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Abstract

Despite recent attention to depth for various tasks, it is

still an unexplored modality for weakly-supervised object

detection (WSOD). We propose an amplifier method for en-

hancing the performance of WSOD by integrating depth in-

formation. Our approach can be applied to different WSOD

methods based on multiple-instance learning, without ne-

cessitating additional annotations or inducing large com-

putational cost. Our proposed method employs monocular

depth estimation to obtain hallucinated depth information,

which is then incorporated into a Siamese WSOD network

using contrastive loss and fusion. By analyzing the rela-

tionship between language context and depth, we calculate

depth priors to identify the bounding box proposals that may

contain an object of interest. These depth priors are then

utilized to update the list of pseudo ground-truth boxes, or

adjust the confidence of per-box predictions. We evaluate

our proposed method on three datasets (COCO, PASCAL

VOC, and Conceptual Captions) by implementing it on top

of two state-of-the-art WSOD methods, and we demonstrate

a substantial enhancement in performance.

1. Introduction

Weakly-supervised object detection (WSOD) is a chal-

lenging task since it is unclear which instances have the

label that was provided at the image level. Traditional

methods only use appearance information in RGB images.

However, appearance information is insufficient to localize

objects in complex, cluttered environments. On the other

hand, humans are capable of finding useful information in

complex environments because they rely on object function,

not just appearance. For example, they might reason about

which objects are within reach, which can be captured with

depth from stereo vision [2]. The depth modality provides

additional cues about the spatial relationships and geometri-

Figure 1. Object from the same category may be at different

depth depending on the context/setting. We use captions to cap-

ture context-conditioned depth ranges for each object class and

co-occurring word: a bird may be closer when co-occurring with

the word ªfeedº than the word ªoceanº. We use these ranges to

spot relevant proposals that may contain target objects, and prune

irrelevant ones, in weakly supervised object detection training.

cal structure of objects in a scene and is invariant to appear-

ance variations (e.g. in texture), making it complementary

to the RGB modality. However, weakly-supervised object

detection methods do not use depth information.

We equip WSOD methods with the ability to reason

about functional information (depth). Importantly, our

method does so without requiring additional annotations or

suffering significant computational costs. We propose an

amplifier method that can enhance the performance of dif-

ferent weakly supervised object detection methods based

on multiple-instance learning. Since traditional WSOD

datasets do not contain ground-truth depth information, the

proposed method utilizes hallucinated (predicted) depth in-

formation obtained through a monocular depth estimation

technique. During training, the method incorporates depth

information to improve representation learning and to prune
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or down-weight predictions at the box level, which leads to

improved object detection performance during inference.

First, depth can directly be used as a feature to aid repre-

sentation learning, or to produce predictions which can be

fused with those computed from RGB. While simple, this

technique has not been used for WSOD, and we show that

it is very effective: it boosts the performance of appearance-

only methods by up to 2.6 mAP@0.5 (11% relative gain).

Further, depth can provide strong priors about which of

the bounding box proposals in the noisy WSOD setting con-

tain an object of interest. We examine the rough depth at

which objects of particular categories occur, by comput-

ing the depth range of an object using the predictions of

a WSOD network. To make this range more precise, we

examine the relationship between language context in cap-

tions and depth, by keeping track of depth range statistics

conditioned on co-mentioned objects. The use of captions

allows us to cope with the variable depth at which an object

may occur depending on the context, as shown in Fig. 1. We

then use this range to prune the pseudo ground-truth bound-

ing boxes used to iteratively update weakly-supervised de-

tection methods, or to down-weight predictions at the box

level. This approach boosts WSOD performance further for

a total up to 14% mAP@0.5 gain.

Our method is simple and can boost multiple WSOD

methods that rely on iterative improvement. We test it us-

ing two state-of-art WSOD baselines, MIST [30] and SoS-

WSOD [33], on COCO and PASCAL VOC. Inspired by

recent work that trains object detection methods with lan-

guage supervision [11, 36, 41], we further test our method

in a setting where labels at the image level are not ground-

truth but estimated. In this setting, our method boosts the

basic WSOD performance even more, by 18% when labels

for training are extracted from COCO, and 63% when they

are extracted from Conceptual Captions.

To summarize, our contributions are: (1) We examine for

the first time the use of depth in weakly-supervised object

detection. (2) In addition to depth fusion, we propose a

technique specific to WSOD, which estimates depth priors

with the help of language, and uses them to refine pseudo

boxes and box predictions. (3) We show large performance

gains in a large variety of settings, with the biggest boost

from depth refinement when supervision is least expensive.

2. Related Work

Weakly-supervised object detection (WSOD) is the

task of learning to detect the location and type of objects

given only image-level labels during training. The multi-

instance learning (MIL) framework is commonly utilized

in WSOD methods such as WSDDN [1]. OICR [35] im-

proved upon this by proposing pseudo-ground-truth mining

and an online instance refinement, which was further re-

fined by proposal clustering [34]. C-MIL [37] and MIST

[30] introduced modifications to the MIL loss and pseudo-

ground-truth mining, respectively. SoS-WSOD [33] pro-

posed a method that produces pseudo boxes for FSOD and

splits noisy data for semi-supervised object detection. Ad-

ditionally, there have been efforts to bypass the need for

image-level labels by utilizing noisy labels extracted from

caption or subtitle data [4,11,36,38,41]. Additionally, [12]

leverages audio to improve WSOD performance and reduce

noise from text-based label extraction. In contrast to these

works, our method leverages depth information as an addi-

tional modality, leading to improved performance in WSOD

and a reduction of the noise in labels extracted from text.

RGB-D detection. The integration of RGB and depth

information to derive complementary features has been pre-

viously studied for fully-supervised indoor analysis [19,22,

40, 42, 43] and object detection [8, 9, 15±17, 20, 21]. The

strategies for merging the two modalities can be classified

into three groups, depending on the point in the processing

pipeline where the fusion occurs: early fusion [6, 27], mid-

dle fusion [3,9,10,44], and late fusion [14,26]. Early fusion

techniques involve combining the RGB and depth images

into a single four-channel matrix at the earliest stage of the

process. Middle fusion provides a balance between early

and late fusion by utilizing CNNs for both feature extraction

and subsequent merging. In late fusion, individual saliency

prediction maps are produced from the RGB and depth

channels to be combined through post-processing opera-

tions. In contrast to the majority of aforementioned meth-

ods, which use separate networks to extract features from

RGB and depth images, several studies [9, 10, 24, 32] em-

ploy Siamese networks to learn hierarchical features from

both RGB and depth inputs by utilizing shared parameters.

However, we are the first to leverage depth data in weakly-

supervised object detection. Our approach is not specific to

a particular method, as it can be applied to different MIL-

based WSOD methods to improve their performance with-

out incurring any extra annotation expenses and with mini-

mal computational overhead during training. Although the

depth modality is not used during the inference stage, incor-

porating it during training enhances the performance of the

inference.

Monocular depth estimation involves predicting the

depth map of a scene from a single RGB image [25, 28, 29,

39]. We utilize the method in [25] to estimate depth on the

training set due to its strong performance. This estimated

(ªhallucinatedº) depth information is utilized to improve the

performance of weakly supervised object detection.

3. Approach

We propose an amplifier approach that incorporates a

depth modality to improve the effectiveness of WSOD

methods. Our method can be used with different MIL-

based WSOD methods to boost their performance by in-
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Figure 2. This figure illustrates the design of our proposed amplifier technique that takes advantage of depth information to enhance the

performance of other weakly-supervised object detection methods. During inference, we only use the RGB branch (shown in orange).

curring little extra cost during training. It does not use the

depth modality during inference to avoid any slow-downs

and reliance on additional data (depth estimation or cap-

tions). The proposed approach comprises three main steps

(Sec. 3.1, 3.2, 3.3, respectively). First, a Siamese network

with a shared backbone is employed to improve represen-

tation learning through contrastive learning between RGB

and depth features (referred to as SIAMESE-ONLY in the

experiments). Second, we combine detection and classifica-

tion scores obtained from both the RGB and depth modal-

ities, which can be categorized as late fusion (FUSION).

Third, we use captions and bounding box predictions of tra-

ditional WSOD to calculate depth priors. These depth pri-

ors are then used to improve the OICR-style [35] module

in two WSOD methods (named DEPTH-OICR) and cre-

ate attention with combined score probabilities (DEPTH-

ATTENTION). Note that SIAMESE-ONLY is always applied,

while FUSION, DEPTH-OICR and DEPTH-ATTENTION

build on top of it, and can be used alone or combined.

3.1. The Siamese WSOD Network

WSOD. Following Bilen et al. [1], let I ∈ R
h×w×3 de-

note an RGB image, and yc ∈ {0, 1} (where c ∈ {1, ..., C}
and C is the total number of object categories) be its corre-

sponding ground-truth class labels. Let vi, i ∈ {1, ..., R}
(where R is the number of proposals), denote the visual

proposals in image I. RoI pooling is applied and a fixed-

length feature vector ϕ(vi) extracted for each visual re-

gion. The proposal features ϕ(vi) are fed into two parallel

fully-connected layers to compute the visual detection score

vdeti,c ∈ R
1 and classification score vclsi,c ∈ R

1:

vdeti,c = wdet⊺
c ϕ(vi)+ b

det
c , vclsi,c = wcls⊺

c ϕ(vi)+ b
cls
c (1)

where w and b are weights and bias, respectively.

Estimating the depth images. To extract depth infor-

mation from RGB images, we employ the monocular depth

estimation technique by Mahdi et al. [25]. This enables us

to use existing RGB-only object detection datasets without

the need for additional annotations. Although the extracted

depth images are initially grayscale, we use a color map to

convert them to RGB images with three channels.

Siamese design. Our approach utilizes a Siamese net-

work with contrastive learning to incorporate depth infor-

mation in the weakly-supervised object detection network

during training. This design allows us to use a backbone

pre-trained with RGB images to extract features from both

RGB and depth images, without adding extra complexity

to the model’s parameters. We enhance the representation

learning of the backbone by defining contrastive loss be-

tween RGB and depth features similar to [24]. Utilizing a

Siamese network provides the advantage of using only RGB

images during inference similar to other WSOD methods.

This ensures that our contribution does not introduce any

additional overhead on the inference time.

With the help of a pre-trained backbone model, the fea-

ture map of RGB image ψ(I) is extracted. Let D ∈
R

h×w×3 denote a depth image associated with the RGB im-

age I and let ψ(D) be the feature map of the depth image

D extracted by the Siamese backbone. The RGB feature

map ψ(I) and depth feature map ψ(D) are fed into adaptive

pooling and fully connected layers to obtain d-dimensional

projected feature vectors ψproj(I) and ψproj(D). The

only extra parameters we add to the traditional MIL-based

WSOD network come from the fully connected layer for

projection with 8 percent overhead (13M parameters for the

projection layer, vs 154M total). If no late fusion is per-
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formed in the experiments, we train as described in Sec. 3.2,

but excluding the di,c variables in Eq. 5.

Contrastive learning. We L2-normalize the RGB and

depth feature vectors ψproj(I) and ψproj(D) vectors, and

compute their cosine similarity:

S(I,D) = ⟨ψproj(I), ψproj(D)⟩/ρ (2)

where ρ, is a learnable temperature parameter. We use noise

contrastive estimation (NCE) [13] to define the contrastive

learning by considering RGB image and depth image pairs

(I,D) ∈ B where B is an RGB-depth pair batch. The first

component of the NCE loss contrasts an RGB image with

negative depth images to measure how closely the RGB im-

age matches with its paired depth among others in the batch:

LD→I = −
1

|B|

∑

(I,D)∈B
log

exp(S(I,D))

exp(S(I,D)) +
∑

(I′,D′)∈B
exp(S(I,D′))

(3)

The second component of the NCE loss, LI→D, is analo-

gously defined to contrast a depth image with negative RGB

image samples, and the two components are averaged:

LNCE = (LD→I + LI→D)/2 (4)

3.2. Late Fusion of the Modalities

The detection and classification scores computed from

RGB and depth modalities are imbued with disparate and

complementary details that jointly enrich our understanding

of the target objects. Therefore, we combine these scores to

amplify the performance of object detection.

As the depth images are derived from the RGB images,

the spatial arrangement of the objects is equivalent in both

modalities. Hence, we utilize the same visual region pro-

posals for both RGB and depth modalities. Following the

application of the RoI pooling layer and the Siamese box

feature extractor to the depth feature map ψ(D), we obtain

the feature vector ϕ(di) for each depth region. Thereafter,

we employ the approach presented in Eq. 1 to derive the

depth detection score ddeti,c ∈ R
1 and the depth classification

score dclsi,c ∈ R
1. Subsequently, we fuse (sum) the scores

from the RGB and depth modalities:

fdeti,c = vdeti,c + ddeti,c , f clsi,c = vclsi,c + dclsi,c (5)

where fdeti,c and f clsi,c are fusion detection and classification

scores, respectively.

Following the WSDDN [1] architecture, these classifica-

tion and detection scores are converted to probabilities such

that pclsi,c is the probability that class c is in present proposal

fi, and pdeti,c is the probability that fi is important for pre-

dicting image-level label yc.

pdeti,c =
exp(fdeti,c )

∑R

k=1 exp(f
det
k,c )

, pclsi,c =
exp(f clsi,c )

∑C

k=1 exp(f
cls
i,k )

(6)

We element-wise multiply the classification and detec-

tion scores to obtain the combined score pcomb
i,c :

pcomb
i,c = pdeti,c p

cls
i,c (7)

Finally, image-level predictions p̂c are computed as fol-

lows, where greater values of p̂c ∈ [0, 1] mean a higher

likelihood that c is present in the image.

p̂c = σ

(

R
∑

i=1

pcomb
i,c

)

(8)

Assuming the label yc = 1 if and only if class c is present, the

classification loss used for training the model is defined as

follows. Since no region-level labels are provided, we must

derive region-level scores indirectly, by optimizing this loss.

Lmil = −

C
∑

c=1

[yc log p̂c + (1− yc) log(1− p̂c)] (9)

3.3. Depth Priors

We utilize the baseline WSOD methods, which we aim

to improve, to generate bounding box object predictions in

the training set. Further, we leverage both the generated

bounding box predictions and associated captions to extract

knowledge about the relative depths of objects. We note

that our proposed methodology adheres to the WSOD set-

ting, deriving benefits from the predicted bounding boxes,

as opposed to ground truth bounding box annotations to cal-

culate depth priors. We subsequently exploit these depth

priors to guide the identification of the relevant visual re-

gions that may contain the target objects. Further, we show

that even though we estimate the depth priors from COCO,

they generalize to Conceptual Captions (Table 2).

We use the notation pdi ∈ [0, 1], i ∈ 1, ..., R, where R
is the number of pre-computed region proposals for depth

image D, to represent the average depth value in the i-th
region proposal. Each region proposal contains pixels with

values ranging from 0 to 1, which correspond to the smallest

and largest depth values, respectively.

We employ bounding box predictions B to approximate

the depth value of objects using the caption that describes

the image in which the objects are present. We also use

co-occurring captions to capture the context in which an ob-

ject occurs, and condition depth priors on this context which

varies across images. Let C be the set of object categories,

W be the set of distinct words in the vocabulary that in-

cludes every word in the captions, and B be the set of pre-

dicted bounding boxes. Let dc,w,b ∈ {[0, 1],∅} denote the

depth value for object c ∈ C, word w ∈W and box b ∈ B,

which is calculated by averaging the depth values in the pix-

els of b similar to the calculation of pdi. As an example,

dbird,ocean,b represents the depth value of the ªbirdº object
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Figure 3. The figure displays a row of images that are accompa-

nied by their respective depth and caption data, as well as proposal

depth value of different regions and estimated depth prior range.

box b of a depth image that has a caption that includes the

ªoceanº word. In the absence of ªoceanº in the caption or

when annotation b does not correspond to the ªbirdº object,

the depth value dbird,ocean,b is set to null ∅. Further, dc,w rep-

resents a set of depth values calculated by averaging dc,w,b

over predicted boxes b ∈ B, excluding ∅ values. The depth

range rc,w = [mean − std,mean + std] for class c and

word w is obtained by utilizing the mean and standard de-

viation (std) of this set of depth values in dc,w. Once these

depth ranges rc,w are computed, they can be applied to esti-

mate an allowable depth range for a class c in a new image,

without any boxes on that image.

For any new depth image D, the range of estimated depth

priors for an object c is drc:

drc =

∑

s∈S rc,s

|S|
(10)

where S denotes the set of words in the caption correspond-

ing to D. Thus the depth at which we expect to find ob-

jects in a particular image varies depending on the context

provided by words in the corresponding caption. We only

require captions at training time.

We utilize the estimated depth prior range drc to identify

potentially important regions in pd for each class. We define

a depth mask indicator variable mi,c ∈ 0, 1 for each region

i ∈ R and class c ∈ C, which indicates the likelihood of

a particular region in an image containing an object of a

certain class. The computation of this variable is as follows:

mi,c =

{

1, if pdi ∈ drc

0, otherwise
(11)

If the proposal depth value pdi falls within the estimated

depth prior range drc for class c, it is considered as a rele-

vant region for that class, and the corresponding mask vari-

able mi,c is set to 1; otherwise, it is set to 0. Subsequently,

we utilize the mask variable mi,c in combination with our

end-to-end network to improve its performance.

As an example, Fig. 3 presents two images featuring a

ªbirdº object, with different depths. The estimated depth

prior ranges drbird are calculated using Eq. 10 for each im-

age based on the words in the caption. The caption of the

first image includes ªfeedingº and ªhandº which suggest the

ªbirdº is likely to have a smaller depth, while the caption of

the second image includes ªflyingº and ªoceanº that sug-

gest the ªbirdº is likely to have a bigger depth. The regions

on the images having a proposal depth value of pd1 are in

the estimated depth prior range drbird; we observe that they

truly include the ªbirdº object. The range allows us to rule

out regions with values pd2, which do not contain ªbirdº.

Alternative method for estimating depth priors. As an

alternative, we use only bounding box predictions (without

captions) to obtain depth priors. Let dc,b ∈ [0, 1] denote the

depth value for object c ∈ C and box b ∈ B. Further, let dc
represent a set of depth values for each c. The depth range

rc = [mean − std,mean + std] is obtained by utilizing

the mean and standard deviation (std) of this set of depth

values in dc. Then we set drc = rc as we do not use caption

information (compared to Eq. 10); drc is used in Eq. 11.

3.3.1 Depth Priors: Updated OICR

Algorithm 1 OICR Mining with Depth Priors

Input: Proposals R, Depth Mask Indicator Variable m
Output: Pseudo boxes R̂

1: R̂ = ∅

2: for all c = 1 : C do

3: for all i = 1 : |R| do

4: R̂c = R̂c ∪Ri if mi,c = 1

5: return R̂

Online Instance Classifier Refinement (OICR) [35] is

a weakly supervised object detection algorithm that itera-

tively refines object proposals. Recent studies [30, 33, 34]

have highlighted the importance of more effective proposal

mining strategies for achieving better recall and precision

of objects in WSOD detectors. We propose an algorithm

that incorporates the depth priors during the proposal min-

ing provided in Alg. 1. As our proposed method aims to en-

hance MIL-based WSOD methods, we utilize our algorithm

in conjunction with recent OICR-style/self-training/mining

strategies, subject to the depth prior condition specified in

the fourth line of Alg. 1. After using the depth prior con-

dition, OICR-style mining selects fewer but more relevant

743



proposals so our contribution increases mining precision.1

3.3.2 Depth Priors: Attention

The depth mask variable mi,c indicates the potentially im-

portant proposal regions for each class. We use this variable

to employ an attention mechanism with combined score

probabilities pcomb
i,c provided in Eq. 7 as follows:

pcomb
i,c = pcomb

i,c ∗ 0.5, if mi,c = 0 (12)

This mechanism reduces the probability of a region for class

c by half if the region is determined as less likely to be im-

portant by mi,c. These scores are then used in Eq. 8.

4. Experiments

We test our method on top of two weakly-supervised de-

tection techniques, and verify the contributions of the con-

stituents of our approach:

• Siamese WSOD Network (SIAMESE-ONLY, Sec. 3.1);

• Late Fusion of the Modalities (FUSION, Sec. 3.2)

which combines classification/detection from RGB

and depth, and builds on top of the Siamese WSOD

Network (Sec. 3.1);

• Depth Priors are utilized to enhance the OICR-

style module (DEPTH-OICR, Sec. 3.3.1) and con-

struct attention (DEPTH-ATTENTION, Sec. 3.3.2) with

visual-only score probabilities, both building upon the

Siamese WSOD Network (Sec. 3.1);

• Finally, we use all components of our method (WSOD-

AMPLIFIER, SEC. 3.1, 3.2, 3.3.1, 3.3.2).

• DEPTH-OICR-ALT and DEPTH-ATTENTION-ALT es-

timate depth priors without captions.

• WSOD-AMPLIFIER-INF fuses RGB and depth at infer-

ence time, unlike our proposed method.

4.1. Experimental Setup

PASCAL Visual Object Classes 2007 (VOC-07) [5]

contains 20 classes. For training, we use 2501 images from

the train set and 2510 images from the validation set. We

evaluate using 4952 images from the test set.

Common Objects in Context (COCO) [23] consists of

80 classes. We utilize approximately 118k images from the

train set and use the labels provided at the image level. Ad-

ditionally, to test how well our method works when labels

are obtained from noisy language supervision (in captions),

we train our models using labels obtained through an ex-

act match (EM) method following [36], also referred to as

substring matching in [7]. Due to the unavailability of any

labels for around 15k images extracted from captions, we

1In early experiments, we verified our method’s gains persist if the

baseline drops the lowest-scoring pseudo boxes without using depth.

excluded them from the training set and use 103k images.

We evaluate using 5k images from the validation set.

Conceptual Captions (CC) [31] is a large-scale image

captioning dataset containing over 3 million images anno-

tated with only captions. We use around 30k images and

their corresponding captions and the labels are extracted for

the 80 COCO dataset classes using an exact match method

from the captions. During the evaluation, we used 5k im-

ages from the COCO validation set.

Domain shift datasets. In the supplementary, we also

evaluate our method in a domain shift setting [18], using

three datasets. Clipart1k has the same 20 classes as VOC

with 1,000 images, while Watercolor2k and Comic2k share

6 classes with VOC and have 2,000 images each.

Evaluation protocols. We utilize mean Average Preci-

sion (mAP) considering various IoU thresholds as the com-

mon evaluation metric for COCO and VOC datasets. Addi-

tionally, we report mAP for objects of different sizes during

COCO evaluation and we report the results of Correct Lo-

calization (CorLoc) for VOC evaluation.

Implementation details. We employ the official Py-

Torch implementations of SoS-WSOD [33] and MIST [30]

methods to apply our amplifier technique. SoS-WSOD uses

four images per GPU as two augmented images and their

flipped versions with a total of 4 GPUs, whereas MIST uses

only one image per GPU with a total of 8 GPUs. However,

we use one image per GPU for SoS-WSOD due to VRAM

limitation in our GPUs, as we also utilized depth images

for each corresponding RGB image. Therefore, the base-

line results of SoS-WSOD reported in Table 1 are slightly

lower than those reported in the original paper. Moreover,

we solely use the first stage of SoS-WSOD since it includes

the MIL-based WSOD module which is convenient to im-

plement our method on top of. The other settings are kept

the same as the official implementations with the VGG16

backbone. The inference is done on the training set by us-

ing baseline MIST and SoS-WSOD methods to obtain box

predictions having confidence scores higher than 0.5. These

box predictions are then used to calculate depth priors. Fur-

thermore, we utilize the same depth range rc,w from the

COCO annotations for the WSOD-AMPLIFIER method on

the Conceptual Captions dataset.

4.2. Comparing our amplifier to state of the art

We evaluate our proposed methods, FUSION and WSOD-

AMPLIFIER, using two state-of-the-art WSOD approaches,

SoS-WSOD [33] and MIST [30], and the COCO and VOC-

07 datasets. The performance of our proposed methods are

compared with the baseline methods in Table 1. When

our WSOD-AMPLIFIER method is applied to MIST, it im-

proves the baseline performance by 17% in mAP50:95 (rel-

ative gain, 13.8/11.8-1) and 14% in mAP50. Similarly,

when our WSOD-AMPLIFIER method is applied to SoS-
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Avg. Precision, IoU Avg. Precision, Area

Methods on COCO 0.5:0.95 0.5 0.75 S M L

MIST [30] 11.8 24.3 10.7 3.6 13.2 18.9

+ FUSION 13.5 26.9 12.4 4.0 14.7 21.6

+ WSOD-AMPLIFIER 13.8 27.8 12.5 4.6 14.8 22.6

+ WSOD-AMPLIFIER-INF 13.1 27.5 11.9 4.3 14.3 22.2

SOS-WSOD [33] 10.2 21.5 8.6 2.5 10.6 17.7

+ FUSION 10.3 21.6 8.9 2.3 10.8 18.4

+ WSOD-AMPLIFIER 10.5 21.8 9.1 2.5 11.1 18.7

Avg. Precision, IoU CorLoc

Methods on VOC-07 0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

SOS-WSOD [33] 24.8 52.2 20.4 38.7 71.7 36.9

+ FUSION 26.0 53.1 22.3 39.6 72.1 38.5

Table 1. This table compares the performance enhancement of our

methods, to their baseline results SoS-WSOD [33] and MIST [30],

on COCO and VOC-07. The best performer per column is in bold.

Avg. Precision, IoU Avg. Precision, Area

Methods on COCO 0.5:0.95 0.5 0.75 S M L

MIST [30] w/ GT 9.7 21.1 8.0 3.0 10.4 15.1

MIST [30] w/ EM 8.5 17.9 7.3 3.0 9.4 14.9

+ SIAMESE-ONLY 8.8 18.7 7.3 2.9 9.6 15.4

+ DEPTH-OICR 9.0 19.4 7.3 3.1 9.6 15.9

+ DEPTH-ATTENTION 9.1 19.0 7.9 3.0 9.5 16.2

+ FUSION 9.9 20.4 8.5 3.0 10.1 17.1

+ WSOD-AMPLIFIER 10.2 21.0 8.5 3.3 10.3 17.5

+ DEPTH-OICR-ALT 8.9 19.0 7.3 3.0 9.6 15.6

+ DEPTH-ATTENTION-ALT 9.0 18.8 7.7 3.0 9.5 16.0

Avg. Precision, IoU Avg. Precision, Area

Methods on CC 0.5:0.95 0.5 0.75 S M L

MIST [30] w/ EM 1.7 3.8 1.4 0.3 1.7 3.4

+ FUSION 2.0 4.1 1.7 0.3 1.9 4.0

+ DEPTH-OICR 2.4 5.6 2.0 0.3 2.2 5.1

+ WSOD-AMPLIFIER 2.6 6.3 2.1 0.4 2.8 5.7

Table 2. This table introduces the effect of each component of our

method implemented on MIST [30] with exact match (EM) labels

on COCO (top) and Conceptual Captions (CC) (bottom). The best

performer per column is in bold. On top, all proposed methods

that outperform the SIAMESE-ONLY are underlined.

WSOD, it improves the baseline performance by 2% in

mAP50:95, 1.5% in mAP50, and 6% in mAP75. As the

VOC-07 dataset does not have captions, we are only able to

apply the SIAMESE-ONLY and FUSION methods on SoS-

WSOD but not the DEPTH-OICR and DEPTH-ATTENTION.

On this dataset, our improvements outperformed the base-

line SoS-WSOD by 5% in mAP50:95, 2% in mAP50, and

9% in mAP75. WSOD-AMPLIFIER-INF performs worse

than WSOD-AMPLIFIER. We argue depth is useful as a soft

guide to balance region information during MIL training,

but less so when directly used in the strict detection setting.

4.3. Ablation studies and visualization

Experiments with labels from captions. Several at-

tempts [7, 36, 38] have been made to eliminate the require-

ment for image-level labels by leveraging noisy label in-

formation obtained from captions or subtitles. Although

it is cost-effective to use text information for label extrac-

tion, it results in a decrease in the performance of weakly

supervised object detection. [36] propose a text classifier

approach to extract labels more effectively than the simple

exact match (EM) and reduce the noise between text and

ground truth (GT) labels. In contrast to previous studies, our

research employs the depth modality to reduce the noise in

labels extracted from captions. Our approach improves the

model’s detection capability and employs captions during

the calculation of depth priors. We conducted experiments

with MIST [30] using both GT and EM labels and observed

that, as expected, training with GT labels leads to signifi-

cantly better performance than training with EM labels in

Table 2 due to the noise in labels extracted from captions.

However, our proposed WSOD-AMPLIFIER method applied

on MIST with EM labels surpasses the baseline and MIST

with GT labels. These findings demonstrate that our method

effectively reduces noise and enables the model trained with

EM labels to achieve better performance than those trained

with GT labels. It is worth noting that the text classifier

approach proposed by [36] also performs better than EM-

labeled training data, but falls short of the performance

achieved by GT-labeled data.

Results on noisy datasets. We also extract labels from

captions on the Conceptual Captions dataset, which lacks

labels at the image level. We observe that our WSOD-

AMPLIFIER boosts results by an impressive 63% relative

gain usingmAP50. Conceptual Captions is a noisier dataset

than COCO, since captions were not collected through

crowdsourcing, but were crawled as alt-text for web search

results. Thus, it is noteworthy that the benefit of our ap-

proach becomes more pronounced as the cost of supervision

decreases, and the noise in the supervision increases.

Analysing the components of our approach. To un-

derstand the impact of each component of our approach on

the overall performance, we conducted experiments with

MIST [30] using EM labels as a baseline and applied each

component of our method on top of the baseline in Table

2. Our SIAMESE-ONLY method, which incorporates the

depth modality in the Siamese network using contrastive

learning, improves feature extraction and results in a 4%
increase in mAP50:95 and mAP50. Our DEPTH-OICR

method, which utilizes depth priors in the OICR module

to improve the mining strategy, increases mAP50:95 and

mAP50 over SIAMESE-ONLY by 6 − 8% on COCO and

42 − 47% on Conceptual Captions (CC). Our DEPTH-

ATTENTION method, which incorporates depth priors to

use potentially important regions in an attention mechanism
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Figure 4. Qualitative comparison of MIST [30] (top) and our proposed WSOD-AMPLIFIER method (bottom), on COCO val. The ground-

truth objects are vase, zebra, bicycle and car, sink and toilet, couch in this order. Confidence scores and names of objects shown.

with combined score probabilities, increases AP50:95 and

mAP75 by 6 − 7%. Our FUSION method, which com-

bines RGB and depth image scores, improves by 14− 16%
on COCO and 7 − 21% on CC. Comparing FUSION and

DEPTH-OICR, the bigger gain using mAP50 is achieved

by FUSION on COCO, and DEPTH-OICR on CC. Thus, the

benefit of our WSOD-specific method component increases

as the noise in the dataset increases, which is appealing

due to its real-world applicability. Finally, our WSOD-

AMPLIFIER method, which includes all components of our

approach, achieves the highest performance increase over

MIST w/ EM baseline, with improvements in allmAP met-

rics by 16− 20% on COCO and 53− 65% on CC.

Alternative depth priors. At the bottom of Table

2 (COCO), we see that DEPTH-OICR-ALT and DEPTH-

ATTENTION-ALT, derived from the alternative approach,

yield superior results compared to SIAMESE-ONLY. How-

ever, the DEPTH-OICR and DEPTH-ATTENTION methods,

derived from our full (caption-based) approach, outper-

form both DEPTH-OICR-ALT and DEPTH-ATTENTION-

ALT. Note that the depth range rc remains consistent across

all images in this alternative method. Conversely, in the pro-

posed approach, the depth range drc is computed individu-

ally for each image by taking into account the correspond-

ing caption, as visualized in Fig. 3. As a result, the pro-

posed approach demonstrates enhanced capacity in model-

ing depth priors through the utilization of captions.

Generalization of depth priors. Even though on CC we

use the depth priors calculated from COCO, our proposed

method exhibits a more substantial enhancement in CC

performance compared to COCO, achieving an improve-

ment of 63% mAP50 over the MIST baseline (50% im-

provement from DEPTH-OICR alone). Thus, our DEPTH-

OICR demonstrates generalization, as it has a higher impact

than FUSION on CC (without recomputing priors), in con-

trast to COCO. Given the recent interest in learning from

vision-language data, our approach has the potential to be

highly impactful. Further, we compared the priors esti-

mated from different datasets, and found them to be sim-

ilar. In particular, 82.3% of PASCAL objects fit within

the [mean − stdev,mean + stdev] range computed from

COCO, and 84.4% when the range is computed on PAS-

CAL itself; the cross-domain gap in the range is small.

Qualitative analysis. We visualize the object detection

performance of our proposed WSOD-AMPLIFIER compared

to MIST [30] in Fig. 4. The confidence scores are calcu-

lated using visual detection vdet and classification scores

vcls. We show boxes with scores higher than 0.5. In the first

image, the baseline struggles to accurately identify multi-

ple instances of the same ªvaseº objects, instead grouping

them together in a single box. Our method overcomes this

challenge, precisely detecting each individual ªvaseº. In

the second image, the baseline faces the problem of part

domination due to some discriminative parts of a ªzebraº.

Our method overcomes this issue by utilizing depth modal-

ity during training, which emphasizes the geometric varia-

tions of objects, while comparatively ignoring the complex

background. In other images, unlike our method, the base-

line misses objects entirely, or produces large and impre-

cise bounding boxes. Moreover, the boxes detected by our

method tend to have higher prediction scores.

Conclusion. We show depth boosts weakly-supervised

object detection methods, tested on SoS-WSOD and MIST,

without extra annotation or costly computation. Our

Siamese WSOD network efficiently incorporates RGB and

depth with contrastive learning and fusion. Using the rela-

tion of language and depth, depth priors estimate the bound-

ing box proposals that may contain an object of interest.
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