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Abstract
We consider hypergraph visualization that represent vertices as points and hyperedges as lines with
few bends passing through points of their incident vertices. Guided by point-line incidence theory we
show several theoretical results: if every vertex is part of at most two hyperedges, then we can
find such a visualization without bends. There exist hypergraphs with three vertices per hyperedge
and three hyperedges incident to each vertex requiring an arbitrary number of bends. It is $R-hard to
decide whether an arbitrary hypergraph can be visualized without bends. This only answers some
interesting questions for such visualizations and we conclude with many open research questions.

1 Introduction

Hypergraphs arise in many domains and visualizing them is a non-trivial challenge. Classical
approaches, such as Venn and Euler diagrams [1, 12, 15], do not scale to large instances.
Recent experimental work [20] has shown that representing hypergraphs as collections of
polylines (for the hyperedges) and common intersection points (for the vertices) allows
for faster and more accurate performance of hypergraph-related tasks. In particular, the
MetroSets approach [11] uses the metro map metaphor by representing each hyperedge with
a metro line and each vertex as an interchange station. It attempts to visualize the result in
the traditional octolinear fashion; see Figure 1. The visual complexity of the result depends
on the total number of bends along the metro lines in the embedding. Minimizing the visual
complexity makes the representations simpler to understand and work with. The natural
question is to ask which hypergraphs can be represented with just one bendless line per
hyperedge. Naturally, only hypergraphs such that hyperedges share at most one vertex –
called linear hypergraphs – can be represented in such a way. Otherwise, lines of hyperedges
could coincide and could not be distinguished. Further, the rank of a hypergraph is the
maximum cardinality of a hyperedge; the degree is defined equivalently as for classic graphs.
With this in mind we show that:

Maximum degree two linear hypergraphs can be represented with one line per hyperedge.
Not all rank-three maximum degree-three linear hypergraphs can be represented with one
line per hyperedge. In fact, there is a family of such hypergraphs requiring an arbitrary
number of bends.
Determining whether an arbitrary-rank linear hypergraph can be represented with one
line per hyperedge is $R-hard.
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Figure 1 A  visualization of a Simpsons hypergraph dataset using the MetroSets metaphor [11],
the visualization is taken from https://metrosets .ac.tuwien.ac.at/ .  Hyperedges are represented
by metro lines and elements are represented by stations.

Here, lines are infinite lines and not line segments.

2 Related Work

Representing hypergraphs with one line per hyperedge is related to classical geometric
problems going as far back as the 19th century. In particular, it is related to the study of
configurations, a set of points and an arrangement of lines, such that each point is incident
to the same number of lines and each line is incident to the same number of points [9,10,16].
This was the main topic of the PhD thesis of Steinitz [18] and was of interest to many with
notable examples including the configurations of Desargues, Pappus, and Möbius–Kantor [10].
If the representation of a hypergraph should however form a non-crossing straight-line
drawing of a tree, then it can be decided in polynomial time whether such a representation
exists [19]. Graph-based techniques for drawing hypergraphs via support graphs [2–4] have
a different focus and do not take into account geometric straightness or bends of
hyperedges.

If we ask for crossing-free representations of hypergraphs with line segments instead of
lines, there is only one line of research that we are aware of [6, 8]. Namely, Gonçalves [8] has
shown that there are planar linear hypergraphs which cannot be represented with straight
line segments (in contract to planar graphs which can always be drawn with straight lines).

The problem seems to be related to stretchability of pseudolines [17], but is different
because the order of the vertices along each hyperedge is not specified. A  similar $R-hard
problem, called matroid representability [13] will be used to show $R-hardness of one of the
problems studied in this paper. We will formally explain matroid representability in the
corresponding Section 6.

https://metrosets.ac.tuwien.ac.at/
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Figure 2 Illustration of a max-degree-2 hypergraph H  =  (V , E )  with V =  {v0, . . . , v6} and
E  =  {e1, . . . , e5}, where e1 =  {v1, v4, v5}, e2 =  {v0}, e3 =  {v1, v3}, e4 =  {v2, v3, v5}, e5 =  {v2, v4}.

3 Preliminaries

A  hypergraph H  =  (V , E )  is defined by a vertex set V and a hyperedge set E ,  where each
e Î E  is a subset of V . The degree of a vertex v is the number of hyperedges containing
v. The rank of a hypergraph is the maximum cardinality of a hyperedge |e| taken over
all e in E ;  hence a rank-2 hypergraph is an ordinary graph. A  hypergraph is k-uniform if
very hyperedge has cardinality exactly k and it has degree k if every vertex has degree k.
A  hypergraph is linear if |e Ç e¢ | £  1 for every pair of distinct hyperedges e, e¢ Î E .
A  representation of a hypergraph consists of an injective mapping α of vertices to points
in R2  and an injective mapping β of hyperedges to lines in R2  such that v Î e if and only
if α(v) Î β(e) for v Î V, e Î E .

4 Max-Degree-2 Hypergraphs

� Theorem 4.1. There exists a representation for any max-degree-2 linear hypergraph.

Proof. Let H  be a hypergraph with n vertices v1, . . . , vn and m hyperedges e1, . . . , em.
Consider m lines ℓ1, . . . , ℓm on R2  in general position, such that any two of these lines cross;
see Figure 2. Let v be a vertex of H .  If the degree of v is exactly 2, then we place v at the
intersection of ℓ i  and ℓj , where ℓ i  and ℓ j  are the lines corresponding to the hyperedges ei and
ej  containing v. If the degree of v is 1, then we place v at any point of the line corresponding
to the hyperedge containing v that is not an intersection point of the lines ℓ1, . . . , ℓm. If
the degree of v is zero, then we place v at any point of R2  that is not on any of the lines
ℓ1, . . . , ℓm. This yields a representation of H  with one line per hyperedge.                              �

5 Rank-3 Degree-3 Hypergraphs

The PhD thesis of Ernst Steinitz [18] claims that every 3-uniform degree-3 hypergraph can be
represented with one line per hyperedge, except maybe of one hyperedge (which could be
represented as a polyline with one bend). However, more careful consideration shows that
this is indeed not true as already pointed out by Grünbaum [10]. Similar results exist, but
none show the claim of Steinitz [7, 14]. We show a construction that has at least two
hyperedges that must have a bend and this construction can be generalized. For this, we
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Figure 3 Illustration of an infinite polygonal chain with 3 bends that extends infinitely in the
left and right direction.
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Figure 4 The Pappus configuration without the line through d, e, f .

define for t Î N0, t-bend representations for hypergraphs H  as follows. In the original
definition of representations, we replace lines by what we call infinite polygonal chains. An
infinite polygonal chain consists of a (possibly empty) polygonal chain and two rays, one
ending at the first point of the chain, one ending at the last point (see Figure 3). Essentially,
an infinite polygonal chain is a polyline whose first and last segment is extended infinitely.
Further, two distinct infinite polygonal chains β(e), β(e¢) for e, e¢ Î E  must not share a line
segment nor a bend point. Lastly, we require that the total number of all bends in β (E )  is
exactly t. A  representation in the original sense is hence a 0-bend representation.

Consider the 3-uniform degree-3 hypergraph H  defined as follows.     Let H1  be the
hypergraph depicted in Figure 4 with points a, b, . . . , i and hyperedges defined by the lines
ℓ1, ℓ2, . . . , ℓ8. Pappus’s theorem [5, Chapter 3.5] says that in any representation of H1 , the
points d, e, f must be collinear1. Now let H2  be a copy of H1  with the points a¢, b¢, . . . , i¢ and
hyperedges defined equivalently. The hypergraph H  is the union of H1 , H2 , and the two
hyperedges {d, e, f ¢} and {d¢, e¢, f }.

� Lemma 5.1. There is no t-bend representation for H  with t <  2.

Proof. If every hyperedge in the subhypergraph H1  is represented without a bend, then
β({d, e, f ¢}) must pass through f .  Thus, at least one hyperedge of H1  must be represented
with at least one bend. Applying the same argument to H2  we see that we require at least
two bends. �

The above construction can be generalized so that there is no t-bend representation
for any t <  x  for an arbitrary x  Î N. Instead of one copy of H1 , we add x  � 1 copies
H2 , H3 , . . . , Hx . Further we add x  hyperedges e1, e2, . . . , ex such that ei contains d, e of H i

and f  of H ( i  mod x ) + 1 .

1 Formally, Pappus’s theorem is as follows: let points a, b, c be on one line, and points g, h, i be on another
line. Let  the three points d, e, f be defined by the intersections of line ah with bg, ai with cg, and bi
with ch, respectively. Then d, e, f are collinear. It is clear that our formulation is equivalent.
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Figure 5 Illustration of the equivalence between representations of H  and representations of M .
Lines on the left side correspond to linear subpaces of dimension two that are common to at least
two vectors on the right side.

� Theorem 5.2. For any x  Î N there exists a rank-3 hypergraph H  such that there exists no
t-bend representation for H  for any t <  x .

Similar constructions exist (at least for x  =  2) [10], the generalization has not been stated
explicitly.

6 $R-hardness

In this section we want to show that it is $R-hard to decide whether there exists a rep-
resentation for a given hypergraph H .  We reduce from a problem that lends itself for a
nice reduction, called M at r o i d  Representab i l i t y  [13]. For the purposes of a simple
description, we give here a simplified description of a variant of that problem that is still
$R-hard [13]. We start with definitions. A  matroid M is given as M =  ( X , I )  where X  is
the finite ground set and I  Í 2 X  is the set of independent sets with
1. Æ Î I ,
2. I ¢  Ì I  Î I  implies I ¢  Î I ,  and
3. I1 , I2 Î I  with | I1 |  <  | I2 |  implies that there is an x  Î I2  \ I1  with I1  È {x} Î I .
A  representation of M is an injective mapping f ( X )  : X  ® R3  such that for any Y Í X
we have Y Î I  if and only if f (Y )  forms a set of linearly independent vectors in R3 . The
$R-hard problem Matroid Representabi l i ty  is given as input a matroid and the question is
whether there is a representation f  of M . For the vectors v Î R3  we call the first, second, and
third coordinate the x, y, and z-coordinates, respectively.

We start by making some normalizations to the instance M . First, we can assume
that every independent set I  Î I  has cardinality of at most 3, as there is otherwise no
representation. Second, we can assume that each pair x, x ¢  Î X  of distinct elements forms an
independent set, i.e. {x, x ¢ } Î I .  Otherwise, f ( x )  =  cf (x ¢ )  for some c Î R  must hold for any
representation. We can remove x ¢  from X  and replace any occurence of x ¢  in I  by x, and
obtain an equivalent instance w.r.t. representability.

We are ready to state our reduction. The main idea is to identify the vectors f ( X )  by
points in the plane due to a projective transformation; see Figure 5.

� Theorem 6.1. It is $R-hard to decide whether a linear hypergraph can be represented.
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Proof. We reduce from Matroid Representabi l i ty .  We are given a matroid M =  ( X , I )
(we assume both above normalizations were applied already) and transform it to a hypergraph
H  =  (V , E )  as follows. First, we set V =  X .  The hyperedges E  are defined as follows. Let Y Í
X  be a maximal subset of X  that must lie in the same linear subspace U of R3  (which by
definition contains the origin) with dim U =  2 for any representation f  of M . Add Y to E .  All
such Y can be determined in polynomial time: first, we can determine in polynomial time all
triples x, x ¢ , x ¢ ¢  Î X  that do not form an independent set. If two triples share two elements, the
union of both triples forms a four-tuple that has to be part of a common subspace in any
representation. Continuing this process greedily, we can find all such Y . This process
terminates with the desired sets Y , as the matroid M specifies for each triple exactly if the
vectors of their representation are dependent or not. Notice also that there can only exist
polynomially many such Y as each pair of x, x ¢  Î X  can be part of at most one such Y . Lastly,
we have to add pairs {x, x¢}, x, x ¢  Î X ,  to E ,  that are not part of some Y defined above. The
vectors f (x ) , f (x ¢ )  certainly have to span a subspace U of dimension two not containing any
other vectors f (x ¢ ¢ ).

We claim that M has a representation f  if and only if H  has a representation (α, β).
“Þ”: let f  be a representation of M . First, if any f (x ¢ ) ,  x ¢  Î X  has z-coordinate 0 we

multiply all f (x ) ,  x  Î X ,  by the same rotation matrix R  Î SO(3) Í R 3 ´ 3  such that no f ( x )
has z-coordinate 0. This is possible as X  is finite. Second, we scale each f ( x )  by 1 divided
by its z-coordinate so that the z-coordinates of all vectors in f ( X )  are 1. The new f  still is a
representation. For x  Î X ,  we set α(x) equal to the point defined by the first two coordinates
of f (x ) .  Essentially, we applied a projective transformation. Lastly, for each hyperedge e Î E
we set β(e) to the line through any two distinct points α(x) and α(x ¢ ) with x, x ¢  Î e ( E
does not contain edges of size 1). It is now easy to verify that (α, β) is a representation of
H :  let e Î E .  For each x  Î e the point α(x)  must lie on the line β (e) because f ( x )  must be
in the same linear subspace of dimension two as all f (x ¢ ) , x ¢  Î e. No other point can lie
on that line, as e would not have been maximal for our construction of Y above.

“Ü”: let (α, β) be a representation of H .  For x  Î X ,  let α(x)  =  (r, s)T  . We set f ( x )
=  (r, s, 1)T and claim that f  is a representation of M . Indeed, if Y Í X  does not form an
independent set in M , then Y Í e for some e Î E .  Thus, points α(Y ) lie on the same line and
vectors f (Y ) are in the same linear subspace of dimension two and are thus dependent as |Y |
³  3. If Y Î I  there are two cases.

If |Y |  £  2, f (Y ) is clearly independent as α is injective.
If |Y |  =  3, let Y =  {x1 , x2 , x3}. Because of the construction of E ,  there exists e Î E  such
that x1 , x2 Î e and x3 Î e. Thus α(Y ) forms a triangle and f (Y )  is independent.          �

7 Conclusions and Open Problems

Motivated by a hypergraph visualization using polylines for hyperedges [11], we initiated
the investigation of visualizations with hyperedges drawn with as few bends as possible.
We provide results for special classes of hypergraphs. If the maximum vertex degree is
2, any linear hypergraph can always be drawn without a bend. For rank-3 linear
hypergraphs arbitrarily many bends may be required. Lastly, it is even $R-hard to decide
whether an arbitrary linear hypergraph can be drawn without bends.

Our results are highly inconclusive and many open research directions are possible.
We have considered representations with lines and infinite polygonal chains as we could
use results from point-line incidence theory. If we replace these with line segments and
polygonal chains, respectively, our results from Sections 5 and 6 do not extend. It may as
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well be that for such definitions each connected 3-uniform degree-3 hypergraph (besides
the Fano and Möbius-Kantor configurations [10]) has a representation with line segments
without bends, and it might be that it is “easy” to decide whether such a line segment
representation exists.
Our $R-hardness result from Section 6 works for arbitrary rank hypergraphs. Can we
state a similar hardness result for bounded-rank linear hypergraphs, e.g. rank 3?
Are there polynomial-time algorithms to represent a 3-uniform degree-3 linear hypergraph in
such a way that the number of bends in the representation is a constant factor away from
optimum (minimum number of bends)? Are there families of 3-uniform degree-3
hypergraphs requiring more than a linear number of bends?
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