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Abstract—Any graph drawing can be characterised by a range of computational aesthetic metrics. For example, a given drawing might be
described as having eight crossings, a mean angular resolution of 0.34, and an edge orthogonality value of 0.72. However, without
knowing the distribution of these metrics it is hard to compare the quality of drawings of different graphs, nor know whether a given
drawing is typical or an outlier within the space of all possible drawings. This paper explores the range and distribution of ten normalised
graph drawing layout metrics, based on graphs created by six graph generation algorithms and drawings created by six popular layout
algorithms. We include the “Rome" and “North" graph repositories in our analysis. Our exploration of the multi-dimensional aesthetics
space allows for comparisons between the graph drawing algorithms, highlighting those that cover larger or smaller volumes of the
aesthetics space. We calculate the correlation coefficients between the metrics, indicating those that may conflict with each other
(negatively correlated), and those that may be redundant (positively correlated). Our results will be useful as the basis for simulated
annealing or gradient descent layout algorithms, for identifying the best layout algorithms for producing a specified combination and
range of aesthetics, and for informing experimental controls in human empirical studies.

Index Terms—Graph layout aesthetics, Graph metrics, Graph layout algorithms

1     IN T RODU C T ION

Research papers in the graph drawing literature tend to selectively
choose graphs and graph drawings to illustrate their results; these are
chosen specifically for the purposes of demonstrating the worth of the
research contribution. What is not clear is how representative these
chosen graphs and graph drawings are—within the space of all possible
graphs and possible graph drawings. A  multi-dimensional space of
all possible graphs can be envisioned, where the axes are common
graph metrics: density, centrality, diameter, etc. Similarly, the multi-
dimensional space of all possible graph drawings would have axes
based on the common layout principles (or ‘aesthetics’): prevalence of
edge crossings, number of bends, average angle of edge crossings, etc.
This paper considers the latter: if we have a graph drawing and its set
of aesthetic measurements, where does it lie in this multi-dimensional
space? Are some (or all) of its metric values at an extreme, or could
this drawing be considered ‘typical’? If typical, we would expect all its

metric values to lie around their respective medians in the distributions.
Determining the distributions of such metrics requires the generation of
a large number of graph drawings, based on a large number of graphs.
The more varied the graphs and the more varied the drawings, the better,
since we are more likely to get coverage of the multi-dimensional space.

We have tackled the problem by using a range of random graph
generation algorithms (creating graphs of different sizes) and a range
of common graph layout algorithms, producing a total of 447,934
graph drawings. We then produce descriptive statistics in the form
of distribution charts and correlations, presenting an overall summary
of these graph drawings with respect to common quantifiable layout
principles. The ten aesthetic criteria considered in our paper span
the entire spectrum of measurable layout statistics commonly used in
related work (e.g., [6, 27, 29, 35, 36, 40]).

1.1     Motivation
At the very heart of this endeavour is the fundamental ability to com-
pare the aesthetic worth of two graph drawings when the graphs are a
different structure or size. By defining distributions along each of the
aesthetic metric axes, the ability to perform three common research
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tasks becomes easier: generating graph drawings through optimisation,
defining graph drawing stimuli for experimental purposes, and identi-
fying the most appropriate layout algorithm for satisfying particular
layout metrics. We explain each below.

First, simulated annealing, hill-climbing or gradient descent systems
can be used to generate graph drawings. Typically, the objective func-
tion for these methods tries to optimise one or more layout features,
aiming, for example, for zero edge crossings as well as for maximum
angular resolution. Metric distributions and correlations between layout
features can indicate where aiming for extremes is unreasonable, and
where it is better to aim for a range of values instead. If the metric
distribution is skewed to the bottom (the median is less than 0.5), then
specifying an extreme value of 1.0 is unreasonable. Correlations can
also show us where it would be foolish to attempt to maximise two
metrics simultaneously. If the edge length metric is negatively corre-
lated with the extent to which edges align to an underlying grid, then it
does not make sense to try to create a graph drawing that maximises
both, and including both in the objective function will increase the like-
lihood of local minima. Similarly, if two metrics are highly positively
correlated, then only one needs to be included in the objective function.

Second, human experiments with graph drawings require the produc-
tion of visual stimuli. Since we know that the extent of layout features in
a graph drawing affects human perception [29], experimenters need to
know where their experimental stimuli lie within the metrics distri-
butions landscape. For example, a drawing has an edge length variation
metric value of 0.25; is this a ‘high’ value or a ‘low’ one, when con-
sidered within the whole population of graph drawings? We need to
know the distribution and typical values of the edge length distribution
metric to answer this question. If it is impossible (or highly unlikely)
that a metric value will exceed 0.6, then a drawing that measures 0.5
for this metric can be considered ‘good’; conversely, if the median
metric value for another metric is 0.8, then 0.5 would be considered
poor. These relative judgements on the suitability of graph drawings in
human experiments are particularly important when the layout factors
need to be deliberately varied or controlled.

Finally, by looking at the different metric landscapes created by
different layout algorithms, we can see to what extent a layout algorithm
covers the multi-dimensional metric space. Some algorithms will cover
some (and more) metrics better than others. Therefore, if there is a
requirement that a given graph be drawn so as to maximise a set of
particular metrics, the landscape can indicate which layout algorithm
would be best to use.
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2     BA C K G R O U N D

2.1     Graph Generation Algorithms & Common Repositories

Researchers often require a set of graphs for their research, e.g., for
graph mining or graph drawing. Finding appropriate real-world graphs
may be impossible or existing repositories may not be suitable, jus-
tifying the use of synthetically generated graphs. We use six graph
generators commonly found in the literature (see Sec. 3 for implemen-
tation details).

• Erdos–Rényi (ER) generates random graphs, with a given fixed
probability of any two nodes being connected [10].

• Barabási–Albert (BBA) generates random graphs with node
degrees following a power law, to model real-world networks [2].
New nodes added to the graph are preferentially connected to
nodes with a high degree.

• Newman–Watts–Strogatz (NWS) generates small world graphs,
that is, graphs with high clustering but small path lengths, com-
monly used in social network analysis [24, 37].

• Lancichinetti–Fortunato–Radicchi (LFR) generates graphs
with community structures, attempting to model social networks;
it requires that the minimum and maximum community size be
specified [23].

• Stochastic Block Model (SBM) generates random clustered
graphs, where nodes are initially assigned to communities and
connections between nodes in two different communities are de-
termined by a given probability [15].

• Random Geometric (GEO) generates graphs by placing nodes
uniformly at random within a unit square, and adding an edge if
two nodes are within a pre-specified distance of each other [26].

These graph generation algorithms are frequently used in experi-
ments attempting to model real-world graphs. ER  models edge density,
NWS models edge density and small world properties, B BA  models
edge density, small world properties, and power-law degrees, etc.

We also include the North [7] and Rome [8] graph collections, since
they are frequently referred to and used in the graph drawing literature.

• The Rome graphs: A  set of 11,582 graphs constructed for exper-
imental analysis of graph drawing algorithms. The graphs were
created by taking 112 real-world graphs and generating variations
of them.

• The North graphs: A  collection of directed graphs by North at
AT&T Bell Labs collected from Draw DAG, an e-mail graph
drawing service [20].

2.2     Graph Drawing Algorithms

In choosing our layout algorithms, we identified commonly used meth-
ods, covering a range of algorithmic categories; (Sec. 3 for implemen-
tation details).

• Fructerman &  Reingold. (FR) This is a standard force-directed
method, with attractive forces between adjacent nodes and repul-
sive forces between all node pairs [11].

• Kamada &  Kawai. (KK)  A  force-directed method that attempts
to place pairs of nodes at Euclidean distances that are proportional
to the underlying graph-theoretic distances [17]. This is a global
graph embedding algorithm, similar to multi-dimensional scaling
embedding [22, 31].

• DRGraph. (DRG) This is a local graph embedding method,
where only the distances between nearby nodes affect the lay-
out [42]. Local algorithms attempt to preserve the local neigh-
bourhoods, while global algorithms such as MDS and K K  attempt
to retain all pairwise distances. DRG provides a faster implemen-
tation of the original t-SNET graph layout method [21].

• Sugiyama. (Sugi) This is a standard graph layout method that
places nodes layer by layer. It is frequently used for trees, hierar-
chies and directed acyclic graphs, but can be used for other types of
graphs [32].

• Human-like Orthogonal Network Layout. (HOLA) This is an
orthogonal graph layout method where vertices lie on integer grid
points and edges follow grid lines. Unlike prior algorithms of this
type which optimise compactness or bends, HOLA was informed
by human empirical studies [18].

• Circular. (Circ) This is a common layout algorithm which places
nodes randomly around the circumference of a circle.

• Random. (Ran) While not a layout algorithm per se, we also con-
sider a random layout as a baseline, since we assume it performs
worse than layout algorithms designed for readability.

2.3     Graph Drawing Metrics
Purchase [28] defined several graph layout metrics; we use some of
them, improve others, and add new ones. All metrics are normalised to
lie between 0 and 1, where 1 represents the extreme that is intuitively
assumed to be ‘good’, for example, a low number of edge crossings.
Such normalisation is essential for two reasons: so as to define the
bounds of our multi-dimensional metric space, and to facilitate com-
parison between drawings of different graphs. All  the metrics apply
to straight line drawings of connected graphs, with no self-loops or
multiple edges, and we apply the same initial transforms as described
in Purchase [28].

A  graph drawing, denoted D(G) is the assignment of every node of
a graph, G, to a pair of coordinates on the 2-D plane. The position of a
node u is (x , y ). Edges are drawn as polylines or straight lines between
their nodes. ‘bends promotion’ converts any polyline drawing D(G)
into a straight line drawing D′ (G) by introducing dummy nodes at the
bends of the polyline edges in D(G) and replacing the associated edge
segments with new straight-line edges in D′ (G) [28]. Similarly ‘crosses
promotion’ removes edge crossings by introducing a dummy node at
each edge crossing, and replacing the two edges with four shorter ones.
A  drawing with both bends promotion and crosses promotion applied
is denoted D′′ (G). The number of nodes and edges in these drawings
are denoted by n′, m′, and n′′ , m′′ for bends and crosses promotion
respectively.

Here we investigate ten metrics which form a focus of interest in a
series of papers about graph statistics [3, 4] and graph drawing statis-
tics [1] detailed formulae are available in the supplemental materials.

• Angular Resolution (AR). The larger the angle between two
adjacent edges, the easier it is to distinguish between them and to
follow them visually to their end nodes [25]. After calculating the
angular deviation of each edge from the ideal angle (based on node
degree), the A R  metric calculates the mean over all nodes
(excluding degree-1 nodes).

• Aspect Ratio (Asp). Too wide or too tall layouts are harder to
display and work with. The Aspect Ratio is the ratio of the
height of the drawing’s bounding box to its width (or vice versa,
depending on which is greater).

• Crossing Angle (CA). Edges which cross at 90-degree angles
are more readable [36]. Using the same approach as Angular
Resolution we measure the average deviation of angles at which
edges cross from an ideal.

• Edge Crossings (EC). Edge crossings make it difficult to follow
paths visually [25, 27, 29]. The Edge Crossings metric counts
the number of edge crossings and normalises with respect to an
estimate of the maximum number of crossings.

• Edge Length Deviation (EL).  Edge lengths should be uniform
for unweighted graphs [25]. Following Ahmed et al. [1] this
metric defines an ‘ideal’ edge length as the mean of all edges, and
calculates the mean deviation of all edges from this ideal.



• Edge Orthogonality (EO). Aligning edges to a grid is a popular
layout principle for some domains (e.g., electrical circuits). The
Edge Orthogonality metric takes the mean of the angular deviation
of all edges from the horizontal or vertical axis (whichever is
closest).

• Gabriel Ratio (GR). Having nodes too close to edges makes
them hard to distinguish [25]. The principle underlying a Gabriel
graph is that no node is placed within the circle formed by using
any edge as its diameter. Our Gabriel Ratio metric is calculated
by determining how many nodes violate this rule, normalised
against the number of nodes that could do so.

• Neighbourhood Preservation (NP). Nodes that are close in terms
of graph-theoretic distance should be near each other in the layout.
The Neighbourhood Preservation metric [1] uses the Jaccard simi-
larity index between the k nearest neighbours in graph-theoretical
sense and in the layout.

• Node Resolution (NR). Nodes that are too close together are
difficult to distinguish, but the scale of the drawing might require
such closeness. The Node Resolution metric is the ratio between
the smallest distance between two nodes and the largest distance
between two nodes.

• Node Uniformity (NU). Nodes should be well distributed in the
layout, so that they are easier to distinguish [25]. The Node Uni-
formity metric measures the distribution of nodes in the bounding
box, by splitting it into grid cells based on the number of nodes in
the graph, counting the number of nodes in each cell, and
comparing them with an ideal distribution.

We notably exclude stress as a metric due to the difficulty in cre-
ating a normalised metric to quantify it (so that graphs of different
sizes can be compared). Unlike most other measures, stress is affected
by geometric scaling [38]. This poses a difficult problem when com-
paring outputs from different algorithms (where one algorithm may
draw a graph within a unit square and another may position the nodes
thousands of units apart).

2.4     Prior Work using Metrics
Many graph drawing algorithms optimise some kind of aesthetic met-
ric. For example, the Kamada-Kawai method [17] explicitly optimises
global distance preservation, t-SNET [21] and DRGraph [42] optimise
local distance preservation, and Radermacher et al. [30] optimise edge
crossings. There are also approaches which more explicitly optimise
multiple metrics, such as Davidson and Harel’s [5] graph drawing by
simulated annealing, which optimises edge crossings, edge lengths, and
node uniformity. Wang et al. [35] optimise ideal edge directions in
addition to ideal edge lengths. Devkota et al. [6] minimise edge cross-
ings and maximize crossing angles. Eades et al. [9] optimise multiple
geometric criteria, including the Gabriel graph property. More recently,
Ahmed et al. [1] propose a general framework for multi-criteria op-
timisation using stochastic gradient descent (stress, neighbourhood
preservation, edge lengths, the Gabriel graph property, edge crossings,
aspect ratio, crossing angle, and angular resolution).

Aesthetic metrics have also been employed in human experiments to
evaluate the subjective perception of graph layouts. These experiments
involve presenting participants with different graph layouts and collect-
ing their feedback on the aesthetics, readability, and overall quality of
the visualisations. By incorporating human evaluations, researchers can
validate the effectiveness of aesthetic metrics and refine their algorithms
accordingly [27, 36].

3     M E T H O D O L O G Y

3.1     Generating Graphs
We generate graphs using the six techniques described in Sec. 2.1.
For each method, we generate 60 graphs for each size in the range
of n =  [10,20..110] nodes, for 660 per method. We limit the graphs
we generate to those with n ≤  m ≤  3n edges to create sparse graphs.
We limit our data set to small and sparse graphs, such as those in the

Rome and North graph collections, as they are predominant in human-
subject studies [41]. Furthermore, Ghoniem et al. [12] argue that the
readability of node-link diagrams deteriorates as the size and density
of the graph increases. We generate graphs until we have one which is
connected and has an acceptable number of edges. Graphs within each
generator are also checked for isomorphism and discarded if they are
isomorphic with a previously generated graph.

The ER, BBA,  NWS, SBM and GEO graphs were generated using
the respective NetworkX implementations [13]. The choice of parame-
ters is made in order to allow the generators to create the sparse graphs
we desired, whilst ensuring the graph remained connected. Random-
ness is incorporated to extend the range of graphs which could be
generated. The parameters were decided as follows (initial probabilities
are chosen at random in the range [0,1]):

• ER: Each edge is added with probability p � (0, 1). If the gener-
ated graph is not connected we increase p, and if the graph had
too many edges we decrease p.

• BBA: The number of edges to attach from a new node to existing
nodes, m, is a random integer in the range [1,4].

• NWS: The number of nearest neighbours joined in the ring topol-
ogy, k, is a random integer in the range [2,8]. The probability of
adding a new edge for each edge, p, is set to 0.5.

• SBM: The list of floats specifying edge densities between different
groups, p, was generated by first creating a random list of integers
(and a random size of the list) which sum to the number of nodes,
in order to have random group sizes. The probabilities between
groups were then assigned randomly.

• GEO: The dimension d is set to 2. The radius distance threshold, r,
was chosen as a random float in the range [0,1] (since the
implementation places nodes randomly in a unit square, for d = 2).
As with E R  we increase or decrease r until we get a graph which
satisfies our requirements.

• LFR: We use the implementation by Lancichinetti and Fortunato,1
setting the average degree to 4, the maximum degree to 8, the
mixing parameter for the weights to 0.1, the exponent for the
weight distributions to 1, and the minimum community size to 2.

In total, our data set consists of 16,768 graphs.

3.2     Drawing Graphs and Calculating Metrics
The K K ,  FR, Circular, and Random drawings were created using the
respective implementations in NetworkX [13]. The HOLA drawings
were created using the Adaptagrams implementation with SWIG for
Python.2 The DRGraph drawings were created using the original im-
plementation and default parameters.3 Each layout algorithm generates
five drawings for each graph in our data set, with the exception of
Circular and HOLA, which only generate one. Specifically, we use one
drawing:

• from Circular, as multiple runs produce the same layout

• from HOLA, due to its long execution time
We use the default parameters for each layout algorithm to ensure valid
comparison.

Due to the size and structure of some graphs, some layout algorithms
produce the same drawings. Such duplicates are determined by check-
ing for duplicate metric values: if two graph drawings have the same
value for all ten metrics, then they are assumed to be the same
drawing. We found 4,802 such cases and excluded these duplicates
from our data set. As a result, the total number of graph drawings in
our experiment ended up being 447,934.

All  aesthetic metrics were implemented in Python using standard
libraries and the packages NetworkX [13], NumPy [14], and SciPy

1 https://github.com/eXascaleInfolab/LFR- Benchmark_
UndirWeightOvp

2 https://github.com/mjwybrow/adaptagrams/
3 https://github.com/ZJUVAI/DRGraph
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[34]. The detailed descriptions of each metric can be found in the
supplemental materials. A  Python script was used to read and calculate
the aesthetic metrics for each graph drawing, saving the results in a
CSV file. We then used Pandas [33, 39] and matplotlib [16] to analyse
the data and generate the visualisations.

For the polyline HOLA drawings, the following aesthetic metrics
were calculated before performing bends promotion: NP, NR, NU. Then
Asp, AR,  CA,  GR, EC,  EL ,  and EO were calculated after performing
bends promotion. An implication of this is that E L  is being calculated
for edge segments (where bends occur) rather than the full edge.

4     T H E M E T R I C  L A N D S C A P E :  D E S C R I P T I O N AND D I S C U S S I O N

The metric landscape is presented in Fig. 1, Fig. 2, Fig. 3, and Table 1.

4.1     Distributions
Fig. 2 presents the distributions separated by graphs that have been
randomly generated by our 6 algorithms, and by those which came
from the North and Rome graph sets. We can compare the distributions to
ensure that the large size of the Rome graph set does not bias the
distributions in Fig. 1. We can see that the distributions for the gen-
erated and curated graphs are similar, with the exception of Angular
Resolution. Our observations of the distributions relate to each metric in
Fig. 1.

Sugiyama performs worse than the other layouts for Angular Reso-
lution; this is not unexpected as the layering technique creates edges
with acute angles to nodes on nearby layers. HOLA also performs
poorly for Angular Resolution, due to the fact that edges leave nodes at
orthogonal angles, which inevitably yields poor Angular Resolution for
high degree nodes. The distribution is roughly bi-modal for all
algorithms (including random to some extent); further work could de-
termine whether this is due to the secondary factors of size or graph
generator.

For Aspect Ratio, all layouts except Sugiyama have distributions
skewed towards the higher end. This is not unexpected: the layered
approach creates a bounding box that is typically wide and short.

In the Crossing Angle distributions, Sugiyama also performs worse,
since the layers create acute angles. The spike at (or close to) 1.0
reflects drawings with few (or no) edge crossings. We would expect
HOLA to perform well here. The fact that it does not could be a
consequence of bends promotion and requires further investigation.

All  layouts, except from Circular, are seemingly successful in min-
imising Edge Crossings and show distributions skewed towards 1.0.
While this phenomenon is somewhat due to the overestimation of the
maximum number of edge crossings as used in the metric, we note
that the extent of the distribution for Random demonstrates that the
metric is capable of taking on nearly the full range of values. HOLA is
particularly successful here as the algorithm deliberately routes edges
to avoid crossings.

For the Edge Length metric we expect Sugiyama to perform badly
(a variety of edge lengths to children on adjoining layers, and long
edges spanning multiple layers). DRGraph separates nodes that are not
close in a neighbourhood sense and likely produces a mixture of short
and long edges differing from the ‘ideal’. HOLA performs well here
since the metric is calculated on edge segments.

As expected, HOLA performs well on Edge Orthogonality; the
other layouts have distributions similar to the Random layout. This
shows that non-orthogonal layouts are not better than random when
considering Edge Orthogonality.

The Gabriel Ratio distributions are skewed to the top for all layouts.
Like the Edge Crossings metric, this is partly due to overestimation of
the upper bound; however, the lower distribution for Random layouts
suggests that this is also because the layouts successfully maintain the
Gabriel distance throughout the drawing.

The Neighbourhood Preservation metric is better for DRG than
others since they work on the same principle. HOLA also performs
slightly better on this metric, likely due to the way it lays out trees
independently and places them back into the core layout.

Node Resolution tells us very little as most drawings have a small
value. While this does not suggest that the two closest nodes cannot be

distinguished visually, it does suggest that this metric is not particularly
useful.

Each layout performs similarly for the Node Uniformity metric,
except the Random layout, which has low Node Uniformity values (as
expected).

We note that some metrics show multi-modal distributions. The
bi-modal distribution for the Crossing Angle metric can be attributed to
the presence of several graph drawings with no crossings. In particular,
small planar graphs are often drawn with very few crossings by most
layout algorithms and this accounts for one of the two modes. The
other mode covers drawings with crossings where there’s more vari-
ability in the layouts by different algorithms. The other multi-modal
patterns appear to be attributable to the different graph generators and
graph sizes used, as seen when the analysis and visualisation are com-
puted for each generator (see supplemental material). For example,
the Barabasi-Albert and Newman-Watts-Strogatz generators exhibit
bi-modal distributions for Aspect Ratio, which we attribute to the varied
parameters used when generating the graphs. On the other hand, the
multi-modal distribution of Node Uniformity on the Circular layout
can be attributed to the different (discrete) graph sizes.

4.2     Correlations
Fig. 3 presents the correlations between pairs of metrics.

We could interpret the correlations between pairs of properties in the
random layouts as a baseline. Indeed, there are only two correlations
greater than 0.5 and no negative correlations smaller than -0.5. The
high correlation (0.652) between EC  and GR could be due to the similar
way in which these metrics are calculated. The high correlation (0.585)
between NP and NR is unclear.

The standard force-directed method FR  has four more correlations
above 0.5 and still no negative correlations stronger than -0.5. Specifi-
cally (AR, GR), (AR, EL),  (AR, EC), (NR, CA). This confirms some
folkloric knowledge that for small graphs, force-directed methods tend
to distribute edges well (good AR), and this is correlated with uni-
form edge lengths (EL), with good Gabriel Ratio (GR), and few edge
crossings (EC).

The global embedding method (KK)  performs similarly to MDS
layouts that optimise stress. There are ten correlations stronger than
0.5 and no notable negative correlations. For small graphs the K K
algorithm performs similarly to force-directed methods such as FR,
confirmed by several of the correlations involving A R  and EL .

The local embedding method (DRGraph) tries to preserve local
neighbourhoods. It is the only layout that does not show a strong
correlation between NR and NP.

The standard layered method (Sugiyama), adds several correlations
above 0.5, but more notably two negative correlations below -0.5: (EO,
CA) and (EO, NR). In fact, every property is negatively correlated with
Edge Orthogonality (EO), as forcing orthogonality negatively impacts
every other property.

HOLA shows strong positive correlations between (AR, EL),  in-
dicating that similar edge lengths may be necessary for good A R  in
orthogonal drawings. There are strong negative correlations between
(AR, EC), and (GR, NR), which could be a result of the generally high
values for GR and low values for NR.

We observe that the correlations between E C  and GR are similar for
all algorithms apart from HOLA; this can be useful when optimising
one or the other of these two criteria. We also note major differences
between correlations across the different algorithms. While some of
these differences are not clear and are worth exploring, others make
sense. For example, the correlation between GR and E L  in DRGraph is
−0.36 while in K K  it is 0.68: the local clustering approach of DRGaph
implicitly encourages edge length variation, unlike K K  which attempts
to maintain similar edge lengths.

4.3     Typical, Best and Worst Graph Drawings
The ‘typical’ drawings in Table 2 have metric values close to the me-
dians of our specific ten metrics. It should not be surprising that they do
not look very ‘nice’; most published graph drawings are the output of
algorithms that attempt to optimise criteria—rather than just find a
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(83,840)

KK
(80,721)

DRGraph
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Fig. 1: The distributions for each metric, and each layout algorithm. The value in brackets is the number of drawings for each layout. The medians
and inter-quartile ranges for each distribution are shown in Table 1.



Angular
Resolution

Aspect
Ratio

Crossing
Angle

Edge
Crossings

Edge
Lengths

Edge
Orthogonality

Gabriel
Ratio

Neighbourhood
Preservation

Node
Resolution

Node
Uniformity

FR K K

1st 0.457      0.493

Med.      0.571       0.607

3rd          0.64        0.678

1st         0.708       0.763

Med.      0.823       0.863

3rd        0.913       0.935

1st          0.65        0.681

Med.      0.677      0.722

3rd        0.729       0.786

1st         0.978       0.983

Med.      0.986       0.989

3rd         0.991      0.994

1st         0.747      0.815

Med.      0.772       0.852

3rd        0.796       0.889

1st         0.477        0.48

Med.        0.5         0.501

3rd        0.523       0.521

1st         0.975       0.982

Med.      0.982       0.988

3rd        0.988       0.993

1st         0.141       0.137

Med.      0.221      0.234

3rd         0.381      0.433

1st         0.018       0.026

Med.      0.028       0.039

3rd        0.045       0.061

1st         0.431      0.516

Med. 0.5 0.58

3rd 0.57 0.643

DRGraph

0.447

0.601

0.661

0.673

0.806

0.907

0.623

0.659

0.709

0.984

0.991

0.995

0.39

0.43

0.474

0.488

0.513

0.539

0.964

0.979

0.985

0.342

0.398

0.464

0.003

0.007

0.012

0.404

0.479

0.545

Sugiyama

0.32

0.398

0.452

0.118

0.178

0.293

0.405

0.492

0.589

0.918

0.943

0.96

0.306

0.389

0.492

0.495

0.553

0.614

0.868

0.896

0.919

0.116

0.17

0.24

0.018

0.03

0.052

0.371

0.459

0.536

HOLA       Circular       Random

0.389          0.198           0.178

0.401           0.24            0.232

0.425          0.271           0.288

0.714          0.949           0.998

0.833          0.976           0.999

0.92 0.99 1

0.442          0.621           0.599

0.521          0.634           0.626

0.658          0.644           0.644

0.998          0.738            0.621

0.999          0.763           0.699

0.999          0.786              0.8

0.742          0.586           0.446

0.772 0.61            0.572

0.834          0.635           0.667

1 0.473 0.477

1 0.497             0.5

1 0.521 0.524

0.974          0.732           0.733

0.98           0.751           0.768

0.985          0.767           0.814

0.27           0.016           0.025

0.336          0.028            0.05

0.429           0.05            0.103

0.038          0.006           0.042

0.056          0.011           0.065

0.084          0.021           0.101

0.517          0.551           0.325

0.573          0.591           0.408

0.624 0.627 0.52

All (excl. Random)

0.355

0.508

0.629

0.527

0.784

0.911

0.586

0.662

0.723

0.952

0.985

0.993

0.423

0.689

0.803

0.484

0.511

0.549

0.922

0.977

0.987

0.144

0.255

0.404

0.014

0.028

0.05

0.424

0.506

0.584

Table 1: 1st Quartile, Median, and 3rd Quartile for each metric and layout. The ’All’ column excludes random layouts.

‘middle-ground’. We note that the largest graph appears to have two
visual sections: a dense untidy center surrounded by several neatly
placed leaf nodes.

The first two of the ‘best’ drawings (Table 2) are unsurprising—a
tree and a planar graph—noting that these are both from the curated
graph repositories. The larger graph drawing is surprising; over all
ten metrics, the best possible mean was only 0.623, and the visual
quality of the drawing attests to this: it is not what we might call a
‘nice’ drawing. We conclude that for larger graphs (n= around
100), attempting to satisfy all ten metrics would be ambitious.

For the ‘worst’ diagrams (Table 2), we particularly note that the
Angular Resolution metric is poor for each of them, and it is not
surprising that for the larger graph we get a typical ‘hairball’.

5     C O N C L U S I O N

This data serves as a valuable resource for researchers seeking to eval-
uate and compare the quality of graph drawings, allowing them to
position graph drawings in a metric landscape.

For graph layout approaches based on optimisation (e.g., simulated
annealing, gradient descent), the distributions suggest appropriate target

values. If, for example, the aim is to maximise both the Crossing Angle
and Gabriel Ratio metrics, we can look at the median and quartiles
for these two metrics: (CA:[0.586, 0.662, 0.723]; GR:[0.922, 0.977,
0.987]). Thus, while it might make sense for the target GR value to be
set at 1.0 in the optimisation process, 1.0 would be an unreasonable
target for C A  (when perhaps a value of 0.8 might be more appropriate).
We can also see from the correlation matrix that it would be foolish
to also include maximising Edge Orthogonality in this same
optimisation, since it has a negative correlation with Crossing Angle (-
0.3).

When preparing experimental stimuli intended to compare the com-
prehension effect of a particular layout aesthetic, controlling the other
known metrics is important. The first column in Table 3 shows a set of
three stimuli designed to test the effect of the Edge Crossing metric: the
Edge Crossing metric has three values (which we know are roughly ‘low’,
‘medium’, and ‘high’, since we know the metric distribution), but
note that the Edge Orthogonality metric also has L/M/H values for these
same three stimuli. This means that if the ‘high’ stimulus pro-duces
better results than the other two, it could be because of the Edge
Orthogonality variation, rather than the variation in the Edge Crossing
metric, thus, a ‘confounding factor’. The second column in Table 3
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0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1

Fig. 2: Violin plots for each metric, across all drawings, excluding Random. The first row shows the distributions for the generated graphs (blue)
(excluding North and Rome graphs, and all Random layouts) compared to the distributions for the North (orange) drawings (excluding Random); the
same is shown for the second row with the Rome drawings (red). The data includes 249,530 drawings created from Rome graphs, 27,825 drawings
created from North graphs, and 86,739 drawings created from the generated graphs.

Best Typical Worst

Nodes: 25
Edges: 25
Type: Rome
Layout: HOLA
Mean: 0.762

Nodes: 52
Edges: 55
Type: North
Layout: K K
Mean: 0.777

Nodes: 100
Edges: 144
Type: NWS
Layout: FR
Mean: 0.623

Nodes: 30
Edges: 44
Type: NWS
Layout: DRG
Mean: 0.593

Nodes: 60
Edges: 93
Type: NWS
Layout: FR
Mean: 0.592

Nodes: 90
Edges: 155
Type: E R
Layout: K K
Mean: 0.584

Nodes: 10
Edges: 24
Type: GEO
Layout: DRG
Mean: 0.443

Nodes: 32
Edges: 117
Type: North
Layout: Sugi
Mean: 0.334

Nodes: 110
Edges: 321
Type: B BA
Layout: Circ
Mean: 0.438

Table 2: Examples of three “best", “typical", and “worst" graph drawings, chosen to cover a range of generators, sizes and layouts. The “mean" refers
to the mean of the metric values across the ten metrics for each drawing; the mean of medians for each metric across all drawings is 0.591.

shows better stimuli, where the three Edge Orthogonality metric values
are comparable within the context of its distribution.

Observation of the distributions can help when deciding on a graph
layout algorithm that favours some aesthetic criteria over others. For
example, if Neighbourhood Preservation is important, DRGraph and
HOLA look best; if the Edge Lengths criterion is also added, then
HOLA would be preferred. We would not choose Sugiyama if Cross-
ings Angles are important; Kamada and Kawai is likely to give better
Node Uniformity results.

In calculating the range of metric coverage for each algorithm, we
find that Sugiyama has the greatest range (mean 0.78/metric), followed
by DRGraph (mean 0.75/metric). As expected, the ranges for Kamada
and Kawai and Fruchterman-Reingold are similar (0.68 and 0.70 re-
spectively). When we consider the mean value over all metrics for all
algorithms, we find that HOLA produces ‘the best’ layouts (0.65),
followed by Kamada and Kawai (0.64) and then Fruchterman-Reingold
(0.61). HOLA’s high score is a result of the fact that it has favourable
Edge Crossing metric scores—it minimises edge crossings by laying



Fruchterman-Reingold

AR 1.0

Kamada-Kawai

AR 1.0

1.00

DRGraph

AR 1.0

Asp -0.12 1.0

CA 0.33 -0.18 1.0

EC 0.67 -0.11 0.23 1.0

EL 0.69 -0.12 0.4 0.21 1.0

EO 0.01 -0.11 -0.0 0.0 0.0 1.0

GR 0.73 -0.11 0.23 0.93 0.28 0.0 1.0

NP 0.07 -0.26 0.48 0.18 0.06 -0.0 0.21 1.0

NR 0.07 -0.13 0.55 -0.19 0.46 -0.01 -0.17 0.56 1.0

NU -0.07 -0.0 0.09 -0.3 0.31 -0.04 -0.29 -0.03 0.42 1.0

AR Asp CA EC EL EO GR NP NR NU

Sugiyama

AR 1.0

Asp 0.18 1.0

CA 0.3 0.61 1.0

EC 0.51 0.2 0.4 1.0

EL 0.04 0.3 0.44 -0.14 1.0

EO -0.16 -0.36 -0.61 -0.17 -0.32 1.0

GR 0.52 0.1 0.35 0.79 -0.11 -0.34 1.0

NP 0.02 0.51 0.46 0.29 0.17 -0.28 0.25 1.0

NR 0.19 0.64 0.69 0.03 0.6 -0.57 0.03 0.35 1.0

NU -0.07 0.14 0.2 -0.03 0.16 -0.31 0.06 0.19 0.28 1.0

AR Asp CA EC EL EO GR NP NR NU

Asp -0.2 1.0

CA 0.41 -0.29 1.0

EC 0.71 -0.16 0.31 1.0

EL 0.86 -0.29 0.6 0.58 1.0

EO 0.03 -0.09 0.03 0.0 0.03 1.0

GR 0.77 -0.19 0.33 0.93 0.68 0.01 1.0

NP 0.13 -0.33 0.6 0.19 0.41 0.02 0.26 1.0

NR 0.07 -0.13 0.58 -0.17 0.38 0.01 -0.13 0.55 1.0

NU -0.22 0.15 -0.07 -0.33 -0.11 -0.08 -0.35 -0.13 0.35 1.0

AR Asp CA EC EL EO GR NP NR NU

HOLA

AR 1.0

Asp -0.0 1.0

CA -0.45 -0.22 1.0

EC -0.51 0.05 0.33 1.0

EL 0.48 -0.05 -0.2 -0.3 1.0

EO 0.0 -0.0 -0.01 -0.01 0.02 1.0

GR 0.19 0.25 -0.42 0.27 0.03 0.0 1.0

NP -0.35 -0.26 0.46 0.26 0.05 0.0 -0.42 1.0

NR -0.18 -0.17 0.43 -0.18 0.09 0.01 -0.85 0.62 1.0

NU 0.07 0.29 -0.17 -0.11 0.09 0.01 0.03 -0.24 0.01 1.0

AR Asp CA EC EL EO GR NP NR NU

Asp -0.04 1.0
0.75

CA 0.27 -0.1 1.0

EC 0.58 -0.08 0.18 1.0

EL -0.12 0.01 0.01 -0.39 1.0

0.50

EO 0.09 -0.13 0.08 0.02 0.04 1.0

GR 0.61 -0.02 0.11 0.9 -0.36 0.02 1.0

NP 0.08 -0.27 0.07 0.26 -0.12 -0.02 0.26 1.0

NR -0.21 -0.02 0.04 -0.5 0.48 0.02 -0.56 0.02 1.0 0.25

NU 0.0 0.15 0.0 -0.34 0.42 0.04 -0.33 -0.42 0.33 1.0

AR Asp CA EC EL EO GR NP NR NU

0.00

Circular

AR 1.0

Asp -0.09 1.0 -0.25

CA -0.15 -0.32 1.0

EC 0.54 0.15 -0.46 1.0

EL -0.34 -0.22 0.39 -0.71 1.0 -0.50

EO -0.0 -0.06 0.07 -0.09 0.07 1.0

GR 0.59 0.13 -0.55 0.95 -0.65 -0.08 1.0

NP 0.5 -0.25 -0.04 0.54 -0.13 -0.01 0.59 1.0
-0.75

NR 0.1 -0.71 0.39 -0.31 0.39 0.06 -0.25 0.22 1.0

NU 0.1 -0.56 0.33 -0.29 0.36 0.05 -0.24 0.17 0.92 1.0

AR Asp CA EC EL EO GR NP NR NU
-1.00

A R

Asp
C A
E C
E L

EO

GR

NP

NR
NU

Angular
Resolution

Aspect Ratio
Crossing Angle
Edge Crossings
Edge Lengths

Edge
Orthogonality
Gabriel Ratio

Neighbourhood
Preservation

Node Resolution
Node Uniformity

Random

AR      1.0

Asp     -0.06      1.0

CA     0.04      0.06       1.0

EC     0.23      0.05     -0.01      1.0

EL     -0.11 -0.03      0.1      -0.37      1.0

EO     0.06     -0.03 -0.03      0.1       0.04       1.0

GR     0.27      0.18       0.1       0.65     -0.19     0.14       1.0

NP      -0.1      -0.42      -0.0       0.1      -0.19     0.01     -0.13      1.0

NR      0.1      -0.45     0.08     -0.06     0.13     -0.01 -0.17     0.59       1.0

NU     -0.02     0.03      0.18     -0.01     0.11     -0.01     0.05      0.01      0.07       1.0

AR      Asp      CA      EC       EL       EO      GR      NP      NR      NU

All (excl. Random) 1.00

AR      1.0

0.75

Asp     0.22       1.0

0.50

CA     0.44      0.46       1.0

EC     0.52      0.03      0.24       1.0 0.25

EL     0.31      0.49      0.48      0.14       1.0

0.00

EO     -0.15 -0.14      -0.3      0.06     -0.01      1.0

-0.25

GR     0.64      0.33      0.42      0.86      0.38     -0.05      1.0

NP     0.25      0.14      0.42      0.38      0.06       0.0       0.42       1.0 -0.50

NR     -0.07     0.08      0.31     -0.28     0.37      0.03     -0.23     0.17       1.0

-0.75

NU     0.06      0.24      0.21      0.04       0.4      -0.01     0.13     -0.01     0.37       1.0

AR      Asp      CA      EC       EL       EO      GR      NP      NR      NU -1.00

Fig. 3: Correlations between each pair of metrics, grouped by layout algorithms.

out the core of the network (i.e., cycles with sub-tree removed) and sub-
sequently expands the core to reintroduce sub-trees without introducing
additional crossings—and the Edge Orthogonality metric favours grid-
based layouts. This means that two of the ten metrics are close to 1.0
for the majority of HOLA drawings. Two of the algorithms perform
even worse than Random (0.51): Sugiyama (0.46) and Circular (0.50).
This is not surprising, since the layer-based approach of Sugiyama is
very different from the other algorithms, and our choice of metrics
does not advantage a layered directed acyclic method (unlike, as noted
above, the Edge Orthogonality metric gives HOLA an advantage). The
Circular algorithm is not optimised to reduce Edge Crossings, and the
value of the Angular Resolution metric will naturally be low since, for
each node, half of the surrounding area is off-limits with respect to
placement of edges.

This paper presents the first attempt to define the landscape of graph
layout aesthetic properties. We have provided distribution and correla-
tion data that can be used to determine the comparative aesthetic worth of
graph drawings, showing where they are positioned within a much
larger sample of drawings. The dataset of half a million layouts is
available, as is all the source code for the metric computations and the

data analysis.

5.1     Limitations and Future Work
The distribution and correlation data presented here is limited to the
graph generators, layout algorithms, and aesthetic metrics we have
chosen. However, this does not invalidate our approach, but rather
provides opportunities for the data to be extended and refined over
time.

As a starting point, we chose to focus on sparse graphs to ensure
that reasonably readable drawings could be produced (rather than ‘hair-
balls’). Of course, the inclusion of larger, denser, or larger and denser
graphs might change the data substantially (or perhaps not)—we leave
this for future work. This may also require many of the metric calcu-
lations to be optimised for speed. Currently, the computation of all
metrics in the paper is prohibitively expensive for larger and denser
graphs. Furthermore, experimental papers which verify that the chosen
metrics are beneficial in improving human understanding of graphs
typically use small graphs. Further scrutiny is required to ensure these
principles hold for larger graphs. Some metrics may have a ‘tipping
point’ where the difference between metric values becomes insignifi-



Nodes: 10 Nodes: 16
Stimuli 1 Edges: 20                     Stimuli 2 Edges: 35

Type: North Type: North

Layout: Ran Layout: Ran
EC: 0.648 EC: 0.282
EO: 0.387 EO: 0.55

Layout: DRG Layout: K K
EC: 0.824 EC: 0.632
EO: 0.469 EO: 0.502

Layout: HOLA Layout: Sugi
EC: 0.991 EC: 0.737
EO: 1 EO: 0.526

Table 3: Example of how the data can be used to ensure appropriate
metric controls in determining experimental stimuli. The first set of stimuli
has a confounding factor; the second set controls for Edge Orthogonality.

cant. For example, a graph drawing with 1,000 crossings may be no
more or less understandable than one with 1,500 crossings [19].

Similarly, we have not specifically focused on graph types of partic-
ular interest to the graph drawing community (e.g., trees, planar graphs,
beyond planar graphs (like k-planar), 3D meshes, etc.). Again, this
does not negate the contribution made here, and we look forward to
extending the data with such specific considerations. Although the
generators chosen are intended to model real-world graphs, we also
plan to expand the dataset to include real-world graphs of interest to
the graph visualization community.

We have confined our exploration to a limited set of ten metrics.
Extending the landscape with more metric dimensions will enrich
it. We are particularly interested in the potential for including stress
and symmetry, since these are properties that are often (implicitly or
explicitly) optimised in layout algorithms. Both present challenges
with respect to implementation and/or normalisation.

S U P P L E M E N T A L  M AT E R I A L S

• The code for generating graphs and layouts, calculating met-
rics, creating visualisations, and analysing results is available at
https://github.com/gavjmooney/graph_metrics.

• The graph drawings and the C S V  file of metric values
used to create Fig. 1, Fig. 2, Fig. 3, and Table 1 are
available at https://drive.google.com/dr ive/folders/
1z3xwPZmx_ZlUhuXEkVdxrGUDSvT_QqoT?usp=sharing.

• The detailed metric formulae are available at
https://drive.google.com/dr ive/folders/
1GKytyTn6U02R7BX4CGQ1bZKdXTJrtWor?usp=sharing.
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A     AP P E N D I X : M E T R I C  F O R M U L A E IN D E TA I L Algorithm 1 Algorithm to calculate C  ri

• Angular Resolution (AR): The average deviation of minimum
angles to an ideal angle of adjacent edges around a node, exclud-
ing nodes of degree one.

deg>1 

AR =  1 −  i i min (1)
deg>1 i=1                    i

where ϑi is the ideal minimum angle at the node ui,

360◦
i degree(ui)

and θ is the actual minimum angle between the incident edges
at node ui.

• Aspect Ratio (Asp): Aspect ratio is the aspect ratio of the bound-
ing box surrounding the graph drawing. That is, the height of the
bounding box divided by the width, or vice versa if the height is
larger than the width. If the height or width is zero then we set
the aspect ratio to one.

• Crossing Angle (CA). Using the same approach as Angular Reso-
lution we measure the average deviation of angles at which edges
cross from an ideal. Crosses promotion is first performed on the
graph drawing, then the same method for A R  is used only on the
newly created crossing nodes.

• Edge Crossings (EC): The number of edge crossings in the
drawing, scaled against the total possible crossings.

procedure R E D U C E  TR I A NG L E S(Gra ph : G)
c     ← 0
for each triangle, t, in G do

for each edge, m, in G do
if m is not part of, or adjacent to any triangle in G then

end
ctri ← ctri + 1

end for
end for
for each pair of triangles, t, u, in G do

if t and u share an edge then

else if t and
t
u share a node then

else
ctri ← ctri + 2

end
ctri ← ctri + 3

end for
end procedure

• Edge Length (EL): Ahmed et al. [1] minimise the average devia-
tion of edge lengths from a set of ideal edge lengths. We take a
similar approach and define E L  in a similar fashion to AR, taking
the average deviation of edge lengths from an ideal and normalis-
ing against the number of edges. We define the ideal edge length as
the average length of all edges in the existing drawing.

• Edge Orthogonality (EO): The average deviation of edge angles
to the horizontal and vertical axes.

(

E C  =  1 −      
0,

x 
,     

otherwise
(3)

Where c is the number of crossings and cmx is the upper bound
on the number of possible crossings,

E O =  1 −  
1 ∑ δ i ,  where,

i=1

min(θi, |90◦ − θi|, 180◦ − θ i )
45◦

(7)

(8)

cmx =  
m(m − 1) 

− cd eg (4)

cdeg =  
1 ∑  degree(u j )(degree(u j ) − 1) (5)

j=1

and c is the number of crossings which are impossible due to
the fact that adjacent edges cannot cross.

We expand upon this definition to reduce cmx further by account-
ing for triangles and 4-cycles in the graph. Pairs of triangles can
only cross at most six times, as opposed to the nine calculated
by only using c . We do however have to account for triangles
with shared edges and nodes, as these cases are partially
handled by c . Additionally non-adjacent edges to a
triangle can only cross at most two of the triangle’s edges. We
call the number of crossings which are impossible due to
triangle interactions c which is calculated using Algorithm 1.

We can also reduce cmx by the number of 4-cycles in the graph,
c , due to the fact that if two edges in a 4-cycle cross, it is
impossible for the other two edges to cross.

The final calculation for cmx becomes:

cmx =  
m(m − 1) 

− cd eg − ct r i  − c4cyc (6)

Giving a tighter upper bound on the number of possible crossings.

and θi is the positive angle between node ui and the x-axis.

• Gabriel Ratio (GR): A  graph is a Gabriel graph if it can be drawn
in such a way that no node is placed within the circle formed by
using any edge as its diameter. Ahmed et. al [1] incorporate this
idea by adding repulsive forces around the midpoints of edges.
We propose a new metric called the Gabriel Ratio (GR) which
measures the extent to which a graph drawing conforms to this
principle. In a similar fashion to EC,  we count the number of
nodes which fall within a circle formed using an edge as its radius
and weigh this against an estimate for the total possible nodes
which could do so.

(

GR =  1 −      
0,

x 
,     

otherwise
(9)

Where g is the number of non-conforming nodes and gmx is the
upper bound on the number of possible non-conforming nodes,

gmx =  m(n − 2) (10)

We also reduce gmx when a non-conforming node is found—by
one if the non-conforming node is adjacent to one of the endpoints
of the edge it violates, and by two if it is adjacent to both endpoints.
We do so because the endpoints of two adjacent edges cannot
simultaneously be inside the circles formed by both edges. This
gives us a better estimate of the upper bound and hence a more
accurate distribution of values when the metric is calculated.



Fig. 4: An example showing the need to lower the upper bound of non-
conforming nodes in the G R  metric.

For example, consider Fig. 4. Looking at node C  (on the left), we
can see that it does not conform to the Gabriel property for the
edge (A,B). However, since node C  is also connected to node B, it
is not possible for node A  to break the property for the edge
(B,C), as moving node A  (in the middle) to do so would mean
node C  is no longer a violating node for (A,B).

Looking at nodes D, E, and F, we can draw similar conclusions,
though there are now three edges where the Gabriel property
cannot be violated simultaneously, instead of two.

• Neighbourhood Preservation (NP): In understanding the over-
all structure of a graph, it makes sense to put those nodes that
are close together in terms of graph-theoretic distance near to
each other with respect to geometric (Euclidean) distance on the
plane. The Neighbourhood Preservation metric [1] uses the Jac-
card similarity index between the adjacency matrix and the matrix
that shows whether each pair of nodes is in the set of k-nearest
(geometric) neighbours.

• Node Resolution (NR): The ratio of the minimum and maximum
Euclidean distances between any pair of nodes.

• Node Uniformity (NU): Node Uniformity measures how uni-
formly distributed nodes are inside the bounding box of the draw-
ing. We calculate it by splitting the box into cells and counting
the number of nodes in each cell, then comparing this to an ideal
distribution. The size of cells (and hence number of cells) is
scaled by the square root of the number of nodes in the graph.
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Fig. 5: Distributions for Fruchterman-Reingold drawings, grouped by graph generation method.
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Fig. 6: Distributions for Kamada-Kawai drawings, grouped by graph generation method.
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Fig. 7: Distributions for DRGraph drawings, grouped by graph generation method.
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Fig. 8: Distributions for Sugiyama drawings, grouped by graph generation method.
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Fig. 9: Distributions for HOLA drawings, grouped by graph generation method.
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Fig. 10: Distributions for Circular drawings, grouped by graph generation method.
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Fig. 11: Distributions for Random drawings, grouped by graph generation method.
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Fig. 12: Distributions for Fruchterman-Reingold drawings, grouped by number of nodes.
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Fig. 13: Distributions for Kamada-Kawai drawings, grouped by number of nodes.
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Fig. 14: Distributions for DRGraph drawings, grouped by number of nodes.
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Fig. 15: Distributions for Sugiyama drawings, grouped by number of nodes.
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Fig. 16: Distributions for HOLA drawings, grouped by number of nodes.
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Fig. 17: Distributions for Circular drawings, grouped by number of nodes.
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Fig. 18: Distributions for Random drawings, grouped by number of nodes.


