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Abstract

The lack of standardized benchmarks for reinforcement learning (RL) in sustain-
ability applications has made it difficult to both track progress on specific domains
and identify bottlenecks for researchers to focus their efforts. In this paper, we
present SustainGym, a suite of five environments designed to test the performance
of RL algorithms on realistic sustainable energy system tasks, ranging from electric
vehicle charging to carbon-aware data center job scheduling. The environments
test RL algorithms under realistic distribution shifts as well as in multi-agent set-
tings. We show that standard off-the-shelf RL algorithms leave significant room
for improving performance and highlight the challenges ahead for introducing RL
to real-world sustainability tasks.

1 Introduction

While reinforcement learning (RL) algorithms have demonstrated tremendous success in applications
ranging from game-playing, e.g., Atari and Go, to robotic control, e.g., [1-3], most RL algorithms
continue to only be benchmarked using toy environments—e.g., OpenAl Gym [4]. These toy
environments generally do not have realistic physical constraints, nor realistic environmental shifts
over time. Furthermore, these environments are generally limited to single-agent systems, whereas
real-world systems tend to involve coordination and/or competition between actors. The realism gap
limits the reliable deployment of off-the-shelf RL algorithms in real-world systems.

Developing better RL algorithms to address these challenges requires a means of empirically bench-
marking and comparing the performance of different algorithms in real-world settings. Our inspiration
comes from progress in supervised machine learning (ML), where widespread adoption of break-
through techniques was fueled by large datasets with standardized benchmarks, such as ImageNet for
computer vision [5] and the GLUE benchmark for natural language processing [6]. More recently,
many supervised learning datasets have been created to address specific real-world sustainability
challenges, such as monitoring global progress towards sustainable development goals [7].

In this work, we introduce SustainGym, a suite of 5 RL environments that realistically model
sustainability settings, summarized in Table 1:
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Table 1: Summary of environments included in SustainGym and their features. The “Single agent”
and “Multi-agent” rows indicate what an individual RL agent controls in that environment.

Env EVChargingEnv ElectricityMarketEnv DatacenterEnv CogenEnv BuildingEnv
Control charging rates for  market bids fora  virtual capacity dispatch set heating supply for
task EV charging grid-connected curve for a points for buildings
stations battery storage carbon-aware turbines
system data center
Modeled  charging generic test case  (loosely) a specific combined  generic DoE
after networks at (IEEE Google data cycle gas commercial
Caltech & JPL RTS-GMLC) center generation plant reference
in the U.S. building models
Single all EV charging single battery single data center  all 4 turbine units  all buildings
agent stations system
Multi- one EV charging N/A N/A one turbine unit, one room,
agent station, cooperative cooperative
cooperative
Actions discrete or discrete or continuous mixed discrete &  discrete or
continuous continuous continuous continuous
Rewards cost + COq cost + COq penalty + COq cost + COqy temperature
difference +
energy use
Distribution MOER, EV MOER, load MOER renewable wind outdoor
shift arrivals penetration temperature

EVChargingEnv models the problem of scheduling electric vehicle (EV) charging to meet
user needs while minimizing CO4 emissions.

ElectricityMarketEnv models a grid-scale battery storage system bidding into the elec-
tricity market to generate profit (through price arbitrage) and reduce CO5 emissions.
DatacenterEnv models a datacenter deciding on a “virtual capacity curve” to shift flexible
jobs towards times of day with lower CO45 emissions.

CogenEnv models a combined cycle cogeneration plant producing steam and electricity to
meet local demand while minimizing fuel usage and ramp costs.

BuildingEnv models the thermal control of building energy systems to reduce the total
electricity consumption while satisfying the user-specified temperature requirement.

A key feature of SustainGym environments is their support for testing RL algorithms under realistic
and natural exogenous distribution shifts, which generally fall under two categories:

1. Shifts in demand. In each environment, RL agents choose actions to satisfy some “demand”

that is often affected by the behavior of unmodeled agents. For example, in EVChargingEnv,
the demand is the amount of energy that needs to be delivered to EVs that have arrived
at the charging network. This demand changed significantly at the start of the COVID-19
pandemic when EV drivers changed their driving behaviors (Figure 2).

. Shifts in environmental parameters. Real-world environments are rarely static, and Sus-

tainGym environments reflect changing environment parameters due to temporal and/or
climate changes. For example, a battery storage controller for ElectricityMarketEnv
makes decisions to minimize marginal CO5 emissions, but the distribution of CO5 emissions
varies over time as power plants are added to or removed from the electric grid (Figure 1).

Notably, the distribution shifts reflected in SustainGym are unlike the “sim-to-real” or offline-vs-
online RL distribution shifts that have been more commonly studied in the literature. The sim-to-real
distribution shift comes from imperfect modeling of the environment, whereas the offline-to-online
RL distribution shift is caused by a change in the policy used to generate trajectories. In contrast,
the exogenous distribution shifts in SustainGym are not due to imperfect environments nor policy
mismatches, but rather more fundamental changes in the transition dynamics of the Markov decision
processes. Note that only the transition dynamics experience distribution shift; the state space, action
space, and reward functions do not change.

Two other similar lines of work to the distribution shifts in SustainGym are nonstationary RL
environments [8] and distributionally robust RL [9]. However, whereas nonstationary RL typically
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Figure 1: (left) MOER values from two different regions (a.k.a. “balancing authorities”) in California,
Pacific Gas & Electric (PGE) and Southern California Edison (SCE). Solid line is the mean MOER
over all days in a month at a given time of day. Shaded region is £1 std. dev. (right) MOER forecast
error increases with the forecast horizon.

evaluates an RL agent’s performance over the course of a changing environment, SustainGym
benchmarks RL agents’ ability to generalize to new (unseen) distribution shifts. Distributionally
robust RL generally assumes that the set of environmental distributions are known at training time,
which is not necessarily the case for the settings considered in SustainGym.

In addition to modeling realistic distribution shifts, SustainGym is distinctive for its inclusion
multi-agent interactions, physical constraints, and mixtures of discrete and continuous actions, as
summarized in Table 1.

To demonstrate the use of the SustainGym, we perform experiments with off-the-shelf RL algorithms.
We find that these algorithms have mixed performance on SustainGym. Furthermore, we show that
distribution shifts may reduce the performance of these algorithms significantly, demonstrating a
need for more robust algorithms. Finally, comparisons against non-RL baselines and oracles show
that RL has significant room for improvement.

Due to page constraints, the main text of this paper summarizes key design choices and experimental
observations for SustainGym. Details can be found in Appendix B. Code, licenses, and instructions
for using SustainGym can be found on GitHub.!

Related Work. Prior work related to SustainGym includes ConservationGym, which focuses on
ecological applications [10], PowerGridWorld for power system modeling and simulation [11], and
CityLearn for simulation of demand response and urban energy management [12], among others. RL
environments and algorithms for both EV charging [13—-15] and electricity markets [16—18] have also
been released. Compared to these works, the unique aspects of SustainGym are its focus on tracking
estimated CO> emissions and its ability to test RL algorithms in settings with challenging distribution
shifts, physical constraints, and interactions between multiple agents. We expect SustainGym to serve
as a benchmark for the progress of RL algorithm development for sustainable energy systems.

2 Environments
This section introduces the 5 environments in SustainGym and summarizes their design choices.

Marginal CO; emissions. Three environments (EVChargingEnv, ElectricityMarketEnv,
DatacenterEnv) impose a cost Pco, (in $/kgCO2) on the simulated CO2 emissions induced by the
actions of an agent as a result of changes in electricity consumption. To do so, our environments use
data on California’s historical marginal operating emissions rate (MOER, in kgCOy/kWh), which
is the increase in CO, emissions per increase in energy demand. The MOER at time ¢ is denoted
my € Ry, and the forecasts generated at time ¢ for the next k time steps are denoted 724,44 1)¢ € R*.
By default, we use k = 36. Figure 1 shows how MOER values and their forecasts vary across time
and between different regions in California.

"https://github.com/chrisyeh96/sustaingym/
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Figure 2: EV arrival vs. departure times for the Caltech EV charging network. Historical data is in
blue, and log-likelihood contours from a 30-component GMM are in orange. The distribution of EV
arrival and departure times changed noticeably when the COVID-19 pandemic began in early 2020.

2.1 EVChargingEnv

EVChargingEnv uses ACNSim [13] to simulate the charging of EVs based on actual data gathered
from EV charging networks between fall 2018 and summer 2021 [19, 20]. ACNSim is a “digital twin”
of actual EV charging networks at Caltech and JPL, which have n = 54 and 52 charging stations
(abbrv. EVSEs, Electric Vehicle Supply Equipment), respectively. ACNSim accounts for nonlinear
EV battery charging dynamics and unbalanced 3-phase AC power flows, and is thus very realistic.
ACNSim (and therefore EVChargingEnv) can be extended to model other charging networks as well.
When drivers charge their EVs, they provide an estimated time of departure and amount of energy
requested. Because of network and power constraints, not all EVSEs can simultaneously provide
their maximum charging rates (a.k.a. “pilot signals”).

Each episode starts at midnight and runs at 5-minute time steps for 24 hours. At each time step, the
agent simultaneously decides all n EVSE pilot signals to be executed for the duration of that time
step. Its objective is to maximize charge delivery while minimizing carbon costs and obeying the
network and power constraints.

Observation Space. ~An observation at time ¢ is s(t) = (¢, d, e, m¢_1, M4 45—1)¢). t € [0,1] is the
fraction of day. d € Z" is estimated remaining duration of each EV (in # of time steps). e € R} is
remaining energy demand of each EV (in kWh). If no EV is charging at EVSE ¢, then d; = 0 and
e; = 0. If an EV charging at EVSE ¢ has exceeded the user-specified estimated departure time, then
d; becomes negative, while e; may still be nonzero.

Action Space. EVChargingEnv exposes a choice of discrete actions a(t) € {0, 1,2, 3,4}", repre-
senting pilot signals scaled down by a factor of 8, or continuous actions a(t) € [0, 1]™ representing
the pilot signal normalized by the maximum signal allowed M (in amps) for each EVSE. Physical
infrastructure in a charging network constrains the set .A; of feasible actions at each time step ¢
[20]. Furthermore, the EVSEs only support discrete pilot signals, so A; is nonconvex. To satisfy
these physical constraints, EVChargingEnv can project an agent’s action a(t) into the convex hull of
A; and round it to the nearest allowed pilot signal, resulting in final normalized pilot signals a(t).
ACNSim processes a(t) and returns the actual charging rate Ma € R’} (in amps) delivered at each
EVSE, as well as the remaining demand e; (¢ + 1).

Reward Function. The reward function is a sum of three components: 7(t) = p(t) — ¢y (t) — cc(¢).
The profit term p(t) aims to maximize energy delivered to the EVs. The constraint violation cost
cy (t) penalizes network and power constraint violations. Finally, the CO5 emissions cost co(t),
which is a function of the MOER m, and charging action, aims to reduce emissions by encouraging
the agent to charge EVs when the MOER is low.

Distribution Shift. EVChargingEnv supports real historical data as well as data sampled from a
30-component Gaussian Mixture Model (GMM) fit to historical data. We fitted GMM:s to 4 disjoint
historical periods, as defined in [21]. Figures 2 and 6 show the distribution of arrival and departure
times in each of these 4 periods, for both the historical data as well as the GMM log-likelihoods.
From these figures, it is evident that the pattern of user arrival and departure times changes over
time, with the most drastic shift happening between Fall 2019 and Spring 2020, which is when the
COVID-19 pandemic began.



Multiagent Setting. The multiagent setting features n agents, each deciding the pilot signal for a
single EVSE. The reward is split evenly among the agents. Each agent obtains the global observation,
except that the estimated remaining durations and energy demands for other EVSEs are delayed by
tq time steps.

2.2 ElectricityMarketEnv

ElectricityMarketEnv simulates a realtime electricity market for 33 generators and 1 80MWh
battery storage system connected on a 24-bus congested transmission network based on the widely-
used IEEE RTS-24 test case [22], with 5-minute settlements and load data from IEEE RTS-GMLC
[23]. While ElectricityMarketEnv is not modeled after any particular real-world transmission
network, the RTS-GMLC electricity load profile was designed to be representative of a modern
transmission network located in the southwestern U.S.

All participants submit bids to the market operator (MO) at every time step. Based on the bids,
the MO solves the multi-timestep security-constrained economic dispatch (SCED) problem which
determines the price and amount of electricity purchased from (or sold by) each generator and battery
to meet realtime electricity demand. Each episode runs for 1 day, with 5-minute time intervals. The
agent controls the battery system and is rewarded for submitting bids that result in charging (buy)
when prices are low, and discharging (sell) when prices and CO5 emissions are high, thus performing
price arbitrage.

Observation Space. An observation is s(t) = (t,e,at —
), w1, pe—1,le—1, lsgp i1, My—1, My k1)) t € [0, 1] represents the time of day. e € R is the
agent’s battery level (in MWh). a(t — 1) € Rﬁ_Xk is the previous action taken. z;_; € R is the
previous dispatch (in MWh) asked of the agent. p,_; € R is the previous price experienced by the
agent (in $/MWh). I;_; € R, is the previous demand experienced by the agent (in MWh), while

lt:t+k—1 € R¥ is the forecasted demand for the next k steps.

Action Space. An agent action is a bid a(t) = (a%, a?) € R% x R¥, representing prices ($MWh)
that the agent is willing to pay (or receive) for charging (or discharging) per MWh of energy, for the
next k£ + 1 time steps starting from time ¢. The generators are assumed to always bid their fixed true
cost of generation. The environment solves the optimal dispatch problem to determine the electricity
price p; and the agent’s dispatch x; € R, which is the amount of energy that the agent is obligated to
sell into or buy from the grid within the next time step. The dispatch in turn determines the storage
system’s next energy level. We also provide a wrapper that discretizes the action space into 3 actions
only: charge, do nothing, or discharge.

Reward Function. The reward function encourages the agent to maximize profit from charging
decisions while minimizing associated carbon emissions. It is a sum of three components: (t) =
rr(t) + ro(t) — er(t). The revenue term r(t) = pyay is the immediate revenue from the dispatch.
The CO5 emissions reward term r¢(t) = Pco,m:2: represents the price of CO2 emissions displaced
or incurred by the battery dispatch. The terminal cost ¢p(t), which is nonzero only when ¢ = T,
encourages the battery to have the same energy level at the end of the day as when it started. We also
provide an option to delay all reward signals until the terminal time (intermediate rewards are 0).

Distribution Shift. Distribution shift for ElectricityMarketEnv comes from changes in both
electricity demand and MOER profiles between summer and winter months.

2.3 DatacenterEnv

DatacenterEnv is a simulator for carbon-aware job scheduling in datacenters, which aims to reduce
the carbon emissions associated with electrcity usage in a datacenter. Carbon-aware job scheduling is
premised upon two facts: (i) a significant fraction of a datacenter’s workload (e.g., up to 50% in some
of Google datacenters [24, 25]) is comprised of low priority jobs whose execution can be delayed,
and (ii) the carbon intensity of the electric grid fluctuates predictably over time. Therefore, if the
execution of low priority workload is delayed to a time of day with “greener” energy, the datacenter’s
carbon emissions can be minimized.

DatacenterEnv is loosely modeled after a Google datacenter. We assume that jobs are scheduled
according to a priority queue, with jobs spread evenly across the available machines. Following
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Figure 3: Electricity demand without (left) and with wind (middle), and steam demand (right) on a
15 minute basis for 253 days in CogenEnv dataset, with 6 random traces highlighted for each.

Radovanovic et al. [26], we implement workload execution delay by artificially limiting the total
datacenter capacity with a virtual capacity curve (VCC) at each time step. If more jobs are enqueued
than the VCC permits, then the jobs must wait until the VCC is raised high enough to allow the jobs
to run. Simulation is carried out by replaying a sample of real job traces from a Google cluster from
May 2019 [25]. One timestep in the environment corresponds to one hour, and each episode lasts the
whole month.

Observation Space. An observation s(t) = (a(t — 1), d¢, 1, Myg493)) € R?7 contains the active
VCC a(t — 1) set from the previous time step, currently running compute load d;, number of jobs
waiting to be scheduled n, as well as the forecasted MOER for the next 24h 71,4 4 93¢

Action Space. At time ¢, the agent sets the VCC, a(t) € [0, 1], for the next time step. This action
denotes the fraction of the datacenter’s maximum capacity allowed to be allocated by the scheduler.

Reward Function. The reward consists of two components that encourage the agents to trade-off
between scheduling more jobs and reducing associated carbon emissions. The first component
penalizes the agent when jobs are scheduled more than 24h after they were originally submitted. The
second component is a carbon emissions cost. Formally, the reward is specified as

23
r(t) =dy - my + 1}49%24—0) Max (O, 0.97w; — C Z a(t — h))
h=0

where d; - m,; is the carbon emissions, C is the datacenter’s maximum capacity, and w; is the total
job-hours of enqueued jobs on that day.

Distribution Shift. The distribution shift in DatacenterEnv comes from changes in the MOER
between 2019 and 2021.

24 CogenEnv

CogenEnv simulates the operation of a combined cycle gas power plant tasked with meeting local
steam and energy demand. Conventional dispatchable generators suffer decreased efficiency as a result
of frequent ramping, posing a particular challenge as increasing penetrations of variable renewables
necessitate larger and more frequent ramps to ensure supply-demand balance. Thus, optimal operation
of cogeneration resources requires balancing the competing objectives of minimizing fuel use,
anticipating future ramp needs, and ensuring delivery of sufficient energy and steam to the grid.

While CogenEnv models a specific combined cycle gas generation plant in the U.S. (anonymized and
location withheld for security reasons), the basic environment setup is a representative prototype of
more general dispatchable resource generation control tasks, due to its complexity (the number of
variables, mixed continuous/binary decisions, complementary trains of the plant all needing to be
controlled together). In addition, the environment is readily modifiable to accommodate other cost
structures (e.g., changing the relative magnitude of the constraint penalties vs. the ramping cost).

Observation Space. An observation takes the form
S(t) = (7—7 a(t - ]-), Tt:t+k7 Pt:t+k; Ht:t+k7 d{;t_i'_k? dg;t_;,_k; lef):t-‘rk’ W£t+k)v

where 7 = ¢/96 is the time (normalized by number of 15 minute intervals in a day), a(t — 1) is the
agent’s previous action, 7y.; 4k, Ps.t+k, and Hy.44p are current and k forecast steps of temperature,



pressure, and relative humidity, respectively, dy,, . , and dy,, ., are current and & forecast steps of

electricity and steam demand, respectively, and 7%, 4 and 7T£t 4, are current and k forecast steps of
electricity and fuel price, respectively.

Action Space. The action space is a vector a(t) € R specifying dispatch setpoints and other
auxiliary variables for all turbines in the plant. Specifically, for each of three gas turbines, the agent
specifies (a) a scalar turbine electricity output, (b) a scalar heat recovery steam flow, (c) a binary
evaporative cooler switch setting, and (d) a binary power augmentation switch setting. In addition,
for the steam turbine, the agent specifies (a) a scalar turbine electricity output, (b) a scalar steam flow
through the plant condenser, and (c) an integer number of cooling tower bays employed.

Reward Function. The reward function is comprised of three components:
r(t) = — (rp(a(t); Ty, Py, Hy) + re(alt);alt — 1)) + re(a(t); d7, df)) .-

r(a(t); Ty, Py, Hy) is the generator fuel consumption in response to dispatch a(t). r,.(a(t); a(t — 1))
is the ramp cost, captured via an ¢; norm penalty for any change in generator electricity dispatch
between consecutive actions. 7.(a(t); d7, d¥) is a constraint violation penalty, penalizing any unmet
electricity and steam demand, as well as any violation of the plant’s dynamic operating constraints.
The sum of these three components is negated to convert costs to rewards.

Distribution Shift. CogenEnv considers distribution shifts in the renewable generation profiles,
and specifically, increasing penetration of wind energy. This increased variable renewable energy
on the grid necessitates more frequent ramping in order to meet electricity demand, and may pose a
challenge for RL algorithms trained on electricity demand traces without such variability.

Multiagent Setting. The multiagent setting treats each turbine unit (each of the three gas turbines
and the steam turbine) as an individual agent whose action is the turbine’s electricity dispatch decision
and auxiliary variable settings. The negative reward of each agent is the sum of the corresponding
turbine unit’s fuel consumption, ramp cost, and dynamic operating constraint penalty, as well as a
shared penalty for unmet electricity and steam demand that is split evenly across agents. All agents
observe the global observation.

2.5 BuildingEnv

BuildingEnv considers the control of the heat flow in a multi-zone building so as to maintain a
desired temperature setpoint. Building temperature simulation uses first-principled physics models.
Users can either choose from a pre-defined list of buildings (Office small, School primary, Apartment
midrise, and Office large) and three climate types and cities (San Diego, Tucson, New York) provided
by the Department of Energy (DoE) Building Energy Codes Program [27] or define a customized
BuildingEnv environment by importing any self-defined EnergyPlus building models. Each episode
runs for 1 day, with 5-minute time intervals (H = 288, 7 = 5/60 hours).

Observation Space. For a building with M indoor zones, the state s(t) € R™*4 contains observ-
able properties of the building environment at timestep ¢:

S(t) = (Tl(t)a cee aTM(t)a TE(t)a TG(t)v QGHI(t)a Qp(t))’
where Tj(t) is zone i’s temperature at time step ¢, QP(t) is the heat acquisition from occupant’s
activities, Q“H1(¢) is the heat gain from the solar irradiance, and T (¢) and T (t) denote the ground
and outdoor environment temperature. In practice, the agent may have access to all or part of the
state variables for decision-making depending on the sensor setup. Note that the outdoor/ground
temperature, room occupancy, and heat gain from solar radiance are time-varying uncontrolled
variables from the environment.

Action Space. The action a(t) € [—1, 1] sets the controlled heating supplied to each of the M
zones, scaled to [—1, 1].

Reward Function. The objective is to reduce energy consumption while keeping the temperature
within a given comfort range. The default reward function is a weighted ¢, reward, defined as

r(t) = =1 = B)lla(@®)lly — BIT" () — T(t)ll2

where Tt8et(t) = [T7*8°(t),..., T)5"%"(t)]" are the target temperatures and T'(t) =
[Ty(t),...,Tar(t)]" are the actual zonal temperatures. BuildingEnv also allows users to cus-

tomize reward functions by changing the weight term § or the parameter p defining the £, norm.



Table 2: Distribution shift experiments

Environment What shifts Original setting ~ Shifted setting
EVChargingEnv EV sessions, MOER  Summer 2019 Summer 2021
DatacenterEnv MOER May 2019 May 2021

CogenEnv Wind penetration 0 MW wind 300 MW wind

BuildingEnv Ambient temperature  Summer 2004  Winter 2003

Users can customize the reward function to consider CO5 emissions and temperature constraints such
as upper and lower temperature bounds.

Distribution Shift. BuildingEnv features distribution shifts in the ambient outdoor temperature
profile Ty which varies with different seasons. BuildingEnv supports the distribution shifts due to
the variation of seasons, located cities of the buildings, and can examine the challenges brought by
such shifts in the RL environment.

Multiagent Setting. In the multiagent setting for BuildingEnv, each agent controls the heating
action for a single zone in the building. It must coordinate with other agents to maximize overall
reward. Each agent obtains the same global observation and reward.

3 Experiments

For each of the 5 environments in SustainGym, we implemented baseline non-RL algorithms as
well as off-the-shelf RL algorithms trained using either RLLib [28] or Stable-Baselines3 (SB3) [29].
For most environments, we tested off-policy soft actor-critic (SAC) [30] and on-policy proximal
policy optimization (PPO) [31]. Note that neither RLLib nor SB3 has an implementation of SAC that
supports mixed discrete and continuous actions, as found in CogenEnv. For EVChargingEnv, we
also tested multi-agent implementations of PPO and SAC, where the same policy is shared across
agents. Non-RL algorithms tested include random policies and model predictive control (MPC),
which is a model-based controller. Detailed descriptions of the implementations for each algorithm,
including hyper-parameter tuning, are given in Appendix B. Finally, to test distribution shift, we
trained RL agents in both “original” and “shifted” environments, then compared their performance
on the shifted environment, as described in Table 2.

4 Discussion and Conclusion

Our experiments, shown in Figure 4, demonstrate a wide range of outcomes for off-the-shelf RL
algorithms, with no single algorithm outperforming all the rest. In EVChargingEnv, for example,
most of the RL algorithms perform no better than random actions, with the exception of multi-agent
PPO with discrete actions. On DatacenterEnv and BuildingEnv, we notice a wider spread of
returns across the different RL algorithms. In contrast, model-based MPC algorithms, where available,
tend to perform more consistently than most RL algorithms.

In terms of distribution shift, we see a wide range of outcomes between agents trained on the
original environments versus the shifted environments. Surprisingly, in CogenEnv, both single-
agent and multi-agent policies trained on the shifted environment perform worse on the shifted
environment than agents trained on the original environment. We believe this result may be due to
the increased variability of shifted environment, making the shifted environment harder to learn in.
In DatacenterEnv, the shift in MOER values shows essentially no effect on agent performance.
In EVChargingEnv, agents trained on the shifted environment generally perform slightly better
than agents trained on the original environment. In BuildingEnv, agents trained on the shifted
environment perform much better.

These results highlight that the distribution shifts present in SustainGym environments provide
substantial opportunities for future research, including robust RL algorithms [32] as well as online
learning under distribution shift. Developing RL algorithms that are robust to these natural distribution
shifts will be critical for deploying RL in the real-world high-impact sustainability settings such as
those modeled by SustainGym environments.
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Figure 4: Experimental results for all 5 environments comparing performance on the shifted environ-
ment between RL algorithms trained on the original environment (blue) and RL algorithms trained
on the shifted environment (orange). Policies using discretized actions are indicated with “-d”, and
multi-agent policies are prefixed with “MA-". For a complete description of the experiments, please
see Appendix B.

Multi-agent RL. SustainGym is currently designed to support multi-agent RL in 3 environments,
with the goal of upgrading all environments with multi-agent support in the future. In the two
environments for which we tested multi-agent RL policies (EVChargingEnv and CogenEnv), the
multi-agent PPO (MA-PPO) policies out-performed all other RL policies. We suspect that this may
be because the action spaces in these environments factorize well across agents, so the multi-agent
policies can learn more efficiently. Furthermore, we suspect that multi-agent policies may have
the potential of performing better under distribution shift, since their environments are naturally
non-stationary during training. We notice this to be true for both EVChargingEnv and CogenEnv: of
the RL policies trained on the original environments, the multi-agent policies performed best when
tested on the shifted environment.

Future work. SustainGym is under active development, with several key directions of future work:

* Comprehensive support for multi-agent RL. Currently, only 3 out of the 5 environ-
ments support multi-agent RL. We are working to extend the two other environments
ElectricityMarketEnv and DatacenterEnv to the multi-agent RL setting. For
ElectricityMarketEnv, we plan on introducing multiple batteries into the same trans-
mission network, each controlled by separate competing agents. This will be the first



competitive multi-agent RL environment in SustainGym. (All other environments feature
cooperative multi-agent RL.) For DatacenterEnv, we plan on introducing multiple datacen-
ters spread across geographic regions to enable both temporal and geographic carbon-aware
load shifting. Each datacenter would be its own agent.

* Different degrees of distribution shift. Currently, SustainGym environments feature a binary
choice of distribution shift: an original environment, and a shifted environment. We plan on
introducing more settings with varying degrees of distribution shift.

* More environments. We welcome new environment ideas and contributions to SustainGym
and are working with potential collaborators to extend the scope of environments.

Limitations We conclude by acknowledging general limitations of SustainGym. First, SustainGym
only captures very limited dimensions of sustainability (i.e., energy and CO2 emissions) and does not
account for other aspects such as water usage and other pollutants associated with energy production.
We welcome collaboration with experts in these other sustainability domains to help us improve the
sustainability mission of SustainGym. Second, SustainGym is limited in the types of distribution
shifts that are considered. Finally, while SustainGym environments have been designed to be
reasonably representative of various sustainable energy settings, there is inevitably a gap between
SustainGym simulations and actual hardware systems. A detailed discussion of the representativeness,
generalizability, and limitations of each environment can be found in Appendix B.

Acknowledgments and Disclosure of Funding

We would like to acknowledge Steven Low, Tongxin Li, Zachary Lee, Lucien Werner, Zaiwei Chen,
Ivan Jimenez, Pieter Van Santvliet, and Ameera Abdelaziz for their feedback and input during the
preparation of SustainGym. The model underlying CogenEnv was developed in partnership with
Beyond Limits and Enexsa. Funding for this project comes from a variety of sources, including NSF
awards CNS-2146814, CPS-2136197, CNS-2106403, EPCN-2200692, and NGSDI-2105648; an
NSF Graduate Research Fellowship; an Amazon Al4Science Fellowship; the Resnick Sustainability
Institute; Hellman Fellowship; Amazon Web Services; and Beyond Limits. This work is partially
supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Department of the Air Force. Notwithstanding
any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or
DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by
the U.S. Government may violate any copyrights that exist in this work.

10



References

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep re-
inforcement learning. Nature, 518(7540):529-33, February 2015. ISSN 1476-4687. doi:
10.1038/nature14236. URL https://www.nature.com/articles/naturel14236.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. Nature, 550(7676):354-359,
October 2017. ISSN 1476-4687. doi: 10.1038/nature24270. URL https://www.nature.
com/articles/nature24270.

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A sur-
vey. The International Journal of Robotics Research, 32(11):1238-1274, September 2013.
ISSN 0278-3649. doi: 10.1177/0278364913495721. URL https://doi.org/10.1177/
0278364913495721.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAl Gym. arXiv:1606.01540 [cs], June 2016. URL
http://arxiv.org/abs/1606.01540.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3):211-252, December 2015. ISSN 1573-1405. doi: 10.1007/s11263-015-0816-y. URL
https://doi.org/10.1007/s11263-015-0816-y.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding.
In International Conference on Learning Representations, September 2018. URL https:
//openreview.net/forum?id=rJ4km2R5t7.

Christopher Yeh, Chenlin Meng, Sherrie Wang, Anne Driscoll, Erik Rozi, Patrick Liu, Jihyeon
Lee, Marshall Burke, David B. Lobell, and Stefano Ermon. SustainBench: Benchmarks
for Monitoring the Sustainable Development Goals with Machine Learning. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round
2),122021. doi: 10.48550/arXiv.2111.04724. URL https://openreview.net/forum?id=
5HR3vCylqD.

Sindhu Padakandla, Prabuchandran K. J, and Shalabh Bhatnagar. Reinforcement Learning in
Non-Stationary Environments. Applied Intelligence, 50(11):3590-3606, November 2020. ISSN
0924-669X, 1573-7497. doi: 10.1007/s10489-020-01758-5. URL http://arxiv.org/abs/
1905.03970.

Elena Smirnova, Elvis Dohmatob, and Jérémie Mary. Distributionally Robust Reinforcement
Learning, June 2019. URL http://arxiv.org/abs/1902.08708.

Marcus Lapeyrolerie, Melissa S. Chapman, Kari E. A. Norman, and Carl Boettiger. Deep
Reinforcement Learning for Conservation Decisions, June 2021. URL http://arxiv.org/
abs/2106.08272.

David Biagioni, Xiangyu Zhang, Dylan Wald, Deepthi Vaidhynathan, Rohit Chintala, Jennifer
King, and Ahmed S. Zamzam. PowerGridworld: A Framework for Multi-Agent Reinforcement
Learning in Power Systems. November 2021. doi: 10.48550/arXiv.2111.05969. URL http:
//arxiv.org/abs/2111.05969.

Jose R. Vazquez-Canteli, Sourav Dey, Gregor Henze, and Zoltan Nagy. CityLearn: Standardiz-
ing Research in Multi-Agent Reinforcement Learning for Demand Response and Urban Energy
Management, December 2020. URL http://arxiv.org/abs/2012.10504.

11



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Zachary J. Lee, Sunash Sharma, Daniel Johansson, and Steven H. Low. ACN-Sim: An Open-
Source Simulator for Data-Driven Electric Vehicle Charging Research. IEEE Transactions on
Smart Grid, 12(6):5113-5123, 11 2021. ISSN 1949-3061. doi: 10.1109/TSG.2021.3103156.

Georgios Karatzinis, Christos Korkas, Michalis Terzopoulos, Christos Tsaknakis, Aliki Ste-
fanopoulou, ITakovos Michailidis, and Elias Kosmatopoulos. Chargym: An EV Charging
Station Model for Controller Benchmarking. IFIP Advances in Information and Communi-
cation Technology, pages 241-252, Cham, 2022. Springer International Publishing. ISBN
978-3-031-08341-9. doi: 10.1007/978-3-031-08341-9_20.

Heba M. Abdullah, Adel Gastli, and Lazhar Ben-Brahim. Reinforcement Learning Based
EV Charging Management Systems—A Review. IEEE Access, 9:41506-41531, 2021. ISSN
2169-3536. doi: 10.1109/ACCESS.2021.3064354.

Hao Wang and Baosen Zhang. Energy Storage Arbitrage in Real-Time Markets via Reinforce-
ment Learning. In 2018 IEEE Power Energy Society General Meeting (PESGM), pages 1-5,
August 2018. doi: 10.1109/PESGM.2018.8586321.

Hanchen Xu, Xiao Li, Xiangyu Zhang, and Junbo Zhang. Arbitrage of Energy Storage in
Electricity Markets with Deep Reinforcement Learning, May 2019. URL http://arxiv.org/
abs/1904.12232.

Jun Cao, Dan Harrold, Zhong Fan, Thomas Morstyn, David Healey, and Kang Li. Deep
Reinforcement Learning-Based Energy Storage Arbitrage With Accurate Lithium-Ion Battery
Degradation Model. IEEE Transactions on Smart Grid, 11(5):4513-4521, September 2020.
ISSN 1949-3061. doi: 10.1109/TSG.2020.2986333.

Zachary J. Lee, Tongxin Li, and Steven H. Low. ACN-Data: Analysis and Applications of
an Open EV Charging Dataset. In Proceedings of the Tenth ACM International Conference
on Future Energy Systems, e-Energy *19, pages 139-149, New York, NY, USA, June 2019.
Association for Computing Machinery. ISBN 978-1-4503-6671-7. doi: 10.1145/3307772.
3328313. URL https://doi.org/10.1145/3307772.3328313.

Zachary J. Lee, George Lee, Ted Lee, Cheng Jin, Rand Lee, Zhi Low, Daniel Chang, Christine
Ortega, and Steven H. Low. Adaptive Charging Networks: A Framework for Smart Electric
Vehicle Charging. IEEE Transactions on Smart Grid, 12(5):4339-4350, September 2021.
ISSN 1949-3061. doi: 10.1109/TSG.2021.3074437. URL https://ieeexplore.ieee.org/
document/9409126.

Tongxin Li, Ruixiao Yang, Guannan Qu, Yiheng Lin, Steven Low, and Adam Wierman. Equip-
ping Black-Box Policies with Model-Based Advice for Stable Nonlinear Control, June 2022.
URL http://arxiv.org/abs/2206.01341.

Probability Methods Subcommittee. Ieee reliability test system. IEEE Transactions on Power
Apparatus and Systems, PAS-98(6):2047-2054, 1979. doi: 10.1109/TPAS.1979.319398.

Clayton Barrows, Aaron Bloom, Ali Ehlen, Jussi Ikdheimo, Jennie Jorgenson, Dheepak Krishna-
murthy, Jessica Lau, Brendan McBennett, Matthew O’Connell, Eugene Preston, Andrea Staid,
Gord Stephen, and Jean-Paul Watson. The IEEE Reliability Test System: A Proposed 2019
Update. IEEE Transactions on Power Systems, 35(1):119-127, January 2020. ISSN 1558-0679.
doi: 10.1109/TPWRS.2019.2925557.

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric Tune,
and John Wilkes. Large-scale cluster management at Google with Borg. In Proceedings of
the European Conference on Computer Systems (EuroSys), Bordeaux, France, 2015. URL
https://research.google/pubs/pub43438/.

Muhammad Tirmazi, Adam Barker, Nan Deng, Md Ehtesam Haque, Zhijing Gene Qin, Steven
Hand, Mor Harchol-Balter, and John Wilkes. Borg: the Next Generation. In EuroSys’20,
Heraklion, Crete, 2020. URL https://research.google/pubs/pub49065/.

Ana Radovanovic, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre Duarte, Binz Roy,
Diyue Xiao, Maya Haridasan, Patrick Hung, Nick Care, et al. Carbon-aware computing for
datacenters. IEEE Transactions on Power Systems, 38(2):1270-1280, 2022.

12



[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

The Building Energy Codes Program. Prototype building models. URL https://wuw.
energycodes.gov/prototype-building-models.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning, pages 3053-3062. PMLR, 2018.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021. ISSN 1533-7928. URL http://jmlr.org/
papers/v22/20-1364.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, August 2018.
URL http://arxiv.org/abs/1801.01290.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms, August 2017. URL http://arxiv.org/abs/1707.06347.

Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Ro-
bust reinforcement learning using offline data. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Informa-
tion Processing Systems, volume 35, pages 32211-32224. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
d01bda31bbcd780774££15b534e03c40-Paper-Conference. pdf.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning,
July 2019. URL http://arxiv.org/abs/1509.02971.

Aled James and Daniel Schien. A low carbon kubernetes scheduler. In 6th International Con-
ference on ICT for Sustainability, ICT4S 2019, volume 2382 of CEUR Workshop Proceedings.
CEUR-WS, June 2019.

Nicolas Christianson, Christopher Yeh, Tongxin Li, Mahdi Torabi Rad, Azarang Golmoham-
madi, and Adam Wierman. Robustifying machine-learned algorithms for efficient grid operation.
In NeurIPS 2022 Workshop on Tackling Climate Change with Machine Learning, 2022. URL
https://www.climatechange.ai/papers/neurips2022/19.

J. King, A. Clifton, and B. Hodge. Validation of Power Output for the WIND Toolkit. Technical
Report NREL/TP-5D00-61714, 1159354, September 2014. URL http://wuw.osti.gov/
servlets/purl/1159354/.

CAISO. What the duck curve tells us about managing a green grid. Technical report, California
Independent System Operator, November 2016.

Chi Zhang, Yuanyuan Shi, and Yize Chen. BEAR: Physics-Principled Building Environment
for Control and Reinforcement Learning. In Proceedings of the Fourteenth ACM International
Conference on Future Energy Systems, e-Energy *23. arXiv, November 2022. doi: 10.48550/
arXiv.2211.14744. URL http://arxiv.org/abs/2211.14744.

US DOE. Engineering reference. https://energyplus.net/assets/nrel_custom/
pdfs/pdfs_v22.1.0/EngineeringReference.pdf, 2022.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning, June 2016. URL http://arxiv.org/abs/1602.01783.

13



