
SAGDA: Achieving O(ε−2) Communication
Complexity in Federated Min-Max Learning

Haibo Yang
Dept. of ECE

The Ohio State University
Columbus, OH 43210
yang.5952@osu.edu

Zhuqing Liu
Dept. of ECE

The Ohio State University
Columbus, OH 43210
liu.9384@osu.edu

Xin Zhang
Dept. of Statistics

Iowa State University
Ames, IA 50010

xinzhang@iastate.edu

Jia Liu
Dept. of ECE

The Ohio State University
Columbus, OH 43210
liu@ece.osu.edu

Abstract

Federated min-max learning has received increasing attention in recent years thanks
to its wide range of applications in various learning paradigms. Similar to the
conventional federated learning for empirical risk minimization problems, commu-
nication complexity also emerges as one of the most critical concerns that affects
the future prospect of federated min-max learning. To lower the communication
complexity of federated min-max learning, a natural approach is to utilize the
idea of infrequent communications (through multiple local updates) same as in
conventional federated learning. However, due to the more complicated inter-outer
problem structure in federated min-max learning, theoretical understandings of
communication complexity for federated min-max learning with infrequent commu-
nications remain very limited in the literature. This is particularly true for settings
with non-i.i.d. datasets and partial client participation. To address this challenge,
in this paper, we propose a new algorithmic framework called stochastic sampling
averaging gradient descent ascent (SAGDA), which i) assembles stochastic gradient
estimators from randomly sampled clients as control variates and ii) leverages two
learning rates on both server and client sides. We show that SAGDA achieves a
linear speedup in terms of both the number of clients and local update steps, which
yields anO(ε−2) communication complexity that is orders of magnitude lower than
the state of the art. Interestingly, by noting that the standard federated stochastic
gradient descent ascent (FSGDA) is in fact a control-variate-free special version of
SAGDA, we immediately arrive at an O(ε−2) communication complexity result
for FSGDA. Therefore, through the lens of SAGDA, we also advance the current
understanding on communication complexity of the standard FSGDA method for
federated min-max learning.

1 Introduction

Recently, min-max optimization has drawn considerable attention from the machine learning com-
munity. Compared with conventional minimization problems (e.g., empirical risk minimization),
min-max optimization has a richer mathematical structure, thus being able to model more sophis-
ticated learning problems that emerge from ever-emerging applications. In particular, the subclass

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

21
0.

00
61

1v
2 

 [c
s.L

G
]  

26
 D

ec
 2

02
2



of nonconvex-concave and nonconvex-PL (Polyak-Łojasiewicz) min-max problems has important
applications in, e.g., AUC (area under the ROC curve) maximization [1, 2], adversarial and robust
learning [3, 4], and generative adversarial network (GAN) [5]. The versatility of min-max optimiza-
tion thus sparks intense research on developing efficient min-max algorithms. In the literature, the
family of primal-dual stochastic gradient methods is one of the most popular and efficient approaches.
For example, the stochastic gradient descent ascent (SGDA) method in this family has been shown
effective in centralized (single-machine) learning, both theoretically and empirically. However, as
over-parameterized models (e.g., deep neural networks) being more and more prevalent, learning
on a single machine becomes increasingly inefficient. To address challenge, large-scale distributed
learning emerges as an effective mechanism to accelerate training and has achieved astonishing
successes in recent years. Moreover, as more stringent data privacy requirements arise in recent
years, centralized learning becomes increasingly infeasible due to the prohibition of data collection.
This also motivates the need for distributed learning without sharing raw data. Consequently, there
is a growing need for distributed/federated min-max optimization, such as federated deep AUC
maximization [6, 7], federated adversarial training [8] and distributed/federated GAN [9–11].

Similar to conventional federated learning for minimization problems, federated min-max learning
enjoys benefits of parallelism and privacy, but suffers from high communication costs. One effective
approach to reduce communication costs is to utilize infrequent communications. For example, in
conventional federated learning for minimization problems, the FedAvg algorithm [12] allows each
client performs multiple stochastic gradient descent (SGD) steps to update the local model between
two successive communication rounds. Then, local models are sent to and averaged periodically
at the server through communications. Although infrequent communication may introduce extra
noises due to data heterogeneity, FedAvg can still achieve the same convergence rate as distributed
SGD, while having a significant lower communication complexity. Inspired by the theoretical
and empirical success of FedAvg, a natural idea to lower the communication costs of federated
min-max optimization is to utilize infrequent communication in the federated version of SGDA.
Despite the simplicity of this idea, existing works can only show unsatisfactory convergence rates
(O(1/

√
mT ) [13] and O(1/ (mKT )

1/3
) [14]) for solving non-convex-strongly-concave or non-

convex-PL by federated SGDA with infrequent communication (m is the number of clients, K is
the number of local steps, and T is the number of communication rounds). These convergence
rates do not match with that of the FedAvg method. These unsatisfactory results are due to the fact
that federated min-max optimization not only needs to address the same challenges in conventional
federated learning (e.g., data heterogeneity and partial client participation), but also handle the more
complicated inter-outer problem structure. Thus, a fundamental question in federated min-max
optimization is: Can a federated SGDA-type method with infrequent communication provably achieve
the same convergence rate and even the highly desirable linear speedup effect for federated min-max
problems?

In this paper, we answer this question affirmatively. The main contributions of this paper are
summarized as follows:

• We propose a new algorithmic framework called SAGDA(stochastic sampling averaging gradient
descent ascent), which assembles stochastic gradient estimators as control variates and leverages
two learning rates on both server and client sides. With these techniques, SAGDA relaxes the
restricted “bounded gradient dissimilarity” assumption, while still achieving the same convergence
rate with low communication complexity. We show that SAGDA achieves the highly desirable
linear speedup in terms of both the number of clients (even with partial client participation) and
local update steps, which yields an O(ε−2) communication complexity that is orders of magnitude
lower than the state of the art in the literature of federated min-max optimization.

• Interestingly, by noting that the standard federated stochastic gradient descent ascent (FSGDA)
is in fact a “control-variant-free” special version of our SAGDA algorithm, we can conclude
from our theoretical analysis of SAGDA that FSGDA achieves an O(1/

√
mKT ) convergence

rate for non-convex-PL problems with full client participation, which further implies the highly
desirable linear speedup effect. This improves the state-of-the-art result of FSGDA by a factor of
O(1/ (mKT )

1/6
) [14] and matches the optimal convergence rate of non-convex FL. Therefore,

through the lens of SAGDA, we also advance the current understanding on the communication
complexity of the standard FSGDA method for federated min-max learning.
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Table 1: Number of communication rounds and stochastic gradients per client to reach ε-stationary
point (‖∇Φ‖ ≤ ε) for federated non-convex-PL min-max learning, denoted as communication and
client sample complexity. We omit the higher orders. Here m is the number of clients. BGD means
bounded gradient dissimilarity, which requires bounded data heterogeneity. SAGDA supports client
sampling and does not require BGD assumption.

Methods BGD
Assumption

Client
Sampling?

Per-Client Sample Communication
Complexity Complexity

SGDA − − ε−4 −
Local SGDA [14] 4 7 max{ε−4, 1

m2/3 ε
−6} O((1/m)ε−6)

(Momentum)
Local SGDA [15] 4 7 O((1/m)ε−4) O(ε−3)

CD-MAGE [13] 4 4 O((1/m)ε−4) O((1/m)ε−4)

SAGDA (Cor. 1) Not needed 4 O((1/m)ε−4) O(ε−2)

FSGDA (Cor. 2 3) 4 4 O((1/m)ε−4) O(ε−2)

The rest of the paper is organized as follows. In Section 2, we review related work. In Section 3,
we first introduce SAGDA And its convergence analysis, and then build the connection between
SAGDA and FSGDA. We present numerical results in Section 4 and conclude the work in Section 5.
Due to space limitation, we relegate all proofs and some experiments to the supplementary material.

2 Related work

1) Federated Learning: In federated learning (FL), the seminal federated averaging (FedAvg) [16]
algorithm was first proposed as a heuristic to improve communication efficiency and data privacy,
but later theoretically confirmed to achieve a highly desirable O(1/

√
mKT ) convergence rate

in FL (implying linear convergence speedup as the number of clients m increases). Since then,
many follow-up works have been proposed to achieve the O(1/

√
mKT ) convergence rate for i.i.d.

datasets [17–23] and non-i.i.d. datasets [24–33]. For a comprehensive survey on FL convergence rate
order, we refer readers to Section 3 in [34].

2) Min-max Optimization: Min-max optimization has a long history dating back to at least [35,36].
For non-convex-strongly-concave min-max problems, a simple approach is the stochastic gradient
descent ascent (SGDA), which performs stochastic gradient descent on primal variables and stochastic
gradient ascent on dual variables, respectively. It is well-known that SGDA achieves an O(1/

√
T )

convergence rate [37,38] for non-convex-strongly-concave min-max problems, matching that of SGD
in non-convex optimization. However, in the federated non-convex-strongly-concave setting, studies
in [13] and [14] only proved O(1/

√
mT ) and O(1/(mKT )1/3) convergence rates, respectively. So

far, it remains unknown whether federated SGDA could achieve the same desirable convergence
rate of O(1/

√
mKT ) as FedAvg. In this paper, we show that our SAGDA algorithm and FSGDA

(implied by SAGDA) indeed achieve the O(1/
√
mKT ) convergence rate, matching that of FedAvg.

3 Problem statement and algorithm design

We consider a general min-max optimization problem in federated learning setting as follows:

min
x∈Rd

max
y∈Rd

f(x,y) := min
x∈Rd

max
y∈Rd

1

M

∑
i∈[M ]

fi(x,y), (1)

where fi(x,y) := Eξi∼Di [f(x,y, ξi)] is the local loss function associated with a local data distribu-
tion Di and M is the number of workers. Similar to FL, these exist two main challenges in federated
min-max optimization: 1) datasets are generated locally at the clients and generally non-i.i.d., i.e.,
Di 6= Dj , for i 6= j; 2) potentially only a subset of clients may participate in each communication
round, leading to partial client participation.
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In this paper, we focus on general non-convex-PL min-max problems. Before presenting the algo-
rithms and their convergence analysis, we first state several assumptions.
Assumption 1. (Lipschitz Smooth) fi(x,y) is Lf -smooth, i.e., there exists a constant Lf > 0, so that
‖∇fi(x1,y1)−∇fi(x2,y2)‖2 ≤ L2

f

(
‖x1 − x2‖2 + ‖y1 − y2‖2

)
, ∀x1,x2,y1,y2 ∈ Rd, i ∈ [M ].

Assumption 2. (Polyak-Łojasiewicz (PL) Condition) There exists a constant µ > 0 such that ∀x,y,

‖∇yf(x,y)‖2 ≥ 2µmax
z

(f(x, z)− f(x,y)) .

Further, we assume the stochastic gradients with respect to x and y in each local update step at each
client are unbiased and have bounded variances.
Assumption 3. (Unbiased Local Stochastic Gradient) Let ξi be a random local data sample at client
i. The local stochastic gradients with respect to x and y are unbiased and have bounded variances:

E[∇fi(x,y, ξi)] = ∇fi(x,y), E
[
‖∇xfi(x,y, ξi)−∇xfi(x,y)‖2

]
≤ σ2

x,

E
[
‖∇yfi(x,y, ξi)−∇yfi(x,y)‖2

]
≤ σ2

y,

where the expectation is taken over local distribution Di.

To analyze the convergence performance of min-max algorithms, we define a surrogate function Φ for
the global minimization as follows: Φ(x) := maxy f(·,y). We will use Φ as a metric to measure the
performance of an algorithm on min-max problems, and the goal is to find an approximate stationary
point of Φ efficiently. Then, we can conclude from previous works (see Lemma A.5 [39] or Lemma
4.3 [38]) that Φ is L-smooth, where L := Lf + L2

f/µ.

Definition 1 (Stationarity). For a differentiable function Φ, z is an ε-stationary point if ‖∇Φ(z)‖ ≤ ε.
Definition 2 (Complexity). The communication and client sample complexity are defined as the total
number of rounds and stochastic gradients per client to achieve an ε-stationary point, respectively.

3.1 The Stochastic Averaging Gradient Descent Ascent (SAGDA) Algorithm

To solve Problem (1), FedAvg could be naturally extended to federated min-max problems by applying
SGDA with multiple local update steps in primal and dual variables respectively. However, current
results [13–15] show that there exists two limitations: 1) limited data heterogeneity is often assumed,
e.g., bounded gradient dissimilarity assumption; 2) communication complexity is unsatisfactory. In
this paper, we propose the SAGDA (stochastic sampling averaging gradient descent ascent) algorithm
by utilizing the assembly of stochastic gradients from (randomly sampled) clients as control variates
to mitigate the effect of data heterogeneity in federated min-max problems. As will be shown later,
SAGDA is able to achieve better communication complexity under arbitrary data heterogeneity.

As illustrated in Algorithm 1, SAGDA contains the following two stages:
1. On the Server Side: In each communication round, the server initializes the global model (xt,yt)

at t = 0 or updates the global model accrodingly when t > 0 (Line 3). Specifically, for t > 0,
upon the reception of all returned parameters from round t− 1, the server aggregates them using
global learning rates ηx,g and ηy,g for x and y, respectively. Then server samples a subset of
clients St to participate in the training and broadcast the current global model (xt,yt) to these
clients (Line 4). Here, we follow the same common assumption on client participation as in FL:
the clients are uniformly sampled without replacement and a fixed-size subset (i.e., |St| = m)
is chosen in each communication round. A key step here is to construct the control variates
(v̄x, v̄y,vx,i,vy,i) for server and client. Afterwards, the primal and dual variables alongside their
control variates are transmitted to each participated client i ∈ St (Line 7).

2. On the Client Side: Upon receiving the latest global model (xt,yt), each client synchronizes its
local model (Line 10). Then, each client performs K local updates for x and y simultaneously
(Line 11). Upon the completion of local computations, the new local model is sent to the server.

We provide two options in SAGDA. First, in each communication round, client and server need to
respectively obtain control variates (vx,i,vy,i) and (v̄x, v̄y) for “variance reduction" purpose in primal
variable x and dual variable y (Lines 5 and 6). Option I requires each client to maintain the control
variates (vx,i,vy,i) across rounds locally (Line 12). As a result, (v̄x, v̄y) are constructed iteratively
(Line 5). In Option II, (vx,i,vy,i) are instantly calcuated by another round of communication, and
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Algorithm 1 The Stochastic Averaging Gradient Descent Ascent (SAGDA) Algorithm.
1: for t = 0, · · · , T − 1 do
2: for Server do
3: Initialize x0,y0 for t = 0, or update global model from previous round for t > 0:

xt = xt−1 + ηx,g

(
1
m

∑
i∈St−1

xK+1
t−1,i − xt−1

)
,

yt = yt−1 + ηy,g

(
1
m

∑
i∈St−1

yK+1
t−1,i − yt−1

)
.

4: Randomly samples a subset St of clients with |St| = m.
5: Option I: Construct sampling averaging v̄x, v̄y from the return in the previous round:

v̄x = v̄x + 1
M

∑
i∈St−1

∆vx,i, v̄y = v̄y + 1
M

∑
i∈St−1

∆vy,i.
6: Option II: The server sends current parameters zt := (xt,yt) to clients in St and collects

stochastic gradients:
vx,i = ∇xfi(zt, ξt,i),vy,i = ∇yfi(zt, ξt,i),
v̄x = 1

m

∑
i∈St

vx,i, v̄y = 1
m

∑
i∈St

vy,i.
7: Send (xt,yt) and (v̄x, v̄y) to each client i ∈ St.
8: end for
9: for Each client i ∈ St do

10: Synchronization: x1
t,i = xt,y

1
t,i = yt and receiving v̄x,t, v̄y,t.

11: Local updates (k ∈ [K]):
xk+1
t,i = xkt,i − ηx,lvkx,i (cf. Eq. (2) for vkx,i);

yk+1
t,i = ykt,i + ηy,lv

k
y,i (cf. Eq. (3) for vky,i);

12: Option I:
Calculate: v

′

x,i = ∇xfi(zt, ξt,i),v
′

y,i = ∇yfi(zt, ξt,i).

Send
(
xK+1
t,i ,yK+1

t,i

)
and (∆vx,i,∆vy,i) =

(
v
′

x,i − vx,i,v
′

y,i − vy,i

)
to server.

Assign: vx,i = v
′

x,i,vy,i = v
′

y,i.
13: Option II: Send

(
xK+1
t,i ,yK+1

t,i

)
to server.

14: end for
15: end for

then (vx,i,vy,i) are constructed accrodingly (Line 6). We note that Option I needs client to be stateful
and thus being more challenging to implement in cross-device FL [34], while Option II may incur
extra communication overhead due to the need for one more communication session, although the
total communication size remains the same. In the local computation phase, each participated client
performs steps (Line 11) based on Eq. (2) and (3), which can be interpreted as “variance reduction."
Here, we use zjt,i := (xjt,i,y

j
t,i) for notational simplicity.

vkx,i = ∇xfi(zkt,i, ξkt,i)− vx,i + v̄x, (2)

vky,i = ∇yfi(zkt,i, ξkt,i)− vy,i + v̄y. (3)

In classic variance reduction methods, the key idea is to utilize a full gradient (or approximation) to
reduce the stochastic gradient variance at the expense of high computation complexity compared to
SGD. Note that, in federated learning, the gradient dissimilarity (due to data heterogeneity) is a crtical
challenge and more problematic than stochastic gradient variance. Therefore, we calculate a 2-tuple
(v̄x,t, v̄y,t) of stochastic gradients from all clients as control variates to mitigate the potential gradient
deviation due to data heterogeneity. Note that SAGDA does not require a full gradient calculation for
each client. With the help from the local steps in (2) and (3), each client no longer generate large
deviation in local updates even with arbitrary data heterogeneity. The reason is that, for small local
learning rates, the local steps in each client could be approximated by

∇xfi(zjt,i, ξ
k
t,i) ≈ vx,i =⇒ vkx,i ≈ v̄x,

∇yfi(zkt,i, ξkt,i) ≈ vy,i =⇒ vky,i ≈ v̄y.

In other words, SAGDA mimics mini-batch SGDA in the centralized learning by using an approxi-
mation of mini-batch stochastic gradient for the updates. As a result, SAGDA is able to provide a
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desirable convergence rate, while allowing arbitrary data heterogeneity. We state the convergence
rate result of SAGDA as follows:

Theorem 1 (Convergence Rate of SAGDA). Under Assumptions 1- 3, define Lt = Φ(xt) −
1
10f(xt,yt), the output sequence {xt} generated by SAGDA satisfies:

• For Option I with learning rates ηx,g , ηx,l, ηy,g , and ηy,l satisfying

8K(K − 1)(2K − 1)L2
f max{η2x,l, η2y,l} ≤ 1,

1

2
− 4a2L

2
fK

2
(
η2x + η2y

)
−
(
a1 + a24L2

fK
2
(
η2x + η2y

))
160K2

(
η2x,l + η2y,l

)
L2
f ≥ 0,[

1

10
ηxK − 4a2K

2η2x

]
−
[
a1 + a24L2

fK
2
(
η2x + η2y

)]
40K2η2x,l ≥ 0,[

ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
− 4a2K

2η2y

]
−
[
a1 + a24L2

fK
2
(
η2x + η2y

)]
40K2η2y,l ≥ 0,

where a1 = KL2
f

(
31
20ηx + 1

20ηy
)

and a2 = 1
2

(
L+

Lf

10

)
+ 1 + M2

m2 − M
m , it holds that

1

T

T−1∑
t=0

E‖∇Φ(xt)‖2 ≤
2 (L0 − L∗)
ηxKT︸ ︷︷ ︸

optimization error

+

[(
L+

Lf
10

)
+ 4

]
9

mηx

(
η2xσ

2
x + η2yσ

2
y

)
︸ ︷︷ ︸

statistical error

+ ψ1︸︷︷︸
local update error

where ψ1 is defined as follows:

ψ1 =

[
L2
f

(
31

20
+

1

20

ηy
ηx

)
+

[
1

2

(
L+

Lf
10

)
+ 2

]
4L2

fK

(
ηx +

η2y
ηx

)] [
20K2

(
η2x,lσ

2
x + η2y,lσ

2
y

)]
.

• For Option II with learning rates ηx,g , ηx,l, ηy,g , and ηy,l satisfying

8K(K − 1)(2K − 1)L2
f max{η2x,l, η2y,l} ≤ 1,

1

10
ηxK −

(
2

(
L+

Lf
10

)
η2xK

2 + 40K2η2x,lb1

)
≥ 0,

ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
−
(

1

5
Lfη

2
yK

2 + 40K2η2y,lb1

)
≥ 0,

where b1 = L2
f

[
31
20ηxK + 1

20ηyK + 2
(
L+

Lf

10

)
η2xK

2 + 1
5Lfη

2
yK

2
]
, it holds that

1

T

T−1∑
t=0

E‖∇Φ(xt)‖2 ≤
2 (L0 − L∗)
ηxKT

+

[(
L+

Lf
10

)
9ηx
m

σ2
x + +

9

10
Lf

η2y
mηx

σ2
y

]
+ ψ2.

where ψ2 is defined as follows:

ψ2 = L2
f

[
31

20
K +

1

20

ηy
ηx
K + 2

(
L+

Lf
10

)
ηxK

2 +
1

5
Lf

η2y
ηx
K2

]
[10 (16K + 1)]

(
η2x,lσ

2
x + η2y,lσ

2
y

)
.

Here ηx = ηx,lηx,g and ηy = ηy,lηy,g. The convergence rate results in Theorem 1 contain three
terms: optimization error, statistical error and local update error. The first two errors are similar to
those in first-order stochastic methods, which are optimization errors due to initial point and statistical
error originated from stochastic gradient variance. The local updates without synchronization among
clients result in deviations that contribute to the third error. For the learning rates, if we use a
sufficiently small local learning rates ηx,l and ηy,l, it requires that ηxK = O(1) and ηyK = O(1).

Based on Theorem 1, we immediately have the following result:
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Algorithm 2 Federated Stochastic Gradient Descent Ascent (FSGDA) Algorithm.
1: for t = 0, · · · , T − 1 do
2: for Server do
3: Initialize (x0,y0) for t = 0, or update global model from previous round for t > 0:

xt = xt−1+ηx,g

(
1

m

∑
i∈St−1

xK+1
t−1,i−xt−1

)
,yt = yt−1+ηy,g

(
1

m

∑
i∈St−1

yK+1
t−1,i−yt−1

)
.

4: The server randomly samples a subset St of clients with |St| = m and sends current
parameters (xt,yt).

5: end for
6: for Each client i ∈ St do
7: Synchronization: x1

t,i = xt,y
1
t,i = yt.

8: Local updates (k ∈ [K]):

xk+1
t,i = xkt,i − ηx,l∇xfi(x

k
t,i,y

k
t,i, ξ

k
t,i), yk+1

t,i = ykt,i + ηy,l∇yfi(x
k
t,i,y

k
t,i, ξ

k
t,i).

9: Send
(
xK+1
t,i ,yK+1

t,i

)
to server.

10: end for
11: end for

Corollary 1 (Convergence Rate of SAGDA ). Let ηx = Θ(
√
m√
KT

), ηx = Θ(
√
m√
KT

), ηx,l ≤

min{ 1
m1/2K3/2 ,

K3/4

m1/4T 1/4 }, ηy,l ≤ min{ 1
m1/2K3/2 ,

K3/4

m1/4T 1/4 }, and T = Ω(mK), the convergence
rate of SAGDA is O( 1√

mKT
).

Corollary 1 says that, for sufficiently many communication rounds (T = Ω(mK)), SAGDA achieves
the linear speedup in both m and K. In other words, the per-client sample complexity and commu-
nication complexity are O((1/m)ε−4) and O(ε−2), respectively. The per-client sample complexity
indicates the benefits of parallelism as the number of clients m increases. The communication
complexity significantly improves those in existing works by at least a (1/ε)-factor (cf. Table 1).

3.2 Special case of SAGDA: Federated stochastic gradient descent ascent (FSGDA)

We note that, if we set all the control variates to zero, SAGDA reduces to the federated stochastic
gradient descent ascent (FSGDA) method, which is a natural extension of FedAvg and SGDA to
federated min-max learning1. We show that much improved convergence rate results of FSGDA can
be directly implied by SAGDA.

For a fair comparison with existing works, we also adopt the same bounded gradient dissimilarity
assumption as in [14, 15] to bound the second moment between gradients of local and global loss
functions (i.e., quantifying data heterogeneity).
Assumption 4. (Bounded Gradient Dissimilarity) There exist two constants σx,G ≥ 0 and σy,G ≥ 0
such that E

[
‖∇xfi(x,y)−∇xf(x,y)‖2

]
≤ σ2

x,G and E
[
‖∇yfi(x,y)−∇yf(x,y)‖2

]
≤ σ2

y,G.

Assumption 4 is a commonly-used assumption to quantify the data heterogeneity [14, 15]. Based on
the results and analysis of SAGDA , we can show the following convergence results for FSGDA:
Theorem 2 (Convergence Rate for FSGDA). Under Assumptions 1- 4, define Lt = Φ(xt) −
1
10f(xt,yt), if the learning rates ηx,g , ηx,l, ηy,g , and ηy,l satisfy:

8K(K − 1)(2K − 1)L2
f max{η2x,l, η2y,l} ≤ 1,

a1 − a340L2
fK

2η2x,l −
ηy
ηx
a440L2

fK
2η2x,l ≥ 0,

a2 − a3
ηx
ηy

40L2
fK

2η2y,l − a440L2
fK

2η2y,l ≥ 0,

1Our FSGDA is in fact a generalized version of local FSGDA [14, 15] as our FSGDA has two-sided learning
rates and client sampling. If ηx,g = ηy,g = 1, our FSGDA is exactly the same as the standard FSGDA.
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where a1 =
(

1
10 − 2(2L+ 1

5Lf )ηxK
)
, a2 =

(
1
20 −

2
5LfηyK −

ηx
ηy

L2
f

µ2

)
, a3 =(

31
20 + (2L+ 1

5Lf )ηxK
)

and a4 =
(

1
20 + 1

5LfηyK
)
, then the output sequence {xt} gener-

ated by FSGDA satisfies:

1

T

T−1∑
t=0

E‖∇Φ(xt)‖2 ≤
2 (L0 − LT )

ηxKT︸ ︷︷ ︸
optimization error

+
2ηx
m

(
L+

Lf
100

)
σ2
x +

Lfη
2
y

5mηx
σ2
y︸ ︷︷ ︸

statistical error

+ ψ3︸︷︷︸
local

update error

+ ψ4︸︷︷︸
sampling
variance

.

Here, ψ3 and ψ4 are defined as follows:

ψ3 = 2

(
a3L

2
f + a4

ηy
ηx
L2
f

)[
40K2η2x,lσ

2
x,G + 40K2η2y,lσ

2
y,G + 5Kη2x,lσ

2
x + 5Kη2y,lσ

2
y

]
,

ψ4 =

(
(2L+

1

5
Lf )ηxK

)(
1− m

M

) 2

m
σ2
x,G +

2

5m
LfηyK

ηy
ηx

(
1− m

M

)
σ2
y,G,

The convergence rate result in Theorem 2 contains four parts. The first three terms are similar
to the errors in SAGDA analysis. However, one difference is that the local update error heavily
depends on the data heterogeneity parameter σx,G and σy,G. Specifically, the error grows at least
linearly with respect to the local step in terms stochastic variance σ2

x and σ2
y and quadratically in the

gradient dissimilarity σ2
x,G and σ2

y,G. This indicates that data heterogeneity is more problematic than
stochastic gradient variance, yielding a larger error in local updates and thus necessitating smaller
local steps. Fortunately, this error is associated with the square of local learning rates η2x,l and η2y,l.
So, with sufficiently small local learning rates, ψ1 can be easily reduced. In other words, under
bounded gradient dissimilarity (i.e., data heterogeneity), small local learning rates render controllable
local update error among clients.

Partial client participation by random sampling without replacement is an unbiased estimation of the
global loss function and has a bounded variance, contributing to the third term ψ4. Will full clients
participation (m = M ), this error term can be reduced to zero through our analysis.

Theorem 2 implies a new result for FSGDA: if we use sufficiently small local learning rates under
full client participation, FSGDA achieves a similar convergence rate to those of SGD and SGDA:
Corollary 2 (Convergence Rate of FSGDA under Full Client Participation). Considering full
client participation (m = M ), let ηx = Θ(

√
m√
KT

), ηx = Θ(
√
m√
KT

), ηx,l ≤ 1
(mT )1/4K5/4

, ηy,l ≤
1

(mT )1/4K5/4
, and T = Ω(mK), the convergence rate of FSGDA algorithm is: O( 1√

MKT
).

This convergence rate indicates the linear speedup effect in terms of both M and K. However, we
note that this is subject to learning rates constraints, which does not allow arbitrarily many local steps.
Specifically, the number of local step in FSGDA is on the order of K = O(T/M). Hence, FSGDA
achieves per-client sample complexity O( 1

mε4 ) and communication complexity O( 1
ε2 ). We improve

the state-of-the-art communication comoplexity from O( 1
ε3 ) in [15] to O( 1

ε2 ) in our paper.

For partial client participation m < M , however, FSGDA can only have the following convergence
rate under appropriate learning rates.
Corollary 3 (Convergence Rate of FSGDA under Partial Client Participation). Let ηx =

Θ(
√
m√
TK

), ηy = Θ(
√
m√
TK

), ηx,l ≤ 1
(mT )1/4K

, and ηy,l ≤ 1
(mT )1/4K

, the convergence rate of FS-

GDA algorithm is O(1/
√
mT ).

For partial client participation, we note that only the linear speedup in m is achievable and the linear
speedup in K is not achievable due to the impact of sampling variance. According to previous works
in federated minimization problem, the convergence bounds also have this observation [28, 31]. To
our knowledge, we are not aware of any existing results on linear speedup in K with partial client
participation. We will leave this as an open problem in our future studies.

4 Numerical Experiments

In this section, we conduct numerical experiments using two machine learning problems (Logistic
Regression and AUC Maximization) to verify our theoretical results for SAGDA as well as FSGDA.
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Figure 1: Comparisons of federated min-max learning algorithms in terms of communication rounds.
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Figure 2: Comparisons of federated min-max learning algorithms in terms of sample complexity.

Due to space limitation, detailed discriptions for machine learning models and additional experiments
for parameter tuning are relegated to our supplementary material.

We compare our algorithms using Parallel-SGDA [14,15,38], CD-MA [13], and CD-MAGE+ [13] as
baselines in our experiments. We note that the CD-MAGE+ method is the state-of the-art federated
minimax algorithm.

• Parallel-SGDA [14, 15, 38]: Parallel-SGDA is the parallel version of the stochastic gradient
descent ascent(SGDA) algorithm. Each agent i updates its local parameters as: xt+1,i= xt,i−
ηx,l∇xfi(xt,i,yt,i, ξt,i) and yt+1,i= yt,i−ηy,l∇yfi(xt,i,yt,i, ξt,i).

• CD-MA [13]: Each agent i updates its local parameters with mini-batch estimators. The server
computes xt+1 = xt + 1

m

∑
i∈St

xK+1
t,i , yt+1 = yt + 1

m

∑
i∈St

yK+1
t,i , where St is the subsets of

clients.

• CD-MAGE+ [13]: Each agent i updates its local parameters with a recursive momentum-based
estimator. The server does the same procedure as in CD-MA.

1) Datasets: We test the convergence performance of our algorithms using the “a9a” dataset [40] and
“MNIST” [41] from LIBSVM repository. The “a9a‘’ readily contains two categories for classification.
To generate data with two categories for “MNIST”, we split it into two classes by treating the number
“1" class as the positive class and the remaining as the negative class. We randomly selected 5000 data
points from the positive class and 5000 data points from the negative class in the data repository. To
generate heterogeneous data, the training data is first sorted according to the original class label and
then equally partitioned into 100 workers so that all data points on one client are from the same class.

2) Parameter Settings: We initialize all algorithms at the same point, generated randomly from the
random number generator in Python. The learning rates are chosen as ηx,l = ηy,l = 10−2, ηx,g =
ηy,g = 2, local updates K = 10. We have m = 100 clients and each client has n = 100 samples.

3) Performance Comparisons: As shown in Fig. 1, we conduct experiments by using distributionally
robust optimization with non-convex regularized logistic loss and by AUC maximization on both
“a9a" and “MNIST" datasets. We compare the convergence results in terms of the number of
communication rounds and sample complexity. For better visualization, the results are smoothed by
averaging the values over a window of size five. It can be seen from Fig. 2 that SAGDA converges
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faster than the baseline algorithms (CD-MA, CD-MAGE+, Parallel-SGDA) in terms of the total
number of communication rounds. We can also observe that SAGDA have a lower sample complexity
than all the other algorithms. As mentioned in Section. 3, the local learning rates are necessarily small
since they are used to control the local update errors. Thanks to the relatively large step-size ηx,g, ηy,g
in SAGDA, the actual learning rate ηx = ηx,l × ηx,g and ηy = ηy,l × ηy,g help us achieve better
convergence performance in each communication round. Our experimental results thus verify our
theoretical analysis that SAGDA is able to achieve both low sample and communication complexities.

5 Conclusion

In this paper, we considered federated min-max learning with the goal of achieving low communi-
cation complexity. We proposed a new algorithmic framework called SAGDA, which i) assembles
stochastic gradient estimators from randomly sampled clients as control variates and ii) leverages two
learning rates on both server and client sides. We showed that SAGDA achieves a linear speedup in
terms of both the number of clients and local update steps, which yields an O(ε−2) communication
complexity that is orders of magnitude lower than the state of the art. Also, by noting that the standard
federated stochastic gradient descent ascent (FSGDA) is in fact a special case of SAGDA, we also
obtained an O(ε−2) communication complexity result for FSGDA. Extensive numerical experiments
corroborated the effectiveness and efficiency of our algorithms.
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A Further Experiments and Additional Results

In the following, we provide the detailed machine learning models for our experiments:

1) Logistic Regression Model: We use the following min-max regression problem with datasets
ξi := {(aij , bij)}nj=1, where aij ∈ Rd is the feature of the j-th sample of worker i and bij ∈{1,−1}
is the associated label:

min
x∈Rd

max
y∈Rn

1

m

∑
i∈M

fi(x,y),

where fi(x,y) is defined as:

fi(x,y) ,
1

n

n∑
j=1

[yj lj(x)− V (y) + g(x)], (4)

where the loss function li(x) , log
(
1 + exp

(
−bija>ijx

))
, g(x) , λ2

∑d
k=1

αx2
k

1+αx2
k

, and V (y) =
1
2λ1‖ny − 1‖22. We choose constants λ1 = 1/n2, λ2 = 10−3 and α = 10.

2) AUC Maximization: We use a dataset {aij , bij}nj=1, where aij ∈ Rd is the feature of the j-th
sample of worker i, wi denotes a feature vector and bij ∈ {−1,+1} denotes the corresponding label.
For a scoring function hx of a classification model parameterized by x ∈ Rd, the AUC maximization
problem is defined as:

max
x

1

m+m−

∑
bij=+1,bik=−1

I{hx(aij)≥hx(aik)}, (5)

where m+ denotes the number of positive samples, m− denotes the number of negative samples, and
I{·} represents the indicator function. The above optimization problem can be reformulated as the
following min-max optimization problem [1, 2]:

min
(x,c1,c2)∈Rd+2

max
λ∈R

f(x, c1, c2, λ)

:=
1

mn

∑
i∈M

n∑
j=1

{
(1−τ)(hx(aij)−c1)

2I{bij=1}−τ(1−τ)λ2

+τ(hx (aij)−c2)
2 I{bij=−1}+2(1+λ)τhx (aij) I{bij=−1}

− 2(1 + λ)(1− τ)hx (aij) I{bij=1},
}
, (6)

where τ := m+/ (m+ +m−) is the fraction of positive data. Note that f(x, c1, c2, ·) is strongly
concave for any (x, c1, c2) ∈ Rd+2.
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Figure 3: GANs under
“MNIST" dataset.

3) Generator Adverserial Networks(GANs): Although our paper
is focused on general non-convex-PL min-max problems, we believe
that our paper will benefit from comparing further experimental
results on the convergence performance of nonconvex-nonconcave
problems (e.g., GANs), since the non-convex-PL problem is a special
case for nonconvex-nonconcave min-max problems.

In our experiment, generator network is parameterized by x as GX

and the discriminator network parameterized by y as Dy. We adopt
the following loss function:

fi(x,y) = Eai∼Ptrue
[logDy (ai)]+Ez∼Pz [log (1−Dy (Gx(z)))]

where ai is the data point on client i and Ptrue is the distribution
of the true samples. z denotes the input noise vector and Pz is the
prior distribution of the noise vector for generating samples. We
have tested the convergence performance of our algorithms using the
MNIST dataset. We chose the learning rates as ηx,l = ηy,l = 10−2, ηx,g = ηy,g = 2, local updates
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K = 10. We have m = 100 clients and each client has n = 100 samples. Again, from Fig. 3, we can
observe that both our proposed algorithms FSGDA and FSGDA have better convergence performance
compared with the baselines.

Impact of the Local Steps: In this section, we run additional experiments to investigate the impact
of the local steps K on the training performance. We run FSGDA and SAGDA over the hetergenous
“a9a” [40] dataset with the regression model mentioned in Section 4. We fix the local step-size at
0.01, worker number at 100, and choose the number of local update rounds K from the discrete
set {2, 10, 20}. In terms of communication round, the gradient norm ‖∇φ(x)‖2 decreases as K
increases. This is due to the fact that the algorithm needs more communication round while K is
small, which matches our Corollary 2 and Corollary 3.
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Figure 4: Algorithm performance under different local K steps.

Impact of the Local Step-size: In this experiment, we choose the value of the local step-sizes from
the discrete set {0.0001, 0.001, 0.01} and fix worker number at 100, local update rounds at 10. As
shown in Fig. 5(a) and Fig.6(a) , larger local step-sizes lead to faster convergence rates.

Impact of the Global Step-size: we choose the global step-sizes value from the discrete set {2, 5, 10}
and fix worker number at 100, local update rounds at 10. As shown in Fig. 5(b) and 6(b) and, larger
global step-sizes lead to faster convergence rates.
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Figure 5: The FSGDA algorithm under different step-sizes.

B Proof

B.1 Proof for FSGDA

For notational simplicity and clarity, we have the following definitions.
Φ(x) = max

y∈Rd
f(x,y);

zt = (xt,yt) ;

ηx = ηx,gηx,l, ηy = ηy,gηy,l;

ux,t =
1

m

∑
i∈St

∇xfi(zt),uy,t =
1

m

∑
i∈St

∇yfi(zt).
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Figure 6: The SAGDA algorithm under different step-sizes.

For simplicity, we write the update step uniformly:

xt+1 = xt − ηxK(ux,t − ex,t),

yt+1 = yt + ηyK(uy,t − ey,t).

For FSGDA , the update rule is:

xt+1 = xt − ηx,gηx,l

 1

m

∑
i∈St

∑
j∈[K]

∇xfi(zjt,i, ξ
j
t,i)

 ,

yt+1 = yt + ηy,gηy,l

 1

m

∑
i∈St

∑
j∈[K]

∇yfi(zjt,i, ξ
j
t,i)

 ,

ex,t =
1

mK

∑
i∈St

∑
j∈[K]

(
∇xfi(zt)−∇xfi(zjt,i, ξ

j
t,i)
)
,

ēx,t = E[ex,t] =
1

mK

∑
i∈St

∑
j∈[K]

(
∇xfi(zt)−∇xfi(zjt,i)

)
,

ey,t =
1

mK

∑
i∈St

∑
j∈[K]

(
∇yfi(zt)−∇yfi(zjt,i, ξ

j
t,i)
)
,

ēy,t = E[ey,t] =
1

mK

∑
i∈St

∑
j∈[K]

(
∇yfi(zt)−∇yfi(zjt,i)

)
.

Note the above expectation is only on the stochastic noise.
Lemma 1.

E ‖∆xt‖2 = E‖ (ux,t − ex,t) ‖2 ≤ 4E ‖ēx,t‖2 + 4E ‖ux,t‖2 +
2

mK
σ2
x,

E ‖∆xt‖2 = E‖ (uy,t − ey,t) ‖2 ≤ 4E ‖ēy,t‖2 + 4E ‖uy,t‖2 +
2

mK
σ2
y.

Proof.

E‖ (ux,t − ex,t) ‖2 = E‖ (ux,t − ēx,t) + (ēx,t − ex,t) ‖2

≤ 2E‖ (ux,t − ēx,t) ‖2 + 2E‖ (ēx,t − ex,t) ‖2

≤ 4E‖ēx,t‖2 + 4E‖ux,t‖2 +
2

mK
σ2
x,

where the second inequality follows from the fact that {∇xfi(zjt,i, ξ
j
t,i)−∇xfi(z

j
t,i)} the martingale

difference sequence (see Lemma 4 in [28]).

The bound of ‖ (uy,t − ey,t) ‖2 follows from the similar proof.
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Lemma 2 (One Round Progress for Φ).

EΦ(xt+1)− Φ(xt) ≤ −
1

2
ηxK‖∇Φ(xt)‖2 −

1

4
ηxK‖∇xf(zt)‖2 + 2Lη2xK

2E ‖ux,t‖2

+ ηxK

(
3

2
+ 2LηxK

)
E ‖ēx,t‖2 + ηxK

L2
f

µ2
‖∇yf(zt)‖2 +

Lη2xK

m
σ2
x.

Proof. Due to the L-smoothness of Φ(x), we have one step update in expectation conditioned on
step t:

EΦ(xt+1)− Φ(xt) ≤ 〈∇Φ(xt),E[xt+1 − xt]〉+
L

2
E‖xt+1 − xt‖2

= 〈∇Φ(xt),−ηxKE [ux,t − ex,t]〉︸ ︷︷ ︸
A1

+
L

2
E‖ηxK (ux,t − ex,t) ‖2︸ ︷︷ ︸

A2

.

A1 = 〈∇Φ(xt),−ηxKE (∇xf(zt)− ēx,t)〉

= −1

2
ηxK‖∇Φ(xt)‖2 −

1

2
ηxKE‖∇xf(zt)− ēx,t‖2 +

1

2
ηxKE‖∇Φ(xt)−∇xf(zt) + ēx,t‖2

≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

4
ηxK‖∇xf(zt)‖2 +

3

2
ηxKE‖ēx,t‖2 + ηxK‖∇Φ(xt)−∇xf(zt)‖2,

where the last inequality follows from ‖a + b‖2 ≥ 1
2‖a‖

2 − ‖b‖2 and ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2.

A2 ≤ 2Lη2xK
2E ‖ēx,t‖2 + 2Lη2xK

2E ‖ux,t‖2 +
Lη2xK

m
σ2
x,

where the inequality is due to Lemma 1.

‖∇Φ(xt)−∇xf(zt)‖2 = L2
f‖y(xt)− y∗‖2

≤
L2
f

µ2
‖∇yf(zt)‖2 ,

where the last inequality is due to the PL condition (Theorem 2 in [42]).

Combining pieces together, we have:

EΦ(xt+1)− Φ(xt) = 〈∇Φ(xt),−ηxKE [ux,t − ex,t]〉︸ ︷︷ ︸
A1

+
L

2
E‖ηxK (ux,t − ex,t) ‖2︸ ︷︷ ︸

A2

≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

4
ηxK‖∇xf(zt)‖2 + 2Lη2xK

2E ‖ux,t‖2

+ ηxK

(
3

2
+ 2LηxK

)
E ‖ēx,t‖2 + ηxK

L2
f

µ2
‖∇yf(zt)‖2 +

Lη2xK

m
σ2
x.

Lemma 3 (One Round Progress for f ).

f(zt)− Ef(zt+1)

≤ 3

2
ηxK ‖∇xf(zt)‖2 + 2Lfη

2
xK

2E ‖ux,t‖2 + ηxK

(
1

2
+ 2LfηxK

)
E ‖ēx,t‖2 +

Lfη
2
xK

m
σ2
x

− 1

2
ηyK‖∇yf(zt)‖2 + 2Lfη

2
yK

2E ‖uy,t‖2 + ηyK

(
1

2
+ 2LfηyK

)
E ‖ēy,t‖2 +

Lfη
2
yK

m
σ2
y.
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Proof. Similarly, due to L-smoothness of f(z), we have:

f(zt)− Ef(zt+1) ≤ ηxKE 〈∇xf(zt),ux,t − ex,t〉 − ηyKE 〈∇yf(zt),uy,t − ey,t〉

+
Lfη

2
xK

2

2
E ‖ux,t − ex,t‖2 +

Lfη
2
yK

2

2
E ‖uy,t − ey,t‖2

= ηxKE 〈∇xf(zt),∇xf(zt)− ēx,t〉 − ηyKE 〈∇yf(zt),∇yf(zt)− ēy,t〉

+
Lfη

2
xK

2

2
E ‖ux,t − ex,t‖2 +

Lfη
2
yK

2

2
E ‖uy,t − ey,t‖2

≤ 3

2
ηxK ‖∇xf(zt)‖2 +

1

2
ηxKE ‖ēx,t‖2 −

1

2
ηyK ‖∇yf(zt)‖2 +

1

2
ηyKE ‖ēy,t‖2

+
Lfη

2
xK

2

2
E ‖ux,t − ex,t‖2 +

Lfη
2
yK

2

2
E ‖uy,t − ey,t‖2

≤ 3

2
ηxK ‖∇xf(zt)‖2 + 2Lfη

2
xK

2E ‖ux,t‖2 + ηxK

(
1

2
+ 2LfηxK

)
E ‖ēx,t‖2 +

Lfη
2
xK

m
σ2
x

− 1

2
ηyK‖∇yf(zt)‖2 + 2Lfη

2
yK

2E ‖uy,t‖2 + ηyK

(
1

2
+ 2LfηyK

)
E ‖ēy,t‖2 +

Lfη
2
yK

m
σ2
y.

Lemma 4 (Bounded Error for FSGDA).

E‖ēx,t‖2 ≤ L2
f

[
40K2η2x,l ‖∇xf(zt)‖2 + 40K2η2y,l ‖∇yf(zt)‖2 + 40K2η2x,lσ

2
x,G + 40K2η2y,lσ

2
y,G

+ 5Kη2x,lσ
2
x + 5Kη2y,lσ

2
y

]
,

E‖ēy,t‖2 ≤ L2
f

[
40K2η2x,l ‖∇xf(zt)‖2 + 40K2η2y,l ‖∇yf(zt)‖2 + 40K2η2x,lσ

2
x,G + 40K2η2y,lσ

2
y,G

+ 5Kη2x,lσ
2
x + 5Kη2y,lσ

2
y

]
.

Proof.

E‖ēx,t‖2 = E

∥∥∥∥∥∥ 1

mK

∑
i∈St

∑
j∈[K]

(
∇xfi(zt)−∇xfi(zjt,i)

)∥∥∥∥∥∥
2

≤ E

 1

K

∑
i∈St

∑
j∈[K]

∥∥∥(∇xfi(zt)−∇xfi(zjt,i))∥∥∥2


≤
L2
f

MK

∑
i∈[M ]

∑
j∈[K]

E
∥∥∥(zt − zjt,i

)∥∥∥2

E
∥∥∥(zt − zj+1

t,i

)∥∥∥2 = E
[∥∥∥xjt,i − xt − ηx,l∇xfi(zjt,i, ξ

j
t,i)
∥∥∥2]+ E

[∥∥∥yjt,i − yt − ηy,l∇yfi(zjt,i, ξ
j
t,i)
∥∥∥2]

≤ E
[∥∥∥xjt,i − xt − ηx,l∇xfi(zjt,i)

∥∥∥2]+ E
[∥∥∥yjt,i − yt − ηy,l∇yfi(zjt,i)

∥∥∥2]+ η2x,lσ
2
x + η2y,lσ

2
y

≤
(

1 +
1

2K − 1

)∥∥∥zjt,i − zt

∥∥∥2 + 2Kη2x,l

∥∥∥∇xfi (zjt,i)∥∥∥2 + 2Kη2y,l

∥∥∥∇yfi (zjt,i)∥∥∥2 + η2x,lσ
2
x + η2y,lσ

2
y

≤
(

1 +
1

2K − 1

)∥∥∥zjt,i − zt

∥∥∥2 + 4Kη2x,l

∥∥∥∇xfi (zjt,i)−∇xfi (zt)
∥∥∥2 + 4K ‖∇xfi (zt)‖2

+ 4Kη2y,l

∥∥∥∇yfi (zjt,i)−∇yfi (zt)
∥∥∥2 + 4Kη2y,l ‖∇yfi (zt)‖2 + η2x,lσ

2
x + η2y,lσ

2
y
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≤
(

1 +
1

2K − 1
+ 4K max{L2

fη
2
x,l, L

2
fη

2
y,l}
)∥∥∥zjt,i − zt

∥∥∥2
+ 4Kη2x,l ‖∇xfi (zt)‖2 + 4Kη2y,l ‖∇yfi (zt)‖2 + η2x,lσ

2
x + η2y,lσ

2
y

≤
(

1 +
1

K − 1

)∥∥∥zjt,i − zt

∥∥∥2 + 4K ‖∇xfi (zt)‖2 + 4Kη2y,l ‖∇yfi (zt)‖2 + η2x,lσ
2
x + η2y,lσ

2
y

≤
j−1∑
τ=0

(
1 +

1

K − 1

)τ [
4Kη2x,l ‖∇xfi (zt)‖2 + 4Kη2y,l ‖∇yfi (zt)‖2 + η2x,lσ

2
x + η2y,lσ

2
y

]
≤ 20K2η2x,l ‖∇xfi (zt)‖2 + 20K2η2y,l ‖∇yfi (zt)‖2 + 5Kη2x,lσ

2
x + 5Kη2y,lσ

2
y

≤ 40K2η2x,l ‖∇xf(zt)‖2 + 40K2η2y,l ‖∇yf(zt)‖2 + 40K2η2x,lσ
2
x,G + 40K2η2y,lσ

2
y,G

+ 5Kη2x,lσ
2
x + 5Kη2y,lσ

2
y,

where the first inequality is due to bounded variance of stochastic gradient, the second and third
inequalities follow from the fact ‖a + b‖2 ≤

(
1 + 1

ε

)
‖a‖2 + (1 + ε) ‖b‖2, the forth inequality is

due to smoothness of f in x and y, fifth inequality holds if

4K max{L2
fη

2
x,l, L

2
fη

2
y,l} ≤

1

2(K − 1)(2K − 1)
, (7)

the second last inequality follows from the
∑j−1
τ=0

(
1 + 1

K−1

)τ
≤ (K − 1)

[(
1 + 1

K−1

)K
− 1

]
≤

5K, and the last inequality is due to the Assumption 4.

Plugging into the bound of ‖ēx,t‖2, we have:

‖ēx,t‖2 ≤ L2
f

[
40K2η2x,l ‖∇xf(zt)‖2 + 40K2η2y,l ‖∇yf(zt)‖2 + 40K2η2x,lσ

2
x,G + 40K2η2y,lσ

2
y,G

+ 5Kη2x,lσ
2
x + 5Kη2y,lσ

2
y

]
.

The bound of ‖ēy,t‖2 follows from the similar proof.

Theorem 2 (Convergence Rate for FSGDA). Under Assumptions 1- 4, define Lt = Φ(xt) −
1
10f(xt,yt), if the learning rates ηx,g , ηx,l, ηy,g , and ηy,l satisfy:

8K(K − 1)(2K − 1)L2
f max{η2x,l, η2y,l} ≤ 1,

a1 − a340L2
fK

2η2x,l −
ηy
ηx
a440L2

fK
2η2x,l ≥ 0,

a2 − a3
ηx
ηy

40L2
fK

2η2y,l − a440L2
fK

2η2y,l ≥ 0,

where a1 =
(

1
10 − 2(2L+ 1

5Lf )ηxK
)
, a2 =

(
1
20 −

2
5LfηyK −

ηx
ηy

L2
f

µ2

)
, a3 =(

31
20 + (2L+ 1

5Lf )ηxK
)

and a4 =
(

1
20 + 1

5LfηyK
)
, then the output sequence {xt} gener-

ated by FSGDA satisfies:

1

T

T−1∑
t=0

E‖∇Φ(xt)‖2 ≤
2 (L0 − LT )

ηxKT︸ ︷︷ ︸
optimization error

+
2ηx
m

(
L+

Lf
100

)
σ2
x +

Lfη
2
y

5mηx
σ2
y︸ ︷︷ ︸

statistical error

+ ψ3︸︷︷︸
local

update error

+ ψ4︸︷︷︸
sampling
variance

.

Here, ψ3 and ψ4 are defined as follows:

ψ3 = 2

(
a3L

2
f + a4

ηy
ηx
L2
f

)[
40K2η2x,lσ

2
x,G + 40K2η2y,lσ

2
y,G + 5Kη2x,lσ

2
x + 5Kη2y,lσ

2
y

]
,

ψ4 =

(
(2L+

1

5
Lf )ηxK

)(
1− m

M

) 2

m
σ2
x,G +

2

5m
LfηyK

ηy
ηx

(
1− m

M

)
σ2
y,G,
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Proof. Define potential function Lt = Φ(xt)− 1
10f(zt),

ELt+1 − Lt = EΦ(xt+1)− Φ(xt) +
1

10
(f(zt)− Ef(zt+1))

≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

10
ηxK‖∇xf(zt)‖2 +

(
(2L+

1

5
Lf )η2xK

2

)
E ‖ux,t‖2

− ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
‖∇yf(zt)‖2 +

1

5
Lfη

2
yK

2E ‖uy,t‖2

+ ηxK

(
31

20
+ (2L+

1

5
Lf )ηxK

)
E ‖ēx,t‖2 + ηyK

(
1

20
+

1

5
LfηyK

)
E ‖ēy,t‖2

+
η2xK

m

(
L+

Lf
10

)
σ2
x +

Lfη
2
yK

10m
σ2
y

≤ −1

2
ηxK‖∇Φ(xt)‖2 − ηxK

(
1

10
− 2(2L+

1

5
Lf )ηxK

)
︸ ︷︷ ︸

a1

‖∇xf(zt)‖2

− ηyK

(
1

20
− 2

5
LfηyK −

ηx
ηy

L2
f

µ2

)
︸ ︷︷ ︸

a2

‖∇yf(zt)‖2

+

(
(2L+

1

5
Lf )η2xK

2

)(
1− m

M

) 2

m
σ2
x,G +

1

5
Lfη

2
yK

2
(

1− m

M

) 2

m
σ2
y,G

+ ηxK

(
31

20
+ (2L+

1

5
Lf )ηxK

)
︸ ︷︷ ︸

a3

E ‖ēx,t‖2 + ηyK

(
1

20
+

1

5
LfηyK

)
︸ ︷︷ ︸

a4

E ‖ēy,t‖2

+
η2xK

m

(
L+

Lf
10

)
σ2
x +

Lfη
2
yK

10m
σ2
y

≤ −1

2
ηxK‖∇Φ(xt)‖2 +

η2xK

m

(
L+

Lf
10

)
σ2
x +

Lfη
2
yK

10m
σ2
y

+

(
(2L+

1

5
Lf )η2xK

2

)(
1− m

M

) 2

m
σ2
x,G +

1

5
Lfη

2
yK

2
(

1− m

M

) 2

m
σ2
y,G

+K
(
a3L

2
fηx + a4ηyL

2
f

) [
40K2η2x,lσ

2
x,G + 40K2η2y,lσ

2
y,G + 5Kη2x,lσ

2
x + 5Kη2y,lσ

2
y

]
,

where the second inequality is due to E‖ux,t‖2 ≤ 2‖∇xf(zt)‖2 + 2
(
1− m

M

) σ2
x,G

m and E‖uy,t‖2 ≤
2‖∇yf(zt)‖2 + 2

(
1− m

M

) σ2
y,G

m , the last inequality follows from the conditions:

a1 − a340L2
fK

2η2x,l −
ηy
ηx
a440L2

fK
2η2x,l ≥ 0, (8)

a2 − a3
ηx
ηy

40L2
fK

2η2y,l − a440L2
fK

2η2y,l ≥ 0. (9)

Telescoping and rearranging, we have:

1

T

T−1∑
t=0

‖∇Φ(xt)‖2 ≤
2 (L0 − L∗)
ηxKT

+
2ηx
m

(
L+

Lf
100

)
σ2
x +

Lfη
2
y

5mηx
σ2
y

+

(
(2L+

1

5
Lf )ηxK

)(
1− m

M

) 2

m
σ2
x,G +

1

5
LfηyK

ηy
ηx

(
1− m

M

) 2

m
σ2
y,G

+ 2

(
a3L

2
f + a4

ηy
ηx
L2
f

)[
40K2η2x,lσ

2
x,G + 40K2η2y,lσ

2
y,G + 5Kη2x,lσ

2
x + 5Kη2y,lσ

2
y

]
.
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B.2 Proof for SAGDA Option I

For SAGDA Option I, the update rule is:

xt+1 = xt − ηx,gηx,l

 1

m

∑
i∈St

∑
j∈[K]

(
∇xfi(zjt,i, ξ

j
t,i)− vix + v̄x,t

) ,
yt+1 = yt + ηy,gηy,l

 1

m

∑
i∈St

∑
j∈[K]

(
∇yfi(zjt,i, ξ

j
t,i)− viy + v̄y,t

) ,
ex,t =

1

mK

∑
i∈St

∑
j∈[K]

[
∇xfi(zt)−

(
∇xfi(zjt,i, ξ

j
t,i)− vix + v̄x,t

)]
ēx,t = E[ex,t] =

1

mK

∑
i∈St

∑
j∈[K]

(
∇xfi(zt)−∇xfi(zjt,i)

)
,

ey,t =
1

mK

∑
i∈St

∑
j∈[K]

[
∇yfi(zt)−

(
∇yfi(zjt,i, ξ

j
t,i)− viy + v̄y,t

)]
ēy,t = E[ey,t] =

1

mK

∑
i∈St

∑
j∈[K]

(
∇yfi(zt)−∇yfi(zjt,i)

)
,

where we define vix = ∇xfi(wt,i, ξ) and v̄x,t = 1
M

∑
i∈[M ] v

i
x with a sequence of parameters wt,i

such that

wt,i :=

{
zt−1, if i ∈ St−1,
wt−1,i, otherwise.

We further have the following definition for notational clarity:

∆xt =
1

mK

∑
i∈St

∑
j∈[K]

[
∇xfi(zjt,i, ξ

j
t,i)− vix + v̄x,t

]
,

∆yt =
1

mK

∑
i∈St

∑
j∈[K]

[
∇yfi(zjt,i, ξ

j
t,i)− viy + v̄y,t

]
,

Ψt =
1

MK

∑
i∈[M ]

∑
j∈[K]

E
∥∥∥zjt,i − zt

∥∥∥2 ,
Γt =

1

M

∑
i∈[M ]

E ‖wt,i − zt‖2 .

Lemma 5 (Iterative Control Variate).

Γt =
(

1− m

2M

)
Γt−1 +

(
m

M
+
M

m
− 1

)
E ‖zt − zt−1‖2 .

Proof.

Γt =
1

M

∑
i∈[M ]

E ‖wt,i − zt‖2

=
(

1− m

M

) 1

M

∑
i∈[M ]

E ‖wt−1,i − zt‖2 +
m

M
E ‖zt−1 − zt‖2

≤
(

1− m

M

)(
1 +

1

b

)
Γt−1 +

[(
1− m

M

)
(1 + b) +

m

M

]
E ‖zt − zt−1‖2

=
(

1− m

2M

)
Γt−1 +

(
m

M
+
M

m
− 1

)
E ‖zt − zt−1‖2 ,

where we set b = 2M
m − 1.
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Lemma 6 (Local Step Distance for SAGDA Option I). ∀i ∈ [M ], j ∈ [K], we can bound the local
step distance as follows:

1

M

∑
i∈[M ]

E
∥∥∥(zjt,i − zt

)∥∥∥2 ≤ 160K2
(
η2x,l + η2y,l

)
L2
fΓt + 10K2

(
η2x,lσ

2
x + η2y,lσ

2
y

)
+ 40K2

(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)
.

Proof. First, we bound the local update as follows:

E
∥∥∥(∇xfi(zjt,i, ξjt,i)− vix + v̄x,t

)∥∥∥2
≤ 4

[
E
∥∥∥∇xfi(zjt,i)−∇xfi(zt)∥∥∥2 + E

∥∥E[vix]−∇xfi(zt)
∥∥2 + E ‖E[v̄x,t]−∇xf(zt)‖2

+ ‖∇xf(zt)‖2
]

+ σ2
x

≤ 4L2
fE
∥∥∥zjt,i − zt

∥∥∥2 + 4L2
fE ‖wt,i − zt‖2 + 4L2

fE ‖E[v̄x,t]−∇xf(zt)‖2

+ 4E ‖∇xf(zt)‖2 + σ2
x.

That is,

1

M

∑
i∈[M ]

E
∥∥∥(∇xfi(zjt,i, ξjt,i)− vix + v̄x,t

)∥∥∥2
≤ 4L2

f

1

M

∑
i∈[M ]

E
∥∥∥zjt,i − zt

∥∥∥2 + 8L2
fΓt + σ2

x + 4E ‖∇xf(zt)‖2 .

1

M

∑
i∈[M ]

E
[∥∥∥xj+1

t,i − xt

∥∥∥2] =
1

M

∑
i∈[M ]

E
[∥∥∥xjt,i − xt − ηx,l

(
∇xfi(zjt,i, ξ

j
t,i)− vix,t + v̄x,t

)∥∥∥2]

≤
(

1 +
1

2K − 1

)
1

M

∑
i∈[M ]

E
∥∥∥xjt,i − xt

∥∥∥2 + 2Kη2x,l
1

M

∑
i∈[M ]

E
∥∥∥∇xfi(zjt,i, ξjt,i)− vix,t + v̄x,t

∥∥∥2
≤
(

1 +
1

2K − 1
+ 8KL2

fη
2
x,l

)
1

M

∑
i∈[M ]

E
∥∥∥xjt,i − xt

∥∥∥2 + 32Kη2x,lL
2
fΓt

+ 2Kη2x,lσ
2
x + 8Kη2x,lE ‖∇xf(zt)‖2 .

We can bound
∥∥∥yj+1

t,i − yt

∥∥∥2 in the same way, and then we have

1

M

∑
i∈[M ]

E
∥∥∥(zj+1

t,i − zt

)∥∥∥2
≤
(

1 +
1

2K − 1
+ 8KL2

f max{η2x,l, η2y,l}
)

1

M

∑
i∈[M ]

E
∥∥∥zjt,i − zt

∥∥∥2 +

[
32K

(
η2x,l + η2y,l

)
L2
fΓt

+ 2K
(
η2x,lσ

2
x + η2y,lσ

2
y

)
+ 8K

(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)]
≤
(

1 +
1

K − 1

)
1

M

∑
i∈[M ]

E
∥∥∥zjt,i − zt

∥∥∥2 [32K
(
η2x,l + η2y,l

)
L2
fΓt

+ 2K
(
η2x,lσ

2
x + η2y,lσ

2
y

)
+ 8K

(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)]
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≤
j−1∑
τ=0

(
1 +

1

K − 1

)τ [
32K

(
η2x,l + η2y,l

)
L2
fΓt

+ 2K
(
η2x,lσ

2
x + η2y,lσ

2
y

)
+ 8K

(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)]
≤ 160K2

(
η2x,l + η2y,l

)
L2
fΓt + 10K2

(
η2x,lσ

2
x + η2y,lσ

2
y

)
+ 40K2

(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)
.

The learning rates should satisfy

4K max{L2
fη

2
x,l, L

2
fη

2
y,l} ≤

1

2(K − 1)(2K − 1)
, (10)

Lemma 7.

E‖∆xt‖2 ≤ 4L2
fΨt + 4L2

fΓt + 4 ‖∇xf(zt)‖2 +
9

mK
σ2
x,

E‖∆yt‖2 ≤ 4L2
fΨt + 4L2

fΓt + 4 ‖∇yf(zt)‖2 +
9

mK
σ2
y,

E‖zt+1 − zt‖2 ≤ 4L2
fK

2
(
η2x + η2y

)
Ψt + 4L2

fK
2
(
η2x + η2y

)
Γt

+ 4K2
(
η2x ‖∇xf(zt)‖2 + η2y ‖∇yf(zt)‖2

)
+

9K

m

(
η2xσ

2
x + η2yσ

2
y

)
.

Proof.

E‖∆xt‖2 ≤ E

∥∥∥∥∥∥ 1

mK

∑
i∈St

∑
j∈[K]

[
∇xfi(zjt,i)− E[vix] + E[v̄x,t]

]∥∥∥∥∥∥
2

+
9

mK
σ2
x

≤ 4

MK

∑
i∈[M ]

∑
j∈[K]

[
E
∥∥∥∇xfi(zjt,i)−∇xfi(zt)∥∥∥2 + E

∥∥E[vix]−∇xfi(zt)
∥∥2

+ E ‖E[v̄x,t]−∇xf(zt)‖2 + ‖∇xf(zt)‖2
]

+
9

mK
σ2
x

≤ 4

MK

∑
i∈[M ]

∑
j∈[K]

[
L2
fE
∥∥∥zjt,i − zt

∥∥∥2 + L2
fE ‖wt,i − zt‖2 + ‖∇xf(zt)‖2

]
+

9

mK
σ2
x

= 4L2
fΨt + 4L2

fΓt + 4 ‖∇xf(zt)‖2 +
9

mK
σ2
x,

E[vix,t] = ∇xfi(zt) and E[v̄x,t] = ∇xf(zt) where the second inequality is due to Lemma 4 in [28]).

The bound of ‖ (uy,t − ey,t) ‖2 follows from the similar proof.

Lemma 8 (Bounded Error for SAGDA Option I).
E‖ēx,t‖2 ≤ L2

fΨt,

E‖ēy,t‖2 ≤ L2
fΨt.

Proof.

E‖ēx,t‖2 = E

∥∥∥∥∥∥ 1

mK

∑
i∈St

∑
j∈[K]

(
∇xfi(zt)−∇xfi(zjt,i)

)∥∥∥∥∥∥
2

≤ 1

mK
E

∑
i∈St

∑
j∈[K]

∥∥∥(∇xfi(zt)−∇xfi(zjt,i))∥∥∥2

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≤
L2
f

MK

∑
i∈[M ],j∈[K]

E
∥∥∥(zt − zjt,i

)∥∥∥2
= L2

fΨt.

E‖ēy,t‖2 has the same bounds.

Theorem 1 (Convergence Rate of SAGDA). Under Assumptions 1- 3, define Lt = Φ(xt) −
1
10f(xt,yt), the output sequence {xt} generated by SAGDA satisfies:

• For Option I with learning rates ηx,g , ηx,l, ηy,g , and ηy,l satisfying

8K(K − 1)(2K − 1)L2
f max{η2x,l, η2y,l} ≤ 1,

1

2
− 4a2L

2
fK

2
(
η2x + η2y

)
−
(
a1 + a24L2

fK
2
(
η2x + η2y

))
160K2

(
η2x,l + η2y,l

)
L2
f ≥ 0,[

1

10
ηxK − 4a2K

2η2x

]
−
[
a1 + a24L2

fK
2
(
η2x + η2y

)]
40K2η2x,l ≥ 0,[

ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
− 4a2K

2η2y

]
−
[
a1 + a24L2

fK
2
(
η2x + η2y

)]
40K2η2y,l ≥ 0,

where a1 = KL2
f

(
31
20ηx + 1

20ηy
)

and a2 = 1
2

(
L+

Lf

10

)
+ 1 + M2

m2 − M
m , it holds that

1

T

T−1∑
t=0

E‖∇Φ(xt)‖2 ≤
2 (L0 − L∗)
ηxKT︸ ︷︷ ︸

optimization error

+

[(
L+

Lf
10

)
+ 4

]
9

mηx

(
η2xσ

2
x + η2yσ

2
y

)
︸ ︷︷ ︸

statistical error

+ ψ1︸︷︷︸
local update error

where ψ1 is defined as follows:

ψ1 =

[
L2
f

(
31

20
+

1

20

ηy
ηx

)
+

[
1

2

(
L+

Lf
10

)
+ 2

]
4L2

fK

(
ηx +

η2y
ηx

)] [
20K2

(
η2x,lσ

2
x + η2y,lσ

2
y

)]
.

• For Option II with learning rates ηx,g , ηx,l, ηy,g , and ηy,l satisfying

8K(K − 1)(2K − 1)L2
f max{η2x,l, η2y,l} ≤ 1,

1

10
ηxK −

(
2

(
L+

Lf
10

)
η2xK

2 + 40K2η2x,lb1

)
≥ 0,

ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
−
(

1

5
Lfη

2
yK

2 + 40K2η2y,lb1

)
≥ 0,

where b1 = L2
f

[
31
20ηxK + 1

20ηyK + 2
(
L+

Lf

10

)
η2xK

2 + 1
5Lfη

2
yK

2
]
, it holds that

1

T

T−1∑
t=0

E‖∇Φ(xt)‖2 ≤
2 (L0 − L∗)
ηxKT

+

[(
L+

Lf
10

)
9ηx
m

σ2
x + +

9

10
Lf

η2y
mηx

σ2
y

]
+ ψ2.

where ψ2 is defined as follows:

ψ2 = L2
f

[
31

20
K +

1

20

ηy
ηx
K + 2

(
L+

Lf
10

)
ηxK

2 +
1

5
Lf

η2y
ηx
K2

]
[10 (16K + 1)]

(
η2x,lσ

2
x + η2y,lσ

2
y

)
.

Proof. Similar to the bound of Φ and f in (2) and (3), we have the following results:

EΦ(xt+1)− Φ(xt) ≤ −
1

2
ηxK‖∇Φ(xt)‖2 −

1

4
ηxK‖∇xf(zt)‖2 +

3

2
ηxKE ‖ēx,t‖2
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+ ηxK
L2
f

µ2
‖∇yf(zt)‖2 +

1

2
Lη2xK

2E ‖ux,t − ex,t‖2 .

f(zt)− Ef(zt+1) ≤ 3

2
ηxK ‖∇xf(zt)‖2 +

1

2
ηxKE ‖ēx,t‖2 +

1

2
ηyKE ‖ēy,t‖2 −

1

2
ηyK‖∇yf(zt)‖2

+
1

2
Lfη

2
xK

2 ‖ux,t − ex,t‖2 +
1

2
Lfη

2
yK

2 ‖uy,t − ey,t‖2 .

Define potential function Lt = Φ(xt)− 1
10f(zt),

ELt+1 − Lt = EΦ(xt+1)− Φ(xt) +
1

10
(f(zt)− Ef(zt+1))

≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

10
ηxK ‖∇xf(zt)‖2 − ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
‖∇yf(zt)‖2

+
31

20
ηxK ‖ēx,t‖2 +

1

20
ηyK ‖ēy,t‖2 +

1

2

(
L+

Lf
10

)
η2xK

2E ‖∆xt‖2 +
1

20
Lfη

2
yK

2E ‖∆yt‖2

≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

10
ηxK ‖∇xf(zt)‖2 − ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
‖∇yf(zt)‖2

+KL2
f

(
31

20
ηx +

1

20
ηy

)
Ψt +

1

2

(
L+

Lf
10

)
E ‖zt+1 − zt‖2

(ELt+1 + αΓt+1)− (Lt + αΓt)

≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

10
ηxK ‖∇xf(zt)‖2 − ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
‖∇yf(zt)‖2

+KL2
f

(
31

20
ηx +

1

20
ηy

)
Ψt +

1

2

(
L+

Lf
10

)
E ‖zt+1 − zt‖2 + αΓt+1 − αΓt

≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

10
ηxK ‖∇xf(zt)‖2 − ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
‖∇yf(zt)‖2

+KL2
f

(
31

20
ηx +

1

20
ηy

)
︸ ︷︷ ︸

a1

Ψt +

[
1

2

(
L+

Lf
10

)
+ α

(
m

M
+
M

m
− 1

)]
︸ ︷︷ ︸

a2

E ‖zt+1 − zt‖2 − α
m

2M
Γt

≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

10
ηxK ‖∇xf(zt)‖2 − ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
‖∇yf(zt)‖2

+
[
a1 + a24L2

fK
2
(
η2x + η2y

)]
Ψt +

[
4a2L

2
fK

2
(
η2x + η2y

)
− α m

2M

]
Γt

+ a2

[
4K2

(
η2x ‖∇xf(zt)‖2 + η2y ‖∇yf(zt)‖2

)
+

9K

m

(
η2xσ

2
x + η2yσ

2
y

)]
≤ −1

2
ηxK‖∇Φ(xt)‖2 −

[
1

10
ηxK − 4a2K

2η2x

]
‖∇xf(zt)‖2

−

[
ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
− 4a2K

2η2y

]
‖∇yf(zt)‖2 +

[
a1 + a24L2

fK
2
(
η2x + η2y

)]
×[

10K2
(
η2x,lσ

2
x + η2y,lσ

2
y

)
+ 40K2

(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)]
−
[
α
m

2M
− 4a2L

2
fK

2
(
η2x + η2y

)
−
(
a1 + a24L2

fK
2
(
η2x + η2y

))
160K2

(
η2x,l + η2y,l

)
L2
f

]
Γt

+ a2
9K

m

(
η2xσ

2
x + η2yσ

2
y

)
,
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where we can set α = M
m and requires the learning rates ηx, ηy and ηx,l, ηy,l satisfy[

α
m

2M
− 4a2L

2
fK

2
(
η2x + η2y

)
−
(
a1 + a24L2

fK
2
(
η2x + η2y

))
160K2

(
η2x,l + η2y,l

)
L2
f

]
≥ 0,

(11)[
1

10
ηxK − 4a2K

2η2x

]
−
[
a1 + a24L2

fK
2
(
η2x + η2y

)]
40K2η2x,l ≥ 0, (12)[

ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
− 4a2K

2η2y

]
−
[
a1 + a24L2

fK
2
(
η2x + η2y

)]
40K2η2y,l ≥ 0. (13)

(ELt+1 + αΓt+1)− (Lt + αΓt)

≤ −1

2
ηxK‖∇Φ(xt)‖2 +

[
a1 + a24L2

fK
2
(
η2x + η2y

)] [
10K2

(
η2x,lσ

2
x + η2y,lσ

2
y

)]
+ a2

9K

m

(
η2xσ

2
x + η2yσ

2
y

)
≤ −1

2
ηxK‖∇Φ(xt)‖2 +

[
1

2

(
L+

Lf
10

)
+ 2

]
9K

m

(
η2xσ

2
x + η2yσ

2
y

)
+

[
KL2

f

(
31

20
ηx +

1

20
ηy

)
+

[
1

2

(
L+

Lf
10

)
+ 2

]
4L2

fK
2
(
η2x + η2y

)] [
10K2

(
η2x,lσ

2
x + η2y,lσ

2
y

)]
Note that Γ0 = 0.

Telescoping and rearranging, we have:

1

T

T−1∑
t=0

E‖∇Φ(xt)‖2 ≤
2 (L0 − L∗)
ηxKT

+

[(
L+

Lf
10

)
+ 4

]
9

mηx

(
η2xσ

2
x + η2yσ

2
y

)
+

[
L2
f

(
31

20
+

1

20

ηy
ηx

)
+

[
1

2

(
L+

Lf
10

)
+ 2

]
4L2

fK

(
ηx +

η2y
ηx

)] [
20K2

(
η2x,lσ

2
x + η2y,lσ

2
y

)]
.

B.3 Proof for SAGDA Option II

For SAGDA Option II, the update rule is:

xt+1 = xt − ηx,gηx,l

 1

m

∑
i∈St

∑
j∈[K]

(
∇xfi(zjt,i, ξ

j
t,i)−∇xfi(zt, ξt,i) +

1

m

∑
i∈St

∇xfi(zt, ξt,i)

) ,
yt+1 = yt + ηy,gηy,l

 1

m

∑
i∈St

∑
j∈[K]

(
∇yfi(zjt,i, ξ

j
t,i)−∇yfi(zt, ξt,i) +

1

m

∑
i∈St

∇yfi(zt, ξt,i)

) ,
ex,t =

1

mK

∑
i∈St

∑
j∈[K]

[
∇xfi(zt)−

(
∇xfi(zjt,i, ξ

j
t,i)−∇xfi(zt, ξt,i) +

1

m

∑
i∈St

∇xfi(zt, ξt,i)

)]

=
1

mK

∑
i∈St

∑
j∈[K]

[
∇xfi(zt)−∇xfi(zjt,i, ξ

j
t,i)
]
,

ēx,t = E[ex,t] =
1

mK

∑
i∈St

∑
j∈[K]

(
∇xfi(zt)−∇xfi(zjt,i)

)
,

ey,t =
1

mK

∑
i∈St

∑
j∈[K]

[
∇yfi(zt)−

(
∇yfi(zjt,i, ξ

j
t,i)−∇yfi(zt, ξt,i) +

1

m

∑
i∈St

∇yfi(zt, ξt,i)

)]

=
1

mK

∑
i∈St

∑
j∈[K]

(
∇yfi(zt)−∇yfi(zjt,i, ξ

j
t,i)
)
,

26



ēy,t = E[ey,t] =
1

mK

∑
i∈St

∑
j∈[K]

(
∇yfi(zt)−∇yfi(zjt,i)

)
.

Lemma 9.

E‖ (ux,t − ex,t) ‖2 ≤
4

MK

∑
i∈[M ]

∑
j∈[K]

[
L2
fE
∥∥∥zjt,i − zt

∥∥∥2 + ‖∇xf(zt)‖2
]

+
9

mK
σ2
x,

E‖ (uy,t − ey,t) ‖2 ≤
4

MK

∑
i∈[M ]

∑
j∈[K]

[
L2
fE
∥∥∥zjt,i − zt

∥∥∥2 + ‖∇yf(zt)‖2
]

+
9

mK
σ2
y.

Proof.

E‖ (ux,t − ex,t) ‖2 ≤ E

∥∥∥∥∥∥ 1

mK

∑
i∈St

∑
j∈[K]

[
∇xfi(zjt,i)− E[vix,t] + E[v̄x,t]

]∥∥∥∥∥∥
2

+
9

mK
σ2
x

≤ 4

MK

∑
i∈[M ]

∑
j∈[K]

[
E
∥∥∥∇xfi(zjt,i)−∇xfi(zt)∥∥∥2 + E

∥∥E[vix,t]−∇xfi(zt)
∥∥2

+ E ‖E[v̄x,t]−∇xf(zt)‖2 + ‖∇xf(zt)‖2
]

+
9

mK
σ2
x

≤ 4

MK

∑
i∈[M ]

∑
j∈[K]

[
L2
fE
∥∥∥zjt,i − zt

∥∥∥2 + ‖∇xf(zt)‖2
]

+
9

mK
σ2
x,

where the last inequality is due to E[vix,t] = ∇xfi(zt) and E[v̄x,t] = ∇xf(zt), and the second
inequality is due to Lemma 4 in [28]).

The bound of ‖ (uy,t − ey,t) ‖2 follows from the similar proof.

Lemma 10 (Bounded Error for SAGDA Option II).

E‖ēx,t‖2 ≤ L2
f

MK

∑
i∈[M ],j∈[K] E

∥∥∥(zt − zjt,i

)∥∥∥2 ,
E‖ēy,t‖2 ≤ L2

f

MK

∑
i∈[M ],j∈[K] E

∥∥∥(zt − zjt,i

)∥∥∥2 .
Proof.

E‖ēx,t‖2 = E

∥∥∥∥∥∥ 1

mK

∑
i∈St

∑
j∈[K]

(
∇xfi(zt)−∇xfi(zjt,i)

)∥∥∥∥∥∥
2

≤ 1

mK
E

∑
i∈St

∑
j∈[K]

∥∥∥(∇xfi(zt)−∇xfi(zjt,i))∥∥∥2


≤
L2
f

MK

∑
i∈[M ],j∈[K]

E
∥∥∥(zt − zjt,i

)∥∥∥2 .
E‖ēy,t‖2 has the same bounds.

Lemma 11 (Local Step Distance for SAGDA Option II). ∀i ∈ [M ], j ∈ [K], we can bound the local
step distance as follows:

E
∥∥∥(zt − zjt,i

)∥∥∥2
≤ 5K (16K + 1) η2x,lσ

2
x + 5K (16K + 1) η2y,lσ

2
y + 40K2

(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)
.
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Proof.

E
∥∥∥(zt − zj+1

t,i

)∥∥∥2 = E
[∥∥∥xjt,i − xt − ηx,l

(
∇xfi(zjt,i, ξ

j
t,i)− vix,t + v̄x,t

)∥∥∥2]
+ E

[∥∥∥yjt,i − yt + ηy,l

(
∇yfi(zjt,i, ξ

j
t,i)− vix,t + v̄y,t

)∥∥∥2]
= E

[∥∥∥xjt,i − xt − ηx,l
(
∇xfi(zjt,i)− vix,t + v̄x,t

)∥∥∥2]+ η2x,lσ
2
x

+ E
[∥∥∥yjt,i − yt + ηy,l

(
∇yfi(zjt,i)− vix,t + v̄y,t

)∥∥∥2]+ η2y,lσ
2
y

=

(
1 +

1

2K − 1

)
E
∥∥∥xjt,i − xt

∥∥∥2 + 2KE
∥∥∥ηx,l (∇xfi(zjt,i)− vix,t + v̄x,t

)∥∥∥2 + η2x,lσ
2
x

+

(
1 +

1

2K − 1

)
E
∥∥∥yjt,i − yt

∥∥∥2 + 2KE
∥∥∥ηy,l (∇yfi(zjt,i)− vix,t + v̄y,t

)∥∥∥2 + η2y,lσ
2
y

=

(
1 +

1

2K − 1

)
E
∥∥∥zjt,i − zt

∥∥∥2 + 2KE
∥∥∥ηx,l (∇xfi(zjt,i)− vix,t + v̄x,t

)∥∥∥2 + η2x,lσ
2
x

+ 2KE
∥∥∥ηy,l (∇yfi(zjt,i)− vix,t + v̄y,t

)∥∥∥2 + η2y,lσ
2
y

≤
(

1 +
1

2K − 1

)
E
∥∥∥zjt,i − zt

∥∥∥2 + 2Kη2x,l

[
4L2

fE
∥∥∥zjt,i − zt

∥∥∥2 + 8σ2
x + 4E ‖∇xf(zt)‖2

]
+ 2Kη2y,l

[
4L2

fE
∥∥∥zjt,i − zt

∥∥∥2 + 8σ2
y + 4E ‖∇yf(zt)‖2

]
+ η2x,lσ

2
x + η2y,lσ

2
y

≤
(

1 +
1

2K − 1
+ 8K max{L2

fη
2
x,l, L

2
fη

2
y,l}
)
E
∥∥∥zjt,i − zt

∥∥∥2 + (16K + 1) η2x,lσ
2
x

+ (16K + 1) η2y,lσ
2
y + 8K

(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)
≤
(

1 +
1

K − 1

)
E
∥∥∥zjt,i − zt

∥∥∥2 + (16K + 1) η2x,lσ
2
x

+ (16K + 1) η2y,lσ
2
y + 8K

(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)
≤

j−1∑
τ=0

(
1 +

1

K − 1

)τ [
(16K + 1) η2x,lσ

2
x + (16K + 1) η2y,lσ

2
y

+ 8K
(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)]
≤ 5K (16K + 1) η2x,lσ

2
x + 5K (16K + 1) η2y,lσ

2
y + 40K2

(
η2x,lE ‖∇xf(zt)‖2 + η2y,lE ‖∇yf(zt)‖2

)
,

v̄x,t = 1
m

∑
i∈St
∇xfi(zt, ξt,i) and vix,t = ∇xfi(zt, ξt,i); v̄y,t = 1

m

∑
i∈St
∇yfi(zt, ξt,i) and

v̄iy,t = ∇yfi(zt, ξt,i); where the first inequality is due to bounded variance of stochastic gradient,
the second and third inequalities follow from the fact ‖a + b‖2 ≤

(
1 + 1

ε

)
‖a‖2 + (1 + ε) ‖b‖2, the

forth inequality is due to smoothness of f in x and y, fifth inequality holds if

4K max{L2
fη

2
x,l, L

2
fη

2
y,l} ≤

1

2(K − 1)(2K − 1)
, (14)

and the last inequality follows from the
∑j−1
τ=0

(
1 + 1

K−1

)τ
≤ (K− 1)

[(
1 + 1

K−1

)K
− 1

]
≤ 5K.

E
∥∥∥(∇xfi(zjt,i)− vix,t + v̄x,t

)∥∥∥2
= E

∥∥∥(∇xfi(zjt,i)−∇xfi(zt))+
(
∇xfi(zt)− vix,t

)
+ (v̄x,t −∇xf(zt)) +∇xf(zt)

∥∥∥2
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≤ 4E
∥∥∥∇xfi(zjt,i)−∇xfi(zt)∥∥∥2 + 4E

∥∥∇xfi(zt)− vix,t
∥∥2 + 4E ‖v̄x,t −∇xf(zt)‖2 + 4E ‖∇xf(zt)‖2

≤ 4L2
fE
∥∥∥zjt,i − zt

∥∥∥2 + 8σ2
x + 4E ‖∇xf(zt)‖2

Proof. Similar to the bound of Φ and f in (2) and (3), we have the following results:

EΦ(xt+1)− Φ(xt) ≤ −
1

2
ηxK‖∇Φ(xt)‖2 −

1

4
ηxK‖∇xf(zt)‖2 +

3

2
ηxKE ‖ēx,t‖2

+ ηxK
L2
f

µ2
‖∇yf(zt)‖2 +

1

2
Lη2xK

2E ‖ux,t − ex,t‖2 .

f(zt)− Ef(zt+1) ≤ 3

2
ηxK ‖∇xf(zt)‖2 +

1

2
ηxKE ‖ēx,t‖2 +

1

2
ηyKE ‖ēy,t‖2 −

1

2
ηyK‖∇yf(zt)‖2

+
1

2
Lfη

2
xK

2 ‖ux,t − ex,t‖2 +
1

2
Lfη

2
yK

2 ‖uy,t − ey,t‖2 .

Define potential function Lt = Φ(xt)− 1
10f(zt),

ELt+1 − Lt = EΦ(xt+1)− Φ(xt) +
1

10
(f(zt)− Ef(zt+1))

≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

10
ηxK ‖∇xf(zt)‖2 − ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
‖∇yf(zt)‖2

+
31

20
ηxK ‖ēx,t‖2 +

1

20
ηyK ‖ēy,t‖2

+
1

2

(
L+

Lf
10

)
η2xK

2E ‖ux,t − ex,t‖2 +
1

20
Lfη

2
yK

2E ‖uy,t − ey,t‖2

≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

10
ηxK ‖∇xf(zt)‖2 − ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
‖∇yf(zt)‖2

+

(
31

20
ηxK +

1

20
ηyK

) L2
f

MK

∑
i∈[M ],j∈[K]

E
∥∥∥(zt − zjt,i

)∥∥∥2


+
1

2

(
L+

Lf
10

)
η2xK

2

 4

MK

∑
i∈[M ]

∑
j∈[K]

[
L2
fE
∥∥∥zjt,i − zt

∥∥∥2 + ‖∇xf(zt)‖2
]

+
9

mK
σ2
x


+

1

20
Lfη

2
yK

2

 4

MK

∑
i∈[M ]

∑
j∈[K]

[
L2
fE
∥∥∥zjt,i − zt

∥∥∥2 + ‖∇yf(zt)‖2
]

+
9

mK
σ2
y


≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

10
ηxK ‖∇xf(zt)‖2 − ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
‖∇yf(zt)‖2

+ L2
f

[
31

20
ηxK +

1

20
ηyK + 2

(
L+

Lf
10

)
η2xK

2 +
1

5
Lfη

2
yK

2

]
︸ ︷︷ ︸

a1

 1

MK

∑
i∈[M ],j∈[K]

E
∥∥∥(zt − zjt,i

)∥∥∥2


+ 2

(
L+

Lf
10

)
η2xK

2︸ ︷︷ ︸
a2

‖∇xf(zt)‖2 +
1

2

(
L+

Lf
10

)
η2xK

2 9

mK
σ2
x

+
1

5
Lfη

2
yK

2︸ ︷︷ ︸
a3

‖∇yf(zt)‖2 +
1

20
Lfη

2
yK

2 9

mK
σ2
y
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≤ −1

2
ηxK‖∇Φ(xt)‖2 −

1

10
ηxK ‖∇xf(zt)‖2 − ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
‖∇yf(zt)‖2

+

[
5K (16K + 1) η2x,la1 +

1

2

(
L+

Lf
10

)
η2x

9K

m

]
σ2
x +

[
5K (16K + 1) η2y,la1 +

1

20
Lfη

2
y

9K

m

]
σ2
y

+
(
a2 + 40K2η2x,la1

)
‖∇xf(zt)‖2 +

(
a3 + 40K2η2y,la1

)
‖∇yf(zt)‖2

≤ −1

2
ηxK‖∇Φ(xt)‖2 +

[
5K (16K + 1) η2x,la1 +

1

2

(
L+

Lf
10

)
η2x

9K

m

]
σ2
x

+

[
5K (16K + 1) η2y,la1 +

1

20
Lfη

2
y

9K

m

]
σ2
y

where the last inequality follows from the conditions:

1

10
ηxK −

(
a2 + 40K2η2x,la1

)
≥ 0, (15)

ηyK

(
1

20
− ηx
ηy

L2
f

µ2

)
−
(
a3 + 40K2η2y,la1

)
≥ 0. (16)

Telescoping and rearranging, we have:

1

T

T−1∑
t=0

E‖∇Φ(xt)‖2 ≤
2 (L0 − L∗)
ηxKT

+

[
10 (16K + 1) η2x,l

a1
ηx

+

(
L+

Lf
10

)
9ηx
m

]
σ2
x

+

[
10 (16K + 1) η2y,l

a1
ηx

+
9

10
Lf

η2y
mηx

]
σ2
y

≤ 2 (L0 − L∗)
ηxKT

+

[(
L+

Lf
10

)
9ηx
m

σ2
x + +

9

10
Lf

η2y
mηx

σ2
y

]

+ L2
f

[
31

20
K +

1

20

ηy
ηx
K + 2

(
L+

Lf
10

)
ηxK

2 +
1

5
Lf

η2y
ηx
K2

]
[10 (16K + 1)]

(
η2x,lσ

2
x + η2y,lσ

2
y

)
.
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