Shelley: a framework for model checking call
ordering on hierarchical systems

Carlos Mao de Ferro!, Tiago Cogumbreiro?, and Francisco Martins®

! LASIGE, Faculdade de Ciéncias, Universidade de Lisboa, Lisboa, Portugal
2 University of Massachusetts, Boston, USA
3 Faculdade de Ciéncias e Tecnologia, Ponta Delgada, Portugal

Abstract. This paper introduces Shelley, a novel model checking frame-
work used to verify the order of function calls, developed in the context
of Cyber-Physical Systems (CPS). Shelley infers the model directly from
MicroPython code, so as to simplify the process of checking requirements
expressed in a temporal logic. Applications for CPS need to reason about
the end of execution to verify the reclamation/release of physical re-
sources, so our temporal logic is stated on finite traces. Lastly, Shelley
infers the behavior from code using an inter-procedural and composi-
tional analysis, thus supporting the usual object-oriented programming
techniques employed in MicroPython code. To evaluate our work, we
present an experience report on an industrial application and evaluate
the bounds of the validity checks (up to 12'? subsystems under 10 sec-
onds on a desktop computer).

1 Introduction

This paper introduces a novel model checking framework to verify a MicroPython
code base against a set of requirements stated in a temporal logic on ordered
function calls. MicroPython [31] is an implementation of the Python program-
ming language designed for microcontrollers, providing a large subset of standard
Python features in a reduced memory footprint. A major challenge of applying
formal methods to the development of embedded cyber-physical systems, is the
gap between code and the requirements being checked [9,[25}43}/45}|56}/57]. To
bridge this gap, our approach is to automatically infer the model from the code
and let the user focus on stating requirements in a way that is close to the subject
matter.

Our research is guided by three main goals. Firstly, the requirements and
the system’s behavior should be represented as ordered actions (which denote
function calls), not as a transition system. Since the behavior being analyzed is
a call-order graph, then the model and its requirements should closely mirror
the given abstraction. In contrast, general-purpose model checkers express their
models as state-transitions systems and the requirements are stated in terms of
variables of these state-transition systems [7112}/13.27,40.(52,59./66]. Additionally,
model-checking approaches are usually focused on process communication, which
is outside of the scope of the subject of our research.

2 C. Mao de Ferro et al.

Secondly, our domain of interest is finite, so our temporal logic must be stated
on finite traces. When developing code that handles cyber-physical resources, it
is crucial to reason (formally) about the release of such resources. Our model
checking framework features linear temporal logic on finite traces (LTLy) [3}/18].
While it is possible to encode LTL¢ in model checker that uses infinite linear
temporal logic, such an encoding must be carefully implemented to avoid subtle
mistakes |17]; any encoding to infinite traces should be handled automatically.

Thirdly, code reuse is encouraged. Since our modeling language is the code
being run, then our analysis must support behavior (i.e., function calls) that
spans across multiple procedures (say, methods, or functions). A major feature
of our model checking framework is to support a compositional interprocedural
analysis that follows the usual abstraction and encapsulation techniques of Mi-
croPython codes. Further, Shelley automatically guarantees the correct usage
of each system, through function calls, according to their specifications, which
reduces the number of correctness claims needed to be written for each system.
The idea behind our analysis is akin to protocol conformance in the context of
behavior protocols [67].

In summary, our paper makes the following contributions:

1. A domain-specific language to specify stateful systems while abstracting
away the internal details of the implementation. (§3)

2. A formalization of generating a system’s internal behavior and of checking
its validity and decidability results. (and

3. A toolchain that model-checks requirements expressed by a temporal logic at
different hierarchy levels, ensuring correct-by-construction software. (§4.4))

4. An evaluation of our framework: verifying the Aquamote® software written
in MicroPython; assessing the performance impact of behavior checking (up

to 1212 subsystems under 10 seconds on a desktop computer). (§5)

Finally, Section [] discusses related work and Section [7] concludes the paper.
Shelley is open-source and available online El We provide a demonstration
video of our tooﬂ and an artifact [206].

2 Overview

In this section, we motivate the challenge of verifying the order of method calls in
a object hierarchy, and we overview using Shelley to enforce specified behaviors.
The running examples in this paper are taken from an industrial application that
motivated our research: Aquamote® is a battery-operated wireless controller
that switches water valves according to a scheduled irrigation plan. Following,
we verify the controller software that automatically adapts its plan based on the
weather forecast and sensor information yielding optimal water consumption
results. Listing [2.1] shows the Shelley model of our running example, which is
automatically extracted from MicroPython code.

4 |https: //github.com/cajomferro/shelley
® https://www.youtube.com /watch?v=ZiGPZRQHTWc

https://github.com/cajomferro/shelley
https://www.youtube.com/watch?v=ZiGPZRQHTWc

Shelley: a framework for model checking call ordering on hierarchical systems

Listing 2.1: Shelley specifications for our running example.

base Valve {

initial test -> open, clean;
open -> close;

final close -> test;

[V
2

NIV
SN}

AppV1 (a: Valve, b: Valve) {
final main_1 -> {
a.test; a.open; b.test;

b.open; a.close; b.close;
final clean -> test;} 5 3
6 26 final main_2 -> {
7 Sector (a: Valve, b: Valve) { 27 a.test; a.open; b.test;
8 initial try_open_1 -> close { 28 b.clean; a.close;
9 a.test; a.open; b.test; b.open; 29 3
10 } 30 final main_3 -> {
11 initial try_open_2 -> fail { 31 a.test; a.clean;
12 { a.test; a.clean; } + 32 3
13 { a.test; a.open; b.test; b.clean; a.close;} 33 initial main ->
14 } 34 main_1, main_2, main_3 {}
15 initial try_open -> try_open_1, try_open_2 {} 35
16 final fail -> try_open {} 36 check (!b.open) W a.open;
17 final close -> try_open {a.close; b.close;} 37}
18 38
19 check (!b.open) W a.open; 39 AppV2 (s: Sector) {
20 } 10 final main_1 -> {
A1 {s.try_open; s.close;} +
12 {s.try_open; s.fail;}
43 }

14 initial main -> main_1 {}}

Finite behaviors. Shelley is designed to verify finite behaviors. For appli-
cations that run on battery, it is paramount to specify the explicit release of
resources, e.g., turning off the WiF1i before suspending. Otherwise, the program-
mer risks exhausting the device’s battery while in suspend mode. Since reasoning
about finite executions on a temporal logic based on infinite traces can lead to
subtle errors [17], Shelley features LTL¢ and the behavior of our models are all fi-
nite. Note that Shelley can easily verify long-running applications. Indeed, there
is no notion of battery in Shelley, just termination. The specification in List-
ing could very well be of a control software that is connected to an electrical
grid. The key point is that Shelley lets us reason about the eventual termination
of a program, e.g., specify and enforce that all resources are freed before halting.

Model extraction. This paper discusses the verification of Shelley models.
Our tool infers Shelley models from MicroPython code automatically. However,
the discussion of the inference process and of its correctness are outside of the
scope of this work. Shelley over-approximates the behavior of MicroPython pro-
grams in the following ways, i.e., admits false alarms. The code of each method
must be expressed as a regular expression representing any possible sequence
of method calls. Shelley features sequencing, nondeterministic choice, and ter-
minating loops (via the Kleene-star operator). Non-terminating programs and
recursive calls are unsupported. Further, our tool disregards the program’s in-
ternal state, e.g., the arguments of method calls, the condition used to branch,
and the loop bounds.

4 C. Mao de Ferro et al.

Listing 2.2: Class Valve and a diagram specifying its intended behavior.

1 class Valve:
2 def __init__(self): def close(self):

3 self.control = Pin(27, Pin.OUT) 20 self.control.off()
1 self.clean = Pin(28, Pin.0UT) return

5 self.status = Pin(29, Pin.IN)

8
)

U

NN NN
w N o=

def clean(self):
8 def test(self): self.clean.on()
9 if self.status.value(): 26 return

10 return

11 else:

12 return clean*’@
13 test

—(test

14
15 def open(self): Opemclose
16 self.control.on() test

17 return

N
o

2.1 Restricting the behavior and usage of systems

As an example of a requirement, a user must test a valve before opening it, so as
to minimize the chance of clogging that valve, which would render it unusable.
Similarly, to conserve battery, we may want to enforce that the user must test the
valve before cleaning up debris. Next, we describe code annotations we defined
to achieve the ordering specified in the diagram of Listing Our verification
goal is to enforce that usages of class Valve follow the order specified by its code.

Listing [2.2] shows a high-level API, class Valve, written in MicroPython, to
control programmatically a valve. Since we need precise control over resource
allocation, we declare which methods can be considered safe to execute at the
beginning and ending of an object’s lifetime. Given that only test is marked as
op_initial, then after creating an instance of Valve the only method that can
be invoked is test (Lines [§ to[L2)). We then extract the ordering behavior based
on the return values. The method test returns either an open or clean label,
which signifies the following method that can be called. In this case, after testing,
the valve can be opened or cleaned, but neither closed nor tested consecutively.
When enabled, method open opens the valve (Lines [15|to ; after that we can
only close the valve (Lines [19)to [20). Finally, we can clean the valve from debris
(Lines [24] to 25]). Modifier op_final declares that method close can be the last
method called, with respect to the object’s lifetime; method clean is also marked
as final. Since open is not marked as final, the valve cannot be left open, as long
as the usage of the valve follows its specification.

2.2 Encapsulation complicates verification

We now introduce two versions of the same application, which controls two
valves. The first version, called AppV1, invokes the valves directly. The second
version, called AppV2, adds an extra abstraction layer Sector that generalizes
using both valves as a whole. Our intent is to illustrate the kind of programs we
are interested in and how different levels of abstraction complicate verification.

Shelley: a framework for model checking call ordering on hierarchical systems 5

Listing 2.3: Class AppV1 and a diagram specifying the internal behavior.

1 ()

2 class AppV1:

3 def __init__(self):

4 self.a=Valve();self.b=Valve()

6 (initial=True, final=True)
7 def main(self):

8 match self.a.test(): —»(»a.test open—»()
9 case 8 P

10 self.a.open() b.test

11 match self.b.test():

12 case :

13 self.b.open()

14 self.a.close() b.clean b.open

15 self.b.close()
o return b.close “a.clos
” case : 64— a.close

18 self.b.clean()
19 self.a.close()
20 print()
21 return
2 case :
23 self.a.clean()
1 print()
5 return

a.clean

Version 1. Listing lists a program that controls two valves, along with
a diagram that summarizes its internal behavior. Our program expresses two
side-effects: the first represents when both valves are open; and the second is
when one of the valves fails to open and must be cleaned. As an example, should
we omit the call open in Line and Shelley would output the following error
message:

Error in specification: INVALID SUBSYSTEM USAGE
Counter example: a.test, a.open, b.test, a.close, >b.close<
Subsystems errors:

* Valve ’b’: test, >close< (after test, expecting open or clean)

Besides automatically verifying that each valve is being used according to
the specification in Listing we also want to verify temporal requirements.
The claim in Line [T of Listing [2.3] guarantees that we only open valve b after
opening valve a. For instance, should we switch the calls to subsystems a and b
in such a way that we try to test valve b before valve a and Shelley would output
the following error message:

Error in specification: FAIL TO MEET REQUIREMENT
Formula: (!b.open) W a.open
Counter example: b.test, b.open, a.test, a.clean, b.close

Correctness claims express properties on the ordering of the internal calls
to subsystems during the life cycle of that object. Such claims are of great
importance for software maintenance, as Shelley checks if code changes preserve
the specified internal behavior.

Version 2. In Listing our top-level system AppV2 operates the valves via
a Sector class (in irrigation jargon, a sector is an irrigation zone where sev-

6 C. Mao de Ferro et al.

Listing 2.4: Classes Sector and AppV2 and a diagram specifying the Sector in-
ternal behavior.

1 () 32 class AppV2:
2 class Sector: 33 def __init__(self):
def __init__(self): 34 self.s = Sector()

4 self.a = Valve(); self.b = Valve() 35

5 36

6 37 def main(self):

7 def try_open(self): 38 match self.s.try_open():
8 match self.a.test(): 39 case :

9 case 3 40 self.s.close()
10 self.a.open() 41 return

11 match self.b.test(): 12 case g

12 case 8 13 self.s.fail()
13 self.b.open() 14 return

14 return

15 case : —(-a.tes .open—rQ

16 self.b.clean(); self.a.close()

17 return b.test
18 case :

o self.a.clean() a.test a.test a.clean

20 return

b.clean b.open

21

22

_4 de;r]iczii(scw):) b.close a.close@
5 ()e— a.close

return

28 def close(self):
29 self.a.close(); self.b.close()
30 return

eral water valves are grouped together), adding an extra layer of encapsulation.
Moreover, to make our code more reusable, class Sector abstracts trying to open
both valves in method try_open (one side effect) and then closing both valves
in method close (another side effect). When modeling class Sector, methods
that produce multiple side effects must be distinguished as different operations:
we write operation try_open_1 to express the single trace in method try_open
that returns "close” and we write operation try_open_2 to express both traces
of method try_open that return "fail”.

Since Sector exposes more methods, its behavior is more general than that
of AppV1. We note, however, that the correctness claim of version 1 also holds in
version 2 (Line . Deriving the internal behavior is not entirely obvious: e.g.,
every trace in method try_open that returns "close” must be able to precede
any sequence of method close; similarly, every trace of method try_open that
returns fail must be able to precede method fail.

Verifying a Sector is more complicated than verifying an AppV1, not just be-
cause the code is scattered across several methods, but because verifying the life
cycle of a Sector entails reasoning about the internal behavior that arises from
all possible usages of Sector, which in turn depends on the ordering constraints
of each method. Therefore, as an application complexity increases vertically (by
arranging systems hierarchically) and horizontally (by having more operations

Shelley: a framework for model checking call ordering on hierarchical systems 7

and more systems in each level) the code gets more and more partitioned and we
rapidly lose track of the sequence of calls that represent the behavior of our pro-
gram. Shelley model checks the Sector by deriving the internal behavior, which
captures all possible internal traces that arise during the life cycle of Sector.
To this end, Shelley must consider all possible orderings of operations and all
possible internal traces that such orderings may generate.

3 The Shelley language

Shelley’s specification language precisely defines the ordering constraints of calls
when arranging systems hierarchically. We have a specification per system that
is usually defined in a text file with the .shy extension. We now describe the
abstract syntax of Shelley using EBNF notation.

S=base X s* ¢* | X (z: X)" 0" ¢* s = initial? final? y — 2*
o=s{e} e=skip|z.y|ee|{e}+{e}|loop {e} ¢ = claim ¢
p=al| ¢ | dpr1Ng2 | XO | 41U

A system S can either be a base or a composite system. The former is identi-
fied by keyword base, has a name X and a zero or more operation signatures s.
Meta-variable X ranges over system names, and meta-variables y, z range over
operation names distinct from system names. A composite system uses zero or
more subsystems, notation (z : X), with each subsystem having a unique inter-
nal identifier x and the name of its system’s definition X. Finally, a composite
system defines zero or more operations o, each holding a signature and an op-
eration body e. A signature s declares an operation y and has, optionally, an
initial and a final modifier; we also declare zero or more operations z that can
succeed y. An operation body is a regular expression, where skip corresponds
to €, x.y corresponds to a call, sequencing is represented by e;e, union is given
by {e} + {e}, and the Kleene-star is denoted by loop {e}.

Shelley accepts correctness claims expressed in terms of a linear temporal
logic on finite traces (LTLs) |18]. A formula of LTL¢, notation ¢, uses the famil-
iar LTL notation. Let P be a set of propositional symbols (representing oper-
ations/calls) closed under the boolean connectives, where a € P. Formula X ¢
says that ¢ holds in the next instant. Formula ¢ U ¢5 states that ¢; holds un-
til ¢o eventually holds. Standard boolean abbreviations are used: true, false, V
(disjunction), and = (implication). Derived formulas include: F ¢ = true U ¢
stands for ¢ eventually holds; G¢ = —F —¢ stands for ¢ hold at every step of
the trace; ¢1 W o = (é1 U ¢2) V G ¢ stands for ¢; has to hold at least until ¢
or ¢1 must remain true forever. Although LTL and LTL¢ share the same syntax,
their semantics differ. The same formula can have different meanings according
to its interpretation on finite (LTLs) or infinite (LTL) traces [17]. The fact that
traces can be arbitrarily long but finite is a key characteristic of our domain of
interest, as we want to verifying what happens at the end of the life cycle of each
object, e.g., to permit resource deallocation or protocol termination.

8 C. Mao de Ferro et al.

4 The Shelley framework

We depict the structure of the Shelley framework in Figure [1] In the following
sections, we detail each step of the framework and we formalize external and
internal behavior generation and validity. Our main theoretical result is the
decidability of the checking procedure.

Shelley framework

Ef%e parser System behavior NFA
J decl. generator

model checker
(NuSMV)

+ System claims

)ohavior
checker
v

counterezamples counterezamples

Fig. 1: The structure of the Shelley framework.

Automata theory background. We use standard automata theory to for-
malize our verification process, e.g., as found in [73]. Here we briefly give the
relevant background to make the reading self contained. An NFA is a tuple
N = (Q, X, A, qo, F) consisting of a finite set of states @, a finite set of input
symbols X called the alphabet, a transition function A: Q x X' U {e} — p(Q),
where p(Q) is the power set of @, an initial state gy € @, and a set of final states
F C Q. A DFAis atuple D = (Q, X,0,qo, F) consisting of a finite set of states
@, a finite set of input symbols X, a transition function d: @ x X' — @, an initial
state gp € @, and a set of final states FF C Q. A word w = ajas . ..a, over the
alphabet X is accepted by an NFA N if, and only if, exists a sequence of states
70,71, .., Tn from @ such that ro = qo, 7141 € A(ri,a441), for i =0,...,n — 1,
and r, € F. The language of N is the set of words accepted by N and denoted
by L(N). The language of a DFA is defined similarly. Let f: X — I'* be a
function from one alphabet X' to words over another alphabet I". An extension
of function f to X* — I'* such that f(e) = € and f(wo) = f(w)f(o), for any
w € X* and o € X is called an homomorphism. We can extend this function to
any language F by letting f(L) = {f(w)|w € L}. When X is an automaton, we
denote dx to be the transition function of X, Qx denotes the states of X, and
Fx denotes the final states of X.

4.1 System declaration

The first step in our framework is to parse the Shelley language into a system
declaration that is then used throughout the verification process. The following
definition makes precise the notion of a system declaration.

Definition 1 (System declaration). A system declaration is a tuple S =
(O,1,F,B,C,0,p) where O is a set of operations a system exposes (its interface),
I C O is a set of initial operations, with I # (), F' C O is a set of final operations,
B C O x O is a set of operation transitions (the external system behavior),

Shelley: a framework for model checking call ordering on hierarchical systems 9

o:U — S is a function from system names to systems, p: O — D is a function
from operations to DFAs over subsystems (the internal system behavior), and C
is a set of LTLy formulas (correctness claims).

4.2 Behavior generation

The second step in our framework concerns system’s behavior generation. This
section formalizes deriving the external (vide Definition [2) and internal (wvide
Definition [4)) behaviors.

External system’s behavior. We make precise the notion of the external
behavior by means of an NFA. The set of states includes an initial state gy and
a state per operation. The transition function can be obtained by following the
signature section of each operation. It contains a transition from gg to each state
that corresponds to an initial operation, and a transition from each operation
state to the succeeding operation state. An operation state is accepting whenever
the corresponding operation is final.

Definition 2 (External behavior). Let S = (0,1,F,B,C,0,p). The exter-
nal behavior of S, notation Lgys(S), is defined as Leys(S) = L(Nsys(S)), where
Ngys(S) = (0 U{qo},0,9,q0, F), for some qo, and 0 is defined below.

8(01,02) = {02} if (01,02) € B 5(go,0) ={o} ifoel

A given system is considered a subsystem if it is integrated by another system.
When declaring a subsystem, a unique name is assigned to it and prefixed to
every usage of an operation of that subsystem. Definition |3| makes precise the
notion of subsystem behavior.

Definition 3 (Subsystem behavior). Let S = (0,1, F,B,C,0,p). We say
that the instantiation of S with u, notation Lgy,(S,u), is the regular language
given by the homomorphism f over Lgys(S) where f(0) = u.o, binding the sub-
system named u to every operation o of every word in Lgys(S).

Internal system’s behavior. Intuitively, Shelley derives the internal be-
havior of a system by replacing each operation-edge in the external behavior by
the behavior representing each operation body. Definition [makes precise the
notion of the internal behavior. Figure [2]is the NFA that results from applying
the definition below to the Sector of Listing 2.1] We denote X WY = X UY
where X NY = (). For brevity, let Lin(S) = L(Nint(S)).

Definition 4 (Internal behavior). Let S = (O,I,F,B,C,0,p) and let M =
Ngys(S). The internal behavior, Lin(S), is defined as Ling(S) = L(Nint(S5)),

where Nint(S) = (Q, 2,6,¢0, F) for Q = Qu [Qo T = |J Zu, Zu
(@)

0€0 uedom (o

10 C. Mao de Ferro et al.

“’Oﬂf@b‘test—obﬂpen ﬁQG* Fa.close®_rb.close®—e»
c S

€
a.clean

a.test

@-OPE b test(Orb. clean) a.closemD)—e O

Otryiopenil close Otryiopen72 Ofail

Fig. 2: Internal behavior of Sector given as a state diagram (NFA). Sink states
are omitted.

is the alphabet of the DFA that recognizes Lgyn(o(u),u), and § is defined below
where qo,, denotes the initial state of p(o0):

6(q,€) ={q0.0 | 0 € dn(q,0)} if g€ Qu
3(q,u.0) = {00y (g, u.0)} if ¢ € Qp(or)
5(CI7€) = {0} qu € Fp(o)

4.3 Valid behavior checking

The third step, which concerns behavior checking, ensures that both the external
and internal behaviors are valid. This section formalizes both techniques and
details how Shelley reports errors in case of an invalid internal behavior.

External behavior validity. Shelley ensures that all operations are reach-
able from an initial operation in at least one usage of the system.

Definition 5 (Valid external behavior). An operation o is valid if o € t
and t € Lgys(S) for some trace t. A system’s external behavior is valid if all of
its operations are valid.

The algorithm used in Theorem [l| ensures that all operations of a system
declaration appear in at least one trace, thus disallowing erroneous cases.

Theorem 1 (Decidability of valid external behavior). Given a system S
we can decide whether S has a valid external behavior.

Proof. Let S = (0,1,F,B,C,0,p) and let o € O. We must show that it is
decidable to find a trace ¢ such that o € t and t € Lgy(S). Step 1: build a
regular expression with all traces that contain o, using O as the alphabet. Step
2: intersect the regular language of step 1 with the regular language of Ly (.5).
Step 3: if the intersection is empty, then o € t and t € Lqys(S); otherwise o is
invalid. The algorithm is decidable because all steps are build from decidable
regular language operations.

Shelley: a framework for model checking call ordering on hierarchical systems 11

Internal behavior validity. Shelley considers the internal behavior of a
system valid when every subsystem being used follows its specification. The
following definitions make precise the notions of usage behavior and valid internal
behavior.

Definition 6 (Usage behavior). Let S = (0,1, F,B,C,0,p). The projection
of S on u, notation proj(S,u), is the regular language given by the homomor-
phism f from Nin(S) into o(u) with f(u.0) = o0 and f(u'.0) = € when u # u'.

Definition 7 (Valid internal behavior). Let S = (O,I,F,B,C,0,p). Sys-
tem S has a valid internal behavior if for all v € dom(co), then L(proj(S,u)) C
Lsub(S, u)

Theorem 2 (Decidability of valid internal behavior). Given a system S
we can decide whether S has a valid internal behavior.

Proof. Let S = (0,1,F,B,C,0,p) and let u € dom(o). We must show that
L(proj(S,u)) C Lsup(S, u) is decidable. L(proj(S, u)) is a regular language, since
it is a homomorphism from a regular language (Nint(5)). Likewise, Lgyp (.S, u)
is a regular language, since it is also a homomorphism from a regular language
Lgys(S). Set inclusion between regular languages is decidable.

Error provenance. A crucial feature of any checker is giving meaningful
feedback when verification fails. When a system’s internal behavior is invalid, our
tool: 1) finds a trace of calls that misuse at least one subsystem (internal trace);
2) determines which trace of operations caused that trace of calls; 3) identifies
the root-cause of the misusage. To obtain (1) (automata-)subtract the subsystem
behavior from the usage behavior; Shelley identifies the smallest internal trace
in the resulting FSM, with a breadth-first search. To obtain (2) annotate the
states of the internal behavior with the operation that produced each call. To
obtain (3) use the internal trace to navigate the behavior FSM, transitioning
from state to state according to the sequence of calls; if after a transition, the
algorithm finds itself in a non-accepting state that cannot reach any accepting
state, then the call used to transition is the root-cause of the error.

4.4 Model generation and claim checking

Shelley model checks an NFA against an LTL¢ formula to verify correctness
claims. To this end, we rely on NuSMV [13|. Shelley converts an NFA into a
Kripke structure, and converts an LTL¢ into an LTL. The NFA may represent
either an external behavior or an internal behavior, but such distinction is irrel-
evant at this stage.

Translating from an LTL¢ claim into an LTL claim. Our implemen-
tation follows [17]. Given an LTL¢ formula ¢, function [-] yields an equivalent
(infinite) LTL. The idea is to use a sentinel variable end that encodes the end
of a finite trace. Let P represent the set of propositional symbols. Variable end
must be distinct from all variables mentioned in ¢, i.e., end ¢ P. The trans-
lation must ensure that: variable end eventually holds, F end; once end is true

12 C. Mao de Ferro et al.

it remains true, Gend — Xend; and, no other variable in P becomes true
after end is true, G (end = A ,.p —a). Finally, we define [-] as follows:

l[al=a [=¢l=-[¢] o1 Ad]=[o:]A[02] [X¢] =X([8] A —end)
[#1 U ¢2] = [¢1] U ([¢2] A —end)

Translating from an NFA into a NuSMYV model. We implement the
word-acceptance decision procedure of an automata in NuSMV. Let NFA N =
(Q, X, A, qo, F). Variable state ranges over) and is initialized to qo; vari-
able action ranges over X' and represents the next character of the string being
recognized; boolean variable end represents the end of the string being recog-
nized. The key insight is to use variables state and end to represent the current
state of automata N and variable action to represent the next character of the
string being recognized. A NuSMYV simulation should only proceed until variable
end becomes true. While end # true update each variable as follows. Update
action non-deterministically from Y. Update state by applying ¢ to the current
state and the next action, i.e., d(state,action). Update end by checking if the
upcoming state is final; the intent is to let NuSMV non-deterministically stop
if the following state is final, otherwise it should continue (and end be set to
false). Formally, if j(state,action) € F, then set variable end to any boolean
non-deterministically. Otherwise set variable end to false. Our encoding requires
a fairness constraint on variable end.

5 Evaluation

In Section we present statistics of the Aquamote® verification, along with
correctness claims and counterexamples. We assess the bounds of the validity
checks of Shelley in a benchmark (Section , by increasing the number of
levels of hierarchy (vertical), and by increasing the number of operations and
calls (horizontal). To further exercise the correctness of our implementation we
run Shelley against a test suite of 297 specifications, which include 33 negative
tests.

Setup. Our experiments run on an 8-core Apple M1 Chip with 16GiB of
RAM, and Python 3.10.5. We follow the start-up performance methodology de-
tailed by Georges et al. [32], taking 11 samples of the execution time of each
benchmark and discarding the first sample. Next, we compute the mean of the 10
samples with a confidence interval of 95%, using the standard normal z-statistic.

5.1 Verifying Aquamote® with Shelley

Our use case is based on the Aquamote®, a wireless controller that switches
water valves according to a scheduled irrigation plan. The software consists of
9 classes, which yield 9 Shelley system declarations. Class App is the entry point
and it uses an instance of class Controller. The latter encapsulates handling the

Shelley: a framework for model checking call ordering on hierarchical systems 13

Table 1: Checking Aquamote® with Shelley.

MicroPython Shelley NuSMV
System LoC Annot.‘LoC Claims Subs. Oper. Calls‘ LoC
App 34 3 6 1 1 2 19 103
Controller 72 12| 29 5 3 9 18 237
HTTP 177 12) 12 1 0 10 0 -
Power 13 3 3 0 0 2 0 -
Sectors 45 7 14 1 5 4 12 152
Timer 12 2l 2 0 0 1 0 -
Valve 17 3 3 0 0 2 0 -
WiFi 71 8 8 1 0 6 0 -
Wireless 84 13| 30 4 2 11 21 301
TOTAL 525 63/ 107 13 11 47 70| 793

success/error conditions of the communication layer (one instance of Wireless),
decides when to operate the group of valves (one instance of Sectors), and de-
cides when to suspend (one instance of Power). Class Sectors (an extension
from Listing [2.4)) integrates four valves (Valve) and one timer (Timer), encapsu-
lating the behavior where the four valves are open and the four valves are shut,
mediated by a timer. Class Wireless integrates a Wi-Fi client and an HTTP
client, encapsulating both protocols within a single communication interface.
The remaining classes are all base classes.

Statistics. Table[I] lists statistics for each system declaration. For instance,
class Wireless has 90 lines of code, 13 lines are source code annotations to gen-
erate the specification, which includes 4 claims, one per line. Our MicroPython
extension automatically generates a Wireless specification of 30 lines of Shelley
code. Shelley then generates the external and internal behaviors from the speci-
fication, checks the validity of both behaviors, and, finally, generates a NuSMV
model with 301 lines of code that corresponds to the internal specification. For
each system we report information about 1) MicroPython source code: lines of
code (LoC) and number of Shelley annotations (Annot.); 2) Shelley: lines of code
and number of correctness claims (Claims), subsystems (Subs.), system opera-
tions (Oper.) and calls (Calls); and 3) NuSMV model: lines of code. The NuSMV
model is only generated for systems with claims. We present the verification time
in Figure [3

Checking requirements. We illustrate how claims can be used to enforce
strict temporal properties that relate more than one subsystem. We discuss an
example of a requirement that is checked using a temporal claim taken from the
specification of Sectors! after turning a valve on, a timer must be waited upon,
and exactly after that, the valve must be turned off. The claim shown below
applies this requirement to the four valves:

check G ((vl.on -> X (t.wait & (X (v1.off)))) & (v2.on -> X (t.wait & (X (v2.0ff))))
& (v3.on > X (t.wait & (X (v3.0ff)))) & (v4.on > X (t.wait & (X (v4.0off)))));

https://github.com/cajomferro/shelley/blob/4a83694d509823f56cf55941b3ff721b241a17f2/demos/paper_aquamote_example/sectors.py

14 C. Mao de Ferro et al.

1.04

0.8

0.6

0.4

0.2

0.0-

< X 5 &
& Nl (\(& W~ é_o“’ <& S S

o N
N K
&

&

Fig.3: Mean verification time in seconds for each specification, which includes
generating the FSMs for the external and internal behaviors, the validity checks,
generating the NuSMV model, and invoking NuSMV. Total verification time for
all systems is 3.99 seconds.

The specification of Timer| states that method wait can be invoked without
restrictions. However, our temporal claim constraints the timer when it is used
after a valve is turned on. Calling t.wait twice in between valve activation results
in the following error message:

Error in specification: FAIL TO MEET REQUIREMENT

Formula: G ((vl.on -> X (t.wait & (X (v1.off)))) & (v2.on -> X (t.wait & (X (v2.0ff))))
& (v3.on -> X (t.wait & (X (v3.0ff)))) & (v4.on -> X (t.wait & (X (v4.0ff)))))

Counter example: v2.on, t.wait, v2.off, vl.on, >t.wait, t.wait<, vi1.off

We further note that the temporal claim disallows opening more than one valve
at the same time, which is crucial in the Aquamote® use case given that in
many cases the water pressure is insufficient.

5.2 Performance impact of behavior checking

In this section, we measure the performance of behavior generation (cf. Sec-
tion and valid behavior checking (cf. Section . In this experiment, the
models have no claims, so the claim checking algorithm does not run.
Experiment A. We evaluate the effect of increasing the number of hierarchy
levels in terms of time, by ranging from 1 to 12 levels. Level 1 instantiates twelve
base systems. Every subsequent level instantiates twelve systems of the level
below, e.g., the system in level 5 instantiates twelve systems of level 4.
Discussion. In Figure [a] we see that the verification time grows logarithmi-
cally. The verification takes ~1.5 seconds per level and each level grows expo-
nentially in the number of systems. Shelley verifies a total of 1212 (~2%3) systems
(approximately 9 trillion system) under 10 seconds. Since every system has ex-
actly one operation, this is also equivalent to checking a specification with 9
trillion operations. The benchmarks show that the vertical growth follows a log-

https://github.com/cajomferro/shelley/blob/c17c878d55d49764c40ae453be5df0ab16a68c4e/demos/paper_aquamote_example/timer.py

Shelley: a framework for model checking call ordering on hierarchical systems 15

arithmic increase, which contrasts with the exponential increase of the horizontal
growth.

Experiment B. We explore the limits of increasing the number of operations
that can be verified under 10 seconds of time, as shown in Figure We define
different systems with an increasing number of operations. Figure [4b| shows the
impact of varying the number of operations between 1 and 81, in increments of
10.

Experiment C. We explore the limits of increasing the number of opera-
tions, and, separately, the number of calls, that can be verified under 10 seconds
of time, as shown in Figure We define different systems with an increasing
number of calls. Every system has exactly one operation and one subsystem.
Figure [4c| shows the impact of varying the number of calls between 1 and 311,
in increments of 10.

Discussion of experiments B and C. Adding calls has a smaller impact in the
verification time than adding operations. For instance, checking 71 operations
takes ~4,5 seconds while checking the same number of calls takes less than
1 second. These results highlight the importance of encapsulation to achieve
compositional verification. For instance, checking a single system that integrates
a total of 71 calls takes ~9 seconds (Figure , versus verifying a system with
122 subsystems that integrates a total of 144 calls takes less than 2 seconds

(Figure [4a)).

(a) Experiment A: versus
total number of subsys-
tems (log-log scale). We
increase the number of hi-
erarchy levels in terms of
time, by ranging from 1
to 12 levels, where sub-
sequent level instantiates
twelve systems of the level
below.

(b) Experiment B: versus
number of operations (lin-
ear scale). We define dif-
ferent systems with an in-
creasing number of oper-
ations ranging between 1
and 81, in increments of
10.

(c) Experiment C: versus
number of calls per opera-
tion (linear scale). We de-
fine different systems with
an increasing number of
calls ranging between 1
and 311, in increments of
10. Every system has ex-
actly one operation and
one subsystem.

Fig. 4: Measuring the behavior checking time, in seconds.

6 Related work

Many model checkers address concurrency problems focusing on process commu-
nication and internal state-change, rather than on ordering constraints. This in-
cludes well-known tools such as SPIN [40], MCLR2 [35], UPPAAL [52], NuSMV [13],

16 C. Mao de Ferro et al.

LTSA [55], and TLA+ [49]. Java PathFinder and the Bandera Tool Set [38],
for Java, and JKind , for Lustre, are examples of model checkers target-
ing general-purpose programming languages but again they focus on
concurrency rather than ensuring specific requirements about the behavior of
a program. Assume-guarantee reasoning specifies requirements in terms
of an internal state and pre-/post-conditions, and overcomes the problem of
state explosion with compositional verification . This technique has been
used by different modeling tools [1,53,55]. The Gamma Statechart Composition
Framework offers a modeling language to compose Statecharts , which
can then be model-checked. Statecharts have been applied in many different con-
texts, including object-oriented languages and verified using process calculi
as well . VeriSolid applies formal methods to verify smart contracts
specified as transition-systems, and includes a visualization tool.

Typestates refine the concept of type with information about which
operations can be used in a particular context. Multiple authors apply typestates
to object-oriented programming . Plaid is
a programming language designed from the ground up to explore typestates [2
. The main challenges being tackled include object aliasing, linearity,
and access permission. Some authors are applying typestates to general-purpose
programming languages . Shelley explores a similar
notion but from a model checking perspective; moreover typestates are based on
state-change, rather than on call ordering constraints.

Type systems allow for the verification of a fix set of properties that are
guaranteed by the type discipline itself. Type-and-effect systems
and permissive interfaces are concerned with checking that a program
respects a certain effect discipline. Sequential effect systems reason about
the program order.

Session types [15/[20,[41}[42/[50,/51}[82], a form of behavioral type, encode the
data flow in a conversation between two or more parties and focus on

reasoning about the data flow in a conversation between two or more parties.
Session types have been also explored for object-oriented languages
. Similar to Shelley, session types express ordered operations, but it is not
possible to compose parties hierarchically and achieve a modular verification.

Behavior protocols have been used to verify software compo-
nents. They can describe stateful component systems, be automatically checked
for behavior validity (known as protocol conformance) |54, and model-checked
at different levels but lack any form of component hierarchy, as this for-
malism was envisioned to describe peer-to-peer and client-server architectures.

Finally, the following are programming languages that can be verified for
correctness, but lack the notion of hierarchy of events that we explore in this
paper. P is a domain-specific programming language to specify a system as a
collection of interacting state machines that asynchronously communicate with
each other using events. ModP extends P with a notion of compositionality
expressed as an actor system. Rebeca follows similar principles and focus
on implementations details. JavaBIP ﬂgﬂ is a framework that uses annotations

Shelley: a framework for model checking call ordering on hierarchical systems 17

directly on Java code in order to coordinate existing concurrent software com-
ponents. Synchronous reactive languages [5,/6,136] share a focus with Shelley on
ordered event systems.

7 Conclusion

In this paper, we introduce Shelley, a domain-specific model checker where the
models represent ordered actions and the requirements are LTL¢ formulas. We
formalize the process of obtaining the internal behavior from a Shelley model,
as well as a decision procedure to check its validity with respect to the given
ordering constraints, which we prove to be decidable. Further, we present a
translation from a model’s behavior into an off-the-shelf model checker. We assess
our approach on an industrial case study, which includes detailed statistics of
our specification, e.g., 107 lines of Shelley generate 793 lines of NuSMV, verified
in less than 4 seconds. Finally, we evaluate the performance of our integration
checker on three scenarios and show that Shelley can check 12'? subsystems
under 10 seconds, highlighting the importance of our modular verification.

Acknowledgements This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2204986. This work was supported
by FCT through PhD scholarship SFRH/BD/131418/2017, and the LASIGE
Research Unit, ref. UIDB/00408/2020 and ref. UIDP/00408/2020.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, USA, 1st edn. (2010)

2. Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-Oriented Programming.
In: OOPSLA. p. 1015-1022. ACM, New York, NY, USA (2009). https://doi.org/
10.1145/1639950.1640073

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing It] semantics for runtime veri-
fication. Journal of Logic and Computation 20(3), 651-674 (2010)

4. Beckman, N.E., Kim, D., Aldrich, J.: An empirical study of object protocols in the
wild. In: Mezini, M. (ed.) ECOOP. Lecture Notes in Computer Science, vol. 6813,
pp. 2-26. Springer (2011). https://doi.org/10.1007/978-3-642-22655-7_2

5. Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous Programming with
Events and Relations: the SIGNAL Language and Its Semantics. Sci. Comput.
Program. 16(2), 103-149 (1991). https://doi.org/10.1016,/0167-6423(91)90001-E

6. Berry, G., Cosserat, L..: The ESTEREL Synchronous Programming Language and
its Mathematical Semantics. In: SC. Lecture Notes in Computer Science, vol. 197,
pp. 389-448. Springer (1984). https://doi.org/10.1007/3-540-15670-4_19

7. Beyer, D., Keremoglu, M.E.:. CPACHECKER: A tool for configurable software
verification. In: Proceedings of the 23rd International Conference on Computer
Aided Verification. p. 184-190. CAV’11, Springer-Verlag, Berlin, Heidelberg (2011)

8. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: Gabriel,
R.P., Bacon, D.F., Lopes, C.V., Jr., G.L.S. (eds.) OOPSLA. pp. 301-320. ACM
(2007). |https://doi.org/10.1145/1297027.1297050

https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1007/978-3-642-22655-7_2
https://doi.org/10.1007/978-3-642-22655-7_2
https://doi.org/10.1016/0167-6423(91)90001-E
https://doi.org/10.1016/0167-6423(91)90001-E
https://doi.org/10.1007/3-540-15670-4_19
https://doi.org/10.1007/3-540-15670-4_19
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1145/1297027.1297050

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. Mao de Ferro et al.

Bliudze, S., Mavridou, A., Szymanek, R., Zolotukhina, A.: Exogenous coordination
of concurrent software components with javabip. Softw. Pract. Exp. 47(11), 1801—
1836 (2017). https://doi.org/10.1002/spe.2495

Bourbouh, H., Farrell, M., Mavridou, A., Sljivo, I., Brat, G., Dennis, L.A., Fisher,
M.: Integrating formal verification and assurance: An inspection rover case study.
In: Dutle, A., Moscato, M.M., Titolo, L., Munoz, C.A., Perez, 1. (eds.) NFM.
Lecture Notes in Computer Science, vol. 12673, pp. 53—71. Springer (2021). https:
//doi.org/10.1007/978-3-030-76384-8_4

Bravetti, M., Francalanza, A., Golovanov, 1., Hiittel, H., Jakobsen, M., Kettunen,
M., Ravara, A.: Behavioural types for memory and method safety in a core object-
oriented language. In: d. S. Oliveira, B.C. (ed.) APLAS. Lecture Notes in Com-
puter Science, vol. 12470, pp. 105-124. Springer (2020). https://doi.org/10.1007/
978-3-030-64437-6_6

Bunte, O., Groote, J.F., Keiren, J.J., Laveaux, M., Neele, T., de Vink, E.P., Wes-
selink, W., Wijs, A., Willemse, T.A.: The mCRL2 toolset for analysing concurrent
systems: improvements in expressivity and usability. In: Proceedings of TACAS.
pp. 21-39. Springer (2019)

Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: CAV. Lecture Notes in Computer Science, vol. 2404, pp. 359-364.
Springer (2002). https://doi.org/10.1007/3-540-45657-0-29

Coleman, D., Hayes, F., Bear, S.: Introducing Objectcharts or How to Use State-
charts in Object-Oriented Design. IEEE Trans. Software Eng. 18(1), 9-18 (1992).
https://doi.org/10.1109/32.120312

Coppo, M., et al.: A Gentle Introduction to Multiparty Asynchronous Session
Types. In: SFM. Lecture Notes in Computer Science, vol. 9104, pp. 146-178.
Springer (2015). https://doi.org/10.1007/978-3-319-18941-3_4

Dai, Z., Mao, X.and Lei, Y., Qi, Y., Wang, R., Gu, B.: Compositional mining of
multiple object api protocols through state abstraction. TheScientificWorldJournal
(2013). [attps://doi.org/10.1155/2013 /171647

De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
Insensitivity to infiniteness. In: AAAIL p. 1027-1033. AAAI Press (2014)

De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAIL p. 854-860. AAAT Press (2013)

DeLlIne, R., Fahndrich, M.: The fugue protocol checker: Is your software baroque?
Tech. Rep. MSR-TR-2004-07 (January 2004), https://www.microsoft.com/en-us/
research /publication /the-fugue- protocol-checker-is-your-software-baroque/
Deniélou, P., Yoshida, N.: Multiparty Session Types Meet Communicating Au-
tomata. In: ESOP. Lecture Notes in Computer Science, vol. 7211, pp. 194-213.
Springer (2012). https://doi.org/10.1007/978-3-642-28869-2_10

Desai, A., Phanishayee, A., Qadeer, S., Seshia, S.A.: Compositional program-
ming and testing of dynamic distributed systems. Proc. ACM Program. Lang.
2(0OOPSLA) (2018). [https://doi.org/10.1145 /3276529

Desai, A., et al.: P: Safe Asynchronous Event-driven Programming. In: PLDI. pp.
321-332. ACM (2013)

Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP. Lecture Notes in
Computer Science, vol. 4067, pp. 328-352. Springer (2006). https://doi.org/10.
1007/11785477_20

https://doi.org/10.1002/spe.2495
https://doi.org/10.1002/spe.2495
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1109/32.120312
https://doi.org/10.1109/32.120312
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1155/2013/171647
https://doi.org/10.1155/2013/171647
https://www.microsoft.com/en-us/research/publication/the-fugue-protocol-checker-is-your-software-baroque/
https://www.microsoft.com/en-us/research/publication/the-fugue-protocol-checker-is-your-software-baroque/
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1145/3276529
https://doi.org/10.1145/3276529
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/11785477_20

Shelley: a framework for model checking call ordering on hierarchical systems 19

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Duarte, J., Ravara, A.: Retrofitting typestates into rust. In: Vasconcellos, C.D.,
Roggia, K.G., Bousfield, P., Collereii, V., Fernandes, J.P., Pereira, M. (eds.) SBLP.
pp. 83-91. ACM (2021). [https://doi.org/10.1145/3475061.3475082

Dutle, A., Munoz, C.A., Conrad, E., Goodloe, A., Titolo, L., Perez, 1., Balachan-
dran, S., Giannakopoulou, D., Mavridou, A., Pressburger, T.: From Requirements
to Autonomous Flight: An Overview of the Monitoring ICAROUS Project. In:
Luckcuck, M., Farrell, M. (eds.) FMAS. EPTCS, vol. 329, pp. 23-30 (2020).
https://doi.org/10.4204/EPTCS.329.3

de Ferro, C.M., Cogumbreiro, T., Martins, F.: Shelley: a framework for model
checking call ordering on hierarchical systems (May 2023). https://doi.org/10.
5281 /zenodo.7884206, |https://doi.org/10.5281 /zenodo.7884206

Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: CAV. pp. 20-27. Springer (2018)

Garcia, R., Tanter, E., Wolff, R., Aldrich, J.: Foundations of typestate-oriented
programming. ACM Trans. Program. Lang. Syst. 36(4) (2014). https://doi.org/
10.1145/2629609

Gay, S.J., Gesbert, N., Ravara, A., Vasconcelos, V.T.: Modular session types
for objects. Log. Methods Comput. Sci. 11(4) (2015). |https://doi.org/10.2168/
LMCS-11(4:12)2015

Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular ses-
sion types for distributed object-oriented programming. In: Hermenegildo, M.V.,
Palsberg, J. (eds.) POPL. pp. 299-312. ACM (2010). fhttps://doi.org/10.1145/
1706299.1706335

George, D.: MicroPython (2022), https://micropython.org

Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance
evaluation. In: OOPSLA. pp. 57-76. ACM (2007)

Giannakopoulou, D., Pasareanu, C.S.: Interface generation and compositional veri-
fication in JavaPathfinder. In: FASE. Lecture Notes in Computer Science, vol. 5503,
pp. 94-108. Springer (2009). https://doi.org/10.1007/978-3-642-00593-0_7
Gordon, C.S.: Polymorphic iterable sequential effect systems. ACM Trans. Pro-
gram. Lang. Syst. 43(1) (2021). https://doi.org/10.1145/3450272

Groote, J.F., Keiren, J.J.A., Luttik, B., de Vink, E.P., Willemse, T.A.C.: Modelling
and analysing software in mCRL2. In: FACS. pp. 25-48. Springer (2020)
Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow pro-
gramming language LUSTRE. Proceedings of the IEEE 79(9), 1305-1320 (1991)
Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231-274 (1987). lhttps://doi.org/10.1016/0167-6423(87)90035-9
Hatcliff, J., Dwyer, M.B.: Using the Bandera tool set to model-check properties
of concurrent Java software. In: CONCUR. Lecture Notes in Computer Science,
vol. 2154, pp. 39-58. Springer (2001). https://doi.org/10.1007/3-540-44685-0_5
Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: ESEC/FSE.
p. 31-40. ACM (2005). https://doi.org/10.1145/1081706.1081713

Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279-295
(1997). |https://doi.org/10.1109/32.588521

Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: ESOP. Lecture Notes in
Computer Science, vol. 1381, pp. 122-138. Springer (1998). https://doi.org/10.
1007/BFb0053567

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1-9:67 (2016). |https://doi.org/10.1145/2827695

https://doi.org/10.1145/3475061.3475082
https://doi.org/10.1145/3475061.3475082
https://doi.org/10.4204/EPTCS.329.3
https://doi.org/10.4204/EPTCS.329.3
https://doi.org/10.5281/zenodo.7884206
https://doi.org/10.5281/zenodo.7884206
https://doi.org/10.5281/zenodo.7884206
https://doi.org/10.5281/zenodo.7884206
https://doi.org/10.5281/zenodo.7884206
https://doi.org/10.1145/2629609
https://doi.org/10.1145/2629609
https://doi.org/10.1145/2629609
https://doi.org/10.1145/2629609
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.1145/1706299.1706335
https://doi.org/10.1145/1706299.1706335
https://doi.org/10.1145/1706299.1706335
https://doi.org/10.1145/1706299.1706335
https://micropython.org
https://doi.org/10.1007/978-3-642-00593-0_7
https://doi.org/10.1007/978-3-642-00593-0_7
https://doi.org/10.1145/3450272
https://doi.org/10.1145/3450272
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/3-540-44685-0_5
https://doi.org/10.1007/3-540-44685-0_5
https://doi.org/10.1145/1081706.1081713
https://doi.org/10.1145/1081706.1081713
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695

20

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

C. Mao de Ferro et al.

Jacklin, S.A.: Survey of verification and validation techniques for small satellite
software development. Tech. rep. (2015)

Jakobsen, M., Ravier, A.; Dardha, O.: Papaya: Global typestate analysis of aliased
objects. In: Veltri, N., Benton, N., Ghilezan, S. (eds.) PPDP. pp. 19:1-19:13. ACM
(2021). https://doi.org/10.1145/3479394.3479414

Katis, A., Mavridou, A., Giannakopoulou, D., Pressburger, T., Schumann, J.:
Capture, analyze, diagnose: Realizability checking of requirements in FRET. In:
Shoham, S., Vizel, Y. (eds.) CAV. Lecture Notes in Computer Science, vol. 13372,
pp. 490-504. Springer (2022). https://doi.org/10.1007/978-3-031-13188-2_24
Kofron, J.: Checking software component behavior using behavior protocols and
spin. In: Proceedings of SAC. p. 1513-1517. ACM (2007). |https://doi.org/10.1145/
1244002.1244326

Koskinen, E., Terauchi, T.: Local temporal reasoning. In: CSL-LICS. ACM (2014).
https://doi.org/10.1145/2603088.2603138

Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
mungo and stmungo: A session type toolchain for java. Sci. Comput. Program.
155, 52-75 (2018). [https://doi.org/10.1016/j.scico.2017.10.006

Lamport, L.: Who builds a house without drawing blueprints? Commun. ACM
58(4), 38-41 (2015). https://doi.org/10.1145/2736348

Lange, J., Tuosto, E., Yoshida, N.: From Communicating Machines to Graphical
Choreographies. In: POPL. pp. 221-232. ACM (2015). https://doi.org/10.1145/
2676726.2676964

Lange, J., Yoshida, N.: Verifying Asynchronous Interactions via Communicating
Session Automata. In: CAV. Lecture Notes in Computer Science, vol. 11561, pp.
97-117. Springer (2019). https://doi.org/10.1007/978-3-030-25540-4_6

Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1-2), 134-152 (1997). |https://doi.org/10.1007/s100090050010
Liu, J., Backes, J.D., Cofer, D., Gacek, A.: From design contracts to component
requirements verification. In: NFM. vol. 9690, p. 373-387. Springer (2016). https:
7/dot.org/10.1007 /978-3-319-40648-0_28

Mach, M., Plasil, F., Kofron, J.: Behavior protocol verification: Fighting state
explosion. International Journal of Computer and Information Science 6(1), 22-30
(2005)

Magee, J., Kramer, J.: Concurrency: state models and Java programs. Wiley, 2
edn. (2006)

Mavridou, A., Bourbouh, H., Garoche, P., Giannakopoulou, D., Pressburger, T.,
Schumann, J.: Bridging the gap between requirements and simulink model anal-
ysis. In: Sabetzadeh, M., Vogelsang, A., Abualhaija, S., Borg, M., Dalpiaz, F.,
Daneva, M., Condori-Fernandez, N., Franch, X., Fucci, D., Gervasi, V., Groen,
E.C., Guizzardi, R.S.S., Herrmann, A., Horkoff, J., Mich, L., Perini, A., Susi, A.
(eds.) REFSQ. CEUR Workshop Proceedings, vol. 2584. CEUR-WS.org (2020)
Mavridou, A., Bourbouh, H., Giannakopoulou, D., Pressburger, T., Hejase, M.,
Garoche, P.,; Schumann, J.: The ten lockheed martin cyber-physical challenges:
Formalized, analyzed, and explained. In: Breaux, T.D., Zisman, A., Fricker, S.,
Glinz, M. (eds.) RE. pp. 300-310. IEEE (2020). https://doi.org/10.1109/RE48521.
2020.00040

Mavridou, A., Katis, A., Giannakopoulou, D., Kooi, D., Pressburger, T., Whalen,
M.W.: From partial to global assume-guarantee contracts: Compositional real-
izability analysis in FRET. In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.)
FM. Lecture Notes in Computer Science, vol. 13047, pp. 503-523. Springer (2021).
https://doi.org/10.1007/978-3-030-90870-6_27

https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1007/978-3-031-13188-2_24
https://doi.org/10.1007/978-3-031-13188-2_24
https://doi.org/10.1145/1244002.1244326
https://doi.org/10.1145/1244002.1244326
https://doi.org/10.1145/1244002.1244326
https://doi.org/10.1145/1244002.1244326
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1145/2736348
https://doi.org/10.1145/2736348
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-319-40648-0_28
https://doi.org/10.1007/978-3-319-40648-0_28
https://doi.org/10.1007/978-3-319-40648-0_28
https://doi.org/10.1007/978-3-319-40648-0_28
https://doi.org/10.1109/RE48521.2020.00040
https://doi.org/10.1109/RE48521.2020.00040
https://doi.org/10.1109/RE48521.2020.00040
https://doi.org/10.1109/RE48521.2020.00040
https://doi.org/10.1007/978-3-030-90870-6_27
https://doi.org/10.1007/978-3-030-90870-6_27

Shelley: a framework for model checking call ordering on hierarchical systems 21

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: Verisolid: Correct-by-design
smart contracts for ethereum. CoRR abs/1901.01292 (2019), http://arxiv.org/
abs/1901.01292

Molnér, V., Graics, B., Voros, A., Majzik, 1., Varr, D.: The Gamma statechart
composition framework: design, verification and code generation for component-
based reactive systems. In: ICSE. pp. 113-116. ACM (2018). https://doi.org/10.
1145/3183440.3183489

Mota, J., Giunti, M., Ravara, A.: Java Typestate Checker. In: Damiani, F., Dardha,
O. (eds.) COORDINATION. Lecture Notes in Computer Science, vol. 12717, pp.
121-133. Springer (2021). https://doi.org/10.1007/978-3-030-78142-2_8

Naeem, N.A.) Lhotdk, O.: Typestate-like analysis of multiple interacting objects.
In: Harris, G.E. (ed.) OOPSLA. pp. 347-366. ACM (2008). https://doi.org/10.
1145/1449764.1449792

Nelaturu, K., Mavridou, A., Veneris, A.G., Laszka, A.: Verified Development and
Deployment of Multiple Interacting Smart Contracts with VeriSolid. In: ICBC.
pp. 1-9. IEEE (2020). [https://doi.org/10.1109/ICBC48266.2020.9169428
Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S.: A model checking framework for hi-
erarchical systems. In: ASE. pp. 633-636. IEEE (2011). https://doi.org/10.1109/
ASE.2011.6100143

Nielson, F., Nielson, H.R.: Type and effect systems. In: Olderog, E., Steffen, B.
(eds.) Correct System Design, Recent Insight and Advances. Lecture Notes in
Computer Science, vol. 1710, pp. 114-136. Springer (1999). https://doi.org/10.
1007/3-540-48092-7_6

Parizek, P., Plasil, F., Kofron, J.: Model Checking of Software Components: Com-
bining Java PathFinder and Behavior Protocol Model Checker. In: Proceedings of
SEW. pp. 133-141. IEEE (2006). [https://doi.org/10.1109/SEW.2006.23

Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE
Trans. Software Eng. 28(11), 1056-1076 (2002). |https://doi.org/10.1109/TSE.
2002.1049404

Pnueli, A.: In Transition From Global to Modular Temporal Reasoning about
Programs. In: LMCS. NATO ASI Series, vol. 13, pp. 123-144. Springer (1984).
https://doi.org/10.1007/978-3-642-82453-1_5

Pnueli, A., Shalev, M.: What is in a Step: On the Semantics of Statecharts. In:
TACS. Lecture Notes in Computer Science, vol. 526, pp. 244-264. Springer (1991)
Roscoe, A.W., Wu, Z.: Verifying Statemate Statecharts Using CSP and FDR. In:
ICFEM. Lecture Notes in Computer Science, vol. 4260, pp. 324-341. Springer
(2006). https://doi.org/10.1007/11901433_18

Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A Linear Decomposition of Multiparty
Sessions for Safe Distributed Programming. In: Miiller, P. (ed.) ECOOP. LIPIcs,
vol. 74, pp. 24:1-24:31. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2017).
https://doi.org/10.4230/LIPIcs. ECOOP.2017.24

Scalas, A., Yoshida, N.: Lightweight Session Programming in Scala. In: Kr-
ishnamurthi, S., Lerner, B.S. (eds.) ECOOP. LIPIcs, vol. 56, pp. 21:1-21:28.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2016). |https://doi.org/10.
4230/LIPIcs. ECOOP.2016.21

Sipser, M.: Introduction to the Theory of Computation. International Thomson
Publishing, 1st edn. (1996)

Sirjani, M., Jaghoori, M.M.: Ten Years of Analyzing Actors: Rebeca Experience. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Essays Dedicated to Carolyn Talcott on
the Occasion of Her 70th Birthday. Lecture Notes in Computer Science, vol. 7000,
pp. 20-56. Springer (2011). https://doi.org/10.1007/978-3-642-24933-4_3

http://arxiv.org/abs/1901.01292
http://arxiv.org/abs/1901.01292
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1007/978-3-030-78142-2_8
https://doi.org/10.1007/978-3-030-78142-2_8
https://doi.org/10.1145/1449764.1449792
https://doi.org/10.1145/1449764.1449792
https://doi.org/10.1145/1449764.1449792
https://doi.org/10.1145/1449764.1449792
https://doi.org/10.1109/ICBC48266.2020.9169428
https://doi.org/10.1109/ICBC48266.2020.9169428
https://doi.org/10.1109/ASE.2011.6100143
https://doi.org/10.1109/ASE.2011.6100143
https://doi.org/10.1109/ASE.2011.6100143
https://doi.org/10.1109/ASE.2011.6100143
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1109/SEW.2006.23
https://doi.org/10.1109/SEW.2006.23
https://doi.org/10.1109/TSE.2002.1049404
https://doi.org/10.1109/TSE.2002.1049404
https://doi.org/10.1109/TSE.2002.1049404
https://doi.org/10.1109/TSE.2002.1049404
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/11901433_18
https://doi.org/10.1007/11901433_18
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-642-24933-4_3

22

75.

76.

e

78.

79.

80.

81.

82.

C. Mao de Ferro et al.

Skalka, C.: Trace Effects and Object Orientation. In: PPDP. p. 139-150. ACM
(2005). https://doi.org/10.1145/1069774.1069787.

Skalka, C., Smith, S., Van horn, D.: Types and Trace Effects of Higher Order
Programs. J. Funct. Program. 18(2), 179-249 (2008). https://doi.org/10.1017/
50956796807006466

Strom, R.E., Yemini, S.: Typestate: A Programming Language Concept for En-
hancing Software Reliability. IEEE Trans. Softw. Eng. 12(1), 157-171 (1986).
https://doi.org/10.1109/TSE.1986.6312929

Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, E.: First-class state change
in plaid. In: Lopes, C.V., Fisher, K. (eds.) OOPSLA. pp. 713-732. ACM (2011).
https://doi.org/10.1145/2048066.2048122

Tate, R.: The Sequential Semantics of Producer Effect Systems. In: POPL. p.
15-26. ACM (2013). https://doi.org/10.1145/2429069.2429074

Vasconcelos, V.T.: Sessions, from Types to Programming Languages. Bull. EATCS
103, 53-73 (2011)

Voinea, A.L., Dardha, O., Gay, S.J.: Typechecking Java Protocols with [St]Mungo.
In: Gotsman, A., Sokolova, A. (eds.) FORTE. Lecture Notes in Computer
Science, vol. 12136, pp. 208-224. Springer (2020). https://doi.org/10.1007/
978-3-030-50086-3_12

Zeng, H., Kurz, A., Tuosto, E.: Interface Automata for Choreographies. Electronic
Proceedings in Theoretical Computer Science 304, 1-19 (2019). https://doi.org/
10.4204 /eptcs.304.1

https://doi.org/10.1145/1069774.1069787
https://doi.org/10.1145/1069774.1069787
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1017/S0956796807006466
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2048066.2048122
https://doi.org/10.1145/2048066.2048122
https://doi.org/10.1145/2429069.2429074
https://doi.org/10.1145/2429069.2429074
https://doi.org/10.1007/978-3-030-50086-3_12
https://doi.org/10.1007/978-3-030-50086-3_12
https://doi.org/10.1007/978-3-030-50086-3_12
https://doi.org/10.1007/978-3-030-50086-3_12
https://doi.org/10.4204/eptcs.304.1
https://doi.org/10.4204/eptcs.304.1
https://doi.org/10.4204/eptcs.304.1
https://doi.org/10.4204/eptcs.304.1

	Shelley: a framework for model checking call ordering on hierarchical systems

