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ABSTRACT

The Arctic sea-ice region has become an increasingly important study area since
it is not only a key driver of the Earth’s climate but also a sensitive indicator of cli-
mate change. Therefore, it is crucial to extract high-resolution geophysical features
of sea ice from remote sensing data to model and validate sea-ice changes. With large
volumes of high spatial resolution data and intensive feature extraction, classification,
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and analysis processes, cloud infrastructure solutions can support Earth science. One
example is the Arctic CyberInfrastructure (ArcCI), which was built to address image
management and processing for sea-ice studies. The ArcCI system employs an effi-
cient geophysical feature extraction workflow that is based on the object-based image
analysis (OBIA) method alongside an on-demand web service for Arctic cyberinfra-
structure. By integrating machine learning classification approaches, the on-demand
sea-ice high spatial resolution (HSR) imagery management and processing service
and framework allows for the efficient and accurate extraction of geophysical fea-
tures and the spatiotemporal analysis of sea-ice leads.

1. INTRODUCTION

Polar regions have become an increasingly important
research area as they provide significant natural resources, func-
tion as sensitive indicators of climate changes, and are a key
driver of the Earth’s climate. High spatial resolution (HSR) aerial
imagery can provide critical information for better understand-
ing, utilizing, and protecting polar regions. To effectively and
efficiently collect, manage, and process large amounts of HSR
images, a polar cyberinfrastructure (CI) is necessary. To increase
our understanding of fragile polar environments and facilitate
critical decision-making, such a CI needs to be capable of aiding
researchers in collecting and integrating heterogeneous image
data, extracting spatiotemporal patterns of sea ice, and linking
sea-ice features to the surrounding dynamics and, in particular, to
thermodynamic phenomena.

In the past few years, the amount of HSR aerial images
collected and processed has increased dramatically alongside
expansions in data collection platforms, storage capacity, and
computational power. For example, unmanned aerial vehicle
technology has greatly expanded the ability to collect HSR
images for land-cover use classification, environmental monitor-
ing, and natural resource mapping. (Sawant and Mohite, 2018;
Bühler et al., 2016; Seier et al., 2017). In polar science, HSR
imagery provides more detail in the spatial dimension, mak-
ing the sea-ice features easily identifiable. For example, sea-ice
leads are elongated cracks in the sea ice that develop due to the
diverging or shearing of floating ice floes as they move with cur-
rents and wind (Wang, et al., 2016). Ice leads ranging from 1 m
to 100 m are not discernible in a 25 km satellite image but are
visible in an HSR aerial photo with 1 m spatial resolution. These
HSR images (with 0.05 m to 1 m resolution) usually require a
lot of storage space and efficient processing procedures (Nishar
et al., 2016; Bühler et al., 2016). Most projects only use local
storage systems or servers to archive and process HSR images,
but Li et al. (2015) discuss the various procedures necessary for
transitioning from local to distributed storage systems for long-
term data collection. Amazon Web Services (AWS) and Google
Earth Engine (GEE) have been introduced for scalable and effi-
cient cloud storage, as well as for computationally intensive
deep learning (DL) image processing algorithms (Ampatzidis et
al., 2020; Tamiminia et al., 2020).

Polar domain-specific CI is important for the following rea-
sons: (1) considering geospatial principles (such as spatial con-
straints and feature relationships) specific to the polar region;
(2) supporting sophisticated data management, storage, and visu-
alization for the polar region (for example, polar-focused pro-
jections); and (3) supporting geospatial modeling that provides
insight into the past, present, and future state of the polar regions
(Yang et al., 2010). In the past decade, Polar CIs have evolved
considerably. The first-generation polar CI consisted of static
data infrastructure, with a focus on data-level interoperability,
and only provided data storage and portals. For example, the
Arctic Research Mapping Application was designed to access,
query, and browse the Arctic Research Logistics Support Service
database (Walker Johnson et al., 2011). The first-generation CI
mainly served as a data archive, providing data deposits only
in static web pages. The second-generation CI started to con-
sider active and intelligent data discovery and access through
web crawlers and internet mining (Li et al., 2017; Mattmann,
2013; Jiang et al., 2018). The current third generation of CIs,
referred to as data gateways (Sha et al., 2020), provides much
more advanced data integration functionalities and visualization
approaches but still lacks publicly available image exploration
tools that advance knowledge-based decision making. Cur-
rently, the emerging fourth generation of CIs can be defined as
a knowledge infrastructure that provides interactive analysis and
reasoning modules. Examples that have been developed include
a multi-faceted visualization module for complex climate pat-
terns and an intelligent spatiotemporal reasoning system (Li et
al., 2015; Jiang et al., 2017).

Furthermore, the general-purpose platforms such as GEE
can support abundant analysis functionalities with customized
application programming interfaces (APIs). However, GEE has
challenges in the design and use of the system. The challenges
are (1) a limitation of computing resources to ensure that the
users do not take over control of the shared resources, (2) poor
performance for operations in which the cell value depends on
the arbitrarily neighboring cells such as classical clustering algo-
rithms, and (3) the user’s unfamiliarity with the underlying client/
server programming model (Gorelick et al., 2017).

Besides the above-mentioned cloud-based GEE imple-
mentation, public cloud computing techniques have made pos-
sible large-scale computing operations such as massive parallel
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simulations and satellite image processing. However, in the
past, cloud computing has significantly decreased efficiency due
to two factors: (1) the absence of high bandwidth and (2) low-
latency connection with virtual machines (Yelick et al., 2011).
To overcome the above-mentioned factors, cloud-based systems
require high-performance networks and improved communica-
tion between nodes for message passing interface (MPI) librar-
ies. MPI is a long-established communication protocol that is
designed to support parallel programming (Zhuang et al., 2020).
Recent improvements in AWS have allowed for “near-bare
metal” performance for virtual machine management, a new
C5n instance (C5n, Amazon, 2022) in AWS 100 Gb/s band-
width (Amazon, 2018), and a new low-latency network interface
called Elastic Fabric Adapter that improves communication for
MPI nodes (Zhuang et al., 2020). The efficient performance and
accessibility of the AWS cloud software have allowed for satellite
image data to be processed and stored in the cloud, reducing time
and costs for hardware setup and management.

As HSR images show more spatial details, they require
more disk space to store petabytes of information. Therefore,
cloud storage services are more suitable than local storage
because they provide highly scalable and reliable storage ser-
vices. To efficiently store, process, and retrieve data, different
storage locations can be assigned to disparate data sets, e.g.,
to centralize the metadata from the HSR images for manage-
ment while providing the efficient storage and parallel comput-
ing capabilities of the cloud platform with distributed storage
(Zheng et al., 2018). HSR images usually require pre-processing
operations such as geometric and radiometric correction. There-
fore, parallel computing may play a significant role in perform-
ing these operations. Kulawiak and Chybicki (2018) reported
that utilizing hyperthreading, a hardware setting that allows
more than one thread to run on each core (Intel, 2022), leads to
reduced execution time for geospatial data processing. However,
it is worth noting that latency issues in cloud environments were
not considered and could be a potential factor in determining the
efficiency of cloud storage depending on workload amount. The
flexibility of cloud storage enables the utilization of software
like ArcGIS to store satellite images in an optimal fashion and
run spatial analysis modules to provide a web service (Huang
et al., 2018). Furthermore, making satellite images available
through web services allows more users to explore the data for
comparative studies.

Currently, therefore, there is no highly specialized Arctic
CI building block that offers (1) HSR sea-ice image collection,
(2) on-demand value-added services like automatic batch image
classification and physical parameter extraction, and (3) interac-
tive spatiotemporal analysis of sea-ice evolution. Accordingly,
the motivation for this project was to develop a module that can
serve both the Arctic Sea-ice community and the larger polar
science community. Specifically, this project aimed to classify
the HSR aerial imageries into four sea-ice types: thick ice, thin
ice, shadow, and water. The classification was implemented
using a machine learning (ML)-based image processing mod-

ule called Open Source Sea-Ice Processing (OSSP) (Wright and
Polashenski, 2018).

This CI uses examples of sea-ice classification obtained
from the Operation IceBridge digital mapping system (DMS)
and is designed to upload, read, and classify images with an
example of DMS Level-1B geolocated and orthorectified images
in GeoTIFF (TIF) format with associated metadata. The classifi-
cation of sea-ice physical parameters can be applied to address
scientific objectives such as, but not limited to, (1) analyzing
the evolution of ice concentration and edge, size distributions of
floes, melt pond distributions, lateral melting processes, surface
roughness, and ridge heights; (2) examining the air-ocean heat
transfer through leads/water, melt ponds, submerged ice, and
bare and snow-covered ice; (3) examining fresh water volume
and change based on melt pond distribution, depth, and areas;
and (4) calibrating and validating sea-ice modeling output and
parameters (Sha, 2021).

Given the challenges of big data and the lack of customized
polar CI and web services, this research aimed to create a com-
prehensive image management and processing platform called
ArcCI that includes image-data lifecycle functions for loading,
storage, sharing, processing, result validation, and analysis. Cre-
ating a public, cloud-based platform enabled high-performance
computing that allows for massive image processing requests
from multiple users. To show the effectiveness of the cloud com-
puting platform, we conducted performance experiments in terms
of batch processing duration and central processing unit (CPU)
utilization. The platform also included a DL benchmark for sea-
ice image classification. The functional components of the ArcCI
include (1) image management to upload, view, search, share,
and delete HSR images; (2) user management; (3) image analysis
function; (4) image batch processing; and (5) map visualization.

2. CLOUD-BASED ARCHITECTURE AND
AWS COMPONENTS

The ArcCI architecture is illustrated in Figure 1. From bot-
tom to top, it consists of three layers: software layer, service
layer, and application layer.

The fundamental layer is the configured software layer
(Layer 1) that includes the operating system, cloud software, and
database management system to provide on-demand, elastic, and
cloud services. The software layer consists of the AWS cloud
computing environment, and capability integration is conducted
to best leverage the cloud computing environment for polar sci-
ences. The cloud components include (1) AWS Elastic Beanstalk,
a service for deploying and scaling web applications (Amazon,
2022a); (2) Amazon Elastic Compute Cloud (Amazon EC2),
a service that provides secure and reliable computing capacity
in the cloud (Amazon, 2022b); (3) AWS Lambda, a serverless,
event-driven computing service that allows users to run applica-
tions virtually (Amazon, 2022c); (4) Amazon Relational Data-
base Service (RDS), a service to set up, operate, and scale rela-
tional databases in the cloud (Amazon, 2022d); and (5) Amazon
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Figure 1. Conceptual cloud-based architecture of the ArcCI system consists of three layers from bottom to top: the software layer, service
layer, and application layer.

Simple Storage Service (Amazon S3), an object-storing service
that offers high scalability and reliability (Amazon, 2022e). All
of the above-mentioned services can also be implemented in
George Mason University’s community cloud computing envi-
ronment (Yang et al., 2011, 2013).

Layer 2, developed through this project, provides differ-
ent types of on-demand services, including image processing,
parameter extraction, and spatiotemporal visual analyses, among
others. This layer provides a graphical user interface (UI) to be
integrated based on our research and will install on desktop com-
puters or mobile computing devices (Gui et al., 2013a, 2013b) to
support the data life cycle of generation/discovery, processing,
analysis, and visualization for end-users (Li et al., 2011).

The top layer is the application layer (Layer 3), which can be
customized by end-users according to their polar science research
needs. For example, the users can customize the application layer
based on their study areas (Arctic or Antarctica), image process-

ing methods, and visualization techniques. To better support
image analysis and polar science research, relevant middleware
in the cloud environment could be integrated to allow the ArcCI
to address polar science data processing and sharing challenges.

The five essential cloud-based AWS services are ex-
plained below.

2.1. Cloud-Based Distributed File System Using S3

ArcCI is designed to host big data from multiple agencies
and polar scientists. A backup distributed file system (DFS) and
synchronized storage is provided in the ArcCI system for the
polar science community. The DFS provides transparent replica-
tion and fault tolerance to enhance reliability. The backup storage
automatically makes a secondary copy (or even additional cop-
ies) of the data that is available for recovery if the original data
are damaged (Yang et al., 2013, Chapter 3). The synchronization

Downloaded from http://pubs.geoscienceworld.org/books/edited-volume/chapter-pdf/5981142/spe558-06.pdf
by George Mason University user



Arctic cyberinfrastructure 75

enables users to access the same copy of data from multiple vir-
tual machines across AWS regions. To minimize data transfer,
data transformation and allocation are optimized based on the
volume of data, user distribution, network configuration, and the
patterns of backup resource utilization in space and time (Li et
al., 2017). Such optimization considers the geographic location
of data users and the temporal patterns of their access require-
ments. Therefore, data are allocated closely to data users and syn-
chronized for data consistency in the cloud-distributed physical
infrastructure across the world (Yang et al., 2013, Chapter 11).

Since Elastic Block Store (EBS) volumes will be deleted
when we terminate the EC2 instance, we use S3 for persistent
storage (Zhuang et al., 2019). S3 storage is independent of EC2
and can be shared across distributed computing nodes. To ease
the transfer and retrieval of sea-ice images, we mount S3 to EC2
using Rclone along with winfsp (RCLONE, 2022). The data
transfer between EC2 and S3 happens seamlessly without requir-
ing users to transfer explicitly. Each ArcCI user has his or her
own folder (parent folder) containing the sea-ice images he or she
uploaded. This folder management system, which is embedded
in S3, ensures data integrity and security.

2.2. Beanstalk for Front-End Interface and
Load Balancing

To enable the auto-scaling, load balancing, and scheduling
of the tasks running on ArcCI, the AWS Beanstalk component
is utilized to deploy applications in the cloud easily and quickly
(Bellenger et al., 2011). Hypertext Preprocessor (PHP) software
was used to develop the web interface that can be automatically
deployed to AWS using Beanstalk. In addition to deployment,
Beanstalk handles load balancing, autoscaling, and application
health checking. For future enhancement, we will use load bal-
ancer to distribute the incoming traffic across multiple instances.
This middleware function enables the system to monitor the sta-
tus of all tasks currently running on ArcCI as well as the work-
load of all virtual machines provisioned by ArcCI.

2.3. EC2 for Elastic Instance of OSSP

ArcCI utilizes AWS EC2 to host virtual machines running
the Windows Server 2019 Operating System (OS). Using the
AWS console, each EC2 instance is configured with appropriate
CPU and RAM. AWS enables users to monitor the performance
metrics (CPU, disk utilization, and network bandwidth) of EC2
instances. We use these metrics to either upscale or downscale
the AWS instance manually.

2.4. Lambda for DL Classification Function

AWS SageMaker (Amazon, 2022f) and AWS API Gateway
(Amazon, 2022g) are used alongside AWS Lambda to deploy our
pre-trained model, DeepLabV3 (Chen et al., 2017). In section
3.2 we explain this pre-trained model in detail. AWS Sagemaker

is a cloud ML platform that provides developers with the abil-
ity to create, train, and deploy ML models. AWS API Gateway
provides developers with the ability to create, publish, maintain,
monitor, and secure APIs, while AWS Lambda allows develop-
ers to run code in response to events. Our model is deployed to
SageMaker, where a model endpoint for production is created.
API Gateway handles hosting, and HTTP requests are caught
by a designated Lambda function that is invoked after it hits the
API Gateway. The Lambda function verifies incoming data, calls
the SageMaker endpoint, and returns the correct response. Since
the size limit for API Gateway may be exceeded, the classified
images are uploaded to an S3 bucket. Then the Lambda function
will retrieve the image from the bucket and invoke the model.

2.5. Relational Database Management System for
Metadata and Business Data

ArcCI utilizes the Amazon RDS, which can easily set up,
configure, and scale relational databases in the cloud. Using the
AWS console, we provisioned a MySQL database and completed
initial configuration settings. The database design for ArcCI web
application includes tables, indexes, and constraints. The image
attribute table is one of the major tables that stores metadata
related to an HSR image. During image upload, information such
as file path, upload time, status, and upload username are stored
in the table. Ancillary spatial information such as latitude, longi-
tude, and altitude, along with shuttle (pitch and roll) and photo-
graphic (shutter speed and f-stop) information are also stored in
the image table.

3. ML/DL-BASED IMAGE CLASSIFICATION FOR
HSR AERIAL SURVEY DATA

3.1. OSSP and Parallel Computing

High spatial resolution image processing is the major feature
of ArcCI. Historically, most of the high-resolution sea-ice aerial
or ship-based photos were analyzed through pixel-based methods
(Lu et al., 2010; Renner et al., 2013; Jiang et al., 2017). Pixel-
based methods based on pixel brightness values or spectral val-
ues ignore spatial autocorrelation and generate “salt-and-pepper”
noise in classification (Liu and Xia, 2010; Xie et al., 2007). In
contrast, object-based classification is based on image segmenta-
tion, the process of partitioning an image into multiple objects
or groups of pixels, which makes classifications more mean-
ingful and easier to analyze (Hussain et al., 2013; Shapiro and
Stockman, 2001). This method not only considers spectral values
but also spatial measurements that characterize the shape, tex-
ture, and contextual properties of the region so as to potentially
improve classification accuracy (Liu and Xia., 2010). Figure 2
demonstrates the three major steps of the algorithm, including (1)
object-based image segmentation, which converts neighboring
pixels into a large object as the classification unit; (2) a feature
engineering process by which reasonable object-based features
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Figure 2. Image processing flow chart is based on the object-based image analysis and machine learning methods. RGB-
band image courtesy of the National Snow and Ice Data Center, University of Colorado, Boulder.

of each sea-ice class are extracted; and (3) a supervised ML clas-
sifier to label the class of each spatial object. This ML image pro-
cessing module was programmed using the OSSP Python library
(Wright and Polashenski, 2018), and the package is integrated
into EC2 images as an on-demand instance service. To speed up
the batch processing workflow, the customized parallel comput-
ing mode was implemented in OSSP using a divide-and-conquer
strategy. In the single image process, the whole input HSR image
is divided into several sub-images to be segmented and classi-
fied separately, and the classified results are merged back by the
default spatial distribution of the divided subsets. This allows
each of the subtasks to be assigned to multiple CPU cores in par-
allel to achieve a high-performance, single image process.

Since Arctic sea-ice image processing is usually not time-
sensitive, we believe that this process is affordable in terms of
computation and transfer burdens. Furthermore, we provide two
options: (1) researchers can send us their raw images, and we
will upload and publish the image and processed results through
ArcCI; or (2) researchers can upload their raw images for service
only, and we will release a copy of the processed results. Through
the latter method, the extracted information (sea-ice features and
physical parameters as vector layers) can be shared through the
Internet more efficiently. The image data, extracted features, and
process are released in two ways, through (1) Open Geospatial

Consortium (OGC)-compliant web services, such as Web Map
Service (Open Geospatial Consortium, 2022c), Web Coverage
Service (Open Geospatial Consortium, 2022a), and Web Fea-
ture Service (Open Geospatial Consortium, 2022b), which can
be easily integrated with virtual globes, such as Google Earth, to
provide a straightforward spatiotemporal visualization approach;
and through (2) on-demand service (in compliance with OGC
Web Processing Service) for end users to leverage and process
their own polar images.

3.2. DL Model

Semantic image segmentation is a fundamental computer
vision task in which parts of an image belonging to the same
object class are clustered together in the form of pixel-level pre-
diction. It has been applied to multiple use cases in the field of
remote sensing, including the classification of HSR imagery.
Within the past decade, tremendous efforts to advance pixel-
level accuracy have led to the emergence of new DL method-
ologies that have improved the performance of data sets such as
Cityscapes and PASCAL VOC (Yuan et al., 2021). These DL
methodologies have demonstrated superior performance and
success in semantic segmentation as they automatically derive
features tailored for targeted classification tasks and allow for

Figure 3. Deep learning semantic segmentation pipeline for sea-ice classification is shown. OBIA—object-based image analysis; ML—
machine learning.

Downloaded from http://pubs.geoscienceworld.org/books/edited-volume/chapter-pdf/5981142/spe558-06.pdf
by George Mason University user



Arctic cyberinfrastructure 77

improved performance in complex scenarios. The same improve-
ments in performance and success that DL methodologies have
enabled in other semantic segmentation applications can also be
applied to the classification of sea-ice types. Hence, we devel-
oped and integrated a DL model pipeline into the ArcCI platform
for the accurate classification of sea-ice types.

The DL semantic segmentation pipeline is as follows:
(1) The pipeline begins with a data preprocessing stage where

the albumentations Python package is employed to select
256×256 patches from NASA Level-1B (L-1B) DMS
HSR imagery labeled with OBIA ML (Fig. 3), enabling
us to gather/create thousands of training images from 8 to
20 HSR images.

(2) The data preprocessing stage also includes a binary clas-
sification script developed for lighting adjustment so that
darker images will be easier for the model to process.

(3) The data preprocessing stage is followed by training.
PyTorch (Paszke et al., 2019) is utilized as the main
DL framework alongside PyTorch Lightning (Light-
ning, 2022), a high-level interface for PyTorch built for
researchers that allows for the easy logging of metrics,
profiling, and distributed training.

(4) During the training process, the model is evaluated and
hyperparameter tuning is conducted using packages such
as Torchmetrics (Torchmetrics, 2022) and Weights and
Biases (W&B) (Biewald, 2020). W&B allows for more
efficient hyperparameter tuning through the running of
sweeps, which tests hundreds of different hyperparam-
eter combinations and displays results for rapid iteration
on model performance improvement.

(5) Since the ArcCI platform is hosted on AWS Lambda, we
plan to take advantage of the full suite of ML solutions
gathered under the umbrella of AWS when we integrate
the DL into the platform.

4. IMPLEMENTATION AND PERFORMANCE TESTING

The ArcCI system was implemented to support the web-
based geoscience information services and dynamic interaction
for end-users. Web development technologies such as Hypertext
Markup Language 5 (HTML 5), JavaScript, and Asynchronous
JavaScript and XML (AJAX) calls were used to develop interac-
tive, light-weight, user-friendly, and rich interface web pages. We
leveraged the above-mentioned technologies for ArcCI devel-
opment. HTML 5 defines the structure and presentation of the
web page; JavaScript is mainly used for client-side validation,
sending user notifications, and designing interactive web pages;
and AJAX calls are used to send or receive data from the server
without refreshing the entire page.

For server-side development, the PHP was used, which is an
open-source scripting language to develop interactive web pages
(PHP, 2022). The PHP scripts can seamlessly be embedded into
HTML pages that will be executed each time the page is loaded.
WAMP is an acronym for Windows, Apache, MySQL, and PHP

(WampServer, 2022). It is a software stack, which means that
installing WAMP automatically installs Apache, MySQL, and
PHP for Windows server. Apache is a web server that receives
user requests from the browser and responds back with the rele-
vant information in web pages. For spatial data management, stor-
age, and retrieval, PostgreSQL was used. This powerful relational
database has useful features such as data integrity checking, reli-
ability, disaster recovery, security, extensibility (supports spatial
extension using PostGIS), and concurrency (PostgreSQL, 2022).

4.1. Implementation of All Functions

Figure 4 shows the major functional components of the
ArcCI. They are (1) image management to upload, view, search,
share, and delete HSR images, (2) user management, (3) image
analysis function, (4) image batch processing, and (5) map visu-
alization. The components were implemented using the technol-
ogies mentioned at the beginning of this section.

4.1.1. Image Management
Image upload: The ArcCI system allows users to perform

image input/output operations. Currently, users can upload only
TIF images from the IceBridge DMS L-1B Geolocated and
Orthorectified Images data set consisting of Level-1B imagery
taken from the DMS over the Arctic and Antarctica. The system
supports multiple file uploads based on user privilege. During the
image upload, metadata such as acquisition date, altitude, lati-
tude, and longitude are retrieved and stored in the database. The
actual image is loaded into the DFS (S3). To ensure security and
privacy, the file management is organized and managed so that
images are not made visible to other users.

Image compression: The original HSR images are several
megabytes, which makes them difficult to render in the UI for
visualization. Thumbnail images are reduced versions of the
original images. PHP Imagick Library is used to compress the
image while maintaining the aspect ratio of the original image.

Image view: Users can view the HSR images. To render
the image, the web client makes an XMLHttpRequest to the web
server. This helps to load the massive amount of data without
reloading the whole page.

Image share: ArcCI offers a user-friendly interface for the
image owners/uploader to select specific users or all users in the
system with whom to share images. Users are only allowed to
view the shared images. They can neither process nor delete them.

Image search, delete, and download: Users have the option
to search by username or image name. The database design
includes table indexing to optimize the search function. Addi-
tionally, users can delete images uploaded by them and download
the original and classified images to their local machines.

4.1.2. User Management
The ArcCI gateway enables users to register accounts to upload

and manage images. User management features are (1) a user
authentication process to verify the registered email, (2) session
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Figure 4. Functional components of the ArcCI system with user interaction, data repository, and distributed file system are shown.

management that securely handles and manages requests from
a single user, and (3) user access-level management. Each user
is assigned one of three levels, namely General, Privileged, and
Administrator. Table 1 shows the user levels and their respective
image processing privileges. Users with administrator privileges
can manage users and training data sets and assign user levels to
others. Additionally, a “Default” user uploads both processed and
unprocessed images for others to explore.

4.1.3. Image Classification Analysis, and Display Function
The ArcCI system provides a classification tool that allows

users to select parameters required by the OSSP process. The
parameters include a segmentation function, a training data set,
feature selection, and a machine classifier. The OSSP process
detects the geophysical parameters and their variations. The sea-
ice classification scheme consists of four classes: narrow open
water, thin ice, thick ice, and shadow. After the completion of

classification, the user can visualize the raw HSR image and clas-
sified image side by side (Fig. 5). The result of the classification
can also be visualized in a responsive, cross-browser–compatible
pie chart (Fig. 6).

4.1.4. Image Batch Processing
To reduce the burden on computing resources, we imple-

mented image batch processing. The batch processing framework
(Fig. 6) consists of (1) an image database to store HSR images
selected by users for classification; (2) a process scheduler, trig-
gered every minute, to submit images for processing; and (3) an
OSSP task handler to monitor and manage the images being pro-
cessed. First, when a user or multiple users submit images for
processing, the image batch table stores the submission time and
processing status. Second, the process scheduler creates the job
queuing process on a first-come, first-served basis and submits
the images. Every minute it searches for new images to process

TABLE 1. DIFFERENT USER LEVELS AND IMAGE PROCESSING PRIVILEGES

User level

General

Privileged

Administrator

Max file upload

1

10

20

Max file size

100

200

1000

Max ongoing file processes

1

5

30

Max processing thread

1

4

8
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Figure 5. (A) Original digital mapping system (DMS) image is shown. (B) The same image is classified into four sea-ice
types. (C) Statistical chart of classified result. (D) Image location of the DMS image. Figures 5A and 5B courtesy of the
National Snow and Ice Data Center, University of Colorado, Boulder. Figure 5D courtesy ArcticConnect; map data copy-
righted by PolarMapJS and by OpenStreetMap contributors under the Open Database License and available from https://
webmap.arcticconnect.ca/index.html#ac_3573/2/90.0/0.0.

in the batch table. Third, the OSSP task handler determines the
number of images that can be processed at a time and starts the
OSSP process. The handler monitors the change in image status
when the process is completed and processes the next image in
the queue.

4.1.5. Map Visualization
Figure 7 shows the map visualization tool implemented in

ArcCI. The visualization was implemented using Arctic Web Map
(AWM), an Arctic-focused web mapping tool that offers custom-
ized map projections specific to the Arctic region (AWM, 2022).

AWM has two components: (1) tile server, and (2) PolarMap.js, a
Leaflet-based JavaScript library for interactive mapping (Leaflet,
2022). The current AWM tiles support six projections, namely
EPSG:3571, EPSG:3574, EPSG:3572, EPSG:3573, EPSG:3575,
and EPSG:3576.

Additionally, the visualization tool offers a responsive and
interactive graphical UI for exploring, visualizing, and analyzing
sea ice. The visualization allows the user to zoom in/out, pan,
and filter the image based on its metadata. The filter tool enables
users to search images based on various parameters, namely
image acquisition date, uploaded users, and image process status.
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4.2.1. Experiment 1. Single User Performs Batch Processing
of Images Using the Command Prompt and ArcCI Platform

Figure 8A shows the processing time in the command
prompt (CMD) and on the ArcCI platform. It is evident from the
results that the time to classify images was reduced significantly
in the ArcCI platform because it could classify multiple images
in parallel, while the command prompt classified images one by
one. Notably, in command prompt, performance decreased in
the 16 and 32 threads because considerable time was consumed
initializing the threads, and threads are underutilized. Figure 8B
shows the maximum CPU utilization in the command prompt
and in the ArcCI platform. Since the ArcCI platform could clas-
sify multiple images at a time, the CPU utilization was similar to
that of the command prompt.

4.2.2. Experiment 2. Multiple Users Perform Batch
Processing through ArcCI Platform

In Experiment 2, each user utilized 8 threads, while the
number of users included 2, 4, 6, and 8. Each time, 10 images
(146.8 Mb) were tested per user. Figure 9A shows the duration
of processing for multi-users. The results show that the comple-
tion time increases as the number of users increases. As for the
maximum CPU utilization percentage (Fig. 9B), there was no
significant increase from 4 to 8 users. Notably, there is a direct
correlation between the completion time and number of users, as
well as between maximum CPU utilization and the amount of
processing images.

3. CONCLUSIONS

Figure 6. Image batch processing diagram demonstrates the sequence
of actions for classification. OSSP—Open Source Sea-Ice Processing.

Clicking on the image marker displays a preview of the image
along with its name.

4.2. Performance Comparison

To prepare the system for community adoption with good per-
formance, we compared the performance of two types of experi-
ments: (1) single-user batch processing with thread settings, and
(2) multiple-user batch processing with different image input. The
r5dn.24xlarge EC2 instance, with 768 GiB memory, was utilized
for performance testing with a network bandwidth of 100 Gb/s,
96 logical processors, and 1 TB EBS volume. In Experiment 1,
two mediums of batch processing of images are performed:
(1) command prompt and (2) ArcCI platform. For each medium,
a batch of 5, 10, and 20 images of 81.16 Mb, 146.8 Mb, and
328 Mb, respectively, were used. Each batch of images was pro-
cessed at the following thread settings: 1, 2, 4, 8, 16, and 32.

This chapter described a cloud computing-based CI for col-
lecting, organizing, searching, exploring, analyzing, visualizing,
and sharing HSR images in the state-of-art AWS cloud environ-
ment using ML classification algorithms. This solution helped to
address the challenges posed by the massive volume of HSR sea-
ice aerial imagery, heterogeneous data sources, and the frequent
update of new data. Additionally, the chapter introduced the
implementation of a prototype of an online service for domain
scientists to classify images and extract geophysical param-
eters. The ArcCI platform was developed to integrate existing
time-series images. Specifically, the functionalities of the ArcCI
web service include image data management, user management,
batch image processing, results review, and spatiotemporal visu-
alization modules.

To conclude, the ArcCI system was the first of its kind to
support efficient storage of HSR images, on-demand services
like batch image classification for single- or multi-user, and inter-
active spatiotemporal analysis of sea-ice evolution. To improve
the Arctic CI laid out in this chapter, we identified four directions
for future research. The first is to enhance the ArcCI system to
autoscale dynamically. The second is to expand the scope of CI
not just for polar science but to support research in other Earth
science projects. The third is to include different categories of sea
ice, such as new ice, young ice, first-year ice, etc., based on the
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Figure 7. Arctic Data Exploration Tool is used to visualize the image location and classified image.

Figure 8. (A) Graph shows the duration of batch processing for a single user in command prompt (CMD) and ArcCI
platform. (B) Maximum CPU utilization for single user in command prompt and ArcCI platform.
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Figure 9. (A) Graph shows the batch
processing duration for 2, 4, 6, and 8 us-
ers. (B) Maximum CPU utilization for
2, 4, 6, and 8 users.

World Meteorology Organization sea-ice nomenclature (Sea Ice
Nomenclature, 2022). The fourth is to improve the sea-ice clas-
sification and detection accuracy using DL methodologies.

Available Open Access Resources: The code to build
the CI and OSSP process are available at https://github.com
/stccenter/ArcCI, and code to build the DL model is available
at https://github.com/stccenter/ArcCI_DL. The ArcCI system
URL is https://arcciserver.stcenter.net/login.php. The walk-
through video to run the OSSP process is available at https://
youtu.be/VhIkHR-468Y.
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