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ABSTRACT

Machine learning-based decoding algorithms such as neural belief propagation (NBP) have been
shown to improve upon prototypical belief propagation (BP) decoders. NBP decoder unfolds the
BP iterations into a deep neural network (DNN), and the parameters of the DNN are trained in a
data-driven manner. Neural Normalized Min-Sum (NNMS) and Offset min-sum (OMS) decoders
with learnable offsets are other adaptations requiring fewer learnable parameters than the NBP
decoder. In this paper, we study the generalization capabilities of the neural decoder when the
check node messages are scaled by parameters that are learned by optimizing over the training
data. Specifically, we show the dependence of the generalization gap (i.e., the difference between
empirical and expected BER) on the block length, message length, variable/check node degrees,
decoding iterations, and the training dataset size.

INTRODUCTION

! Machine learning has emerged as an important tool for channel encoding and channel decoding.
Deep neural networks and reinforcement learning have shown better decoding performance at a
given channel signal-to-noise ratio [1, 2, 3, 4]. In another line of work, deep neural networks have
been combined with prototypical decoding algorithms to enhance decoding performance when
the true channel state information is unavailable [5, 6]. Additionally, it is worth noting that deep
neural networks and reinforcement learning algorithms have demonstrated comparable decoding
performance to contemporary algorithms but with lower complexity [4, 7].

Iterative decoding algorithms, such as belief propagation (BP), are commonly utilized for decoding
linear codes. They are typically considered equivalent to maximum a posteriori (MAP) decoding
when the Tanner graph does not contain short cycles [8]. However, in the presence of short cycles
within the Tanner graph, BP may prove to be sub-optimal [9, 10]. To address this issue, the Neural
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Belief Propagation (NBP) decoder was introduced as a technique to mitigate the impact of short
cycles [11]. The fundamental concept behind NBP involves scaling the variable node messages,
with the weights or scaling factors being learned in a data-driven manner. Other adaptations of
Neural Belief Propagation have been proposed [12], where the authors suggest scaling the check
node messages instead. Moreover, another approach suggested in [13] involves the use of offsets
in the check node messages to reduce the number of multiplications. These offsets are also learned
in a data-driven manner.
Understanding the relationship between the generalization gap, which is the difference between
the training bit error rate and the test bit error rate on unseen samples, and various parameters such
as blocklength, message length, code-rate, and channel SNR, holds significant importance in the
field of channel decoding. In our recent work [14], it was proved that the generalization gap of
neural belief propagation follows a linear scaling pattern with decoding iterations and variable node
degree, with a mild dependence on the blocklength. Moreover, it was found that the generalization
gap decreases as the training dataset size increases. Importantly, these empirical observations were
consistent across various parity check matrices, aligning with the theoretical findings.
The proof techniques employed in [14] incorporated the PAC-learning approach and leveraged
Rademacher complexity tools to establish explicit dependencies on various factors, including the
decoder parameters, training dataset size, and channel SNR. Nonetheless, there are other alterna-
tive approaches exist for bounding the generalization gap. Within the literature, methods such as
computing the Vapnik-Chervonenkis (VC) dimension or computing the Rademacher complexity
of the function class have been recognized as viable approaches for upper bounding the generaliza-
tion gap [15]. Another notable technique is PAC-Bayes analysis, which bounds the generalization
gap by quantifying the Kullback-Leibler divergence between the prior and posterior distributions
of the learned weights. We next state the main contribution of this paper.
Main Contributions: In this paper, we present an extension of the results established in [14] per-
taining to Neural Belief Propagation. Our aim is to derive comprehensive bounds for the general-
ization gap for neural normalized min-sum decoders (NNMS) and neural offset min-sum decoders
(NOMYS), specifically by considering the scaling of check node messages. Employing the PAC-
learning approach, we explore the relationship between the generalization gap and various factors
such as the number of decoding iterations, the size of the training dataset, and the characteristics
of the parity check matrix, encompassing blocklength, message length, variable node degree, and
check node degree.

SYSTEM MODEL

In Fig. 1, we consider a linear block code denoted as C with a block length of n and a message
length of k. The code C is characterized by a regular parity check matrix H € {0, 1}(»=%)*" and
Tanner graph G = (V,P,E). V = {vy,- -+ ,v,} is the set of variable nodes, P = {p1, - , pn_i}
is the set of parity check nodes, and € = {ey, - ,e,q,} is the set of edges. Here, d, represents
the column weight in the parity check matrix, i.e., the number of parity checks a variable node
participates in. The edge connecting variable node v; to parity check node p; in Tanner graph G
is denoted as {v;, p;}. V (v;) = {p:|H][i, j| = 1} denote the set of parity check nodes adjacent to
the variable node v; in the Tanner graph G. Similarly, P (p;) = {v;|H[i, j| = 1} denote the set of
variable nodes adjacent to the parity check node p; in G.

Let Y C RR™ be the space of n dimensional channel outputs, X C {0, 1}" be the space of n
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Figure 1: (a) End-to-End block diagram for communication using neural belief propagation (NBP)
decoders for linear block codes; (b) Architecture of the NNMS decoder for 7" decoding iterations
where each decoding iteration corresponds: (1) variable node layer, (2) parity check node layer.

dimensional codewords, U C {0, 1}* be the space of k dimensional messages, and Z C R" be the
space of n dimensional channel noise. The message u = [u[l],--- ,u[k]]" € U is encoded to the
codeword x = [x[1],--- ,x[n]]T € X. The channel is assumed to be memoryless, described by
Pr(y|x) = [, Pr(y[i]|x[i]). The receiver receives the channel output y = [y[1],--- ,y[n]]" €
Y; which is the codeword x modulated, and corrupted with additive noise z = [z[1],--- ,z[n]]" €
Z. The goal of the decoder is to recover the message u from the channel output y. The input to
the decoder is the log-likelihood ratio (LLR) of the posterior probabilities denoted by A € R™*!
and is given as A[i] = log %, for 1 <7 < n. Denote the output of the NNMS decoder
with T' decoding iterations as X = f(\), where f(-) denotes the decoding function.

Similar to the NBP decoder, each decoding iteration ¢ (where, 1 < ¢t < T') in the NNMS
decoder corresponds to two hidden layers each of width || = nd,, namely: (1) variable layer vy,
(2) parity check layer p¢. The output of the node v¢[{/, m}] in the NNMS decoder corresponds to
the message passed from variable node v; to parity check node p,, in the ¢-th iteration, and is,

vl{lm}] = Al + > peal{l,m'}], €))
m'eV(l)\m

where, py_1[{l/, m'}] corresponds to the message passed from the parity check node p,, to the
variable node v; in the (¢ — 1)-th iteration. The output of the parity check layer in the min-sum
decoder is given as follows,

pe[{l,m}| = llegn)\lsign(vt[{l’, m}|) l’e%l(irlnl)\l|Vt[{l/7 m}]|. ()

However, the messages from the hidden layer that performs parity checks can be scaled, and the
corresponding decoder is called the neural normalized min-sum decoder. The output of the parity
check hidden layer in the ¢-th decoding iteration for the NNMS decoder is,

pol{l,m}] = Bel{l.m}] [ sign(vel{l',m}]) Bel{l. m}). 3)
VeP(m)\l
where, p¢[{l,m}| = l rg(in)\l]vt [{',m}]| and B; are learned in a data-driven manner. The output
'eP(m
of the parity check hidden layer in the ¢-th decoding iteration for NOMS decoder is,
pol{l,m}] =] sign(vel{l',m}]) reLu (B[{l,m}] — Be[{l,m}]). S
VeP(m)\l



The estimated codeword after 7" decoding iterations in the NNMS decoder is given as,

%[0 =s(WSP[L I+ W[ L m Yprl[{T,m'}) (5)

m/eV(l)

where, s(-) is the sigmoid activation. The weights and the scaling factors are learnt by training the
NNMS decoder (denoted by f(+)) to minimize the bit error rate (BER) loss that is defined as,

lger (f(N),x) = du(f(N),x) _ Zj:l 1(f(AN)]J] # XU])‘ ©

n n

Here, dy (-, ) denotes the Hamming distance, and 1(-) denotes the indicator function. In prac-
tice, we train the NNMS decoder to minimize the BER loss over the dataset S = {(A;,%;)}7.,
comprising of pairs of log-likelihood ratio and its corresponding codeword. Then, we define the

empirical risk of f as Rger(f) = L 3 Iger(f(Aj),%;). The true risk of f is defined as Rpgr(f) =
=1
Exx[lBer(f(A), x)]. The generalization gap is defined as the difference Rpgr(f) — 7AQBER( f)-

MAIN RESULTS

In this section, we present our main findings regarding the generalization gap analysis for NNMS
decoders. We consider the training dataset, denoted as S = {(A;,x;)}/2,, and let 7 be the class
of NNMS decoders with 7" decoding iterations. We make the assumption that the scaling factors of
the check node messages are bounded. Specifically, for every (I, m) pair, we have B;[{l, m}] < w;
or the 2-norm ||3¢[{l, m}]|| is bounded as ||3;[{!, m}]||2 < Bgs. Similarly, for the weight matrices,
the maximum absolute value of the (7, j) coordinates for all weight matrices is bounded by a non-
negative constant w. In other words, we have |W, 7, j]| < w and |[Wy[i, j]| < w. W} is strictly
an upper triangular matrix with exactly d, non-zero entries in every row, while W is a diagonal
matrix. We express the bounded norms for any j—th row vector in matrices W, and Wy, as B,,,
and B,,, respectively. Furthermore, we assume a bound on the input log-likelihood ratios, such
that |A[i]| < by foralli = 1,...,n. To quantify the complexity of the function class Fr, we adopt
the notion of bit-wise Rademacher complexity, as defined in [14]. It is formulated as follows:

1 m
Rp(Frlj)) = E | sup — > o+ f(A)lJ (7)
Fil) 2B |sup S o F
where o;’s are i.i.d. Rademacher random variables, i.e., Pr(o; = 1) = Pr(o; = —1) = L. The

bit-wise Rademacher complexity captures the correlation between the j-th channel output of the
NNMS decoder and the Rademacher random variable. Leveraging results from standard PAC-
learning techniques, we use the upper bound on the generalization gap for any § € (0, 1) with
probability at least 1 — ¢, as follows:

2m

Reer(f) — Reer(f) < %ZRm(fTU]) + Ma (®)

In the subsequent theorem, we present the key outcome of our study, where we establish an upper
bound on the bit-wise Rademacher complexity term by utilizing PAC-learning techniques. This
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Figure 2: (a) RHS in Theorem 1 vs Dataset size (), (b) RHS in Theorem 1 vs Decoding iterations
(T'), (c) RHS in Theorem 1 vs Blocklength (n), (d) RHS in Theorem 1 vs Variable node degree

(dy).

allows us to explicitly capture the dependence on code parameters, the number of decoding itera-
tions, and the size of the training dataset.

Theorem 1. For any § € (0, 1), with probability at least 1 — 0, the generalization gap for any
NNMS decoder f € Fr can be upper bounded as follows,

Raex(f) — Raex(f) < % + \/W + 12\/ W log (8v/mnwd,by), (9

where n denotes the blocklength, d, is the variable node degree, T' is the number of decoding
iterations (number of layers in NNMS decoder), m is the training dataset size; w and by are upper
bounds on the weights in the NNMS decoder and input log-likelihood ratio, respectively.

Proof-sketch of Theorem 1: The detailed proof of Theorem 1 can be found in the Appendix
and closely follows the proof of the generalization bounds for NBP decoders [14]. Our approach
involves upper bounding the bit-wise Rademacher complexity using the Dudley entropy integral,
where the bound depends on the covering number of the function class F7. Informally, the cov-
ering number represents the minimum size of a set that can effectively approximate all members
of the function class Fr. We upper bound the covering number of 1 by considering the product
of covering numbers of the weights and the scaling factors. This is based on the observation that
the NNMS decoder is Lipschitz with respect to its weights and scaling factors. In what follows,
we evaluate the covering number of the weights and scaling factors and express it as a function of
the number of parameters and the bounds on the weights and scaling factors. By combining these
steps, we derive the result in Theorem 1.



Remark 1 (Generalization Gap Bounds Comparison of NNMS and NBP Decoders). As seen
in Fig. 2 generalization gap bound of NNMS decoder exhibits an inverse relationship with the
training dataset size, diminishing according to O(1/v/m). The generalization gap grows linearly
with the number of decoding iterations, scaling as O(T'). Additionally, the generalization gap
is influenced by the blocklength n and the variable node degree d,, and scales as O(\/n) and
O(\/d,), respectively. Notably, it is worth mentioning that the generalization gap observed in
NBP decoders, as described in [14], displays a linear dependency on the variable node degree,
characterized by O(d,,). This is due to the fact that each extrinsic message (i.e., the message from
the variable node to the check node) in the NBP decoder is scaled by distinct weights when incident
on different parity check nodes. Conversely, in the NNMS decoder, each message from the parity
check node is scaled by a single scaling factor, resulting in a reduced number of parameters and
causing the generalization gap to depend on d, as O(~\/d,).

CONCLUSIONS

In this study, we have investigated the generalization capabilities of neural decoders, specifically
focusing on the adaptation of Neural Normalized Min-Sum (NNMS). Our analysis involved scal-
ing the check node messages using learned parameters optimized during training. We explored the
impact of various factors, including block length, message length, variable/check node degrees,
decoding iterations, and training dataset size, on the generalization gap which is a measure of the
disparity between empirical and expected bit error rates (BER). By comparing the generalization
gap bounds of the NNMS decoder with those of the NBP decoder, we observed that the gap for
NNMS decoder has a mild dependence on the column weight in the parity check matrix (or vari-
able node degree). Extending the current framework to study the generalization gap of different
types of machine learning-based codes/decoders (beyond belief propagation) is an important future
direction.
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PROOF OF THEOREM 1

We employ a PAC-Learning approach to establish an upper bound on the bit-wise Rademacher
complexity term R,,(Fr[j]) in terms of training dataset size m and the spectral norm of the weight
matrices of the NNMS decoder. This approach is inspired by the reasoning used in generalization
bound results for graph neural networks, recurrent neural networks, and NBP decoders presented
n [16, 17, 14]. We adopt Lemma A.5. in [18] to bound the bit-wise Rademacher complexity as,

N
4o
AN Ao 12 :
Ro(Fli) < inf | S+ o2 [ VBN T Tojde | (10)
where, N'(Fr[jl], €, || - |l2) is the covering number of the function class Fr. To upper bound the

covering number, we show in Lemma 1 that the NNMS decoder is Lipschitz in its weights and
scaling factors. In other words, we have that,

1L = N < pu, Wl ] = Walh, [l + oo, (IWald ] = Wil (11)
+ Zﬂgi ||Bz - :3;“2

where, p,,,, 0, P> * s Py, are Lipschitz parameters are given as,

By -1
Puy = bA; Pu, = (\/_b)\ ( 1 ) + BT ty/nd, ln) :
5
Byt —1
pﬁi = (ndUBg) \/_b)\ 1 —|—BZ_ \ nd b)\ . (12)
/3

Therefore, the covering number N (Fr[j], €, ||-||2) can be upper-bounded by the product of covering
number of the weight matrices and the scaling factors as,

€ €

N(Frlil e |l - 1l2) SN (Wl ], Tty 1+ 1l2) X N(Walj, 1], T1op. - 12)
<IN 1) (13)

The covering number of the weights and the scaling factors of the NNMS decoder f for1 <: < T
can be bounded as follows,

. € 2(T +2) By, p,, \ ™
N(Wlbw],m>“'”2) < <1+ ; )
. € 2(T +2 Bprw2
N(Wzba-],m>||'||2) < <1+ p )
€ 2(T +2)Bsp, \""
N(Bs, m» - 12) < <1 + - ) (14)



Substituting (14) in (13), we can loosely upper bound the product of the covering numbers as,

AT + 9 (T+1)2nd,

€

N(‘FTU]7€7 || ’ ||2) < <1 -+

Computing the integral of the covering number, and substituting in (10), we can obtain the upper
bound on the generalization gap as,

Reex(f) — Rar(f) < % Ty % + 12\/ W log (8y/mnwd,by),  (16)

This concludes the proof of Theorem 1.

LIPSCHITZNESS OF NNMS DECODER

Lemma 1. For n length codeword, the bit-wise output of the NNMS decoder f € Fr is Lipschitz
in its weight matrices W1, Wy, and scaling factors 31, - - - , B such that,

1F V] = F Nl < P, IWald, ] = WhT, Il + oo, Wil ] = Wil
+ 20118 = Bl

The coefficients p.,,, p,,,» Ps,» "> Py, are as follows:

Bt —1
. B T—1 .
Puy = b3 Py = (\/_b)\ ( By -1 ) + Bj \/ndvb)\) ;
p, = (nd,Bg)"™ (ﬁm ( ) + By '/nd, bA) (17)

Proof. For outputs f(X) and f'(X), respectively we consider the following parameter sets: (a)
Wi, Wy, By, -+, Br, and (b) W}, W), 31, --- , B%. For the j-th output in the NNMS decoder,
we have that,

[F NG = F NI = ls (Wald, JALT + Wald, pr) — s (Walj, AT+ Wi 5 o),
< (Walj, ] = W5l ) Alj] + Walj, :lpr = Wilj,:pr + Wi j,Jpr — Wi ), :Iprl

< [[(Walj, ] = Wal5 ) Al + (WAl o] = Wilh,:)) prlly + Wil ] (Pr — Pl

< IWalj, il = Wali Jlly by + l[pelly [[Wald, ] = Wil il + Buy IPr — Pl - (18)

To further upper bound ||pr||,, we have that, |pr|, = ||BrPrll, < ||Brl, ||Prll,. Furthermore,

we know from Lemma 2 that ||pr||, < ||vr||,- The norm ||vr||, can be upper bounded as follows,

Pzl < llvelly, = [[A+ Br_1br-1ll,
< |IAlly + [[Br—1Pr-1ll,
< V/nbx + Bg ||Pr-1]l, - (19)



We can further upper bound ||pr||, in terms of ||pr_2||, as,

IBrlly < v/nby+ Bs (Viby + Bs [[Br—2l,) (20)

By recursively upper bounding across 7" decoding iterations, we obtain the upper bound on ||pr/|,
in terms of ||py||, as,

IBrll, < by (14 Bs+---+ Bsg" %) + By ' |Pall, 21

We can upper bound ||p1 ||, in terms of || v4||, as ||P1]l, < ||v1
as ||v1|, < +/nd,b,. Substituting in (21) as,

5, and ||v]|, can be upper bounded

|Brlly < V/nby (1 Y Byt (B 2) + BY ' /ndyby 22)

We now upper bound the term ||pt — pp|,, as follows,

/"'/ H

Ipr — Prll, = |1Brbr — BrbT
< ||BrpT — BrPT + BrbPT — BrbTl
< |1Br — Brlllprll + 187/ [|PT — Bl

2
< 118z = Blllprl + (Vod,) Bsllpr-1 — plea 23)

Iterating the steps across 7' decoding iterations we have that,

Ipr — Prlls <|IBr — BrlllPrll + ndyBsl|Br—1 — Br_1ll|Pr-1l
+ (nd,Bg)" ! \/nd,by| By — B (24)
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