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Abstract

Active learning is a valuable tool for efficiently exploring complex spaces, finding a variety of uses in
materials science. However, the determination of convex hulls for phase diagrams does not neatly fit
into traditional active learning approaches due to their global nature. Specifically, the thermodynamic
stability of a material is not simply a function of its own energy, but rather requires energetic infor-
mation from all other competing compositions and phases. Here we present Convex hull-aware Active
Learning (CAL), a novel Bayesian algorithm that chooses experiments to minimize the uncertainty
in the convex hull. CAL prioritizes compositions that are close to or on the hull, leaving significant
uncertainty in other compositions that are quickly determined to be irrelevant to the convex hull. The
convex hull can thus be predicted with significantly fewer observations than approaches that focus
solely on energy. Intrinsic to this Bayesian approach is uncertainty quantification in both the convex
hull and all subsequent predictions (e.g., stability and chemical potential). By providing increased
search efficiency and uncertainty quantification, CAL can be readily incorporated into the emerging
paradigm of uncertainty-based workflows for thermodynamic prediction.

1 Introduction

Understanding thermodynamic stability is foun-
dational to chemical and materials design. Phase
relations provide mechanistic insight and accel-
erate discovery in disparate areas such as drug

solubility [1, 2], polymer blend stability [3–5], and
phase transitions in metallic alloys [6, 7]. To accel-
erate stability predictions, computational research
often focuses on producing high-fidelity surrogate
models [8–13]. However, phase stability prediction
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remains a persistent challenge for complex sys-
tems without effective surrogate models; examples
include high-entropy materials [14–18], liquids and
glasses [19–21], materials at high temperatures
[22], and highly correlated materials [23–27]. In
this work, we address the frontiers of phase stabil-
ity prediction by constructing an active learning
approach that directly learns about the convex
hull.

Phase transitions often occur across length-
and time-scales too large to be directly observed
using simulations. Instead, thermodynamic poten-
tials need to be evaluated across a vast space
of competing compositions and phases. The out-
come of this competition is encapsulated in the
convex hull: a single mathematical object that
wraps the energy surface and defines the set of
stable phase-composition pairs. Convex hulls are
often associated with predicting the stability of
compounds without external fields at 0K [28–36],
but they have also been used to calculate phase
transitions induced by temperature [22], pressure
[37–39], anisotropic stresses in thin films [40, 41],
magnetic fields [42, 43], and applied voltages in
battery materials [44, 45]. Indeed, the convex hull
formalism can be used to predict stability under
any set of thermodynamic conjugate variables [46,
47]. Beyond phase diagrams, convex hulls have
been recently leveraged in understanding chemical
reaction networks and synthesis pathways [48–51].

The global nature of convex hulls implies that
it is not obvious which composition-phase pairs
will reside on the hull. For instance, it is possi-
ble for the exact value of the energy to be certain,
while still being uncertain that the composition
is on the hull. A brute force approach to predict-
ing the convex hull would require calculating the
energy for all competing phases and compositions.
However, when the cost of individual energy eval-
uations is large, or the space of possible compet-
ing compositions is high-dimensional, exhaustively
evaluating the energies is prohibitively expen-
sive. Thus, there are two complimentary modes of
acceleration: efficiently producing surrogate mod-
els that lower the cost of energy calculations
and minimizing the number of energy evalua-
tions necessary to define the convex hull. Both
approaches can leverage active learning [52], since
it is a natural method for selecting expensive data
points that are expected to maximally increase the
information about a function.

To optimize the information gain about a sur-
rogate energy function, active learning has been
used to iteratively select first-principles calcula-
tions that minimize uncertainty in the surrogate
model. Surrogate models like cluster expansion
[53] and interatomic potentials [54] have been
trained with active learning; they were then lever-
aged to conduct numerous energy evaluations
for predicting the underlying convex hull. Active
learning has also been biased to identify phase-
composition pairs that are expected to be on
or near the convex hull [55–57]. While these
approaches have been shown to be more efficient
than random and grid-based search procedures,
the active learning was only biased using proxies
that incorporate a local view of the hull rather
than directly reasoning about the entire convex
hull as a singular, global object.

In this paper, we develop convex hull-aware
active learning (CAL) to accelerate stability
predictions. CAL distinguishes itself from more
conventional Bayesian approaches by reasoning
directly about the entire convex hull. CAL uses
separate Gaussian process regressions to model
the energy surfaces of phases across the com-
position space. From the Gaussian processes, a
posterior belief is produced over possible convex
hulls. This induced posterior enables the algo-
rithm to identify composition-phase pairs that are
expected to minimize the uncertainty in the con-
vex hull itself, not the constituent energy surfaces.
By focusing exclusively on the convex hull, it is
possible to make more effective decisions on what
compositions to consider.

We start with illustrating the CAL algorithm
in one dimension for clarity. The evolution of the
convex hull distribution is seen with increasing
observations, and both stability predictions and
chemical potentials are derived. From there, we
explore complex ternary composition spaces with
three competing phases. This allows us to quanti-
tatively demonstrate the efficiency of CAL against
a baseline active learning procedure and explore
analysis techniques for probabilistic hulls.

2 Approach

The overall goal is to establish a methodology
that approximates the convex hull with minimal
observed data. We begin by establishing a proba-
bilistic view of the hull (Fig. 1) and then present
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Fig. 1 (a) For a single phase, the search procedure begins by modeling the energy surface with a Gaussian process. The
black points denote observed compositions, the blue curve represents the mean of the Gaussian process posterior, and the
blue shaded region corresponds to two standard deviations from the mean. (b) Sampling from the Gaussian process posterior
allows an ensemble of energy surfaces to be hypothesized. The convex hull (grey) is constructed for each energy surface;
single-phase regions are where the energy surface touches the hull. (c) Each convex hull can be reduced to a composition
vector with a binary classification of phase stability. Here, each row of the matrix corresponds to a separate sampled hull;
blue denotes single phase compositions. (d) Interrogating this ensemble of hulls yields the probability of being on the hull.
We note that observing the energy of compositions (dashed lines) does not necessarily give absolute information about their
stability.

the policy for determining the next observation
(Fig. 2). We provide additional details on both the
model and policy in the Methods section.

Probabilistic view of the hull

In this and all subsequent examples, the energy
surfaces are assumed to be continuous and differ-
entiable across alloy compositions. We also assume
that there is a finite set of candidate compositions
that represent a dense subset of the space. In our
first example, we begin with a single phase for
which we have observed the energies of the parent
compounds and three alloy compositions. These
observations are denoted as D = {(xn, yn)}

N
n=1,

with xn taking values in composition space and yn
being energies.

We model the energy surface with a Gaus-
sian process (GP), which provides a prior on
energy surfaces specified by a mean and covariance
function [58, 59]. Conditioning on the observa-
tions D results in a posterior distribution over
energy surfaces that is itself a Gaussian process
(eqs. (2) and (3)). Let FD be the random function
associated with the posterior on energy surfaces;
then HD = C[FD] is the induced random (lower)
convex hull, where C is the convex hull operator.
The random function HD is the object of primary
interest in this work.

As we are only considering a finite set of can-
didate compositions, it is possible to generate
samples from this induced posterior by 1) drawing
a sample from the multivariate Gaussian distri-
bution resulting from the GP posterior, and 2)
using a standard algorithm such as QuickHull [60]
for computing the lower convex hull of a set of
points. Fig. 1a shows a posterior distribution over
the energy surface, FD, and Fig. 1b depicts three
posterior samples and their associated convex
hulls.

Our epistemic uncertainty about the true con-
vex hull is captured by the random function HD;
the Shannon entropy S[HD] then quantifies our
(lack of) knowledge about the convex hull. By
framing our problem as one of minimizing S[HD],
we can more rapidly gain information about the
structure in which we are most interested.

In addition to the hull itself, various properties
of interest can be derived from HD, so we can
reason about their posterior distributions as well.
For example, the (random) set

SD := {x : FD(x) = HD(x)}

contains the stable compositions as these are
the compositions for which the minimum-energy
phase is tight against the convex hull.

3



Fig. 2 (a) Given some set of existing observations,
energy surfaces are sampled from the trained GP and
the corresponding hulls are calculated. (b) To determine
the expected information gain for a potential observation
at composition x′, hypothetical energies that could result
from such observations are predicted. These hypothetical
energies are generated using the conditional distribution
of the GP at x = x′. (c) For contrast, a set of potential
observations for a different x composition are also high-
lighted. (d) This procedure is repeated to calculate the
expected information gain across all compositions. The
optimal composition x → x∗ for subsequent observation
is found by identifying the composition with the highest
expected information gain. After conducting an observa-
tion at x∗, the process repeats until the uncertainty in the
convex hull is sufficiently small.

Fig. 1c shows 20 samples of stable sets after
the 3 iterations in 1b. These binary classifica-
tions can be averaged to estimate the marginal
probability that any given composition is on the
hull, i.e., is stable (Figure 1d). Note that these
marginal probabilities reveal an important way in
which this problem is different from conventional
Bayesian optimization and active learning tasks:
the global nature of the convex hull means there is
uncertainty about stability even for compositions
in which the energy has been noiselessly observed.
In this example, the observed compositions are
marked with dashed vertical lines in Fig. 1d and
there is uncertainty about the stability in two of
the three cases.

Refining the convex hull

With a probabilistic view of convex hulls in place,
our goal in each iteration of the search is to
identify the candidate observation x∗, which is
expected to minimize the Shannon entropy S[HD].

This objective can be viewed as a Bayesian exper-
imental design procedure in which the policy is to
greedily maximize the information gain (Fig. 2).

Like many Bayesian optimization and search
algorithms, the selection of x∗ requires approx-
imating the expected information gain (EIG)
across the space of possible designs, which in
our case is the set of compositions [61, 62]. The
EIG is simply the difference between the Shan-
non entropy of the current state (reflected in
the observed data, D) and the expected Shan-
non entropy after making an observation at an
unobserved composition x. Of course, the energy
value y is unknown at this point and so the
new set of observations D ∪ (x, y) is considered in
expectation:

EIG(x ; D) := S[HD]− Ey[S[HD∪(x,y)]] . (1)

Finally, the expected information gain is used
within each iteration to select x∗, the candidate
composition to be evaluated:

x∗ = argmax
x

EIG(x ; D) .

Fig. 2 illustrates how the EIG is evaluated
in practice. In Fig. 2a, we start with a GP con-
ditioned on some data, D. Energy surfaces are
sampled from the resulting posterior distribution,
convex hulls are calculated, and the Shannon
entropy of state D is calculated, giving us the first
term in equation 1.

For a given candidate composition x, we sam-
ple from the conditional Gaussian process poste-
rior at x to obtain a set of K possible energy
values, denoted yk. In other words, these yk
values correspond to different energies for compo-
sition x given the current uncertainty within our
energy model. For each of these K samples, the
entropy S[HD∪(x,yk)] is estimated in three steps. 1)
The Gaussian process is conditioned on this “fan-
tasized” pair of observations (x, yk), and energy
surfaces for all considered compositions are sam-
pled from the resulting distribution. 2) For each
of these sampled energy surfaces, a convex hull is
computed. 3) The convex hull samples are used
to estimate the Shannon entropy (eq. (4)), as
detailed in the Methods. The expectation value of
the Shannon entropy is then calculated by averag-
ing the K entropy estimates (eq. (6)), resulting in
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an estimate of the second term in eq. (1), thereby
completing our evaluation of the EIG.

We continue to illustrate this algorithm in
panels Fig. 2b where three hypothetical energy
values for composition x lead to three different
hull distributions. For contrast, a different com-
position is selected for Fig. 2c, resulting in visibly
greater variation in the hulls and thus a higher
expected Shannon entropy. In Fig. 2d, the process
is repeated across composition space to determine
the composition with the maximum EIG (i.e., x∗).
(For panel b, the optimal value x∗ was intention-
ally selected to visually emphasize the impact that
sampling at x∗ would have.) Finally, an observa-
tion is made at x∗ to update D and the algorithm
repeats to refine the convex hull. We reiterate
that this approach seeks to minimize the Shan-
non entropy in the convex hull, not simply observe
points that are on the hull. Here, observing the
composition x∗ is advantageous because regardless
of its energy, the resulting distribution in possible
convex hulls narrows significantly.

Application of the Convex Hull

Having sufficiently iterated to build an accurate
hull, relevant thermodynamic intensive variables
can be directly calculated. For example, the ele-
mental chemical potentials can be determined
by combining the tangent and energy value of
the hull. Figure 3a highlights that the elemental
chemical potentials can be directly read off the
y-intercepts of the composition boundaries (i.e.,
x = 0 and x = 1). Here, the energy surface
is a single sample from a GP with an associ-
ated convex hull. Sweeping over the derivative of
the convex hull changes the elemental chemical
potentials, as shown in Figure 3b. All composi-
tions within the two-phase region (shaded in blue)
are in thermodynamic equilibrium, and as such,
the chemical potentials stay constant. Figure 3c
shows the mean chemical potential and affiliated
uncertainty (±2σ) associated with a distribution
of convex hulls.

Elemental chemical potentials are critical in
predicting defect concentrations, as defect cre-
ation involves exchanges with element and charge
reservoirs. For example, in LiZnSb, the limited
chemical potential window of Li renders the com-
pound significantly Li-deficient even in the pres-
ence of secondary phases with excess Li (e.g.

Fig. 3 (a) Given a sampled energy surface from the
GP (blue), intensive properties can be obtained from the
associated hull (grey); when considering E(x), the tangent
(black) to the hull yields the elemental chemical poten-
tials upon intersection with x = 0 and x = 1, denoted by
the red and orange points. (b) For the single sampled hull,
the chemical potentials are derived across the composition
space. Within the two-phase region (shaded), the chemical
potentials are constant. (c) From an ensemble of convex
hull samples, the corresponding distribution in elemental
chemical potentials are also represented as a distribution.
The uncertainty in these potentials can be used to inform
stopping criteria.

Li3Sb) [63]. Chemical potentials of charged species
can also be leveraged to produce intercalation
voltage curves in battery materials [45], as was
done for LixCoO2 [44]. Lastly, pressure is an inten-
sive variable that can be determined from the
convex hull of an energy surface that is a function
volume [37–39]. For example, the impact of volu-
metric confinement on the freezing point of water
can be readily determined from the hull [64].
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Fig. 4 Chemical systems with multiple competing phases are represented with independent GPs; here, two phases (blue
and purple) are considered in a binary space. (a) Having observed nothing but the endpoints, there is significant uncertainty
across the composition space. Ten example convex hull samples are shown in grey, and they also vary widely. With (b) 5
and (c) 10 iterations, the distribution of hulls converges. (d-f) The probability that a given phase is on the hull likewise
converges with observation iterations. These are stacked plots such that the total probability for being on the hull is broken
up into the individual phase contributions. (g-i) The elemental chemical potentials also converge after 10 iterations (µA:
red; µB : orange).

Multiple phases

CAL can be naturally expanded to search across
multiple competing phases. In such cases, the n

phases are modeled with n independent GPs. By
adopting separate GPs, we make no assumptions
concerning correlations between the energy sur-
faces of different phases. For further efficiency, the
set of n phases could be described with a joint GP,
as mentioned in the Discussion. To construct the
corresponding convex hull distribution, each GP
is sampled s times, resulting in sn permutations
of n energy surfaces. For a given permutation, the
n energy surfaces, corresponding to the n phases,
can once again be wrapped with a single convex
hull. From the convex hull we can predict the prob-
ability that a given phase-composition pair is on
the hull, as will be shown in Fig. 4. The search
process extends gracefully to multiple phases; the

expected information gain is evaluated for each
phase-composition pair.

Case Example I: 1D, 2 Phases

To see this methodology applied to an iterative
loop, we consider the case of a 1-dimensional
binary composition space with two competing
phases. Figure 4a shows how the initial energy
surfaces are ambiguous and this uncertainty prop-
agates to the convex hull. The probability of any
composition being on the hull is then derived from
the convex hull distribution. In Fig. 4b and c,
increasing observations leads to a tightening of
the energy and convex hull distributions. However,
CAL leaves significant ambiguity in the energy
surfaces when they are well above the hull. The
probability of a given phase being on the hull is
shown across Fig. 4d-f; these curves quantify the
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evolving uncertainty in the stability predictions. A
similar evolution is seen in the elemental chemical
potentials (Fig. 4g-i).

As previously mentioned, CAL acquires obser-
vations that minimize the uncertainty in the
convex hull distribution. The behavior of the algo-
rithm can be characterized by two steps. In the
first few iterations when there is large uncer-
tainty, Figure 4b shows that the algorithm tends
to explore the energy surface, producing a coarse
estimate for the convex hull. As the estimate of
the convex hull develops, the algorithm focuses
its next iterations increasingly on regions that
are purportedly on the hull or close to it. These
subtle refinements to the convex hull distribution
are reflected in Figure 4c, where the convex hull
samples converge.

Quantitative performance assessment

Hulls are intriguing objects as they involve both
classification and quantitative prediction. In part,
we seek to classify if a given composition is on
the hull. Knowing about the energies and slopes
of the hull are also important for deriving inten-
sive variables and quantifying the energy above
the hull for an unstable composition. For this rea-
son, we use three metrics in order to assess these
dual aims: mean absolute error (MAE) for the hull
energy, true positive rate (TPR), and false posi-
tive (FPR). Here, TPR refers to the percentage of
stable compositions that are correctly identified as
being on the hull, while FPR is the percentage of
unstable compositions that are incorrectly identi-
fied as being on the hull. Mathematical definitions
for these metrics can be found in the Methods.

In low dimensions, producing an accurate hull
can be achieved via brute force. However, the
necessity for efficient hull construction emerges in
spaces that involve multiple competing phases and
large composition spaces. To test the efficiency of
CAL in such a space, we pit it against a chal-
lenging opponent: a baseline algorithm (BASE)
that still models the energy surfaces using a Gaus-
sian process. However, BASE seeks to minimize
the uncertainty in the energy surfaces and has no
knowledge of convex hulls. See the Methods for
further information about the BASE policy.

Fig. 5 To compare the performance of CAL (pink) and
BASE (blue), we consider a more complex search problem:
ternary composition spaces with three competing phases.
(a) Concerning the regression problem for the convex hull,
we calculate the average error in the convex hull energy
across the composition space. (b,c) The classification accu-
racy is also evaluated using the true and false positive rates.
Across all metrics, CAL outperforms BASE. Here, we show
the performance averaged across 40 sets of energy surfaces.
The bands represent one standard deviation from the mean.

Case Example II: Ternary Composition

Space with Three Phases

Here we highlight a ternary composition space of
the form A1−x−yBxCy with three different com-
peting phases. This example is chosen to show how
CAL navigates multiple dimensions and prioritizes
phases that are more relevant to the convex hull.
With composition steps of 0.1, the search space
consists of 66 discrete compositions and 198 phase-
composition pairs. We repeat the search process
for 40 different sets of energy surfaces to reveal
the typical differences between the two policies.

Across all three metrics shown in Fig. 5, CAL
significantly outperforms BASE. For CAL, the
mean absolute error (MAE) is nearly zero by 50
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Fig. 6 The evolution of the CAL performance is shown quantitatively in Fig 5; further insight can be gained by visualizing
the evolution of the GP and the associated hull for a single set of energy surfaces. To investigate how CAL performs
with three phases spanning a ternary composition space (continuing Fig. 5), a single example is considered with increasing
observations. (a) Each phase has an energy surface that spans the composition space. (e) A slice of the ternary space from
B to AC shows the energies of these competing phases and a corresponding slice of the convex hull. (i) The full convex
hull is represented as a ternary phase diagram. (b) After 10 iterations of CAL, the three Gaussian processes are illustrated
by plotting their means and coloring the surfaces with their associated uncertainties. (c,d) With increasing iteration, CAL
prioritizes learning about phase-composition pairs that are relevant to the convex hull, resulting in regions transitioning
from high (orange) to low (purple) uncertainty. (f-h) A similar progression can be seen in the slice from B to AC. Ultimately,
we are interested in predictions of the hull and the associated phase diagram. j) After 10 iterations, the uncertainty in
the convex hull distribution is represented by overlaying 100 convex hull samples on a ternary phase diagram. (k,l) With
increasing iteration, the distribution tightens and converges around the true convex hull.

iterations. Similar convergence is found for the
true positive and false positive rates. Together,
these metrics indicate that by 50 iterations (i.e.,
25% of the search space), CAL is able to predict
the energy of the convex hull as well as clas-
sify which compositions are on and off the hull.
BASE, however, takes significantly longer to come
to these conclusions. Considering that there only
198 phase-composition pairs in this space, BASE
requires observing nearly all phase-composition
pairs to understand the convex hull. Not only does
BASE finish far slower, but its rate of learning is
consistently lower through the search process, as
shown by its smaller slopes in Fig. 5a-c. Finally,
from the width of the shaded regions, we conclude
that BASE is much more variable than CAL.

Fig. 6 shows a representative example from
Fig. 5 to understand the root of how CAL so effi-
ciently and consistently reveals the hull. The true
energetic landscape is shown in panel (a) with
energy surfaces corresponding to the three distinct
phases. A slice through these energy surfaces is
shown in (e); here, we show from B to interme-
diate composition AC. Additionally, a slice of the
true convex hull is included below in grey. In panel
(i), the complete convex hull is projected onto two
dimensions as a ternary phase diagram. The three
energy surfaces are similar in energy, resulting in
a fairly complex phase diagram. As such, this is a
challenging task for hull determination.

We model the three energy surfaces using sep-
arate Gaussian processes and conduct a total of
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50 observations within this system. In panels (b-
d), we show the mean of each GP and color the
three surfaces by their standard deviation. In (b),
before any observations, all energy surfaces have
significant uncertainty and are thus orange. With
increasing iteration, both the mean energies evolve
and the uncertainties decrease for select compo-
sition regions; it will be made clear that these
regions are targeted by CAL for their relevance to
the convex hull. The evolution of energetic uncer-
tainties can be clearly seen in the B − AC slice.
Composition-phase pairs near the hull show evi-
dence of significant observation and an associated
reduction in uncertainty. It is important to note
that only observing the lowest energy phase would
not have been an optimal solution–different phases
affect the hull in different regions.

In panels (j-l), 100 hulls are projected and over-
laid onto the ternary phase diagram. As expected,
no coherent expectation for the hull is present ini-
tially. By 30 iterations, most of the single-phase
regions have been identified, but there is still
significant uncertainty. As such, some unstable
compositions are classified as having a non-zero
probability of being on the hull, resulting in
a smearing out of the ternary phase diagram.
Finally, after 50 iterations, much of the lingering
uncertainty has dissipated and the convex hull is
well understood.

3 Discussion

The above case examples demonstrate CAL as
a fundamentally distinct approach to resolving
phase diagrams. There are a variety of ways
in which the general method presented can be
adjusted to specific search problems. Herein, we
consider joint Gaussian processes as tools for cap-
turing correlations between separate phases. As
a natural extension of joint Gaussian processes,
we discuss conducting CAL simultaneously over
a variety of temperatures. We then list ways in
which the computational cost of CAL can be
reduced for truly vast composition spaces.

It is also explained how our method may play
a role in a broader uncertainty-based thermody-
namic workflow. First, the importance of uncer-
tainty quantification is discussed, then we consider
how CAL may interact with sources of uncertainty
that precede it in a workflow. Finally, we talk
through how the uncertainty in CAL predictions

is propagated forward to other thermodynamic
predictions.

Correlated Energy Surfaces

For simplicity, we used separate GPs for model-
ing the energy surface of each competing phase.
If there are compositional correlations between
energy surfaces, the set of GPs are not learning
from them. For systems where strong compo-
sitional correlations are expected, it would be
advantageous to use observations of one phase-
composition pair to help inform the beliefs about
a separate phase for similar compositions.

Joint Gaussian processes are well-suited for
incorporating compositional correlations into the
energy model [65, 66]. In a joint Gaussian process,
the energy surface of each phase would be modeled
simultaneously; the inputs for such a model would
be observations across all phases, and the out-
puts would be the energy surfaces for each phase.
Incorporating joint GPs into CAL would leave the
acquisition function unchanged.

Temperature

Often, it is favorable to produce phase diagrams
over a range of temperatures; example applica-
tions include tuning synthesis conditions or iden-
tifying phase transitions that limit the operating
conditions for a material. To incorporate tem-
perature into the CAL workflow, the free energy
surface could be modeled as a function of both
composition and temperature. Such an approach
would allow for the GP to explicitly learn the rela-
tionship between free energy surfaces at differing
temperatures. As a terminology note, here we use
the term “free energy” to explicitly denote the
temperature dependence of the thermodynamic
potential.

The policy for determining the next optimal
observation would need to be extended in order
to account for temperature as an added dimen-
sion in the design space. The added complexity
derives from the free energy convex hull only being
defined over composition space at a single tem-
perature. As such, the total expected information
gain for a single phase-composition-temperature
triplet would need to be assessed as a sum over the
expected information gains across temperatures of
interest. In practice, the temperature range would
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need to be discretized to make evaluating the total
information gain feasible.

A special case of temperature-dependent
search involves thermodynamic methods where
calculating the enthalpy of formation is the com-
putationally limiting factor and the entropy can
be approximated analytically [67–69]. As such,
with these methods the free energy can be pre-
dicted at multiple temperatures with no additional
cost . The ramifications of this set of observations
would need to be incorporated into the acquisition
function.

Computational Scaling and Approaches

for Cutting Cost

The computational cost of CAL will often be
dwarfed by that of first-principles calculations.
However, there is some cost to CAL, especially
when moving to multi-dimensional composition
spaces with many possible phase-composition
pairs. If the cost of CAL is unacceptably large
compared to the energy evaluations, there are
multiple shortcuts for speeding up the algorithm.

Evaluating the expected information gain
(EIG) across phase-composition pairs is the main
source of cost for CAL. Indeed, one could use
Bayesian optimization to efficiently find the opti-
mal phase-composition pair that maximizes the
EIG. One could also imagine using a coarse grid
of compositions to begin with and then itera-
tively increasing the granularity of the composi-
tion grid as the convex hull distribution continues
to tighten.

In truly large spaces, one may want to pri-
oritize composition sub-regions. The acquisition
function can be readily altered to exclusively focus
on such regions. Here, the expected information
gain would only reflect minimizing the uncertainty
for the convex hull in those prioritized regions.
The resulting efficiency gain will be dependent on
how many different multi-phase regions enclose
the specified compositions.

Other approaches center around decreasing the
cost of the EIG. For instance, the EIG could
be calculated with fewer convex hull samples.
Another approach would employ BASE in the
beginning of the search and CAL only after some
number of iterations. Since CAL is more expen-
sive, it would be reserved for later in the search
when there is sufficient information about the

hull such that the CAL policy results in signif-
icantly different decisions from BASE. Finally,
one could approximate the joint entropy as a
sum of the entropies across individual compo-
sitions. This is a strong approximation for the
entropy and should be taken with caution since it
assumes convex hulls have no correlations between
compositions. All these shortcuts add parameters
requiring tuning to negotiate between speed and
quality.

Opportunities for Uncertainty-based

Workflows

Understanding how uncertainty propagates
throughout a workflow allows for the rational
prioritization of certain segments of the workflow.
Thermodynamic stability prediction is one such
workflow–it often involves a series of convoluted
steps, and at each step there is opportunity to
estimate and propagate uncertainty. Such uncer-
tainties could be produced from first-principles
calculations [70, 71], fitting surrogate models [53,
72], or numerical approaches to approximating
free energies [67]. The GP within CAL could
incorporate uncertainties from previous steps
as noise in its observations. Such noise would
be reflected in the convex hull distribution and
resulting predictions.

In an uncertainty-based thermodynamic work-
flow, CAL could be useful in iteratively train-
ing surrogate models with energetic uncertainties
like the Bayesian approach to cluster expansion
[53, 72–75]. Here, completing the necessary first-
principles calculations to train such models is the
limiting factor. Such training would be focused
on minimizing the uncertainty in the convex hull
rather than predicting energies.

Specifically, instead of the GP used in our
work, the surrogate model would be leveraged to
produce uncertainty in the convex hull distribu-
tion before and after a potential observation. The
simplicity of such an inexpensive surrogate makes
it computationally feasible to retrain numerous
times, which is necessary for choosing the opti-
mal observation. Once an optimal composition
is identified by CAL, its energy would be calcu-
lated using first-principles, and the result would
be included in the training set for the surrogate
model.

10



Ultra-fine Convex Hulls

Bayesian modeling also allows for propagating
uncertainty to subsequent steps in the thermo-
dynamic workflow. We have shown such propa-
gation for both stability predictions and chemi-
cal potentials, and herein we highlight one more
example–the production of ultra-fine convex hulls
from coarse-grid composition spaces. Producing
fine-grained convex hulls is advantageous due to
their ability to resolve single-phase regions, but
conducting CAL on ultra-fine composition grids
heavily increases its computational cost. As such,
we use CAL to conduct search on coarse grids and
use post-processing to produce the fine-grained
convex hulls shown in Fig. 6j-l. Specifically, a new
GP is trained on the existing energy observa-
tions from the coarse grid and produces energetic
predictions over a fine composition space. The
resulting convex hull distribution is subsequently
derived. The associated uncertainty with interpo-
lating to fine grids is naturally included in the
convex hull predictions.

4 Conclusion

Efficient, scalable calculations coupled with end-
to-end uncertainty predictions are critical for
the next generation of computational materials
design. Here, CAL provides a crucial component
of this workflow with the ability to efficiently and
accurately predict thermodynamic stability. This
enhancement comes from developing an acquisi-
tion function for active learning that is focused
on minimizing the uncertainty of the convex hull.
Rather than attempt to characterize the entire
space, CAL prioritizes observing compositions
that are on or near the hull. As a result, we see a
factor of four gain in search efficiency for complex
ternary spaces. While we focus on ternary spaces,
our approach generalizes across dimensions; thus,
it can be applied to pernicious problems such as
generating phase diagrams for high-entropy alloys.
Uncertainty quantification of both phase stabil-
ity and associated intensive variables emerges
naturally from this hull-aware Bayesian method.
Such intensive variables (e.g., pressure, chemical
potential, voltage) are critical for linking CAL’s
results into a predictive workflow for informing
experimental campaigns.

5 Methods

Gaussian process model

Let X ⊆ R
d denote the composition space; we

assume that the composition space is a discrete
set. We model the energy surface using a Gaussian
process prior:

F (x) ∼ GP(m(x), k(x, x′)),

where m(x) is the mean function and k(x, x′)
is the covariance (or kernel) function. Given a
composition x ∈ X , the corresponding energy is
y = F (x).

The convex hull operator C takes an energy
function F and returns its lower convex envelope
H = C(F ). Thus, the GP prior on the energy
function F implies a prior on its convex hull H.

Given N observations D = {(xn, yn)}
N
n=1, the

posterior of the energy function p(F | D) is also

a Gaussian process p(F | D) = GP(m̃(x), k̃(x, x′))
with mean and covariance function of the form

m̃(x) = m(x) + kxX k−1
XX (Y −mX) (2)

k̃(x, x′) = k(x, x′)− kxX k−1
XX kX,x′ , (3)

where Y = [y1, . . . , yN ]⊤ is the vector of energies;
mX and kX,x′ are vectors of length N induced
from evaluating the functions m and k on the
elements X = {xn}

N
n=1; and kx,X and kX,X are

matrices of dimension 1 ×N and N ×N , respec-
tively, constructed from evaluating the kernel
function on the elements X.

In practice, we represent F (and H) using a
dense grid of c candidate compositions. In this
case, the posterior of the energy values on this
grid becomes a multivariate Gaussian distribution
with a mean and covariance matrix arising from
m̃ (eq. (2)) and k̃ (eq. (3)) evaluated at those
points.

The posterior over the energy surface F

induces a posterior over the convex hull function
p(H | D). To generate a random function from this
posterior, i.e., HD ∼ p(H | D), we first sample FD

from p(F | D) and then construct its convex hull,
i.e., HD = C(FD).

Expected information gain computation

For a given composition, CAL calculates the
change in entropy for a variety of possible out-
comes and averages them together to produce the
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expected information gain. Herein, we detail how
the EIG is calculated.

Recall that to compute the EIG for the random
hull HD ∼ p(H | D) (eq. (1)), we need to com-
pute the entropy S[HD] and the expected entropy
Ey[S[HD]], where y is the (unobserved) energy of a
new candidate composition x. The entropy S[HD]
is defined as

S[HD] := −Ep(H | D)[ln p(H | D)]. (4)

A key challenge is to estimate the entropy since it
is not available analytically. In particular, in large
and high-dimensional composition spaces, the
expectation in eq. (4) involves a high-dimensional
integral and a high-dimensional log hull density,
both of which are challenging to estimate accu-
rately and efficiently using numerical methods.

To address this computational issue, we
approximate the hull distribution in a way that
allows us to compute eq. (4) in closed form.
We assume that random values of the convex
hull (evaluated on a dense grid of c elements)
follow a multivariate Gaussian distribution with
covariance Σ.

We estimate this covariance matrix by comput-
ing the empirical covariance matrix of m convex
hull samples Hj ∼ p(H | D), where each Hj is
a vector of length c; we use those vectors to
construct the covariance matrix:

Σ = 1
m

∑m

j=1(Hj − H̄) (Hj − H̄)⊤. (5)

Here, H̄ := 1
m

∑m

j=1 Hj is the vector obtained
from averaging over the components of each hull
vector Hj . It is worth noting that the number of
convex hull samples must satisfy m > c in order
to ensure the covariance matrix is full-rank.

The entropy of the multivariate Gaussian,
which only depends on the covariance Σ, can be
computed in closed form:

S[HD] =
c
2 ln(2πe) +

1
2 ln(det(Σ)). (6)

For the expected entropy Ey[S[HD]], we com-
pute a Monte Carlo estimate of the expectation:

Ey[S[HD∪(x,y)]] ≈
1
K

∑K

k=1 S[HD∪(x,yk)], (7)

where {yk}
K
k=1 are samples obtained from the pos-

terior p(F | D) for a given composition x, and

the entropy estimates S[HD∪(x,yk)] are computed
using eq. (6).

Implementation and evaluation details

The Gaussian process model and active search
algorithm were implemented using JAX [76] and
the GPJax library [77]. For simplicity and consis-
tency, a radial basis function (RBF) kernel with a
length scale of 0.2 was used throughout the paper.
This length scale was chosen as it gave energy
curves that generally agreed with other thermody-
namic potentials. The “true” energy surfaces were
generated using an RBF kernel with a length scale
of 0.2 as well.

All observations had no noise associated with
them, although observational noise can readily be
incorporated. Shaded regions in the GP plots show
two standard deviations from the mean predic-
tion. Convex hulls were generated using the qhull
algorithm [60] within the scipy library [78]. Cus-
tom code was built to isolate the lower bound
of the hull, which is the portion of interest for
thermodynamics.

Here we discuss the specific sampling parame-
ters used in the work. In the 1D search evolution
shown in Fig. 4, there were 21 compositions in the
space. For the ternary search in Fig. 5 and Fig. 6,
there were 66 total compositions. For both the 1D
and 2D search, 200 energy and convex hull sam-
ples were used for each entropy calculation, and 10
possible y-values were used to build the expected
information gain (i.e., m = 200, K = 10).

The baseline active learning algorithm, which
also uses a GP model for the energy surface,
selected compositions to maximize the informa-
tion gained about the energy surface. Specifically,
BASE maximized the EIG with respect to the
energy function (EIG-B):

EIG-B(x ; D) := S[FD]− Ey[S[FD∪(x,y)]] .

When multiple phases were present, BASE chose
the composition-phase pair that maximized the
EIG. In Fig. 5, the policy resulted in BASE alter-
nating evenly between phases. BASE used the
same GP hyperparameters as CAL to control for
hyperparameter tuning.

The performance of each policy was assessed
using the mean absolute error (MAE) of the hull
energy, the true positive rate (TPR), and false
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positive rate (FPR). The MAE here is defined by:

MAE = 1
c

∑c

i |Em[Hi,pred]−Hi,true|. (8)

For composition i, the error is defined as the abso-
lute difference between the average predicted hull
energy (Hi,pred) and the true hull energy (Hi,true).
The absolute value of these errors is then averaged
over all compositions, c.

The true positive rate is the percentage of
the points that are on the hull that are correctly
identified:

TPR =
TP

TP + FN
. (9)

TP refers to the number of true positives, which
in this context is the number of compositions that
are correctly identified as being on the convex
hull. FN is the number of false negatives, which is
the number of compositions that were incorrectly
identified as being off the hull.

The FPR refers to the percentage of the points
that are off the hull that were incorrectly identi-
fied:

FPR =
FP

FP + TN
(10)

FP is the number of false positives, which is
the number of compositions that were incorrectly
identified as being on the convex hull. TN stands
for true negative, and is the number of composi-
tions that were correctly identified as being off the
hull.

For both CAL and BASE, 200 hulls were used
to evaluate the MAE, TPR, and FPR for a given
iteration. A composition was defined as being on
the hull if its energy was within 10−3 of the energy
of the hull.
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