
Towards Concurrency Repair in GPU Kernels

with Resource Cost Analysis

Gregory Blike Tiago Cogumbreiro

GPU programming has gained immense popularity for filling needs in appli-
cations for high performance computing and artificial intelligence. The incredi-
ble parallelism available in GPUs comes with penalties of being notably difficult
to program and analyze. Several program analysis techniques can aid program-
mers in ensuring that their code is free from certain classes of errors [2, 3, 5, 6].
Such approaches can pinpoint potential bugs, and even explain the conditions
that trigger the error, but offer no actionable feedback.

Concurrency repair extends program analysis with code fixes to mitigate
bugs. AutoSync [1], AuCS [7], and GPURepair [4] remove errors such as data-
races (leads to unexpected behavior) and barrier divergences (leads to dead-
locks) by placing synchronization barriers. Correct placement of these barriers
ensures error-free execution, but also impact performance, the primary benefit
of GPU programming. Repair uses safety-detection as an oracle to decide when
a program is bug-free. In case the program is potentially buggy, the repair
algorithm selectively places barriers in the GPU program. Repair algorithms
account for the performance impact of adding barriers, by attaching weights to
each placement location, minimizing the overall weight of all barrier placements.
The limitations of these approaches is that the weights are selected empirically
and do not take into consideration important parameters, such as the number of
loop iterations. Additionally, since the state of the art lacks correctness results,
such techniques cannot guarantee performance bounds on the repaired program.

Our approach. In order to develop a repair algorithm that relies on a
sound metric, our goal is to introduce a quantitative program logic for GPU
programs that allows the repair algorithm to reason about the program the
resource usage (here number of synchronizations) based on [6]. Our resource
cost analysis is automated and derives worst-case bounds that are polynomials
on inputs of a GPU program, which the repair algorithm can use to minimize
the total synchronization cost. By relying on a theory that soundly establishes
bounds on a resource metric, our goal is to develop a repair algorithm which
provably fixes a bug while soundly minimizing performance overhead.

In this talk, we present a calculus to measure the impact of synchronization
repair in GPU programs. Our approach is to apply an automated amortized
resource analysis (AARA) [6] to an abstraction of GPU programs based on be-
havioral type theory, Memory Access Protocols [3]. We show how our approach
can find optimal placement of synchronization barriers.

1



References

[1] Sourav Anand and Nadia Polikarpova. Automatic synchronization for GPU
kernels. In Proceedings of FMCAD, pages 1–9, Piscataway, NJ, USA, 2018.
IEEE. doi: 10.23919/FMCAD.2018.8602999.

[2] Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and
Paul Thomson. GPUVerify: a verifier for GPU kernels. In Proceed-

ings of OOPSLA, pages 113–132, New York, NY, USA, 2012. ACM. doi:
10.1145/2384616.2384625.

[3] Tiago Cogumbreiro, Julien Lange, Dennis Liew, and Hannah Zicarelli. Mem-
ory access protocols: certified data-race freedom for GPU kernels. Formal

Methods in System Design, pages 1–38, 2023.

[4] Saurabh Joshi and Gautam Muduganti. GPURepair: Automated repair
of GPU kernels. In Proceedings of VMCAI, pages 401–414, Cham, 2021.
Springer. ISBN 978-3-030-67067-2.

[5] Guodong Li and Ganesh Gopalakrishnan. Scalable SMT-based verification
of GPU kernel functions. In Proceedings of FSE, pages 187–196, New York,
NY, USA, 2010. ACM. doi: 10.1145/1882291.1882320.

[6] Stefan K. Muller and Jan Hoffmann. Modeling and analyzing evaluation
cost of CUDA kernels. Proceedings of the ACM on Programming Languages,
5(POPL), 2021. doi: 10.1145/3434306.

[7] Mingyuan Wu, Lingming Zhang, Cong Liu, Shin Hwei Tan, and Yuqun
Zhang. Automating CUDA synchronization via program transformation. In
Proceedings of ASE, pages 748–759, Piscataway, NJ, USA, 2019. IEEE.

2


