] Google Colab. https://colab.research.google.com/.

[4] Live Share. https://code.visualstudio.com/learn/collaboration/
live-share.

[5] Top IDE Index. https://pypl.github.io/IDE.html.

[6] VSCode. https://code.visualstudio.com/.

[7] VSCode-Pets. https : / / marketplace . visualstudio . com / items ?
itemName=tonybaloney.vscode-pets.

[8] World Happiness Report. https://worldhappiness.report/.

111




