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Fig. 1: The Palmer’s Penguins dataset captured by ENS-t-SNE (perplexity=40). (a): The full 3D embedding. (b): The projection
capturing physical characteristics, encoded by color (c): The embedding capturing penguin sex, encoded by shape. ENS-t-SNE
captures all 6 distinct clusters in 3d, while finding suitable projections that show the two types of clusters.

Abstract—When visualizing a high-dimensional dataset, dimension reduction techniques are commonly employed which provide a
single 2 dimensional view of the data. We describe ENS-t-SNE: an algorithm for Embedding Neighborhoods Simultaneously that
generalizes the t-Stochastic Neighborhood Embedding approach. By using different viewpoints in ENS-t-SNE’s 3D embedding, one
can visualize different types of clusters within the same high-dimensional dataset. This enables the viewer to see and keep track of the
different types of clusters, which is harder to do when providing multiple 2D embeddings, where corresponding points cannot be easily
identified. We illustrate the utility of ENS-t-SNE with real-world applications and provide an extensive quantitative evaluation with datasets

of different types and sizes.

Index Terms—Dimension Reduction, Joint Optimization, Simultaneous Embedding, t-SNE
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1 INTRODUCTION

Dimension reduction has become one of the primary techniques to
visualize high dimensional data. These techniques place data points
from a high dimensional space into the (typically) two-dimensional
plane of the computer screen while maintaining some characteristics of
the dataset. Well known algorithms include PCA [23], t-SNE [28] and
UMAP [29]. These algorithms assume either a high dimensional
dataset as an input or a distance matrix between its instances. However,
many such datasets contain complex phenomena which cannot be
captured in a single, two dimensional, static view. Often there are
several subspaces of interest to compare, so small multiple plots are
employed [27,34]. Even with coordinated views, it is difficult to track
where groups of points go from one projection to the next, in effect
offloading the mental effort of comparison to the user [16]. We present a
technique to capture multiple subspaces of interest in a single 3D
embedding. We also utilize the 2D linear projections from the computed
3D embedding, to visualize specific cluster relationships within the
corresponding subspaces. Finally, we provide a seamless transition
between the subspace views, which reduces the movement of the points
from one view to the next, as the views are obtained by simple rotation of
the 3D embedding.
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1.1 Motivation

Our proposed algorithm, named ENS-t-SNE, facilitates a challenging
task within datasets: understanding the differences among individual
data points, groups of points, or the dataset as a whole. In the typology of
Brehmer and Munzner [8], this is a “compare" task. There are two
visualization comparison designs applicable to subspaces, as described
by Gleicher et al. [16]: juxtaposition and superposition. Juxtaposition
places points separately, as in a small multiple plot, but requires scan-
ning to detect differences and similarities. Superposition uses the same
space to show two or more subspaces, resulting in more complex stimu-
lus, which is closer to a direct comparison. ENS-t-SNE allows us access to
both these comparison designs. The 3D embedding produced by
ENS-t-SNE can be seen as a superposition, by encoding each subspace
from a different view of the object. ENS-t-SNE can provide juxtapo-
sition with small multiple plots corresponding to projections for each
subspace, replacing standard independent projections of subspaces; see
Fig. 1.

Real-world multi-perspective embeddings can be found in art, e.g.,
the “1, 2, 3” sculpture by J. Hopkins which looks like the different
numbers depending on the viewpoint! and “Squaring the circle” by
TroikaZ. Motivated by such 3D physicalizations, as well as by work
on Multi-Perspective Simultaneous Embedding [19], our proposed
algorithm enables viewers to virtually “walk around” an ENS-t-SNE
embedding and see different aspects of the same dataset. The concept
of data physicalization (data exists in a physical space) has been shown to
be effective for information retrieval when the visualization can be
realized [21, 22].

Lhttps://www.jameshopkinsworks.com/commissions4.html
Zhttps://trendland.com/troika-squaring-the-circle/
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We present a technique to capture multiple subspaces of interest in a
single 3D embedding. We also utilize the 2D linear projections from
the computed 3D embedding, to visualize specific cluster relationships
within the corresponding subspaces. Finally, we provide a seamless
transition between the subspace views, which reduces the movement
of the points from one view to the next, as the views are obtained by
simple rotation of the 3D embedding.

1.2 Our Contributions

We propose, describe and provide an implementation for ENS-t-SNE: a
technique to perform dimension reduction on a high-dimensional
dataset that captures multiple subspaces of interest in a single 3D
embedding. Unlike the only prior work in this domain, which op-
timized global distance preservation (distances between all pairs of
points) [19], we focus on preserving local relationships (clusters). We
also visualize specific cluster relationships within the corresponding
subspaces, with the help of 2D linear projections from the computed
3D embedding. Finally, we provide a seamless transition between the
subspace views, which reduces the movement of the points from one
view to the next, as the views are obtained by simple rotation of the
3D embedding; see Fig. 2. This is accomplished by generalizing the t-
SNE algorithm [28] to simultaneously optimize multiple distance
matrices, while also simultaneously optimizing projection views. In

addition to the implementation, we provide a publicly available web

demonstration 3. We remark that, unlike t-SNE, where the relative
positions of clusters are usually meaningless, ENS-t-SNE does better
in preserving these positions. It embeds clusters in 3D in a manner that
ensures the corresponding 2D projections contain the corresponding
clusters, compelling the 3D clusters to have meaningful positions. We
experimentally verify this and observe it visually for several datasets.

2 RELATED WORK

The related work section is organized as follows. First, we review
several dimensionality reduction algorithms that are widely used in
visualization. Second, we delve into the fundamentals of t-SNE, to pro-
vide the needed background information needed for its generalization,
ENS-t-SNE. Third, we review algorithms for subspace clustering, a
domain that shares a common goal with ENS-t-SNE: finding multiple
embeddings, each capturing a distinct aspect of the data. Fourth, we
consider related prior approaches to simultaneous or multi-view embed-
dings. Finally, we review Multi-Perspective Simultaneous Embedding
(MPSE), an algorithm that preserves global distances.

Dimension Reduction. A wide variety of dimension reduction
techniques abound: Principal Component Analysis (PCA) [23],
Multi-Dimensional Scaling (MDS) [32], Laplacian Eigenmaps [6], t-
Distributed Stochastic Neighbor Embedding (t-SNE) [28], Uniform
Manifold Approximation and Projection (UMAP) [29]. These tech-
niques attempt to capture the variance in the data (PCA), the global
distances in the data (MDS), the local distances in the data (t-SNE),
manifolds in the data (Laplacian Eigenmaps, UMAP). For a survey of
other single projection dimension reduction methods, see [12]. Note
that none of these allows the viewer the opportunity to compare and
contrast different aspects (subspaces).

T-Distributed Stochastic Neighbor Embedding (t-SNE) [28, 37].
creates a low dimensional embedding from a high dimensional dataset,
based on the short distances between points in the data. Unlike stress
based methods such as MDS, t-SNE converts these distances into a
probability distribution which tells us the likelihood that two data are
‘neighbors’ and should appear near each other. The
mathematical formulation of the problem is the following: Given an N
x N distance matrix D, and a perplexity parameter, o, t-SNE seeks to
minimize the following cost function:
Pij
C(Y)= > pijlog — (1)
ij Qij

3https://jacoblmiller.github.io/ENS-t-SNE-web/

Here, P = [pij] is determined by D and the perplexity parameter, where
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The computational complexity of t-SNE is high and speed improve-
ments have been proposed [36]. Although the original paper proposes
default values and ranges for the t-SNE hyperparameters (perplexity,
learning rate, etc.), automatically selecting these parameters is also a
topic of interest [7,9]. A recent paper reviews t-SNE and applications
thereof [15]. In our ENS-t-SNE algorithm we optimize a generaliza-
tion of the cost function of t-SNE (eq. 1) per projection, as detailed in
section 3.

Subspace Clustering. A single projection or perspective may not
be sufficient to understand diverse patterns in high-dimensional data.
The goal of subspace clustering is to find multiple embeddings, each
capturing a different aspect of the data [27]. Indeed, two different sets
of dimensions may hold different, or even conflicting, patterns. The
Pattern Trails tool orders axis-aligned subspaces, plotting them as a
series of 2D embeddings and overlaying parallel coordinates to track
the overall pattern of data position changes [20]. Tatu et al. [34] use the
SURFING [5] algorithm to prune away uninteresting subspaces, while
the interesting subspaces are embedded with MDS and incorporated
into a visual analytics tool for further filtering and exploration. Fujiwara
et al. provide a feature learning method and visualization tool to explore
non-axis aligned subspaces using a series of UMAP projections to
embed the data [14]. For more detail, see the subspace clustering
section from the recent survey by Liu et al. [27].

Combining subspace clustering techniques with ENS-t-SNE seems
like a promising idea. First, subspace clustering algorithms are the
natural way to select interesting subspaces as input into ENS-t-SNE,
especially for truly large and high-dimensional datasets where domain
knowledge and expertise might not be enough. Second, ENS-t-SNE
offers a powerful tool to perform comparison tasks on interesting sub-
spaces, something that is typically done with small multiple plots
(which do not support the full range of comparison tasks) [16]. We
illustrate this by example in Section 5.2, with a dataset used in several
subspace clustering papers [34, 41].

Simultaneous Embedding. Some recent algorithms for simultaneous
embedding/multiview embedding include Multiview Stochastic Neigh-
bor Embedding (m-SNE) [39,40], based on a probabilistic framework
that integrates heterogeneous features of the dataset into one combined
embedding and Multiview Spectral Embedding (MSE) [38], which
encodes features in such a way to achieve a physically meaningful
embedding. Multi-view Data Visualization via Manifold Learning [31],
proposes extensions of t-SNE, LLE and ISOMAP, for dimensional-
ity reduction and visualization of multiview data by computing and
summing together the gradient descent for each data-view. Multi-view
clustering for multi-omics data using unified embedding [30] uses the
sum of the Kullback-Leibler divergence over the datapoints, which
leads to a simple gradient adjusting the position of the samples in the
embedded space.

The approaches above seek to achieve one of two objectives: either
generating an embedding that encompasses multiple subspaces [38-40],
thereby potentially blending the information and lacking a guarantee
of preserving individual subspaces of interest, or solely creating 2D
projections where each corresponds to a distinct subspace [30, 31]. In
the latter case, however, the challenge lies in establishing clear
correspondences between these views. The advantage of ENS-t-SNE is
that it first creates a 3D embedding, where all the information is encoded
and specific projections contain more fine-grained information based
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on subspaces of interest. Thus, there are smooth transitions between the
subspace views; consequently, ENS-t-SNE ensures coherence across
all 2D perspectives, fostering a more nuanced and comprehensive
representation of the underlying data.

Multi-Perspective Simultaneous Embedding (MPSE). Motivated by
multi-view MDS, introduced in [4, 24], MPSE [19] computes a 3D
embedding and set of projections from the 3D embedding much like
ENS-t-SNE. The MPSE algorithm can be seen as a generalization of
MDS that is able to visualize multiple distance matrices simultaneously,
by producing a three-dimensional embedding, so that the different
distance matrices are preserved after projecting the 3D coordinates to
2D ones using specified projections. Given a set of M distance
matrices of size N xN: D1,D2,...,DM, MPSE aims to find 3D coordi-
nates X, X,, .., Xy for the samplesi= 1,...,N and a set of 3D to 2D

projection matrices M, M2, ..., MM so that

2 M 2/AMm
oi(x,n) =5 o*(N"x) (4)
m=1

where o2 is the MDS stress function.

MPSE aims to preserve global distances: all pairwise distances in
the input high-dimensional space must match all pairwise distances in
low-dimensional space. In contrast, ENS-t-SNE aims to preserve in
low dimensional space only local neighborhoods.

3 EMBEDDING NEIGHBORHOODS SIMULTANEOUSLY

Our proposed ENS-t-SNE algorithm is a generalization of the standard t-
SNE algorithm. For ENS-t-SNE, we assume a set of distance matrices for
the same set of objects. Similar to Multi-Perspective Simultaneous
Embedding [19] with MDS, we generalize t-SNE. For this purpose
we generalize the objective function of t-SNE onto the one that would
take multiple distance matrices and have one projection for each on
which the desired distances would locally be preserved. We generalize
the objective function of t-SNE as follows: Assume we are given M
distance matrices between n objects. We define
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Here Di”j‘ for 1< i, j £ n corresponds to the m-th distance matrix be-
tween objects i and j, MM corresponds to the m-th projection, which
depending on the problem might be given or not, and yy,...,yn corre-
spond to the desired embedding. The objective function @ is a function
of the embedding y; , ..., yy and projections N, ..., NM. The goal is to
findy,,...,yy and N, ..., MM that would minimize @ Here, the @is
a non-convex function. The only parameter that we have not discussed
yet are the o™. These parameters are application specific and can vary
depending on the dataset. Depending on the density of the dataset
around each high dimensional point, the values of 0:“ can vary. The
denser the dataset is, the smaller ™ can be chosen to be.

In order to pick appropriate values for o forall 1< i< N and
1< m< M, we follow the steps of [28] and use the notion of perplexity.
Perplexity can be interpreted as roughly the effective number of neigh-
bors we want to capture around each point. Each value of oim creates a
new distribution Pim over the datapoints. Similar to t-SNE we perform a
binary search to compute the value of omithat produces a distribution
P™ with a fixed perplexity that is specified by the user. The perplexity
is defined as

Perp(P") = 2", (8)

where H(P[") is the Shannon entropy function, defined as

H(R™) = = 5 pfjiloga(pf}i)- 9)
J

In order to optimize the objective function of ENS-T-SNE (5) we use
stochastic gradient descent discussed in Sec. 3.1. We would like to
mention that one can compute the exact gradients of &

There are two natural variants of this problem. The first version
assumes that we are given a set of projections M1,..., N and a set
of distance matrices D1,...,DM @ RN*N petween N objects, where
each projection matrix corresponds to one distance matrix. The goal is
to find an embedding of the dataset in3DY = {y , ...,y }guch thaton
each of these projections the corresponding distances are locally
preserved. The second version assumes only a set of distance matrices
DL,...,DM@RN*N and finds the best embedding Y = {y;,...,yn}as
well as the projections M ,1..,M Monto which the local distances
would be preserved.

3.1 ENS-T-SNE Algorithm

In this section we summarize the ENS-T-SNE algorithm and provide
a practical implementation. Given a list of N x N distance matrices
D1,D2,...,DM and a perplexity parameter Perp, ENS-T-SNE algo-
rithm aims to find a three-dimensional embedding y; , ¥, , ..., R3
and a set of projection matrices M1,N2,...,NMM @ R2*3 5o that for
each perspective m= 1,2,...,M, the corresponding projected dataset
nMy. ,NMy_, ..., anM minimizes the t-SNE cost function C(Y M) on
that particular 2D Euclidean space as much as possible.

We write Y = [y,,y,,...,yy)and N = [N%,N2,..., nM]. Similar to
t-SNE, we accomplish this using a gradient descent type algorithm. The
ENS-T-SNE cost function (5) is defined as the sum of the t-SNE cost

function evaluated at each of the 2D projections N1y, N2v,...,AMy.

P
@Y, n)= f cnmy) = f > pmlogiz, (10)
m=1 m=1i<j ij

where C is the t-sne cost function. The gradients of & with respect to Y
and N%,NZ%,...,NM are then

M
Bycey,nt,n?,...,nM) = S (n™)Tac(n™y) (11)
m=1
and
ﬂmce(\(,|'|1,|'|2,...,|'|M)= Bc(n™y)yT. (12)
h [
As derived in [28], the gradient BC = €, 0C = 9C js gjven by
dy,’ 0y, ay

ai= 4% (pij-aij)yi-vyj)-
ay; j

In its simplest form (full gradient and projected gradient descent), the
update rules are

Y > v+uRyCl,nt,n?,...,nM)

and
n™->aq veEp-&y,nt,n?...,n" ,

where pu,v > 0 are learning rates and Q maps a 2 x 3 matrix to its
nearest orthogonal matrix.

In practice, we found that a combination of adaptive learning rate and
stochastic gradient descent works the best in consistently avoiding local
minima. To avoid flat solutions, we first optimize for the embedding Y
while keeping the projections fixed (which are randomly chosen among
the set of 2x3 orthogonal matrices). This algorithm is described in
supplemental material.

Initialization: Similar to t-SNE, the objective function of ENS-
t-SNE in (5) is non-convex. Thus, gradient-based methods are not
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Fig. 2: The ENS-t-SNE embedding of a 400-point dataset with three perspectives: in each perspective there are two different clusters. We have
encoded each perspective’s clusters using visual channels: color (orange or blue), shape (square or circle), and texture (filled or not filled). (a) shows the
three dimensional embedding of the dataset. (b) shows the first view where data points are clustered by color, (c) shows the second view where points
are clustered by shape, and (d) where points are clustered by texture.

(b) (c) (d)

Fig. 3: ENS-t-SNE embedding of a clustered dataset, created according to Section 4 where the number of perspectives is M = 3, the number of
datapoints is N = 1000, and the number of clusters per perspective is NC; = 2, NC; = 3 and NC3 = 4. Fig. 3(a) shows a snapshot of the 3D ENS-t-
SNE embedding and Figures 3(b)-(d) show the 2D projections of the 3D ENS-t-SNE embedding. The original clusters are shown in texture (filled or
not), shape (square, triangle and circle), and color (blue, orange, green, red). ENS-t-SNE is able to recover the clusters and create an embedding

which respects all the different types of clusters.

guaranteed to find global optima; e.g., it is known that t-SNE is vulner-
able to being caught in local minima when randomly initialized [25].
Further, different ENS-t-SNE runs with random initialization, produce
different embeddings. A good initialization for ENS-t-SNE can help
reach better solutions and provide deterministic results. In the case of
standard t-SNE, a ‘smart initilization” based on a 2D PCA projection
tends to be better than random initialization. This addresses both the
poor local minima problem and the non-determinism.

Since we are given multiple pairwise dissimilarity matrices in ENS-
t-SNE, we cannot simply use a single PCA projection for initialization.
Therefore, we devise a ‘smart initialization’ strategy by first taking
the average over all pairwise dissimilarity matrices and then applying
dimensionality reduction to 3D via classical (Torgerson) MDS [35].
When using this initialization scheme we also deterministically
com-pute a set of 2x3 orthogonal matrices, ensuring that the ENS-t-
SNE optimization is deterministic.

4 EXPERIMENTS ON SYNTHETIC DATA

We first verify the ENS-t-SNE algorithm on constructed synthetic data.
Construction of Synthetic Data: In order to create a dataset with
multiple perspectives, each containing multiple clusters, we propose
the following procedure. Fix the number of points and the number
of projections; for each projection fix the number of clusters, and the
number of points corresponding to each cluster. For each perspective,
randomly split the points between all the groups and define distances by
assigning smaller within-cluster distances and larger between-cluster
distances. The procedure is formally defined below.

Let the number of points be N and the number of perspectives
be M. For each perspective set the number of clusters to NC, for
1< m< M, and the number of points corresponding to each cluster to
N¢,m, where 1< m< Mand 1< c< NCm. Note, that the total number
N of points per perspective is a fixed constant and these points are

in correspondence with each other. That is, N = Zc'\iim Nc,m for all
1< m< M. B
For each perspective 1 £ m < M, the sample points with labels

1,2,...,N are randomly assigned to one of NC clusters. That is, the
sample point 1 < i < N will have labels Iil,liz, ...,IiM. Hence, two sam-
ples |, and |, may share the same label in some of the M perspectives,
but are unlikely to share the same labels in all of them. Next, we create
the distance matrix between the N datapoints as follows: The observed
distance between points i, j for 1 < i, j,< N in each perspective m,
where 1 < m < M is given by

dM+ ¢
ding +e

if M= |m
ph = othérwisé (13)
where € B N(0,02) is a normal random variable with mean 0 and
standard deviation 62, d™ corresponds to within cluster distance for the
m-th perspective and d?&: corresponds to the outside cluster distances.
Experiments: Since the goal of ENS-t-SNE is to preserve local struc-
tures, this dataset suits its purpose and serves as a good example to
show experimentally how the proposed algorithm works. The aim is to
show that ENS-t-SNE preserves the local structures of the dataset, that
is, each of the perspectives recovers the corresponding original clusters.
We conduct experiments on two synthetic datasets: the first with 400
datapoints, three perspectives, and two clusters each; the second with
1000 datapoints, three perspectives, and two, three, and four clusters.
We run ENS-t-SNE for datasets generated according to Section 4.
For the first experiment, we fix the number of perspectives to be M = 3,
the number of datapoints N = 400, the number of clusters per perspec-
tive NCy = 2 for 1< m< 3. We create the distance matrices for each
perspective by formula (13) described in Section 4 with d, = 1 and
dout = 2 and 02 = 0.1. We run the ENS-t-SNE algorithm, summarized
in Section 3.1, for the distance matrices and a fixed perplexity value of
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Fig. 4: MPSE applied to the synthetic data from Section 4. Recall that we should see clusters based on texture, shape, and color in the three views.
MPSE fails in capturing this information by mixing clusters in the color and shape views. In general, these clusters are better separated in Fig 3.
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Fig. 5: The Palmer’s Penguins dataset captured by MPSE. (a): The full 3D embedding. (b): The projection capturing physical characteristics, encoded
by color. (c): The embedding capturing penguin sex, encoded by shape. MPSE mixes the blue and orange clusters also squared and circled clusters.

40. The result are demonstrated in Figure 2.

We use separate visual channels to encode the different types of clus-
ters. Specifically, to show the original clusters for the first perspective,
we use colors (blue and orange), for the second perspective, we use the
shape (circles and squares), and for the third perspective, we use texture,
filled and not filled; see Figure 2. We observe that ENS-t-SNE did a
good job finding an embedding in 3D with 3 perspectives, such that
for the first perspective the blue and orange datapoints are separated,
for the second perspective, datapoints shown in circles and squares are
separated, and for the third perspective, filled and not filled datapoints
are separated. As expected, ENS-t-SNE split the data into multiple
small clusters in 3D, but in such a way that for each 2D perspective,
the ones with similar features in 3D overlap and create bigger clusters.

For the second experiment, we fix the number of perspectives to be
M = 3, the number of datapoints N = 400, the number of clusters per
perspective NC; = 2, NG, = 3, and NC; = 4. We create the distance
matrices for each perspective by formula (13) described in Section 4
with d;; = 1 and dout = 2 and 62 = 0.1. We run the ENS-t-SNE
algorithm for these distance matrices with perplexity value 40. The
results are demonstrated in Figure 3.

We again use separate visual channels to encode the different types
of cluster. For the first type of clustering with NC; = 2 we use texture:
either filled or not filled. The second type of clustering has NC,= 3
separate clusters, and we use shape: square, triangle, or circle. The
third clustering has NC; = 4 and we use the color channel: blue, orange,
green, and red. Note how the computed 3D embedding allows us to
see in each view 2, 3 and 4 clusters, and that they are well defined and
separated in the corresponding projections.

Compare this to how MPSE performs; see Fig. 4. Clusters are more
mixed and not clearly separable. For example, the projections that is
supposed to separate the data by color, mixes up the blue and red
clusters, and both of them are too close to the green. If the cluster
identities were not given as part of the input, we would not get as clear an
idea about the structure of the data from the MPSE embedding and
projections as with ENS-t-SNE.

5 EXPERIMENTS ON REAL-WORLD DATA

In this section we demonstrate the application of ENS-t-SNE algorithm
on real-world datasets. The quality of ENS-t-SNE embeddings is
affected by choice of subspaces, so determining how to select them is
important. We describe two approaches for subspace selection.

There might be some clear semantic grouping of features, or some
grouping of features that is of interest. If this is the case, ENS-t-SNE
can be readily applied and we show an example of such as dataset with
the Palmer’s Penguins in section 5.1.

However, feature grouping is not always clear. The data might have
hundreds of features or come from where the meaning of features is
unclear. Subspace clustering algorithms can efficiently find subspaces
of interest. The USDA food composition dataset is frequently analyzed
in subspace clustering literature; we use two interesting subspaces
identified by Tatu et al. [34] and show how ENS-t-SNE can provide
insights about the different groups in the data. Finally, we apply the
CLIQUE subspace clustering algorithm [2] to the auto-mpg dataset to
identify interesting subspaces. The resulting ENS-t-SNE embedding
shows patterns that are missing from the standard t-SNE embedding.
Further real-world data examples are in supplemental materials.

5.1 Palmer’s Penguins

The Palmer’s Penguins dataset [18] is a collection of 344 penguins with
documented bill length, bill depth, body mass, flipper length, and sex.
The dataset contains 3 different species of penguins.

Applying standard t-SNE on this dataset produces six distinct clus-
ters, one for each sex-species pair; see Fig. 7(a). However, we can
obtain a more fine-grained information by utilizing ENS-t-SNE and two
subspaces: the 4-dimensional physical attributes and the 1-dimensional
sex attribute. Specifically, we create two pairwise distance matrices,
the first one based on the 4D physical attributes which have numerical
values. The second one is based on penguin’s sex, where the distance
between same sex penguins is 0 and the distance between different
sex penguins is 1. Running ENS-t-SNE with these distance matrices
produces the embedding in Fig. 1(a). The first view (middle) aims
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Fig. 6: The Palmer’s Penguins dataset embedded by MDS, t-SNE, and UMAP in 3D. While these algorithms are not directly comparable to MPSE
and ENS-t-SNE, they are provided for visual comparison. Embeddings of the remaining datasets by these algorithms are in supplemental materials.

to capture the physical attributes and the second view (right) aims to
capture the sex information. While ENS-t-SNE also clusters the data
into 6 distinct clusters in 3D, the positions of these clusters are more
meaningful. In the first view (Fig. 1b) the algorithm has captured phys-
ical attributes which are largely correlated with the 3 penguin species
colored blue for Adelie, orange for Gentoo, and green for Chinstrap.
Meanwhile, the second view (Fig. 1c) shows two large clusters based
on sex: circles for female penguins and rectangles for male penguins.

While one could run t-SNE on each subdimension separately and
plot them as small multiples, such a visualization does not capture the
correspondence between datapoints in the two independent embeddings.
In the ENS-t-SNE embedding, each point belongs to two clusters; one
for its species and one for its sex. In an interactive environment, one
can follow a datapoint from one projection to the other. In other words,
there is a transition between the two views in three dimensions that
is missing when using small multiples. Comparing the t-SNE and
ENS-t-SNE embeddings of the dataset we can see that unlike in t-
SNE, the positions of the clusters in ENS-t-SNE are meaningful. For
example, the two orange clusters in t-SNE embedding in Figure 7 are
far from each other, while they are close in the ENS-t-SNE embedding
in Figure 1. Thus both datapoint positions and cluster positions are
more meaningful in the ENS-t-SNE embedding.

In Fig. 5, we compare MPSE embedding of Palmer’s Penguins
dataset to ENS-t-SNE (Fig. 1) using the same variables. In the first view
(Fig. 5(b)), blue and orange points are mixed, and in the second view
(Fig. 5(c)), squared and circled shapes are mixed. ENS-t-SNE, however,
offers superior visualization with clear separation of components in
each view. In Fig. 6, we demonstrate the 3D embeddings of the same
dataset using MDS, t-SNE, and UMAP. While these methods are not
directly comparable to ENS-t-SNE and MPSE, the intent is to highlight
the benefits of simultaneous embedding when features are somewhat
separated. In all embeddings, points roughly form six clusters, but there is
no distinct separation by both color and shape.

5.2 Food Composition Dataset

The USDA Food Composition Dataset [1] is a collection foods specified
by nutrient components (e.g., calories, proteins, fats, iron, vitamins).
The full dataset contains over 7000 entries with 46 dimensions; after
removing entries with missing values we have 948 unique foods, which
we use for our experiments. We walk through how one might use
ENS-t-SNE for exploratory data analysis. We first utilize a standard
t-SNE projection to get a sense of the data; see Fig. 7(c). There are
roughly three large clusters (indicated by color), and we confirm by
running a k-means clustering on the high dimensional data and see that
it matches the clusters in the t-SNE projection.

Manually examining the clusters for human-interpretable meaning
shows that the first cluster (red) contains almost entirely meats, while
the second and third clusters (blue and orange) appear to have a lot in
common, which is unexpected given the k-means results and the t-SNE
plot. While the orange cluster contains many grains and vegetables
and the blue cluster contains many fruits and beverages, both clusters

contain many dairy products such as milks, cheeses, and yogurts.

We suspect though, that there are more interesting insights to be
gained by looking at subspaces of the data since there is seemingly an
overlap in the blue and yellow clusters. In fact, this dataset has been
used in several subspace clustering papers [34,41].We apply the
method from [34] and obtain two subspaces that we then pass on to
ENS-t-SNE to visually investigate further.

We call the first subspace ‘waters+lipids’, as it contains the following
features: water, vitamin E, sodium, total lipids, and calories. We call the
second subspace ‘proteins+vitamins’ as it contains protein, vitamin B6,
vitamin B12, and vitamin D. We computed the corresponding pairwise
distance matrices and applied ENS-t-SNE to these pairwise distance
matrices; see Fig. 8.

From the 3D embedding obtained by ENS-t-SNE (Figure 8a) we can
make the following observations: In 3D there are strong orange, red,
and blue clusters, though there is a portion of the embedding where
the colors are mixed, mostly between orange and blue. In the first
projection (Figure 8b), corresponding to ‘water+lipids’, each cluster has
been separated though there are many points that fall between clusters;
notably between blue and orange. Our implementation provides a hover
popout when mousing over datapoints with labels, so we use this to
confirm that these are blue points that are particularly ‘watery’ such as
lettuce, cucumber, baby-food.

In the second view (Fig. 8c) which corresponds to the ‘pro-
teins+vitamins’ subspace, we see a much different picture. The meats
have been strongly clustered, with the red cluster in the top left. The
blue and orange clusters, that were distinct in the previous projection,
have been mixed, indicating that the blue and orange clusters have
largely similar protein and vitamin components. Notably, there are two
blue/orange clusters. One sits closer to the meats cluster and contains
dairy products like milk, infant formula, and cheese. The second cluster
contains other meatless foods from both the orange and blue clusters.
Note again that ENS-t-SNE provides a more meaningful embedding of
both individual datapoints and clusters. In particular, the similarity be-
tween the blue and orange clusters is missing from the standard t-SNE
view, as the distance between clusters in t-SNE is often arbitrary.

5.3 Auto-MPG Dataset

The auto-mpg dataset from the UCI machine learning repository [10],
provides data for 398 cars, each with the following 8 attributes: mpg,
cylinders, displacement, horsepower, weight, acceleration, model year,
origin. The CLIQUE subspace clustering algorithm to the data. We
select two “interesting" subspaces, measured with the Fowlkes-Mallows
score [13]: the first includes (mpg, cylinders, displacement), and the
second includes (horsepower, weight, acceleration).

We apply ENS-t-SNE algorithm for the two subspaces using per-
plexity value 30. The corresponding 3D embedding by ENS-t-SNE is
demonstrated in Figure 9. In order to show the clusters in the obtained
embedding, we use colors (red, blue, and orange) and shapes (diamond,
triangle, square, and crosses).
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Fig. 7: Standard 2D t-SNE embeddings for datasets (a) Palmer’s Penguins, (b) auto-mpg, and (c) USDA Food Composition. Note how in each
projection, t-SNE misses something that ENS-t-SNE can capture. In (a), the two yellow clusters are split far from each other. In (b), the shapes are
mixed with colors. In (c), we cannot see the alternative clustering found in Fig. 8.
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Fig. 8: ENS-t-SNE applied to the USDA Food Composition dataset. (a): The 3D embedding found by ENS-t-SNE, where each of the three classes
have been separated. (b): The first projection corresponding to the water+lipids subspace. The blue and orange clusters (grains and vegetables,
fruits and drinks) have been separated, with several blue points mixed in both the orange and red clusters. (c): The second projection corresponding to
the proteins+B vitamins subspace. Here the red cluster (meats) has been well separated but the blue and orange cluster contain similar protein and B
vitamin components so have been mixed into two clusters, the smaller of which corresponds to dairy and the larger to other meatless foods.

To show the clusters in embedded dataset, we use the cylinders and
the weights. We partition the total data into three groups based on
the number of cylinders as follows: In the first group we place all the
cars with 4 or fewer cylinders, in the second group are cars with 5 or 6
cylinders, and in the third group we put the cars with more than 6
cylinders. In Figure 9 the first group is colored in red, the second group is
colored in blue and the third group is colored in orange. We further
partition the dataset into four groups based on the weights according
to 25, 50 and 75 quantiles. In Figure 9 the datapoints corresponding to
the first group are shown in diamond shapes, the second group in
crosses, the third group in circles and the fourth group in triangles.

Figure 9 shows that ENS-t-SNE was able to find an embedding
of the dataset in 3D separating the data into several clusters. The
first perspective groups together datapoints with the same colors, i.e.,
cars with similar numbers of cylinders are grouped together; see the
second subfigure of Figure 9. The second perspective groups together
datapoints with the same shapes, i.e., cars with similar weights are
grouped together; see the third subfigure of Figure 9.

In Figure 9 we observe that although in the two perspectives cars are
clustered according to corresponding dimensions (number of cylinders
and weight), there are some exceptions. For example, the blue outliers in
the second (and also third) subfigure correspond to two exceptional cars
which have low weights but higher number of cylinders (5 or 6).

Consider, for comparison, the standard t-SNE visualization of the same

dataset in 2D; see Figure 7(b). The dominant factor for the embedding

is the number of cylinders, resulting in three well-separated clusters in

the embedding. Note, however, that the t-SNE embedding completely

missed the weight information, as there is no pattern between the shapes.
Contrast this with the ENS-t-SNE embedding, where both relationships

(number of cylinders and weight) can be seen from the corresponding
directions; see Fig. 9.

Applying ENS-t-SNE to similar datasets (with multiple interpreta-
tions) makes it possible to find a visualization that respects all interpre-
tations. Furthermore, datapoints on the periphery of the clusters and
outliers can be interpreted as datapoints that are very similar in one
interpretation but completely different in others.

6 QUANTITATIVE EVALUATION

The real-world and synthetic examples above show that ENS-t-SNE
can provide meaningful 3D datapoint positions and cluster positions.
Here we provide some quantitative data.

While MDS, t-SNE and UMap can produce 3D embeddings, they
cannot optimize per-projection views, as MPSE and ENS-t-SNE can.
We could use single projection techniques to obtain subspace embed-
dings but the resulting plots will be largely unrelated. Thus the only
available technique that can be directly compared to ENS-t-SNE is
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Fig. 9: Demonstration of ENS-t-SNE on auto-mpg dataset. Fig. 9(a) demonstrates a glimpse of the 3D ENS-t-SNE embedding of the dataset, Fig.
9(b) and Fig. 9(c) demonstrate the corresponding 2D projections of 3D ENS-t-SNE embedding. Colors indicate number of cylinders: red (4 or less),
blue (5-6), orange (7 or more). Shapes indicate weight diamonds (0-25%), crosses (25-50%), circles (50-75%) and triangles (75-100%).

MPSE. With this in mind, we quantitatively evaluate MPSE and ENS-t-
SNE, using the metrics trustworthiness, continuity, neighborhood hit
and stress, as recommended in a recent survey [12].

For each metric, we compute the 3D values with respect to all
distances, as well as the per-perspective values with respect to each
subspace. For the following definitions, let N be the size of a dataset
(number of points), and K be a parameter for the size of a
neighborhood. For trustworthiness, continuity, and neighborhood hit we
use K = 7 for all evaluations, as in [12]. We use the same perplexity
value for each dataset as described in their figures: perplexity of 40
for the Palmer’s Penguins and value of 30 for the Auto-MPG and
Food Composition dataset. These values were chosen by investigating
a range in (20, 100) and selecting the best quantitative embedding.

Trustworthiness measures how well neighbors in the embedding
match the neighbors in high dimensional space, with large errors pe-
nalized heavily. As its name implies, a high trustworthiness is a good
indication that one can trust the local patterns in the embedding. This is
a measure of precision with respect to clusters:

2 N -
1- NK(2N—3K—1)Zi:1 Zjpux rli,j) - K (14)
where UiK is the set of points among the K nearest neighbors of point
i in the embedded space but not in the high dimensional space and
r(i, j) is the rank of the embedded point j with respect to the embedded
nearest neighobors of point i.

Continuity is related to trustworthiness, but measures how many
neighors are missing in the embedding but are present in high dimen-
sional space. A high continuity score means that most of the neighbor-
hood around a given point is nearby (rather than far away). This is a
measure of recall with respect to clusters:

2 N o
1- NK(ZN—3K—1)Zi=1 2jave P, J) - K (15)
where ViK is the set of points among the K nearest neighbors of point i
in the high dimensional space but not in the embedding, and (i, j) is
the rank of point j with respect to i in the high dimensional space.
Neighborhood Hit (NH) measures the proportion of nearest neigh-
bors of a point in the embedding which have the same label, similar to a
k-nearest neighbor classifier. In order to use this measure, we need
labels which we have (or generate) for each of our datasets. Since our
datasets have two or more sets of different labels, when we compute NH
on the three dimensional embedding we take the Cartesian product of
the two labelings. For instance, if a penguin is both an Adelie penguin
and female, then we assign it a label of (Adelie, female). Formally, NH is
defined as follows:

N 1 .
Doy HENeX 1= k] (16)

where NeiK is the K nearest neighborhood of point i in the embedding,

and I; is the label of point i. We note that the food composition dataset
does not have ground truth labels, but there is good evidence that our
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Fig. 10: (a) The stability score of ENS-t-SNE (blue) and standard t-SNE
(orange). A low score means there was little movement between sub-
space embeddings and a high score means there was large movement.
Note that ENS-t-SNE has a much better average score for movement

between subspace embeddings. (b) How related dimension reduction

algorithms scale in the number of datapoints.

900 1000

clustering is accurate. The clustering has a high silhouette score and is
visually validated in Fig 7 and Fig. 8.

Stress is the sum of squared differences in the distances between the
embedding and high dimensional space:

i<l IXi =X 11 -di,j)2

where X; is the embedded position of point i and d; ; is the distance
between points i, j in the high dimensional space. Low stress indicates
good distance preservation. Note that MPSE directly optimizes stress
for each view, so we expect it to often outperform ENS-t-SNE. Table 1
shows the results of these metrics, averaged over 10 trials each. Note
how ENS-t-SNE tends to outperform MPSE on the continuity, trust-
worthiness, and NH scores for the 2d views indicating that as expected
ENS-t-SNE is more reliably capturing local structures in the projected
views. Low stress is not the goal of this algorithm, so having high stress
compared to MPSE is acceptable. ENS-t-SNE can achieve lower stress in
one view than MPSE, since MPSE minimizes the average stress per
projection, meaning that ENS-t-SNE may produce unbalanced projec-
tions with respect to stress where MPSE will produce more balanced
projections.

Stability. Although we cannot directly quantitatively compare to
t-SNE (or other similar dimension reduction embeddings), we can
measure how similar a set of projections are. It is known that for many
comparative tasks it is desirable to have as little change as possible
while still being faithful to the data. This notion is often referred
to as stability or preservation of the mental map [3,11]. We show
that ENS-t-SNE is more stable when computing a set of
projections of subspaces than standard t-SNE on the same set of
subspaces.

We adapt the notion of stability to a pair of embeddings,
stability(E4, E,) computed by first aligning E, to E; as close as pos-
sible using affine transformations and then computing the average
distance between corresponding points in the two embeddings. For

(17)



Palmer’s Penguins

3d view T view 2
ENS-t-SNE MPSE ENS-t-SNE MPSE ENS-t-SNE MPSE
cont. T 0.9858 0.9842 0.9871 0.9370 0.7848 0.6862
trust. T 0.9846 0.9853 0.9909 0.9386 0.7649 0.7639
NH T 0.9871 0.9472 0.9785 0.9232 1.0000 1.0000
stress 1 0.7720 0.6415 0.2659 0.2997 0.0000 0.0569

Auto-MPG

3d view 1 view 2
ENS-t-SNE MPSE [ ENS-t-SNE MPSE [ ENS-t-SNE MPSE
cont. T 0.9636 0.9797 0.9897 0.9493 0.9864 0.9859
trust. T 0.9753 0.9846 0.9914 0.9625 0.9952 0.9860
NH T 0.8451 0.8550 0.9913 0.9913 0.8958 0.8859
stress 1 0.5099 1.9999 1.9974 1.9974 0.2837 0.1888

USDA Food Composition

3d view 1 view 2
ENS-t-SNE~ MPSE ENS-t-SNE~ MPSE ENS-t-SNE MPSE
cont. T 0.9573 0.9653 0.9800 0.9449 0.9920 0.8987
trust. T 0.9596 0.9852 0.9850 0.9390 0.9971 0.8936
NH T 0.8852 0.8834 0.8822 0.8318 0.7985 0.8336
stress 1 0.5971 1.9999 0.6904 1.9999 1.9981 1.9981

Table 1: Quantitative comparison between ENS-t-SNE and MPSE. Each
pair of columns denotes what view is measured; either the full three
dimensional embedding with respect to the full set of distance matrices
or for the two dimensional projections with respect to the corresponding
distance matrix. For each view, the best score is bolded.

a series of embeddings E,...En we compute the average pairwise
stability, i.e., Zi<j stability(E;j, Ej).

In all datasets under consideration, ENS-t-SNE produces better
stability between small multiple projections. The results for an average
of 30 trials are shown in Fig. 10. Note that ENS-t-SNE has consistently
better stability than t-SNE, which is not unexpected, as t-SNE has no
correspondence between small multiple projections.

6.1 Scalability

In this section we consider the scalability of ENS-t-SNE with respect
to the number of perspectives, the number of clusters per perspective,
and the number of datapoints. In particular, the goal is to evaluate
how the accuracy or the speed of ENS-t-SNE is affected as these
parameters increase in value. The results indicate that the runtime of
ENS-t-SNE scales reasonably well as these parameters increase. The
accuracy decreases when the number of perspectives and clusters grows.
However, if the number of perspectives is two the accuracy does not
decrease as the number of clusters increase.

In order to measure the accuracy of the embedding for a dataset
containing several clusters, we define the separation error as follows:
For a 2D image containing two labels, the best linear classifier is
found and the proportion of errors in this classification is returned. For a
2D image containing more than two labels, a linear classifier for
every possible combination of two labels is computed, and the average
proportion of errors between all combinations is returned. For a 3D
embedding with multiple perspectives, with each image having two or
more labels, the separation error in each image is computed and the
average is returned.

To check the scalability of the proposed ENS-t-SNE algorithm we
create datasets as described in Section 4. We consider N = 400 data-
points and vary the number of perspectives M = 2,3,...,10, making
sure that each perspective has NCry = 2 identifiable clusters in it. We
then apply ENS-t-SNE for each of these datasets using perplexity val-
ues 40, 80,160,240 and report the results in Fig. 11(a). The x-axis of
Figure 11(a) shows the number of perspectives and the y-axis shows
the separation error. The results indicate that for a small number of
perspectives (2,3) the separation error is small and as the number of
perspective increases the error grows.

Next, we test the scalability of the algorithm as the number of
clusters per perspectives increases. We create the datasets in a similar
fashion setting N = 400, M = 2,3, and varying the number of clusters
per perspective NCry = 2,3,...,10. We run ENS-t-SNE with perplexity
values 40,80, 160, 240 and report the separation error in Fig. 11(b): as
the number of clusters increase for 3 perspectives, the separation error
grows, while for 2 perspectives the separation error is stable.
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Fig. 11: Demonstration of the scalability of the ENS-t-SNE algorithm.
Fig. 11(a) shows the separation error for 400 samples with two clusters in
each perspective. Fig. 11(b) shows the separation error for 400 samples
with multiple clusters in each perspective. Fig. 11(c) shows the running
time for 2 and 3 perspectives, for 2 and 3 clusters, while varying the
sample sizes. Fig. 11(d) shows the separation error for 1000 samples
uniformly distributed in a solid 3D ball. Perspectives chosen at random,
labels chosen depending on which side of each 2D image each point
falls into. The perplexity is fixed to 600, the number of perspectives vary.

We continue by analyzing the influence of the number of datapoints
on the running time of the algorithm. For this purpose, we create
datasets containing clusters according to Section 4. We set the number
of perspectives M = 2,3 and the number of clusters per perspective
NCm = 2, while varying the total number of datapoints N from 200 to
1800 in increments of 200. We run ENS-t-SNE for these datasets with
perplexity value 0.2 N and report the running time as a function of N in
Figure 11(c). The results indicate a steady increase in running time as
the number of datapoints and the number of perspectives grow.

The final experiment tests the effect of the number of perspectives
on the accuracy of the algorithm. We generate data as follows: We
uniformly distribute 1000 points in a solid 3D ball, and randomly select
several perspectives. We label each point in each perspective according
to on which side of the perspective the points fall into. The perplexity
is fixed to 600 and the number of perspectives vary from 2 to 10. We
report the separation error vs the number of perspectives in Fig. 11(d).
The results indicate that when there are no forced clusters, the algorithm
has more freedom to separate the data into parts that respect the original
label assignment, providing more stable separation error.

7 LIMITATIONS

Naturally, there are many limitations to ENS-t-SNE. Here we consider
only a partial list, starting with scalability. It is known that t-SNE
is computationally expensive and in this prototype we have not yet
considered applying ideas for speeding it up, such as those in [33,36].
While MPSE [19] focuses on simultaneously capturing global dis-
tances between objects and ENS-t-SNE aims to capture local neighbor-
hoods, other approaches for dimension reduction, such as UMAP [29],
optimize both at the same time. It would be worthwhile to quantitatively
verify the extend to which these goals can be realized by the different
approaches. The utility of ENS-t-SNE depends on finding interesting
subspaces/subdimensions and combinations thereof. We have not yet
considered automating the process by using approaches such as those
for subspace clustering as part of the ENS-t-SNE pipeline. Setting up
the distance matrices that ENS-t-SNE needs can be done in different
ways, as illustrated in the different examples in the paper. Evaluating
different approaches and automating the process remains to be done.
While we expect that 3D ENS-t-SNE embeddings might be easier to



interpret and work with, compared to small multiple type visualizations
(with or without linked views), we are not aware of human-subject
studies to validate this intuition. Although we were inspired by 3D
physicalizations one can “walk around" and interact with, a thorough
human subjects study is required to verify that this method supports
tasks effectively.

8 CONCLUSIONS AND FUTURE WORK

We described ENS-t-SNE, a generalization of t-SNE, which computes a
3D embedding of a dataset along with a set of 2D projections that
optimize subspace clustering information. We note that while our paper
describes ENS-t-SNE in 3D, the technique can be applied to higher
dimensions (lower than the number of input dimensions).

As the main part of the paper describes the proposed ENS-t-SNE
algorithm (from the idea to the implementation), the quantitative and
qualitative evaluation is just sketched out here. Nevertheless, several
different types of experiments, on synthetic and real-world datasets,
indicate that ENS-t-SNE can indeed simultaneously capture multi-
ple different types of relationships defined on the same set of high-
dimensional objects. All source code, experimental data, and analysis
described in this paper are available on github (along with a video
explanation) at https://github.com/enggiqbal/MPSE-TSNE.

An interesting direction that we began to explore is to extend the
objective function such that each perspective shows the t-SNE embed-
ding for different values of perplexities; see the supplemental material.
Another possible application is using ENS-t-SNE to visualize image
datasets, based on different parts of the input images. We include some
preliminary results for the MNIST dataset in the supplemental material.

ENS-t-SNE generalizes t-SNE to multiple perspectives. General-
izing other dimensionality reduction techniques, such as UMAP [29]
might be of interest. Combining local and global perspective at the
same time, for example by combining ENS-t-SNE and MPSE [19],
might provide embeddings that allow us to balance local and global
distance preservation.
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Embedding Neighborhoods Simultaneously t-SNE: Supplemental Materials

In Appendix A we provide a practical pseudocode implementation of ENS-t-SNE. In Appendix B we discuss an application of ENS-t-SNE to
MNIST dataset to find a 3D visualization of it and in Appendix C we discuss an extendion of ENS-t-SNE to visualize the effect of perplexity
parameter.

A ENS-T-SNE PSEUDOCODE

Algorithm 1 Practical implementation of ENS-T-SNE

Require: Nx N pairwise distance matrices: D1,D?,...,DM, perplexity parameter Perp.
for perspectivesm= 1,2,...,M do
Compute P™ = f(DM, Perp)
end for
Assign initial valuesto Y, N = [M1,M2,...,0M], w,v.
for batch size = n/4, n/2 do
fort=1,2,T do
Y = Y+umssEyY,n)
H=pu+1
end for
end for
for batch size = n/4, n/2 do
fort=1,...,T do

Y = Y+pBSSAQY,N)
N=n+Q vagey,n)

H=p+1
v=v+1
end for
end for

Ensure: Y, N,NZ%,...,0M.

B VISUALIZING MNIST DATASET BY ENS-T-SNE

In this section we apply ENS-t-SNE to visualize the MNIST handwritten digit database [26]. The dataset contains 70,000 handwritten digits in
greyscale, each of sizes 28 x 28; see examples from the dataset in Figure 12. The standard way of applying machine learning algorithms to the
MNIST dataset is to vectorize the matrices corresponding to the greyscale pixel values of each digit and obtain a vector of size 28 x 28 = 784.
Thus, each instance of the dataset can be viewed as a single datapoint in R784, with the idea being that points corresponding to the same digit
should be close to each other. Dimensionality reduction techniques that aim to capture global distances (e.g., Principal Component Analysis and
Multi-Dimensional Scaling) are known to perform poorly when embedding such data into 2D or 3D. Non-linear dimensionality reduction
techniques that focus on local neighborhoods, such as t-SNE and UMAP, perform much better.

Fig. 12: Sample images from the MNIST dataset.

We apply ENS-t-SNE to embed the MNIST dataset (and similar datasets which require local neighborhood preservation) in 3D to capture the
clusters corresponding to each digit. The idea is to define multiple distance/similarity measures between pairs of datapoints that would capture
different properties/characteristics. As a simple initial example, each image can be divided into two parts: top and bottom; see Figure 13. We then
compute the Frobenius norm, BAR: between the matrices corresponding to the greyscale pixel values of each image. For a given matrix A, BAR s
defined as the square root of the sum of the squares of its elements and can be viewed as the vector L, norm of the vector of all elements of the

1



Fig. 13: MNIST dataset digits split into top and bottom parts.

Fig. 14: Application of ENS-t-SNE to the 1000 instances from the MNIST dataset with perplexity value 500. The left subfigure demonstrates the 3D
embedding computed by ENS-t-SNE. The middle subfigure demonstrates the projection of the 3D embedding onto the view that corresponds to the
distance matrix constructed from the upper parts of the digits. The right subfigure demonstrates the projection of the 3D embedding onto the view that
corresponds to the distance matrix constructed from the lower parts of the digits.

m,

matrix. Formally, for a matrix A = (ai,j))i=n j=10 its Frobenius norm is defined as:

v__m n
RARF = Lzl 51
TS
We now have two different sets of distance matrices: one corresponds to the top part of each image and the other corresponds to the bottom part
of each image.

The idea behind this experiment is to apply ENS-t-SNE to a dataset with different perspectives, where some points are close to each other (in the
same cluster) in one perspective, but are far from each other (in different clusters) in the other perspective. The ENS-t-SNE algorithm should place
the points in 3D so that the desired properties are satisfied in the corresponding perspectives.

The distance matrices for the top and bottom parts of all datapoints are the inputs to the ENS-t-SNE algorithm. The results are different than
those from the standard t-SNE applied on the original datapoints, as illustrated in Figures 15 and 14. The bottom view (the third subfigure of Fig.
14) shows that digits 1, 7 and 4 (sometimes 9, depending on the handwriting) are close to each other. This is expected since for most of these digits the
bottom parts are nearly straight line segments oriented roughly the same way. However, since there is a significant difference in the top parts, the
clusters are separated in 3D. Similarly, the pair of digits 3 and 5 are close in the bottom view and the digits 8 and 9 are close in the top view.

Comparing the standard t-SNE embedding in Figure 15, we can see that the ENS-t-SNE embedding managed to avoid some “errors". For
example in Figure 15, there are some Os that appear within the cluster of 6s while that is not the case for ENS-t-SNE; see the left subfigure of Fig.
14.

In addition to the visual comparison between the MNIST dataset embedding obtained from ENS-t-SNE and the standard t-SNE, we also
evaluate them using cluster accuracy [17, Section 10.6.3]. Specifically, given an embedding (from ENS-t-SNE or t-SNE) we apply k-means
clustering with 10 clusters and compare to the ground truth 10 clusters. For each embedding, finding the correct cluster labels is based on
considering all re-orderings of the k-means cluster labels and selecting the one that best matches the ground truth. After that, count the number of
points that are correctly clustered and normalize it by the total number of points. The results suggest that ENE-t-SNE does as well or better than
standard t-SNE: 0.539 for ENS-t-SNE in Fig. 14 vs. 0.478 for standard t-SNE in Fig. 15 (with higher scores corresponding to higher
accuracy). The experiments were run for randomly chosen 1000 instances of MNIST dataset and averaged over 5 runs. In general, the accuracy is
comparable, with a slight advantage to ENS-t-SNE.

C VISUALIZING THE EFFECT OF PERPLEXITY

The choice of perplexity parameter in t-SNE greatly affects the quality of achieved embedding; see [37]. Usually, smaller perplexity parameters
produce visualizations that better reflect local distances between samples, however, when the perplexity is very small the algorithm fails to find a
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Fig. 15: 3D (top) and 2D (bottom) embedding obtained by t-SNE of a subset with 1000 datapoints from the MNIST dataset.

sufficiently good solution. Thus, finding an appropriate value of perplexity for which t-SNE would find the best possible embedding has been of
research interest [9].

ENS-t-SNE can be used to visualize the differences between various perplexity parameters on the same given distance matrix. In practice,
ENS-t-SNE seems to overcome the issue of not producing good results for smaller/larger-than-ideal perplexity value, as long as one of the
perplexity values passed into ENS-t-SNE is sufficiently good. Specifically, we apply ENS-t-SNE to the same set of distance matrices but with
different perplexity values. The goal is to find an embedding of the dataset in 3D so that on the different projections it solves the t-SNE
optimization with different perplexity values (but with the same distance matrix).

The problem formulation is as follows. Let D be an N x N distance matrix and perp ,, perp., ..., perp,,> 0 be a list of perplexity parameters
of interest. We wish to minimize the following cost function

M
@X, N;perpy, perpy, ..., perpm) = Y C(N™X; perppy) (18)

m=1

whereY = C(Y;perp ) is the t-SNE cost function with perplexity parameter perp . Minimizing (18) is achieved using a momentum based batch
or stochastic gradient descent.

In Figure 16, we show an application of ENS-t-SNE for a dataset that contains 2 clusters, constructed according to the model described in
Section 4, with M = 1 and with N = 400 datapoints, using perplexity parameters equal to 3 and 100. The 3D embedding for the corresponding
computed distance matrix, shown in the first row of Figure 16, and for the given two values of the perplexity parameter is the solution to
problem (18). The two figures in the second row of Figure 16 show the projections of the 3D embedding that best represent the perspectives of this
data set with perplexities 3 and 100.

As a way of comparison, we also compute the corresponding standard t-SNE 2D embeddings for the same distance matrix D with perplexities
3 and 100 (the last row of Figure 16). It is easy to see that standard t-SNE found the clusters when the perplexity was high and failed to find them
when the perplexity was low, while ENS-t-SNE captured the clusters for both perplexity values. We note that whereas the images produced
by ENS-t-SNE are projections of the same 3D embedding, the images produced by t-SNE are obtained independently.



Fig. 16: Comparison of the ENS-t-SNE visualization of a dataset with perplexities 3 and 100 and the corresponding t-SNE visualizations. The dataset
contains 400 samples that form two clusters, as colored. The top image shows a glimpse of the 3D ENS-t-SNE embedding. The middle two images
show the two projections of the 3D ENS-t-SNE embedding, the left corresponding to perplexity 3 and the right corresponding to perplexity 100. The
bottom two images are t-SNE visualizations of the same distances using perplexity 3 (left) and perplexity 100 (right).
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Fig. 17: Synthetic data generated for the quantitative experiment. The two clusters in the first 10 dimensions are separated using color, the next 10
dimensions are denoted by shape, and the final 10 denoted by fill.

Fig. 18: Auto-MPG data embedded by MDS, t-SNE, and UMAP.



Fig. 19: Auto-MPG data embedded by MPSE.

Fig. 20: Food Composition data embedded by MDS, t-SNE, and UMAP.

Fig. 21: Food Composition data embedded by MPSE.



