CXLMemSim: A pure software simulated CXL.mem for performance
characterization

Yiwei Yang, Pooneh

Safayenikoo
University of California, Santa Cruz
Santa Cruz, California
{yyang363,psafyen}@ucsc.edu

ABSTRACT

The emerging CXL.mem standard provides a new type of byte-
addressable remote memory with a variety of memory types and
hierarchies. With CXL.mem, multiple layers of memory—e.g., local
DRAM and CXL-attached remote memory at different locations—
are exposed to operating systems and user applications, bringing
new challenges and research opportunities. Unfortunately, since
CXL.mem devices are not commercially available, it is difficult for
researchers to conduct systems research that uses CXL.mem.

In this paper, we present our ongoing work, CXLMemSim, a fast
and lightweight CXL.mem simulator for performance characteriza-
tion. CXLMemSim uses a performance model driven using perfor-
mance monitoring events, which are supported by most commod-
ity processors. Specifically, CXLMemSim attaches to an existing,
unmodified program, and divides the execution of the program
into multiple epochs; once an epoch finishes, CXLMemSim col-
lects performance monitoring events and calculates the simulated
execution time of the epoch based on these events. Through this
method, CXLMemSim avoids the performance overhead of a full-
system simulator (e.g., Gem5) and allows the memory hierarchy
and latency to be easily adjusted, enabling research such as mem-
ory scheduling for complex applications. Our preliminary evalu-
ation shows that CXLMemSim slows down the execution of the
attached program by 4.41x on average for real-world applications.

1 INTRODUCTION

DRAM is the dominant cost in building modern servers. To reduce
cost, data-center operators strive to limit the quantity of DRAM
required across their fleet of machines. Unfortunately, the tradi-
tional approach of deploying DRAM to be used by a single local
machine wastes memory due to memory stranding, which refers
to local memory on a machine that goes unused even while the
machine is in use. A major cloud provider found that up to 25% of
DRAM in their data centers is stranded [9].

CXL.mem offers a solution to the memory stranding problem.
A data-center operator can use CXL.mem to move memory from
servers into pools shared by multiple servers. Each server uses the
load/store interface to access memory pools, which is more effi-
cient than past shared memory pool designs (e.g., RDMA).

However, CXL memory pools are less efficient than local DRAM
with respect to bandwidth and latency. Moreover, depending on
the CXL.mem pool topology (i.e., the layout of which memory pools
use which pools), CXL-attached memory may induce congestion
or coherency performance problems.

Also, researchers cannot evaluate CXL.mem’s performance im-
pact because the devices are not commercially available. So, the

Jiacheng Ma, Tanvir Ahmed
Khan
University of Michigan
Ann Arbor, Michigan
{jcma,takh}@umich.edu

Andrew Quinn
University of California, Santa Cruz
Santa Cruz, California
aquinnl@ucsc.edu

research community needs a CXL.mem simulator. Unfortunately,
existing simulators are insufficient for the task. Architectural simu-
lators (e.g., Gemb5 [2]) are too slow to analyze the applications that
will use CXL.mem pools. Existing memory pooling solutions (e.g.,
those using RDMA) overestimate the overhead of CXL.mem since
they do not access shared memory through the load/store interface.
Finally, existing tiered memory deployments, such as NUMA [9]
or NVM [11], cannot model many CXL.mem topologies.

In this project, we propose CXLMemSim, our ongoing work to
accurately evaluate real-world applications that use CXL.mem pools.
CXLMemSim executes an unmodified application on a traditional
server, traces the performance events in the application, and in-
serts delays in the application to simulate the latency and band-
width of a user-provided CXL.mem topology. Using existing hard-
ware enables CXLMemSim to support a load/store interface with
CXL.mem pools and to impose low overhead so that it can evaluate
real-world applications on a variety of topologies.

CXLMemSim will also allow systems designers to evaluate new
research. For example: the system will enable a comparison of soft-
ware and hardware memory prefetching and migration. It will en-
able comparison of cache-line and page memory management. Fi-
nally, CXLMemSim will allow evaluation of the performance im-
pact of CXL.mem pool coherency on applications that share mem-
ory across multiple servers.

2 CXL BACKGROUND

CXL is a set of protocols that operate over the serial PCle bus
to connect peripheral devices to host processors. CXL consists of
three protocols, CXL.io, CXL.cache, and CXL.mem, which allow
host processors to communicate with I/O devices, accelerators, and
external memory, respectively. We focus on CXL.mem.

From the perspective of a host processor, a CXL.mem memory
pool behaves equivalent to host memory. The host can issue load/-
store instructions to the memory pool. The hosts can cache data
from CXL-attached memory in their processor data caches; the
CXL.mem protocol provides coherency across devices that cache
data from the same CXL.mem memory pool.

CXL.mem’s key hardware components are as follows. Hosts con-
nect to CXL.mem memory pools using a CXL Root Complex (RC).
Each RC can either connect to memory pools directly or through
a CXL switch. A CXL switch allows a host to connect to multiple
memory pools through the same link.

CXL switches allow a data center operator to deploy a variety
of CXL.mem topologies. For example, Figure 1 shows a topology
consisting of two network switches and three memory pools; we

Conference’l7, July 2017, Washington, DC, USA

N |
A |

Figure 1: An example topology

annotate the bandwidth (BW), latency (Lat), and serial transmis-
sion time (STT) for each pool, switch, and the RC. Choosing a
topology requires balancing memory stranding benefits with per-
formance degradation. Memory pools that support more hosts de-
crease memory stranding but increase performance overhead since
attaching more hosts to a pool requires employing a hierarchy of
CXL switches. Moreover, each CXL switch can cause congestion,
when multiple hosts use the switch at the same time, and limit
bandwidth, when hosts exceed the bandwidth of the switch.

3 PROPOSED DESIGN

gram Timer

Tracer

H Timing Analysis |1

Figure 2: A system diagram of CXLMemSim

Figure 2 is the system diagram of CXLMemSim. It simulates
CXL.mem on commodity hardware by attaching itself to a running
user program. Its three components are: 1) a Tracer, 2) a Timer, and
3) a Timing Analyzer.
1-Tracer. CXLMemSim traces the memory operations of a pro-
gram in two ways. First CXLMemSim uses eBPF [5, 8, 14] to trace
memory allocation operations (e.g., munmap, sbrk and brk), which
enables tracing memory allocation without modifying the program
and allows simulating closed-source programs. Second, CXLMem-
Sim uses performance counters (e.g., Intel PEBS [1, 6, 13]) to trace
memory events (e.g., LLC misses and L2 stalls).
2-Timer. CXLMemSim divides the execution of the attached user
program into epochs and sets up an epoch timer that periodically
interrupts the attached program. When the program is interrupted,
CXLMemSim uses the allocation trace to determine the correspond-
ing memory pool of each memory access.
3-Timing Analyzer. While the program is paused, CXLMemSim
uses the memory trace to calculate three types of timing delays
that should be added to the execution time of each epoch: 1) latency
delay, 2) congestion delay, and 3) bandwidth delay. CXLMemSim
calculates the latency delay by multiplying the number of memory
operations to each memory pool by the difference between the la-
tency of the target memory pool and the latency of local DRAM.
Then, CXLMemSim calculates the congestion delay by iterating
over the memory trace to find events that use the same switch
within a smaller interval than the switch’s serial transmission time
(STT); once such events are found, CXLMemSim injects the neces-
sary delays. Finally, CXLMemSim determines the bandwidth de-
lays. For each switch in the topology, CXLMemSim searches for
events where the observed bandwidth—after the latency and con-
gestion delays are added—exceeds the bandwidth of the switch,
and adds delays for these events.

Yiwei Yang, Pooneh Safayenikoo, Jiacheng Ma, Tanvir Ahmed Khan, and Andrew Quinn

4 PRELIMINARY RESULTS

We implement and evaluate a proof-of-concept CXLMemSim on a
computer with an Intel i9-12900K@5.0GHz processor with 96 GB
of DDR5 4800MHz memory. Our platform has a 30 MB LLC and a
memory latency of 88.9 ns. We simulate the memory topology in
Figure 2.

Benchmarks. We evaluate CXLMemSim with both microbench-
marks and real-world applications. Specifically, we implement five
microbenchmarks that allocate memory with different system calls
(i.e., mmap_ read, mmap_ write, sbrk, malloc, and calloc) and
perform sequential writes to the allocated memory. The working
set of calloc is 10 GB; the working set of the rest is 100 MB. Addi-
tionally, we use mcf and wrf from spec2017 to evaluate CXLMem-
Sim on real-world applications. We compare CXLMemSim’s over-
head to a Gem5 implementation of CXL.mem [3] using syscall em-
ulation.

Benchmark | Native (s) | Gem5 (s) | CXLMemSim (s)

mmap_read 0.194 523.146 7.7967
mmap_write 0.118 426.361 6.6755
sbrk 0.174 381.597 6.0312
malloc 0.691 2359.973 97.7930

calloc 2.406 15.059 181.6472

spec2017 mef | 215.311 31537.609 1215.4854
spec2017 wrf 5.418 failed 17.3756

Table 1: Performance evaluation of CXLMemSim

Performance Overhead.

Table 1 shows our results. CXLMemSim slows execution by an
average factor of 41.06. The system’s slowdown is lower than Gem5
on all benchmarks except calloc; on average it is faster than Gem5
by a factor of 73. Thus, CXLMemSim’s slowdown is significantly
lower than architectural simulators.

5 RELATED WORK

We describe the two lines of memory simulator work from which
CXLMemSim takes inspiration:

CXL simulation. Two prior works simulate CXL-attached mem-
ory: DirectCXL [4] and POND [10]. DirectCXL supports CXL 2.0
using FPGAs as external memory controllers. DirectCXL require

investment in a memory hierarchy before profiling, whereas CXLMem-

Sim allows data-center operators to evaluate potential topologies
before procurement. POND uses NUMA as a mechanism to sim-
ulate multiple tiers of memory, which limits the hierarchies that
POND can support and prevents POND for emulating CXL.Mem
bandwidth.. In contrast, CXLMemSim can emulate arbitrary user-
provided memory topologies.

Persistent Memory Simulation. CXLMemSim’s design is similar
to that of software-based persistent memory simulators including
Quartz [12], MES [7], and LEEP [15]. These tools execute programs
on existing software and simulate persistent memory read/write
latency by tracing memory accesses and inserting periodic delays.
CXLMemSim’s design is different in that (1) CXLMemSim supports
CXL-memory pool hierarchies, whereas prior tools only support
single-level hierarchies of far memory, (2) CXLMemSim simulates

CXLMemSim: A pure software simulated CXL.mem for performance characterization

read/write bandwidth tracks congestion in the CXL switch in ad-
dition to latency.

REFERENCES

[1] D. Bakhvalov. Advanced profiling topics. pebs and lbr, 2018. URL
https://easyperf.net/blog/2018/06/08/Advanced-profiling- topics-PEBS-and-
LBR#processor-event-based-sampling-pebs.

[2] N.Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1-7, 2011.

[3] fadedzipper. Gem5 cxl version, 2022. URL https://github.com/fadedzipper/gem5-
cxl/compare/stable...cxl. mem-dev.

[4] D.Gouk,S.Lee, M. Kwon, and M. Jung. Direct access,{High-Performance } mem-
ory disaggregation with {DirectCXL}. In 2022 USENIX Annual Technical Con-
ference (USENIX ATC 22), pages 287-294, 2022.

[5] B. Gregg. BPF Performance Tools. Addison-Wesley Professional, 2019.

[6] A.Kleen. Pmu tools, 2022. URL https://github.com/andikleen/pmu-tools.

[7] A. Koshiba, T. Hirofuchi, R. Takano, and M. Namiki. A software-based nvm
emulator supporting read/write asymmetric latencies. IEICE TRANSACTIONS
on Information and Systems, 102(12):2377-2388, 2019.

[8] K. Kourtis, A. Trivedi, and N. Ioannou. Safe and efficient remote applica-

tion code execution on disaggregated nvm storage with ebpf. arXiv preprint

(10]

(1]

(12]

(13]

[14

[15]

Conference’l7, July 2017, Washington, DC, USA

arXiv:2002.11528, 2020.

H.Li, D.S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic, M. Shah, S. Rajad-
nya,S. Lee, I. Agarwal, M. D. Hill, M. Fontoura, and R. Bianchini. Pond: Cxl-based
memory pooling systems for cloud platforms. 2023.

H.Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst, P. Zardoshti, M. Shah, S. Rajad-
nya, S. Lee, I. Agarwal, et al. Pond: Cxl-based memory pooling systems for cloud
platforms. In Proc. Int. Conf. Archit. Support Program. Lang. Oper. Syst, 2023.

A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter. Hemem: Scalable
tiered memory management for big data applications and real nvm. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
SOSP ’21, page 392-407, New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450387095. doi: 10.1145/3477132.3483550. URL
https://doi.org/10.1145/3477132.3483550.

H. Volos, G. Magalhaes, L. Cherkasova, and J. Li. Quartz: A lightweight per-
formance emulator for persistent memory software. In Proceedings of the 16th
Annual Middleware Conference, pages 37-49, 2015.

V. M. Weaver. Advanced hardware profiling and sampling (pebs, ibs, etc.): creat-
ing a new papi sampling interface. Technical report, Technical Report UMAINE-
VMWTR-PEBS-IBS-SAMPLING-2016-08. University of Maine, 2016.

Y. Zhong, H. Wang, Y. J. Wu, A. Cidon, R. Stutsman, A. Tai, and J. Yang. Bpf for
storage: an exokernel-inspired approach. In Proceedings of the Workshop on Hot
Topics in Operating Systems, pages 128-135, 2021.

G. Zhu, K. Lu, X. Wang, X. Zhou, and Z. Shi. Building emulation framework for
non-volatile memory. IEEE Access, 5:21574-21584, 2017.

https://easyperf.net/blog/2018/06/08/Advanced-profiling-topics-PEBS-and-LBR#processor-event-based-sampling-pebs
https://easyperf.net/blog/2018/06/08/Advanced-profiling-topics-PEBS-and-LBR#processor-event-based-sampling-pebs
https://github.com/fadedzipper/gem5-cxl/compare/stable...cxl.mem-dev
https://github.com/fadedzipper/gem5-cxl/compare/stable...cxl.mem-dev
https://github.com/andikleen/pmu-tools
https://doi.org/10.1145/3477132.3483550

	Abstract
	1 Introduction
	2 CXL Background
	3 Proposed Design
	4 Preliminary Results
	5 Related Work
	References

