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ABSTRACT

Recently, min-max optimization problems have received increasing
attention due to their wide range of applications in machine learn-
ing (ML). However, most existing min-max solution techniques
are either single-machine or distributed algorithms coordinated
by a central server. In this paper, we focus on the decentralized
min-max optimization for learning with domain constraints, where
multiple agents collectively solve a nonconvex-strongly-concave
min-max saddle point problem without coordination from any
server. Decentralized min-max optimization problems with domain
constraints underpins many important ML applications, includ-
ing multi-agent ML fairness assurance, and policy evaluations in
multi-agent reinforcement learning. We propose an algorithm called
PRECISION (proximal gradient-tracking and stochastic recursive
variance reduction) that enjoys a convergence rate of O(1/T),
where T is the maximum number of iterations. To further reduce
sample complexity, we propose PRECISION* with an adaptive
batch size technique. We show that the fast O(1/T) convergence
of PRECISION and PRECISION? to an e-stationary point imply
O(e?) communication complexity and O(m+/ne~2) sample com-
plexity, where m is the number of agents and n is the size of dataset
at each agent. To our knowledge, this is the first work that achieves
O(e72) in both sample and communication complexities in decen-
tralized min-max learning with domain constraints. Our experi-
ments also corroborate the theoretical results.
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1 INTRODUCTION

In recent years, machine learning (ML) has achieved a great success
in many areas, including robotics[43], image recognition[35], natu-
ral language processing[33], recommender systems[11], to name
just a few. Traditionally, the training of ML models is deployed
in high-performance computer clusters co-located at large-scale
data centers with easy access to big training datasets. However,
with more diverse ML applications emerging, the deployment of
ML has also been migrating to the edge of computing and com-
munication networks due to the following reasons: First, in many
ML applications, data are generated and collected through diverse
data sources that are geographically disperse (e.g., smart mobile
devices, vehicles, environmental sensors, satellite imagery). Second,
because of the limited communication capabilities of the devices
and data privacy concerns, it is expensive or even infeasible to send
the data collected at the edge networks to the cloud for centralized
processing. These real-world limitations have spawned the rapid
development of decentralized learning over edge networks in recent
years, which can leverage highly flexible peer-to-peer edge comput-
ing networks with arbitrary topologies [19, 32]. Also, thanks to the
resilience to single-point-of-failure, data privacy, and simple imple-
mentations, decentralized learning has attracted growing interest
recently, and has found various science and engineering applica-
tions, e.g., distributed robotics control [39, 55], network resource
allocation [16, 40], dictionary learning [8], multi-agent systems
[6, 55], multi-task learning [49, 53], and information retrieval [1].
From a mathematical perspective, conducting decentralized learn-
ing over a computing network amounts to solving an optimization
problem distributively and collaboratively by a group of agents in the
network. However, among the existing literature of decentralized
learning, most works are focused on the standard loss minimization
formulation, i.e., min, cpa f(x), where f(-) denotes the loss objec-
tive function of learning and x denotes the global model parameters
to be learned, and d is the model dimension. While this standard
loss minimization formulation is sufficiently general to cover a wide
range of ML applications (e.g., robotic network [17, 36, 44]), sensor
network [9, 34, 38]), power network [5, 10, 12, 13]), it has become
increasingly apparent that its mathematical structure is not rich
enough to capture new requirements of ever-emerging ML appli-
cations. Notably, many sophisticated ML problems nowadays can
be expressed as the so-called “min-max” optimization in the form
of minye y maxyey f(x,y), where x and y are both parameters to
be learned (may have different dimensionality), and X and Y are
some conforming real subspaces for x and y, respectively. Although
min-max optimization also has a long history that dates back to
1945 [48], research on decentralized min-max optimization remains
in its infancy so far and results in this area are surprisingly limited.
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In this paper, rather than studying the unstructured general de-
centralized min-max problems as in [22, 23], we focus on a subclass
of interesting decentralized min-max optimization, where multiple
agents collectively solve a domain-constrained nonconvex-strongly-
concave (NCX-SCV) min-max problem. The constraint frequently
emerges in various scenarios, such as autonomous driving [3], and
safety-constrained[27, 28], etc. The decentralized constrained NCX-
SCV min-max problem is important because it arises naturally
from many recently emerging multi-agent ML applications, such as
multi-agent fairness constraints in adversarial training [51], policy
evaluation in multi-agent reinforcement learning (MARL) [37], and
multi-agent fairness assurance in ML [2, 41] (see Section 2 for more
in-depth discussions).

However, designing effective and efficient algorithms for solving
decentralized constrained NCX-SCV min-max problems is highly
non-trivial due to the following technical challenges: First, min-
max optimization tackles a composition of an inner maximization
problem and an outer minimization problem. This tightly coupled
inner-outer mathematical structure, together with the decentral-
ized nature and the non-convexity of the outer problem, render
the design and theoretical analysis of the algorithms rather diffi-
cult. Moreover, the constrained structures in both the inner and
outer problems impose yet another layer of challenges in the algo-
rithmic design for decentralized constrained NCX-SCV min-max
problems. Second, the decentralization over edge computing net-
works faces two fundamentally conflicting performance metrics. On
one hand, due to the high dimensionality of deep learning models
and large datasets, it is infeasible to exploit information beyond
first-order stochastic gradients to determine search directions in
algorithm design. Although the variance of stochastic gradients
can be reduced by increasing the number of training samples in
mini-batches, doing so incurs higher computational costs for the
stochastic gradients. On the other hand, if one uses fewer training
samples in each iteration to trade for a lower computational cost,
the larger variance in the stochastic gradients inevitably leads to
more communication rounds to reach a certain training accuracy
(i.e., slower convergence). The high communication complexity is
particularly problematic in wireless edge networks, where com-
munication connections could be low-speed and highly unreliable.
Third, constrained decentralized min-max optimization presents a
significantly greater challenge than its unconstrained counterpart.
This is primarily due to the non-smooth nature of the domain con-
straints and the intricate coupling between these constraints and
the min-max problem structure.

The major contribution of this paper is that we propose a series
of new algorithmic techniques to address the challenges above and
achieve low sample and communication complexities in decentral-
ized constrained NCX-SCV min-max problems. Our main technical
results and their significance are summarized as follows:

e We propose a decentralized constrained min-max optimization
algorithm called PRECISION (proximal gradient-tracking and
stochastic recursive variance reduction) and show that, to achieve
an e-stationary point, PRECISION enjoys a convergence rate of
O(1/T) (T is the maximum number of iterations). This result fur-
ther implies an [O(myne™2), 0(e~?)] sample-communication
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complexity scalings, where m is the number of agents, and n is
the size of the local dataset at each agent.

o To relax the full gradient evaluation requirement in PRECISION,
we propose an enhanced algorithm called PRECISION* , which is
based on an adaptive batch size technique. PRECISION™ further
reduces the sample complexity of PRECISION, while retaining
the same [O(myne~?), O(e~2)] sample-communication com-
plexity scaling laws as those of PRECISION. Moreover, a lower
sample complexity can be obtained in PRECISION™ by slightly
trading off its communication complexity (the trade-off is only
reflected in the hidden Big-O constants).

e We note that both PRECISION and PRECISION™ algorithms in-
tegrate two proximal operators for both the inner and outer con-
straints (on x and y), variance reduction techniques for both inner
and outer updates, and gradient-tracking-based updates in both
inner and outer variables. In this sense, both PRECISION-based
algorithms can be viewed as a triple hybrid approach, which ne-
cessitates new performance analysis and proof techniques. It is
also worth pointing out that the proposed algorithmic and proof
techniques in PRECISION could be of independent interest in
decentralized min-max learning theory in general.

The rest of the paper is organized as follows. In Section 2, we first
provide the preliminaries of the decentralized min-max optimiza-
tion problems and discuss related works. In Section 3, we propose
two stochastic variance reduced algorithms, namely PRECISION and
PRECISION®. The convergence rate, communication complexity,
and sample complexity of PRECISION and PRECISION™ are also
provided in Section 3. Section 4 provides numerical results to verify
our theoretical findings, and Section 5 concludes this paper.

2 PRELIMINARIES AND RELATED WORK

To facilitate subsequent technical discussions, in Section 2.1, we
first provide the basics of decentralized min-max optimization and
its consensus formulation. Then, we formally define the notions of
sample and communication complexities of the consensus form of
decentralized min-max optimization problems. Next, in Section 2.2,
we provide an overview of related work of existing optimization
algorithms for solving min-max learning problems and their perfor-
mance in terms of their sample and communication complexities,
thus putting our work in comparative perspectives.

2.1 Preliminaries of Decentralized Min-Max
Optimization

1) Network Consensus Formulation: Consider an undirected
connected network G = (N, £), where N and L are the sets of
nodes (agents) and edges, respectively, with |[N| = m. Each agent
has local computation capability and is able to communicate with
the set of its neighboring agents defined as N; = {i’ € N,: (i,i’) €
L}. For presentation simplicity, we assume that each agent i has
n data samples and thus there are mn data samples in totall. In
decentralized min-max optimization, the agents in the network
distributively and collaboratively solve the following decentralized
min-max optimization problem:

'We note that with more complex notation, all our proofs and results continue to hold
in cases with unequal sized local datasets.
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where x € X and y € Y are parameters to be trained for the outer-
min and inner-max problems, respectively, the sets X C Rt and
Y C R are closed and convex sets, F; (x,y) % Z;‘Zl fij (xi,yil&;j)
denotes the local objective function, and h(x;) is a proper convex
function (possibly non-differentiable) that usually plays the role
of regularization. Here, F;(x,y) is only observable to node i and
is assumed to be non-convex with respect to x for a fixed y, and
strongly concave with respect to y for a fixed x. To solve Problem (1)
in a decentralized fashion, a common approach is to rewrite it in
the following equivalent form:
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where x; and y; are the local copies of the original parameters x and
y at agent i, respectively. The equality constraints in (2) ensure that
the local copies at all agents are equal to each other, hence the name
“consensus form” Clearly, Problems (1) and (2) share the same solu-
tion. In the rest of this paper, we will focus on solving Problem (2),
which will be referred to as a decentralized non-convex-strongly-
concave (NCX-SCV) consensus min-max optimization problem. The
goal of decentralized consensus min-max optimization is to design
an algorithm to attain a collective e-stationary point {x;,y;, Vi}
that satisfies the following condition:

subjectto  x; = xy,y; = yw, Y(i,i’) € L,

2
< 62,
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Saddle point
error
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error error

Global gradient norm

where X = % DIAID R A % 2. vi. and y* represents the maxi-
mizer point of F over y, where y*(%) € arg maxycy F(X,y),

As mentioned in Section 1, two of the most important perfor-
mance metrics in decentralized optimization are the sample and
communication complexities. In this paper, we adopt two definitions
of sample and communication complexities that are widely used in
the decentralized optimization literature (e.g., [45]) to measure the
efficiency of our algorithms:

DEFINITION 1 (SAMPLE COMPLEXITY). The sample complexity is
defined as the total number of incremental first-order oracle (IFO)
calls required across all nodes until an algorithm converges to an
e-stationary point, where one IFO call evaluates a pair of gradients

(Vxfij(x¥), Vy fij (x,y)) at node i.

DEFINITION 2 (COMMUNICATION COMPLEXITY). Let a round of
communications be a time window during which each node sends a
vector to its neighboring nodes while receiving a set of vectors from all
its neighboring nodes. Then, the communication complexity is defined
as the total number of rounds of communications required until an
algorithm converges to an e-stationary point.
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2) Motivating Application Examples: With the basics of de-
centralized constrained NCX-SCV min-max optimization, we pro-
vide two examples to further motivate its practical relevance:

o Multi-Agent Fair ML: Consider a machine learning task with
dataset {b;;, [é; §l.*.T]T} over a multi-agent network, where
bij is the observed label of the j-th sample at the i-th agent,
£ j € R% denotes the corresponding nonsensitive features and
&ij € R% represents the sensitive features. In the problem of
Fair ML, fairness is imposed by adding a regularization term
that penalizes the statistical correlation between the learning
model output bi ; and the sensitive attributes §l*] In binary case,
one example is the Renyi correlation [2] as a regularization to
impose fairness, under which the multi-agent fair ML problem
can be written as a decentralized NCX-SCV min-max problem [2]:
minye y maxyey Bi[L(Fi(x, y|&), b))~ A P yl-zjfij(xi, &)+
'Z§=1 yijgfij(x, .f,')], where S = 25— 1, § = {0, 1}, denotes the
sensitive attribute, L is the loss function, 4; is a positive scalar
balancing fairness and goodness-of-fit, ¢ is the class label and
fij (x, &) represents the vector-valued output of a neural network
after soft-max layer.

o Data Poisoning Attack: Consider a decentralized learning problem
with m agents trying to learn a common model. An adversary
has the ability to inject noise into the training samples of a subset
of agents. Let y; denote the model parameter and let x; denote
the injected poisoned data parameter. In this problem, the adver-
sary tries to maximize the loss function while the other agents
aim at minimizing the loss function. Thus, the data poisoning
attack problem has the following NCX-SCV min-max problem:
maXye x Minyey X% \5%\ Yeeg log (1+exp ((—v(yiT(Wg+xi))),
where vy € R and wy € R4 denote the ¢£-th data point’s label and
the feature vector, respectively.

2.2 Related Work

1) Centralized NCX-SCV Min-Max Optimization: In the litera-
ture, the state-of-the-art algorithms for solving NCX-SCV optimiza-
tion problems in the centralized setting are GDA [20], min-max-
PPA [21], and SREDA [26]. Specifically, Lin et al. [20] proposed
a gradient-based GDA method to find a first-order Nash equilib-
rium point. In each iteration, GDA performs gradient descent over
the x-variable and gradient ascent over the y-variable. GDA has
an O(1/T) convergence rate for NCX-SCV min-max optimization
problems, where T is the maximum number of iterations. Also, it
requires a full gradient evaluation in each iteration, which implies
an O(ne™2) sample complexity to achieve an e convergence error.
The Minimax-PPA method is proposed in [21] to solve NCX-NCV
problem and achieves an 0] (ne~2) sample complexity. These meth-
ods have a high sample complexity in the big-data regime with a
large n. To overcome this issue, several variance reduction methods
have also been proposed. For example, in [26], a variance reduction
algorithm named SREDA is proposed, which is further enhanced by
[52] to allow a larger step-size. SREDA achieves an o (n+ \/56_2)
sample complexity for large n, thus having a lower sample com-
plexity than GDA and minimax-PPA. However, SREDA can only
handle min-max problems with constraints on x but not on y. We
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summarize the above comparisons in Table 1. While the above al-
gorithms achieve varying degrees of success in solving NCX-SCV
min-max problems, they are developed for the centralized setting,
which is fundamentally different from our work.

Table 1: Comparisons among algorithms for NCX-SCV min-
max problems (m is the number of agents, n is the size of
dataset for each agent, and ¢ is the convergence error. Our
proposed algorithms are marked in bold.

Algorithm”* Proximal Sample Commun. De(fen—
Operator Complex. Complex. tralized
GDA [20] y 0 (ne?) - X
Minmax-PPA [21] xandy 0 (ne?) - X
SREDA [26] x  O(n++ne?) - X
:;‘EECCIISSI?IEL xandy O(myre?) O(e?) v

2) Decentralized Min-Max Optimization: As mentioned in
Section 1, existing results on decentralized min-max optimization
are quite limited. The earliest attempt is the CSPSG method [29],
which considered the most ideal convex-concave (CX-CV) setting.
Due to its simplistic SGD-type updates, CSPSG has high sample and
communication complexities of O(e~*). DPOSG [22] considered
unstructured nonconvex-nonconave (NCX-NCV) unconstrained de-
centralized min-max problems in the context of large-scale GANs,
and proposed to leverage the classical DSGD [32] approach to de-
centralize the centralized counterpart algorithm called OGDA [30].
Due to the limitations inherent in DSGD, DPOSG suffers from a
high sample complexity of O(e™!2). In contrast, DPPSP [23] also
studied unstructured NCX-NCV decentralized min-max optimiza-
tion problems with constraints. Due to the use of basic proximal
SGD-type updates, DPPSP also suffers high sample and communi-
cation complexities of O(e™%).

Compared to the simplistic algorithmic techniques in [22, 23], our
PRECISION algorithms is a triple hybrid algorithm that integrates
proximal operators, variance reductions, and gradient tracking, thus
achieving much lower sample and communication complexities.
We note that although our significantly lower sample and com-
munication complexities are achieved under the more structured
NCX-SCV setting, we believe our techniques can also be applied to
NCX-NCV to improve the sample and communication complexities
of existing works. This will be left in our future work.

The most related work to ours is GT-GDA [46], which also stud-
ied constrained decentralized NCX-SCV min-max optimization.
The key difference between GT-GDA and our work is that only
one constraint set is imposed on either x or y, but not on both. In
contrast, we consider the more complex case where both x and y
are constrained. GT-GDA also requires several inner updates for y
and then performs one update for x, which is similar to alternating
direction method of multipliers [4] (ADMM) update scheme. Also,
our algorithms achieve a lower sample complexity O(m+/ne™2)
than that of O (mne~?) in GT-GDA. To conclude this section, we
summarize the above comparisons in Table 2. Another closely re-
lated work can be found in [54], where the authors developed a
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Table 2: Comparisons among algorithms for decentralized
min-max problems.

Proximal Sample Commun.

Algorithm® Operator Complex. Complex. Problem
DPOSG [22] - O(e7'?) O(log(1/e)) NCX-NCV
CSPSG [29] xandy O(e™) O(e™) CX-CV
DPPSP [23] x and y O(e™%) O(e™*) NCX-NCV
GT-GDA [46] xory O (mne™?) O(e™?) NCX-SCV
I?I?];,SCCIISSIIOOI\I;I* xandy O(myne?) O(e™?) NCX-SCV

decentralized optimization method for a multi-agent reinforcement
learning policy evaluation problem based on the mean squared
projected Bellman error (MSPBE), which can be formulated as a
finite-sum minimax problem. However, our work differs from [54]
in the following aspects: (i) Unlike [54], our method can handle
non-smooth objectives. However, the direct proximal extension of
the algorithm in [54] may diverge in solving the decentralized prob-
lem [14]. To this end, we propose a specialized proximal operator
X; (xi,t) to address this challenge, see detailed discussions in our Re-
mark 1; (ii) Our approach addresses general decentralized min-max
optimization problems, while [54] is limited to RL policy evaluation.

3 SOLUTION APPROACH

In this section, we first present our PRECISION and PRECISION™ al-
gorithms in Sections 3.1 and 3.2, respectively. Then, we provide the
main theoretical results and the key insights of the PRECISION and
PRECISION® algorithms in Section 3.3. Due to space limitation and
for better readability, we relegate some proof details of the theoret-
ical results to our online technical report [24].

3.1 The PRECISION Algorithm

To solve the consensus form of decentralized min-max problem
in Problem (2), we adopt the network consensus mixing approach
in the literature [32]. Toward this end, we let M € R™>*™ denote
the consensus weight matrix and let [M];; denote the element in
the i-th row and the i’-th column in M. M satisfies the following
properties [32, 47]:

(a) Doubly stochastic: 37 [M];r = X5 [M]iy = 1;

(b) Symmetric: [M];i = [M]y;, Vi, i’ eN;

(c) Network-Defined Sparsity: [M]; > 01if (i,i’) € L; otherwise

[M];» =0,Vi,i’ e N.

Note that the above properties imply that the eigenvalues of M are
real and can be sortedas -1 < 4, (M) < --- < Aa(M) < 1(M) = 1.
For notational convenience, we define the second-largest eigenvalue
in magnitude of M as A = max{|A2(M)|, .., |1 (M)[}, which will
play an important role in the step-size selection and analysis of the
algorithm’s convergence rate. With the above notation, we are now
in a position to describe our proposed algorithms.

As mentioned in Section 1, our PRECISION algorithm can be
viewed as a triple hybrid of proximal, gradient tracking, and vari-
ance reduction techniques. Next, we will see that these techniques
can be organized into three key algorithmic steps:
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o Step 1 (Local Proximal Operations): In each iteration ¢, each agent
i first performs the following proximal operations to cope with
the constraint sets X and VY for the outer and inner variables,
respectively:

%; (%) =argming ¢ v (Pits Xi — Xit)

T
+5 lIxi = xiel1* + h(x:),

®)
, ©

where p; ¢ and d; ; are two auxiliary vectors for gradient tracking
purposes and will be defined shortly, 7 > 0 is a constant proximal
control parameter, and @ > 0 is a constant parameter to control
the magnitude of the updates of y.

2

Vi(yie) =argming ¢ y|lyi = (vie + adi)]

o Step 2 (Consensus Update): Next, each agent i updates the outer
and inner model parameters x;, y;:

Xit+1= Z [Mliirxir g + v (Xi(Xip) — Xiz), (6)]
PEN; _—
(b)
(a)
Vit+1 = Z Mliiryir e +0(Fi(yie) = Yie), (6)
i’eN; —_
(b)

(a)

where v and 7 are the step-sizes for updating x- and y-variables,
respectively. Note that in (5) and (6), component (a) is a local
weighted average at agent i, which is also referred to as “con-
sensus step,” and component (b) performs a local update in the
spirit of Frank-Wolfe given the proximal points X and y, which is
different from the conventional decentralized stochastic gradient
updates [31].

o Step 3 (Local Gradient Estimate): In the next step, each agent i esti-
mates its local gradients using the following gradient estimators:

VxFi(Xit, Vi), if mod(z, q) = 0,

Vig =\ Vit ig ] SIM Yjes (Vxfij(xit,yie) (7a)
~Vxfij(Xi1,Vit-1)), ow.
VyFi(Xit, Vi) if mod(t,q) =0,

uj; = ui’t_l+_|Slzlt| ZjeS,—yt(Vyﬁj(Xi,t,Yi,t) (7b)

0.wW.

—Vy fij (Xi,-1, Yie—1))»
Here, S;; is the sample mini-batch in the ¢-th iteration, and q is
a preset inner loop iteration number.
o Step 4 (Gradient Tracking): Each agent i updates p; and d; by
averaging over its neighboring tracked gradients:

{Pi,t =X enN [Mlirpirt-1+ Vit = Vig-1, ®

dir=Ypen, Mlirdi o1 +uir —uip .

Our PRECISION algorithm can be intuitively understood as fol-
lows: In PRECISION, each agent conducts both descent and ascent
steps, since Problem (2) minimizes over x and maximizes over y.
Note that v; ; and u;; in (7) only contain the gradient information
of the local objective function F;(x, y). Merely updating with direc-
tions v; ; and u;; cannot guarantee the convergence of the global
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Algorithm 1 PRECISION/PRECISION™ at Agent i.

If PRECISION :|R;;|=n;
If PRECISION® :

|Ris| = min{c},O'2 (yt)_1 ,cecle™L, n}.

1: Set prime-dual parameter pair (x;0,yi0) = (x°,y°).
2. Draw R;o samples without replacement and calculate local
stochastic gradient estimators as

1
PiO=Vi0= 1> Z Vx fij (%i,0, ¥i,0)3
[Riol &
]GR,YO
1
dip=ujo= Riol Z Vy fij (Xi,0, ¥i0);
JERI,O
3: fort=1,---,T do
4 Update local parameters (x; 41, Vi ¢+1) as in Eq. (3)-(6);
5. Compute local estimators (v; 41, u; ¢+1) as in Eq. (7);
6. Track global gradients (p;,s+1,d;,r+1) as in Eq. (8);
7. end for

objective function F(x,y). Therefore, we introduce two auxiliary
variables p;; and d;; for global gradient tracking purposes. As
each agent i updates these two variables by performing the local
weighted aggregation shown in (8), p; s and d; ; track the directions
of the global gradients.

It is insightful to compare PRECISION with our most related
work, the GT-GDA method in [46]. In GT-GDA, agent i computes
the local full gradients in the t-th iteration as follows:

©)

Different from GT-GDA [46], PRECISION estimates the local gra-
dients in Eq. (7) at agent i. In Eq. (7), the algorithm evaluates a full
gradient VF;(x;,,yi,) only every g steps. For other iterations with
mod(t, q) # 0, PRECISION useslocal stochastic gradients estimated
by a mini-batch ﬁ 2 jeS: Vyfij(Xit, yizr) and a recursive correc-

Vit = VxFi(Xit, ¥it), Wi = VyFi(Xit Yie)-

tion term u; ;1 _@Zjesi,zvyﬁj(xi,f—b Vi t—1). Thanks to the pe-
riodic full gradients and recursive correction terms, PRECISION is
able to achieve a convergence rate of O(1/T). Moreover, due to the
stochastic subsampling of S; ;, PRECISION has a lower sample com-
plexity than GT-GDA [46]. The full description of PRECISION is
shown in Algorithm 1.

3.2 The PRECISION* Algorithm

Note that in PRECISION, full gradients are required for every g
steps, which may still incur high computational costs in some situ-
ations. Also, in the initialization phase of PRECISION (before the
main loop), agents need to evaluate full gradients, which could
be time-consuming. To address these challenges, we enhance the
PRECISION with an adaptive batch size technique, and this en-
hanced version is called PRECISION *. Specifically, we modify the
gradient estimators in (7a) and (7b) in iteration ¢ with mod(¢,q) = 0
as follows :

1
Vit =157

10
Resl (10)

Z Vxfij (Xt Yit),

JERi:
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U = |R | Zvyf](xz t,y:t) (11)

JER t

where R;; is a subsample set (sampling without replacement),
whose size is chosen as

|Ri,t| = min{e,o® (y2) ™! ~Ln}. (12)

Here, ¢y and cc are problem-dependent constants to be defined later,

,cecle

o2 is the variance bound of data heterogeneity across agents (also
defined later), and y;+1 = 3 lf:(nt_l)q 1% — 1 ® %¢||%, where ®
represents the Kronecker product operator.

The selection of |R; ;| is motivated by the fact that the periodic
full gradient evaluation only plays an important role in the later
stage of the convergence process: in the later stage of the conver-
gence process, we need more accurate update direction. Later, we
will see that under some mild assumptions and parameter settings,
PRECISIONY has the same convergence rate as that of PRECISION.
The full description of the PRECISION™ algorithm is also illustrated
in Algorithm 1.

3.3 Theoretical Results of the PRECISION and

PRECISION* Algorithms

Before presenting the theoretical results of our algorithms, we first
state the following assumptions:

AssumPTION 1 (GLoBAL OBJECTIVE). The functions F(x,y) =
% m [Fi(xi,yi)] and J(x) = maxycy F(x,y) satisfy:

(a) (Boundness from Below): There exists a finite lower bound Q* =
0(x") = infx (J(x) + h(x)) > —o0;

(b) (Strong Concavity in y): Local objective function F;(x, ) is u-
strongly concave for fixed x € RP1, i.e., there exists a posi-
tive constant yi such that ||VyFi(x,y) = VyFi(x,y)|l = plly -
YL,V x,y,y €RP2 i€ [m].

(c) (Bounded Gradient at Maximum): The partial gradient at every
(x, VxF(x,y*(x))) pair is bounded, i.e., || VxF (x,y*(x))]| < oo,
V x € RP1,

Assumptions 1(a) and 1(b) are standard in the literature. Assump-
tion 1(c) guarantees that VJ(x) = VxF(x,y*(x)).

ASSUMPTION 2 (LIPSCHITZ SMOOTHNESS OF LOCAL OBJECTIVES).
The function fij(x,) is Lg-Lipschitz smooth, i.e., there exists a con-
stant Ly > 0, such that Vfij(x,y) = [Vx fij(x, ylT, Vyfij (%, T
satisfies ||V fij(x,y) = Vi (X, y)|I* < L}IIX—X’IIZ +L]2c||y—y'||2,
Vx,x €eX,y,y €Y, i€ [m],je [n]

Further, we have the following assumption only for the algorithm
PRECISION*:

AssuMPTION 3 (BOUNDED VARIANCE). There exists a constant
0? > 0, such that E||Vfj(x,y) - VE(x y)[? < 02, Vxy,€e RP i €
[m], j € [n].

To address the challenges in characterizing the convergence rate
for NCX-SCV decentralized constrained min-max problems, we
propose the following new metric, which is the key to the success
of establishing all convergence results in this paper:

M 2E[[I% — 1@ % ||” + [Ixr — 1 @ % ||

+llye = 1@+ lly; - yel®l. (13)

196

Liu et al.

where y; denotes y*(%;) = argmaxyegre F(%X;,y). The first two
terms in (13) are inspired by the metric in SONATA [42], which
measures the converging progress of non-convex decentralized
minimization problems (not min-max). The third term in (13) mea-
sures the consensus error of local copies on y. The fourth term
in (13) quantifies §;’s convergence to the point y; for F(Xy, -). Thus,
as M; — 0, we have that the algorithm reaches a consensus on
a first-order stationary point (FOSP) of the original decentralized
constrained min-max optimization problem.

With the metric in (13), the convergence rates of algorithms
PRECISION /PRECISION?* can be characterized as follows:

THEOREM 1 (CONVERGENCE OF PRECISION). Under Assump-
tion 1 (a)-(d) and Assumption 2, suppose that < min { 13 3}
=|S;:| = [Vn] hold and letc; =

a< lf the step-sizes

= m’q 1+)LZ’
1512 3
Lo . cimy ' cim . Jeimp
satisfy: n < mln{g, 375aL2’ﬁya2cl’ 10(1+Cl)pa} v < mln{40szc,

2cympB 2c,futm
5t

5T T 3pnaz T
375L‘; > 3mey’ 6m(1+1/cy )’ 17Lft ’ 3(Lf+L2f/,u)

lowing convergence result for the PRECISION algorithm holds:
E —_ Sk
1 Z [ [po — Q"]

mln{Cl, Cy, C3, vL2 /2}(T +1)
where Q* = Q(x*) and p; is a potential function defined as:

}, then the fol-

4vL2 )
= Q%) + — ||Yt yill
Bun
1 m
= > [lIxie = %el* + llyie — 9111, (14)
m i1

andCy, Co, C3 > 0 are constants. Due to space limitation, detailed defi-
nition of these constants are relegated to our technical report [24]. Also,
in (14), Q(x¢) = maxy F(xs,y) +h(x;), and y; = arg maxy F(x;,y).

TuEOREM 2 (CONVERGENCE OF PRECISIONY). Under Assump-
tion 1 (a)-(d), Assumptions 2-3, and the same parameter settings as
in Theorem 1, with additional parameters c, and cc satisfying the
conditions:
75na1 v )vr

ce >0,
8u m ﬁm 12 €

ey 2 (—— (15)

and the potential function as stated in Theorem 1, the following con-
vergence resultfor PRECISION* holds:

_Z E[po - Q7]
(T+1) min{Cy, C, C3,VL2 /2}

+ v 2

28m)ece’
where the constant C;, > and the definition of C), is relegated to our
technical report [24].

(75—”“ 2 (16)

16p m

REMARK 1. Compared to existing works on decentralized min-
max optimization[46, 54], it is worth noting that the main difficulty
in establishing convergence results in Theorem 1 and Theorem 2
arises from the proximal operator in the outer-level subproblem.
This operator precludes the use of conventional descent lemmas
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Figure 1: Comparisons of algorithms for decentralized NCX-SCV min-max optimization problems.

for convergence analysis, as outlined in Lemma 3 in the Appen-
dix. Furthermore, unlike in single-agent constrained bilevel opti-
mization, the direct proximal extension of the algorithm in [14]
(Xi,r = argming ¢ y||x — (xis — pir)||?) will diverge for the decen-
tralized constrained min-max problem in this paper. To address this
challenge, we employ a special proximal update rule in (3). The
proximal operator X; ; in (3), consensus updating (5), and the corre-
sponding local update (5) are the key in addressing the non-smooth
objective challenge encountered in decentralized learning.

REMARK 2. In Theorems 1 and 2, the step-sizes and convergence
rates depend on the network topology. For a sparse network, A is
close to (but not exactly) one (recall that A = max{|Az2|, |[Am|} < 1),
the step-size needs to be smaller as A gets close to one, which leads to
a slower convergence. Additionally, the convergence performance
of PRECISION? is affected by constant (7156—'7: 24 ﬁ 2 = which
depends on the inexact gradient estimation at the t-th iteration
with mod(t, q) = 0. Intuitively, a larger value of ¢ allows us to use
a larger batch size as shwon in (12), which in turn leads to faster
convergence. Theoretically, we can observe that a larger value of
7156—'7:‘ % + % %)é in (16), thereby
yielding a more accurate estimation.

ce results in a smaller constant (

Following from Theorems 1 and 2, we immediately have the sam-
ple and communication complexity results for the PRECISION and
PRECISIONY algorithms:

COROLLARY 3. Under the conditions in Theorems 1 and 2, and with
q = /n, to achieve an e-stationary solution, the following results for
the PRECISION and PRECISION* algorithms hold:
o Communication Complexity: the numbers of total communication
rounds are upper bounded by O(e~?%)
o Sample Complexity: The total samples evaluated across the network
are upper bounded by O (m+/ne~?)).

REMARK 3. The PRECISION/PRECISION™ algorithms have the
same communication complexity as GT-GDA [46], but the sample
complexity is a y/n-factor lower than that of GT-GDA [46]. This is
particularly advantageous in “big data” scenarios, where n is large
(i.e., the size of local datasets is large). Although the theoretical
complexity bounds for PRECISION® is the same as PRECISION,
the fact that PRECISION™ does not need full gradient evaluations
implies that PRECISION™ uses significantly fewer samples than
PRECISION in practice. Our numerical results in the next section
will also empirically confirm this.
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4 EXPERIMENTAL RESULTS

In this section, we conduct numerical experiments to demonstrate
the performance of our proposed PRECISION and PRECISION™ al-
gorithms using a decentralized NCX-SCV regression problem on
“a9a" dataset from LIBSVM repository, which is publicly available
in [7]. In the supplementary material, we also provide additional
experiments for environments of AUC maximization problem on
dataset “a9a"[7] and ‘MNIST"[18]. Due to the lack of existing algo-
rithms for decentralized NCX-SCV with simultaneous outer and
inner constraint sets (cf. Section 2.2 for details), we compare our
algorithms with two stochastic algorithms as the baselines in our
experiments. These baselines can be viewed as “stripped-down”
versions of PRECISION /PRECISION* by removing gradient track-
ing or variance reduction techniques. Due to the space limitation,
detailed experimental settings are relegated to our Appendix [24].

1) Logistic Regression Model and Datasets: We use the fol-
lowing decentralized NCX-SCV min-max regression problem with
datasets {(aij, bij)}?zl, where a;; € R4 is the feature of the j-th
sample of agent i and b;; € {1, —1} is the associated label:

1 m
i — Fi(xi,¥i), 17
glelr)l(yr?% - ; i (X1, yi) (17)
where F;(x;,y;) is defined as:
1 n
Fi(xi,yi) é; Z (yijlij(xi) = V(yi) + g(x1)) - (18)
=

In (18), the loss function is [;;(x;) = log (1 + exp (—bija;';.xi)) and

2
AXik

g(x;) is anon-convex regularizer defined as: g(x;) = Ay 22—1 Tt
- ik

where V(y;) = %Alﬂnyi - 1||§ and we set the constraints X =
[0,10]¢, Y = [0,10]". We choose constants A; = 1/n2, Ay = 1073
and a = 10. We test the convergence performance of our algorithms
using the “a9a" dataset from LIBSVM repository, which is publicly
available at [7].

2) Algorithms comparision: Due to the very limited results of
decentralized constrained min-max optimization in the literature, in
our experiments, we adopt the following algorithms as our baselines
for performance comparisons:

o Prox-DSGDA (proximal decentralized stochastic gradient descent
ascent): This algorithm is motivated by DSGD [15, 32]. Each
agent updates its local parameters as 0 t+1 = Xl je v, [M]150j,¢ —
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YIS;MI 2jeSi, Vofij(0i, wit) and wirr1 = Xje p; [M]ijwje —
U@ 2jeSi Vo lij(Oir, @ir).

o Prox-GT-SGDA (proximal gradient-tracking-based stochastic gra-
dient descent ascent): This algorithm is motivated by the GT-
SGD algorithm [25, 50]. GT-SGDA has the same structure as
that of GT-GDA, but it updates v;; and u;; using stochastic
gradients as follows: v;; = ﬁ ZjESi,t Vo fij(0i, wi) and

1
Uit = 5] 2jeSi Vo lij(Oir, oir).

3) Results: From Fig. 1(a) and 1(b), we can see that our proposed
PRECISION* algorithm converges much faster than other algo-
rithms (PRECISION, Prox-GT-SGDA and Prox-DSGDA) in terms
of the total number of first-order oracle evaluations. We can also
observe that both PRECISION and PRECISION™ have lower sam-
ple complexities than those of the other two algorithms. As shown
in Figs. 1(c) and 1(d), PRECISION and PRECISION* have much
lower communication costs than those of Prox-DSGDA and Prox-
GT-SGDA. Our experimental results thus verify our theoretical
analysis that PRECISION /PRECISION® have both low sample and
communication complexities in decentralized constrained min-max
optimization problems.

5 CONCLUSION

In this paper, we studied the decentralized constrained non-convex-
strongly-concave (NCX-SCV) min-max optimization and developed
two algorithms called PRECISION and PRECISION*. We showed
that, to achieve an e-stationary point of a decentralized constrained
NCX-SCV min-max problem, PRECISION and PRECISION* achieve
the communication complexity of O(e~?) and sample complexity
of O(m+/ne~?), where m is the number of agents and n is the size
of dataset for each agent. Our numerical studies also verified the
theoretical performance of our proposed algorithms. We note that
decentralized constrained min-max learning remains an under-
explored area, and our work opens up several interesting directions
for future research. For example, the agents need to send outer and
inner model parameter pairs to their neighbors in our algorithm,
both of which could be high dimensional. In our future work, it
would be interesting to adopt communication-efficient mechanisms
(e.g., compression techniques) to further reduce the communication
cost, especially for large-scale deep learning models.
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A PROOF SKETCH OF MAIN RESULTS

Due to space limitation, we outline the key steps of the proofs of
Theorems 1 and 2. The complete version of our proofs is available in
our technical report [24]. Before diving in our theoretical analysis,
we first provide the following notations:

* X = % > xir and xp = [XL, e ,x; t]T for any vector

X;
o ViFr = [VxF(x1,6,y1.6) Vs s VaF (Xmt, Ymt) T1 7
o VyF = [VyF(x1,,y1,0) ", VyF(Xmt, Yme) 17

o &(x4) = % 0l = %;||? for any vector x.
Also, the result below is useful for our subsequent analysis.
LEMMA 1. Under Assumption 1, the funciton J(x) = F(x,y"(x))

w.r.tx is Lipschitz smooth, i.e., there exists a positive constant Ly, such
that

V7 (%) = VI < Lyllx = x||, ¥x,x € RY, (19)

where the Lipschitz constant is Ly = L + LJZC/y for Algorithm 1. This

lemma follows immediately from Lemma 4.3 in [20].

LEMMA 2. Under Assumption 1, y*(x) = arg maxy F(x,y) is Lips-
chitz continuous, i.e., there exists a positive constant Ly, such that

ly* () = y* )l < Lyllx = x|, vxx" e RY, (20)

where the Lipschitz constant is Ly = Ly /.

A.1 Important Lemmas for Proving Main
Theorems

We first show the following descent property of PRECISION algo-
rithm on the function Q(+), which is stated in the following lemma:

LEMMA 3 (DESCENT INEQUALITY ON Q(x)). Under Assumption 1,
the following descent inequality holds:

2
Q(Xe+1) — Q(Xy) < [3 Yt” 25 ||VxF(Xt,y;) PtH
2
VT 2 [ve vy v/J’ v\ . . 2
+— |Ixe—1 = - - x-1 .
zﬁm”Xt ® X || - om m om Ixr—1® %¢||
(21)

where Q(x;) = maxy F(x;,y) + h(x;) and y; = arg maxy F(X;,y).

Next, consider the error bound ||}7t - y;*”2 in Lemma 3, we have
the following Lemma:

LEMMA 4 (ERROR BOUND ON y*(x)). Under Assumption 1, the
following inequality holds for PRECISION/PRECISION? :
- 2 Hnay 2 3. _
HYt+1_Y;k+1|| = (1‘_) ”Yt - Y’tﬁ“ 7 I5: — 1 ® 3.1
2.2

% — 1® %¢]|%.

75770( | (22)

|d; - VyF (Xt>Yt)“

By telescoping the combined results of previous lemmas from 0
to T + 1 and after some rearrangements, we arrive at the following
results:
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LEMMA 5. Under Assumption 1 and condition n < 1/2L¢, the
following inequality holds for PRECISION/PRECISION? :
2

L
Q(xrn) - Q(Xo)+ﬂ [||YT+1 Va2 =llys—voll?]
B L5 - 1@yl + 2 29y RO y0) - i
- — Iyt — vt - Xt, ¥t t
ﬂuw 164 m
170572
+2ym % — 1 ® %||* }+—ﬁ—||VxF(Xt ,ye) = pell?
2
vt vl v vip
+ 2 -1 (Eo L
2pm It ®Xt” ( 2m m 2m)
VL 4VLF 75,]& 2L m
R -1@ %2+ (% — xi,¢11%
[ﬁm Puna 16p m ];‘ '
2
+||Yt—th|| ||Yt Yt” (23)

Next, we bound the iterates contraction of ||x; — 1 ® %;||? and
ly: = 1@ 3| in (23).

LEMMA 6 (ITERATES CONTRACTION). The following contraction
properties of the iterates hold:

lxe — 1@ %¢]1* < (14 1) A% |xp—1 — 1@ X1 1?
1 -
+(1+ =)V I%e—1 = X115
1
ly: —1@yell* < (1+c) A llys—1 — 1@ yr—1®

1 N
+(1+a)'72||}’t—1 -yl (24)

where c1 and cy are arbitrary positive constants. Additionally, we
have

lIxe = x¢-1l1* < 88(x—1) + 2V [|%Ke—1 — x¢-1]1%

lye = ye-1ll® < 88(ye—1) + 22§11 — ye-1ll. (25)

Next, we bound the gradient tracking errors Ztho ld; — Vi Fs]?

and 31_, [Ipe = VyFe[® in (23).

LEMMA 7 (ERROR OF GRADIENT ESTIMATOR). Under Assumption
2, we have the following error bounds for the gradient trackers:

T T
D llde = VxElP < D Blld(n,—1)g = VxF (X(n,-1)g-
=0 t=1
Yn-nI? + Li(Ixe = xe-1l® +llye = ye-1l?). (26
T T
D lpe = VyFell? < D Blipn,-1)g = VyF Xn,-1)g-
t=0 t=1
Yne-n P + Li(lIxe = xe-1l® +llye = ye-1l®). - (27)
where n; is the largest positive integer satisfing (n; — 1)q < t.
PROOF SKETCH OF LEMMA 7. Define
Att—dlt_ xFit; Bir = valt(xlt:YIt)
IS ¢
JjESis
=Vxfit (Xi -1, Yi,t-1) + Vi Fipo1 = VxFip. (28)
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Note that E;[B;;] = 0, where the expectation is taken over the
randomness of data sampling at the ¢-th iteration. Thus,

EellAiell® = |Ais—11I* + E¢l|Bic )l (29)
Also, with |S; ¢| = ¢, we have
LZ
EellBill? < §(||xl~,t—xi,t_1||2 Flyie-yieal?). (o)

Taking full expectation and telescoping (30) over ¢ from (n; —

1)g+1to t, where t < n;q —1, we have B||lAs? < ]E||A(nt,1)q||2 +
2

, I E(llxr—xy—1]*+] I1%). Thus, 3} Ell A I
r=(n;— l)q+1q rar-1 Yr=¥r-1 k=0 k

2o M, —1)gl+ 25, f(”xr_xr 12 +Ilyr —yr-11l?). We have
similar result while A;; = p;,s —VyFi,. This completes the proof of
of Lemma. 7. O

A.2 Proof Sketch of Theorem 1

Proor. Following the defined potential function p and the result
of Lemma 3-7, we have

T
Eprei—po<vLe22 ) [lye - v
=0
T m T
—CiY Y Mk =i -Co ) e — 1@ %
=0 i=1 =0
T m T
~C ) > Fe-yielP1-Co ) IFe — 183412,
=0 i =0

i=1

(31)

C1,Cy,C3,Cy4 are some constants and can be found in Egs.(98) -

Eqs.(101) in our technical report [24] Suppose that f# < min {% %},

a < ﬁf hold and let ¢; = 1+/12 , if step-sizes satisfy Thm. 1 to
ensure Cq, Cy, C3,Cq > 0. We can conclude that

T

1 E[po — OF
1 < [po — Q7] (32)
T+14 min{Cy, Co, vLZ/Z}(T +1)
This completes the proof Theorem 1. O
A.3 Proof Sketch of Theorem 2
Proor. For PRECISIONY | we have
E”a(n,—l)q - VXF(ntfl)q”2
_ T(Ny<M)
= E”P(mfl)q - VyF(ntfl)q”2 = T02~ (33)
S
Recall that N5 = min{c, az(y(k)) 1 ceo?e™1, M}, we have
(N <M) max{ y(k) € y(k) € (34)
Ns cyo?’ ceo?” T cyo?  ceo?
Since yt41 = i (n,—l)q I%: — 1 ® %¢||%. Plugging (34) to Lemma
5, we have the followmg result, with additional parameter setting
¢y = (758Za o V L)% For PRECISION®, following the defined

potential functlon p and the result of Lemma 3-7, with pry; > QF,
we reach the conclusion. O

<
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