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Abstract

In online classification, a learner is presented with a sequence of examples and aims to predict

their labels in an online fashion so as to minimize the total number of mistakes. In the self-directed

variant, the learner knows in advance the pool of examples and can adaptively choose the order in

which predictions are made. Here we study the power of choosing the prediction order and establish

the first strong separation between worst-order and random-order learning for the fundamental task

of linear classification. Prior to our work, such a separation was known only for very restricted

concept classes, e.g., one-dimensional thresholds or axis-aligned rectangles.

We present two main results. If X is a dataset of n points drawn uniformly at random from the

d-dimensional unit sphere, we design an efficient self-directed learner that makes O(d log log(n))
mistakes and classifies the entire dataset. If X is an arbitrary d-dimensional dataset of size n, we

design an efficient self-directed learner that predicts the labels of 99% of the points in X with

mistake bound independent of n. In contrast, under a worst- or random-ordering, the number of

mistakes must be at least Ω(d log n), even when the points are drawn uniformly from the unit sphere

and the learner only needs to predict the labels for 1% of them.

Keywords: Online Learning, Self-Directed Learning, Halfspaces, Mistake Bound

1. Introduction

Online prediction has a rich history going back to the pioneering works of Robbins (1951); Hannan

(1957); Blackwell et al. (1954). In the online setting, the learner aims to resolve a prediction task by

learning a hypothesis from a sequence of examples one at a time. The goal is to minimize the total

number of incorrect predictions (aka mistake bound) given the knowledge of the correct answers

to previously queried examples (Littlestone, 1988, 1989; Blum, 1990; Littlestone and Warmuth,

1994; Maass and Turan, 1994). A standard, worst-case assumption is that an adversary controls the

sequence of examples and/or labels. In this worst-case setting, a wide range of algorithms based on

exponential reweighting (Vovk, 1990; Littlestone and Warmuth, 1994; Freund and Schapire, 1997;

Vovk, 1995; Cesa-Bianchi and Lugosi, 2006) and online convex optimization (Hazan, 2016; Orabona,

2019) have been developed. Motivated by the fact that in many applications the sequence of examples

is not adversarial, the problem of online prediction has also been studied in more benign settings,

such as assuming that the examples are given to the learner by a teacher (who knows the ground-truth

hypothesis) (Goldman and Mathias, 1993; Mathias, 1997; Doliwa et al., 2010; Mansouri et al., 2022)
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or making regularity assumptions about the sequence of examples (Rakhlin and Sridharan, 2013;

Jadbabaie et al., 2015). In this work, we study the model of Self-Directed learning (Goldman et al.,

1993; Goldman and Sloan, 1994), where the learning algorithm can choose which example to label

next. Self-directed learning has many applications. For example, in direct marketing (Ni and Ling,

2011), the learner must study customers’ characteristics and needs and adaptively select examples

(customers) to market their products. Moreover, it is related to curriculum learning Ð proposed in

the influential work of Bengio et al. (2009) Ð where the training examples are sorted from ªeasierº

to ªharderº in order to help the model learn faster (see Section 1.2 for more details).

Here we consider the mistake-bound model (Littlestone, 1988, 1989) in the realizable setting,

where the labels revealed to the learner in each round are consistent with a ground-truth classifier

f that belongs to a known concept class C fixed before the online learning phase starts. We now

formally define the self-directed online prediction model (Goldman and Sloan, 1994) and its random-

and worst-order variants that we consider in this work.

Definition 1 (Self-Directed Online Learning (Goldman and Sloan, 1994)) Let f ∈ C be an un-

known target concept from some concept class C of boolean functions from R
d to {±1} and let

X = {x(1), . . . ,x(n)} be a subset of n ∈ N points in R
d. The learner has access to the full set of

(unlabeled) points X .

Until the labels of all examples of X have been predicted:

• The learning algorithm picks a point x ∈ X making a prediction z ∈ {±1} about its label.

• The true label f(x) of x is revealed to the learning algorithm.

We say that the learner makes M mistakes to label X if, with probability at least 99%, it holds that

the number of incorrect predictions of the learner is at most M .

In this work, we investigate the power of the above self-directed online learning setting compared to

the worst- and random-order settings.

Remark 2 (Random-order and Worst-order Online Learning) We shall refer to the setting where

the point x during the training phase is picked uniformly at random (without replacement) from the

unlabeled data X as random-order learning. Moreover, we shall refer to the setting where the next

example x is chosen by an adversary as worst-order learning.

Observe that in Definition 1 the learner must predict labels for all examples of the dataset X .

We will also consider weaker learning notions allowing the learner to avoid labeling a fraction of

examples in X . As we will see, these weaker learning notions are especially useful when dealing

with an unstructured dataset X , containing potentially ambiguous or adversarial examples that may

be inherently hard to predict.

Remark 3 (Perfect, Strong, and Weak Self-Directed Learners) We will refer to the setting of

Definition 1, where the learner predicts the labels of all examples in X , as perfect self-directed

learning. Moreover, we refer to the setting where the learning algorithm provides labels for at

least (1 − ϵ)-fraction of X for every ϵ ∈ (0, 1] as strong self-directed learning. Finally, in weak

self-directed learning, the learner predicts the labels of some fixed fraction of X , say 1%.
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Online Linear Classification We focus on the fundamental setting of online linear classification

that dates back to Rosenblatt’s perceptron (Rosenblatt, 1958). A (homogeneous) halfspace or

Linear Threshold Function (LTF) is a Boolean-valued function f : R
d 7→ {±1} of the form

f(x) = sign(w∗ · x), for a vector w∗ ∈ R
d (known as the weight vector). Halfspaces are a central

class of Boolean functions in several areas of computer science, including complexity theory, learning

theory, and optimization Novikoff (1962); Yao (1990); Goldmann et al. (1992); Freund and Schapire

(1997); Vapnik (1998); Shawe-Taylor and Cristianini (2000); Rubinfeld (2006). In (realizable)

online linear classification, the halving algorithm Ð first appeared in Barzdin, š and Freivald (1972)

and further analyzed and refined in Mitchell (1982); Angluin (1987); Littlestone (1988) Ð makes

O(d log n) mistakes for perfect classification of n points in d dimensions. This mistake bound and

in particular its dependence on the dataset size n is known to be information-theoretically optimal

for linear classification (Littlestone, 1988) in the worst-order online learning setting. We show (see

Proposition 17) that, even when the order of examples is random, Ω(d log n) mistakes are required. In

fact, this is true even when the n points of X are drawn uniformly from the d-dimensional unit-sphere

Sd and the learner only needs to predict the labels of 1% of them (weak-learning).

Improved Mistake Bounds via Self-Directed Learning In the self-directed learning setting, it is

known (Goldman and Sloan, 1994) that for one-dimensional threshold functions one mistake suffices

Ð significantly improving over the Θ(log n) mistake-bound for the same class in the worst-order

setting (Littlestone, 1988, 1989). Similar improvements in self-directed learning have also been

shown for other simple concept classes such as monotone-monomials and axis-aligned rectangles (see

Ben-David et al. (1997) for a discussion on the gaps between self-directed learning and worst-order

learning). In this work, we study whether self-directed learning can improve the number of mistakes

to learn more complicated, high-dimensional concept classes focusing on the fundamental class of

d-dimensional LTFs. We remark that, beyond the O(d log n) mistake-bound given by the halving

algorithm, no other mistake bounds are known for self-directed learning of halfspaces, even when

the dataset X is assumed to be structured, e.g., the n examples of X are drawn uniformly at random

from the d-dimensional unit sphere Sd. We ask the following natural question.

Can self-directed learners bypass the Ω(d log n) mistake barrier of worst- and random-order

learning for d-dimensional LTFs?

We give a positive answer to the above question showing that allowing the learner to choose the order

of examples significantly improves the mistake bound under both structured and arbitrary datasets.

1.1. Our Results and Techniques

Our first result assumes that the dataset X is structured: its n examples are drawn uniformly at random

from the unit sphere Sd. In this case, we give a self-directed learning algorithm that only makes

O(d log log n) mistakes to predict the labels of all examples in X (perfect learning), establishing an

exponential improvement over the Ω(d log n) mistake bound of worst- and random-order learners.

Since it is known (Ben-David et al., 1997) that even self-directed learners must make Ω(d)-mistakes,

our O(d log log n) is close to best-possible.

Informal Theorem 4 (Perfect Self-Directed Learner on Sd) There exists a perfect self-directed

learner for halfspaces that makes O(d log log n) mistakes to classify a set of n points drawn uniformly

from Sd.
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Our learner maintains a halfspace hypothesis and at each round predicts the label of the example

with the largest margin from the current halfspace. At a high level, this corresponds to choosing

the example for which the current hypothesis is most-confident in an ªeasy examples firstº manner.

When the prediction on such an example is incorrect, we use the so-called margin-perceptron update

rule used in Dunagan and Vempala (2004) in the context of linear programming. We show that the

margin-perceptron update used on examples for which the classifier is very confident (large-margin) ±

but made a mistake ± converges super-linearly to the ground-truth halfspace w∗. For a more detailed

overview, we refer to Section 2.1.

Our second result is a self-directed learner for arbitrary datasets. In this case, we give a strong

self-directed learner that makes poly(d) mistakes and labels 99% of X . Recall that, in contrast, any

worst- or random-order learner makes Ω(d log n) mistakes to label 1% of the dataset (even when the

data are drawn uniformly from the unit sphere).

Informal Theorem 5 (Strong Self-Directed Learner for Arbitrary Data) There exists a strong,

self-directed learner for halfspaces that, given an arbitrary set X of n points in d dimensions, makes

poly(d) mistakes to classify 99% of X .

At a high level, similarly to our algorithm for uniformly spherical data, our self-directed learner

for arbitrary data again picks the examples with the largest margin from the current hypothesis and

uses the margin-perceptron update rule of Dunagan and Vempala (2004). The second ingredient of

our learner is the Forster transform (Forster, 2002) that puts the examples in (approximately) Radially

Isotropic Position, i.e., make X isotropic and also normalize all points so that they lie on the unit

sphere; see Definition 13. Recent works (Hardt and Moitra (2013); Artstein-Avidan et al. (2020);

Diakonikolas et al. (2022)) have provided efficient algorithms to compute the Forster transform.

When the dataset is in Radially Isotropic Position, one can show that it satisfies a ªsoft-marginº

condition (i.e., that a non-trivial fraction of X has non-trivial margin with every halfspace). We use

this property to first obtain a weak learner that does O(d log d) mistakes to label an Ω(1/d)-fraction

of X . We then use a generic boosting approach to transform this weak learner into a strong learner

that does poly(d) mistakes to label 99% of X , see Section 3.1 and Appendix D.2.

1.2. Related Work

Related to the setting of self-directed learning is active learning (Cohn et al., 1994), where the learner

has access to a large pool of unlabeled examples and chooses the ªmost informativeº to ask for their

labels. The goal is to find a classifier with good generalization while minimizing the number of label

queries. There is a long line of research on active linear classification in the distribution-specific

setting (e.g., under the uniform distribution on the unit sphere) (Dasgupta et al., 2005; Hanneke,

2011; Balcan and Urner, 2016). We remark that our goal of minimizing the number of mistakes is

orthogonal to that of active learning: at a high-level, our algorithms pick the examples for which

the current hypothesis is most confident (ªeasiest examplesº) while in active learning one typically

asks for the labels of the ªhardest examplesº, e.g., those with the smallest margin with respect to the

current guess (see, e.g., (Awasthi et al., 2015, 2016; Zhang et al., 2020)).

In deep learning, stochastic gradient descent typically trains models by considering the examples

in a random order. In the influential work of Bengio et al. (2009) the authors proposed curriculum

learning: training machine learning models in a ªmeaningful orderº ± from easy examples to harder

ones. There is a long line of research (see the surveys (Hacohen and Weinshall, 2019; Wang et al.,
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2021; Soviany et al., 2022) and references therein) giving empirical evidence that curriculum learning

provides significant benefits in convergence speed and generalization over training with random

order. Our results provide theoretical evidence that ordering the examples from easier to harder

significantly reduces the mistakes made by the learner.

2. Self-Directed Learning on Sd

In this section, we present our self-directed learning algorithm for datasets uniformly distributed on

the unit sphere. We first state the formal version of Theorem 4.

Theorem 6 (Perfect Self-Directed Learner on Sd) Let δ ∈ (0, 1/2] and let n be larger than some

sufficiently large universal constant. Let X be a set of n i.i.d. samples from Sd with true labels

given by a homogeneous halfspace, f(x) = sign(w∗ · x). There exists a self-directed classifier that

makes O(d log log n log(1/δ)) mistakes, runs in time poly(d, n) and classifies all points of X with

probability at least 1− δ.

2.1. Roadmap of the Proof of Theorem 6

e1

e2

w∗
α sin θ

sin θ

w

θ

Figure 1: The probability that the

maximum-margin mistake is has mar-

gin larger than α sin θ corresponds to the

probability of the shaded subset of the

disagreement region (shown in cyan).

The first ingredient of our algorithm is an adaptive way

to pick examples: at every step the learner predicts the

labels of examples for which the current hypothesis is

most confident. The intuition behind this choice is that for

those examples the hypothesis is more often correct and,

when it predicts incorrectly, they can be used to improve

it significantly. The second ingredient is the ªmargin-

perceptronº algorithm of Dunagan and Vempala (2004).

The margin-perceptron iteration is a variant of the standard

perceptron update rule that scales the update with the

signed margin of the example, i.e., given an example x

that the current hypothesis w(t) predicts incorrectly (i.e.,

sign(w(t) ·x) ̸= sign(w∗ ·x)), we update w(t) as follows:

w(t+1) ← w(t) − (w(t) · x)x (1)

Contrary to the standard perceptron update (i.e., w(t+1) ← w(t) − x), the perceptron update rule of

Equation (1) does not rely on improving the correlation with the target vector w∗ but on decreasing

the norm ∥w(t)∥2 and not decreasing the correlation with w∗. We show that as long as the margin

|w(t) · x| is large the margin-perceptron update of Equation (1) will significantly reduce the angle

θ(w(t),w∗) between w(t) and w∗.

Reducing tan(θ(w(t),w∗)) via Margin-Perceptron We first observe that given an example that

w(t) mispredicts, its maximum possible margin with the current guess w(t) is equal to sin(θ(w(t),w∗)),
see Figure 1. We show, see Lemma 8, that when |w(t)·x| ≥ r sin θ(w(t),w∗)), the margin-perceptron

update reduces tan(θ(w(t),w∗)) multiplicatively:

tan2(θ(w(t+1),w∗)) ≤ (1− r2) tan2(θ(w(t),w∗)) . (2)
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Observe that, the closer r is to 1, (i.e., the larger the margin) the faster θ(t) = θ(w(t),w∗) will

converge to 0. Using the fact that the distribution is uniform on the sphere, the probability that some

halfspace with normal vector u disagrees with the ground-truth halfspace w∗ is equal to θ(u,w∗)/π.

Thus, achieving θ(w(t),w∗) ≤ O(1/n), implies, that on expectation, the number of mistakes on a

sequence of n i.i.d. examples from Sd is going to O(1), see Lemma 27. Therefore, in what follows,

our goal will be to make θ(t) smaller than O(1/n). 1

Achieving Large Margin on Sd Given the current hypothesis with normal vector w(t), a uniformly

random point on the d-dimensional sphere has margin roughly Ω(1/
√
d). Given that the point falls

in the disagreement region of w(t) and w∗ the margin can be shown to be roughly Ω(sin θ(t)/
√
d).

Therefore, in each round, Equation (2) implies the angle θ (recall that for small θ it holds that

θ ≈ tan θ) is going to decrease roughly by a factor of
√

1− Ω(1/d):

θ(t+1) ≤
√
1− Ω(1/d) θ(t) .

In order to make θ(t) ≤ O(1/n) the above iteration requires roughly d log n updates which only

implies a mistake bound of O(d log n). This is where the fact that at every iteration t we choose

the example with maximum margin with respect to w(t) comes into play. We show that for n
examples distributed uniformly on the sphere the maximum-margin mistake with respect to w(t) has

margin roughly Ω(
√
log(nθ(t))/d) sin(θ(t)) when nθ(t) ≤ eO(d) and (1− (1/(nθ(t)))2/d) sin(θ(t))

when nθ(t) is larger than eO(d). We show the following proposition; for the formal statements, see

Proposition 20 and Lemma 21.

Proposition 7 (Informal: Max-Margin in the Disagreement Region) Let v,u ∈ R
d be unit vec-

tors with angle θ(v,u) = θ. Let C be the indicator of the disagreement region of the two homoge-

neous halfspaces defined by v,u, i.e., C = 1{(v · x)(u · x) ≤ 0}. Let X be a dataset with n i.i.d.

samples from Sd. Then with probability at least 2/3:

1. If nθ ≤ ed, it holds that maxx∈X∩C |u · x| ≥ Ω(
√
log(nθ)/d) sin θ.

2. Otherwise, maxx∈X∩C |u · x| ≥ (1− (1/(nθ))2/d) sin θ.

We observe that when nθ →∞ the maximum-margin over the n samples converges to its maximum

value of sin θ. Since the analysis of the general case turns out to be similar to the case of nθ ≤ ed,

for simplicity, in this overview we will focus on this case.

(Stochastic) Super-Linear Convergence We observe that by taking the maximum-margin sample

and using Proposition 7 we improved the decay of the angle to roughly:

θ(t+1) ≤
√

1− log(nθ(t))

d
θ(t) ≤ e− log(nθ(t))/(2d) θ(t) = (θ(t))1−1/(2d)(1/n)1/(2d) . (3)

Therefore, the angle after an update on the maximum-margin mistake is the weighted geometric

mean between θ(t) and 1/n with weights 1 − 1/(2d) and 1/(2d). It is not hard to show that after

m = O(d log log n) such updates we have θ(m) ≤ O(1/n), achieving our goal. One issue is that

Proposition 7 only gives ªgoodº probability, i.e., 2/3, that such a large-margin update will happen. In

Lemma 9, we show that increasing the iterations by a constant factor is enough to show that θ(m)

will be O(1/n) with good probability.

1. More, precisely it suffices to have θ(t) ≤ O(d log log n/n) as this would imply an O(d log log n) mistake bound on

a sequence of n data.
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Dealing with the Dependencies In our discussion so far we have ignored the fact that if at some

step t, the algorithm searches over the whole dataset X in order to find the example x with the largest

margin with respect to the guess w(t), in the next step the remaining points of X are no-longer i.i.d.

samples from Sd and therefore, many of our claims using the independence of the samples (e.g.,

Proposition 7) no longer work. We handle this issue by only considering a large-enough subset

of examples in each step of the margin-perceptron update, i.e., instead of selecting the point of

maximum-margin over the whole dataset, we select the maximum-margin example of a random

subset, see Steps 3,4 in Algorithm 1, inside which we only perform a single margin-perceptron

update. Since the total number of margin-perceptron updates required is only O(d log log n) we

split the dataset into k = O(d log log n) random subsets of equal size; therefore assuming that n
is larger than roughly Ω(d log log d), each bucket will have enough samples to guarantee that a

margin-perceptron update with large margin will happen with good probability.

Finally, as we use examples of X to update the guess w(t), when we reach the target angle, say

θ(t) ≤ O(1/n), we cannot guarantee that w(t) will do few mistakes on the samples that we used to

train it (as w(t) depends on those samples). To avoid this issue we split the initial dataset into two

random subsets of equal size A and B and then train a linear classifier for each part. In the final step,

we use the linear classifier trained on A to label the dataset B (that was not used during its training)

and the linear classifier trained on B to label the examples of A, see Step 5 in Algorithm 1.

Input: An initialization w. Output: A sequence of labeled data (x(t), z(t)).

1. Initialize guesses w(0) ← w, v(0) ← w.

2. Initialize the set of unlabeled data U ← X .

3. Split U in 2k sets U1, . . . , U2k.

4. For t = 1, . . . , k:

w(t) ← MARGIN-PERCEPTRON(Ut, w
(t−1)), v(t) ← MARGIN-PERCEPTRON(Uk+t,

v(t−1)).

5. For t = 1, . . . , k:

Label points of Uk+t with w(k) and label points of Ut with v(k).

MARGIN-PERCEPTRON(U,w)

Input: An initialization w and a set of points U . Output: A vector w′.

1. Obtain U ′ by sorting the points of U in decreasing order of margin from w, i.e.,

|x(i+1) ·w| ≤ |x(i) ·w|.
2. For x ∈ U ′:

(a) Predict the label of x with w.

(b) If the prediction is incorrect, exit the loop and return w′ ← w − (w · x)x.

Algorithm 1:Self-Directed Learning on Sd
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2.2. Proof of Theorem 6

We first give a proof sketch of Proposition 7 showing that maximum-margin mistakes will have

margin significantly larger than the margin of an ªaverageº mistake. In the following sketch we only

show the first case of Proposition 7; for the full proof we refer to Appendix C.

Proof sketch of Proposition 7 We observe that by the rotational symmetry of the uniform

distribution on the sphere, the probability that a sample x falls in the disagreement region C is

exactly θ/π, see Figure 1. Therefore, on expectation, out of the n samples that we draw from Sd,

nθ/π fall in C. Since it is not hard to show that with high probability Ω(nθ) samples fall in C (see

Appendix C); for this sketch we assume that this is case with probability 1.

We now show that conditionally on observing m samples in the disagreement region C, the

maximum-margin has strong anti-concentration. Denote by Sd(C) the conditional distribution on

the disagreement region C. For any α ∈ [0, 1], it holds:

Pr
x(1),...,x(m)∼Sd(C)

[
max

i=1,...,m
|u · x(i)| ≤ α sin(θ/2)

]
≤ exp

(
−m (1− α2)d/2−1/2

)
.

To simplify notation, set ∆ = α sin(θ/2). We first compute the probability that a single sample

in C has |u · x| ≥ ∆. By the symmetry of the set C and the uniform distribution on the sphere

it holds Prx∼Sd
[x ∈ C, |u · x| ≥ ∆] = 2Prx∼Sd

[x ∈ C,u · x ≥ ∆] = 2Prx∼Sd
[E1] , where

E1 = {x : x ∈ C,u · x ≥ ∆} (E1 corresponds to the upper shaded cell in Figure 1). Assume,

without loss of generality that u = e2 and v = − sin θe1 + cos θe2. Using polar coordinates

x1 = r cosϕ, x2 = r sinϕ we have that (see Figure 1 and Appendix C), E1 = {(r, ϕ) : α ≤ r ≤
1, r sinϕ ≥ α sin θ, ϕ ≤ θ}. The set E1 has coupled constraints (i.e., constraints that depend on

both r, ϕ). To avoid this we show that the set E2 = {(r, ϕ) : α ≤ r ≤ 1, θ/2 ≤ ϕ ≤ θ} that has

decoupled constraints is a subset of E1. The 2-dimensional marginal of the uniform distribution on

Sd has density d−2
2π (1− r2)d/2−2r (in polar coordinates).

Pr
x∼Sd

[E2] =
d− 2

2π

∫ 1

α

∫ θ

θ/2
(1− r2)d/2−2 r dϕdr =

θ

4π
(1− α2)d/2−1 .

Recall that by, the symmetry of Sd we directly obtain that Prx∼Sd
[C] = θ/π. We conclude that

the conditional probability Prx∼Sd(C)[|u · x| ≥ ∆] ≥ (1/2)(1− α2/d)d/2−1. We can now bound

by above the probability that the maximum-margin of m independent samples from Sd(C) is small.

Pr
x1,...,xm∼Sd(C)

[
max

i=1,...,m
|u · xi| ≤ ∆

]
= (1− Pr

x∼Sd(C)
[|u · x| ≥ ∆])m

≤ exp

(
−m Pr

x∼Sd(C)
[|u · x| ≥ ∆]

)
≤ exp

(
−m (1− α2)d/2−1/2

)
,

where, for the first inequality, we used the fact ex ≥ 1 + x. Using m = Ω(nθ) (since we know that

roughly nθ examples land in the disagreement region C) and α = Ω(
√
logm/

√
d) we obtain the

result (for the first case of Proposition 7).

We prove the following lemma, showing on each mistake the margin-perceptron has good

probability of significantly (super-linearly) decreasing tan θ. We require that the current guess w is

not exactly orthogonal with the target w∗ (notice the assumption 1/ cos θ ≤ O(ζ)). We show that it

is not hard to obtain such an initialization.
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Lemma 8 (Stochastic Multiplicative Decay of tan θ) Let w ∈ R
d and let θ(w∗,w) = θ ∈

[0, π/2) and assume that for some ζ > 0, 1/ cos θ ≤ ζ/(12π). Let C be the indicator of the disagree-

ment region of w∗,w, i.e., C = 1{(w∗ · x)(w · x) ≤ 0}. Let X = {x(1), . . . ,x(n)} be a sample set

drawn from Sd with n larger than a sufficiently large constant and let x̂ = argmaxx∈X |w ·x|1{x ∈
C}. Let w′ = w − (w · x̂)x̂ and θ′ = θ(w′,w∗).

1. We have that tan2(θ′) ≤ tan2(θ). (Monotonicity)

2. With probability at least 2/3, it holds tan(θ′) ≤ tan1−1/(8d)(θ)(ζ/n)1/(8d) .

Proof sketch First, we assume that we perform an update on an example where (x ·w)(x ·w∗) < 0
(i.e., w makes a mistake on x) and the margin of x is large: |w · x| ≥ r sin θ. Assuming that

θ ∈ [0, π/2) we can show that tan θ decreases multiplicatively. We first observe that the correlation

with w∗ does not decrease, w′ ·w∗ = (w− (w · x)x) ·w∗ = w ·w∗ − (w · x)(x ·w∗) ≥ w ·w∗,

where we used that the hypothesis w disagrees with the ground-truth w∗ on x, i.e., (w ·x)(x ·w∗) ≤
0. Furthermore, since w · w∗ ≥ 0 (by the assumption that θ ∈ [0, π/2)) we also have that

(w′ · w∗)2 ≥ (w · w∗)2. We next show that the norm of w′ decreases multiplicatively. We have

that ∥w′∥22 = ∥(w − (w · x)x)∥22 = ∥w∥22 − (w · x)2 ≤ ∥w∥22(1 − r2 sin2 θ) . Using (twice)

the trigonometric identity tan2 ϕ = (1/ cos2 ϕ) − 1, we show that tan2 θ decreases by a factor of

(1− r2):

tan2 θ′ =
∥w′∥22

(w′ ·w∗)2
− 1 ≤ ∥w∥

2
2(1− r2 sin2 θ)

(w ·w∗)2
− 1 =

1− r2 sin2 θ

cos2 θ
− 1 = (1− r2) tan2 θ .

We note that from the above derivation, we have that whenever we use the update rule on mistakes, it

holds that tan(θ′) ≤ tan(θ). We show that with constant probability, the decrease is significantly

larger. For this sketch, we assume that nθ is not exponentially large and refer to Appendix C

for details. From Proposition 7, we have that with probability at least 2/3, it holds |w · x̂| ≥
Ω(
√
log(nθ)/d) sin θ. Simplifying the expression for tan θ′ similarly to Equation (3), we obtain the

result.

We now show that given a non-increasing stochastic process ξt that has good probability to decrease

at a super-linear rate, then after T = O(log log(1/α)) iterations it holds that ξT ≤ α.

Lemma 9 (Super-Linear Convergence) Fix κ, ρ ∈ (0, 1). Consider a stochastic process ξt
adapted to a filtration Ft that satisfies: (i) 0 ≤ ξ0 ≤ M (Bounded Initialization); (ii) for all t:

0 ≤ ξt+1 ≤ ξt (Monotonicity); (iii) for all t: Pr[ξt+1 ≤ ξ
(1−ρ)
t κρ | Ft] ≥ 2/3 (Super-Linear

Decay). Then, for any T larger than (3/2) ((1/ρ)max(log log(1/κ), log log(M + 1)) + log(e/δ)),
with probability at least 1− δ, it holds that ξT ≤ e2κ.

2.2.1. PUTTING EVERYTHING TOGETHER: THE PROOF OF THEOREM 6

For this sketch we shall assume that we have an initialization w such that θ(w,w∗) is sufficiently

small. Let T = cd log log n log(1/δ) for some sufficiently large absolute constant c > 0. We split X
into 2k subsets U1, . . . , U2k, with k = n/(2T ) and let N = n/(2T ) be the number of samples in

each bucket. We assume that N is greater than a sufficiently large constant; otherwise, N ≤ O(T )
and the mistake bound would be at most O(T ). Note that each set Ui is independent of all others.

9



DIAKONIKOLAS KONTONIS TZAMOS ZARIFIS

Let w(0) = w and u(0) = w. We analyze algorithm Algorithm 1 for w(0) (as the analysis of

v(0 is similar). Step 5 of Algorithm 1 runs Margin-Perceptron in each set and goes to the next set

when a mistake occurs. Let w(t) be the current hypothesis and θ(t) = θ(w(t),w∗). From Lemma 8,

conditioned on w(t), we have that if a mistake occurred, then we construct a new vector w(t+1)

with θ(t+1) = θ(w(t+1),w∗) so that tan θ(t+1) ≤ tan θ(t) and furthermore with probability at

least 2/3 we have that tan(θ(t+1)) ≤ tan1−1/(8d) θ(t)(C ′′/N)1/(8d) , where C ′′ > 0 is an absolute

constant. Let ξt = tan θ(t). We have that 0 ≤ ξ0 = tan θ(0) ≤ 1 and that ξt+1 ≤ ξt. Hence, we

have that Pr[ξt+1 ≤ ξ
1−(1/8d)
t (C ′′/N)1/(8d)|w(t)] ≥ 2/3 . Therefore, using Lemma 9, we get that

θT ≤ O(1/N), with probability at least 1− δ/4. Therefore, in Step 5a of Algorithm 1, the algorithm

made at most M1 = 2T mistakes. Next, we bound the number of mistakes in Step 6a. Note that

A = ∪2ki=kUi, contains Ω(n) samples. From Lemma 27, we have that with probability at least 1−δ/4
conditioned on the event that θ(T ) ≤ O(T/n), Algorithm 1, labels the points in A, with at most

O(T ) mistakes. The same arguments show the same for the hypothesis u(T ). Therefore, the number

of mistakes is at most O(d log log(n)) log(1/δ), with probability at least 1− δ.

3. Self-Directed Learning on Arbitrary Datasets

In this section we prove our result for self-directed classification for arbitrary datasets. We first state

the formal version of Theorem 5.

Theorem 10 (Strong, Self-Directed Learner for Arbitrary Data) Let C be the class of LTFs on

R
d and let X be a set of n unlabeled points in R

d. There exists a algorithm that runs in poly(d, n)
time, makes Õ(d2 log(d/(ϵδ))) mistakes, and, with probability at least 1− δ, correctly classifies a

(1− ϵ)-fraction of the points of X .

3.1. Roadmap of the Proof Theorem 10

Boosting a Weak Self-Directed Learner The main ingredient in the proof of Theorem 10 is

a weak-learner that does O(d log d) mistakes and correctly labels roughly Ω(1/d)-fraction of the

dataset X with non-trivial (say above 1%) probability of success. We show the following proposition.

Proposition 11 (A Weak, Self-Directed Learner for Arbitrary Data) Let C be the class of LTFs

on R
d and let X be a set of n unlabeled points in R

d. There exists a universal constant c and an

algorithm that runs in poly(d, n) time, makes O(d log d) mistakes, and, with probability at least c,
correctly classifies an Ω(1/d)-fraction of the points of X .

We give a generic boosting algorithm that allows one to obtain a strong learner and prove Theorem 10.

At a high-level one can iteratively use the weak-learner to label a fraction of points, remove it from

the dataset, and reuse the weak-learner on the remaining data.

Lemma 12 (Boosting) Let A be a distribution-free self-directed learner that makes M mistakes

and correctly labels a (1− α)-fraction of X for some fixed α ∈ (0, 1), with probability at least c ∈
(0, 1). Then, there exists a strong self-directed learner that makes Õ((M/c) log(1/(δϵ))/ log(1/α))
mistakes and labels (1− ϵ)-fraction of X with probability at least 1− δ.

We remark, that this ªlabel-then-removeº approach crucially relies on the weak-learner being able to

handle arbitrary datasets (as the distribution of the remaining data is no-longer the same as the one

that generated the data initially). We present the details of our boosting approach in Appendix D.2.

10
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Weak Learning via Forster Transform and Margin Perceptron Similarly to our algorithm

for spherical data, at a high-level, our algorithm relies on picking the ªeasiestº examples first, i.e.,

picking the samples with the maximum possible margin from the current hypothesis. We then use the

margin-perceptron update as we did in the distribution specific setting, see Equation (1). However, as

we observed in Section 2.1, picking examples that have good margin with the current hypothesis

is crucial and since an arbitrary dataset X is not guaranteed to have margin, the margin-perceptron

update may make small or even zero progress. To overcome this issue we perform a pre-processing

step to ensure that the resulting dataset has soft-margin with respect to every halfspace while at the

same time remaining linearly separable.

We observe that given any dataset X one can perform an (invertible) linear transformation A on

the points of X and obtain a dataset that is still linearly separable: assuming that the initial dataset is

separable by w∗ then for every x ∈ X we have w∗ · x = (A−1w∗) · (Ax) and therefore the vector

A−1w∗ corresponds to the normal vector of a linear separator of the transformed dataset. Moreover,

we can preserve linear separability by rescaling each x to lie on the unit-sphere x 7→ x/∥x∥2. Forster

transform combines the two transformations for some invertible matrix A, i.e., x 7→ Ax/∥Ax∥2
and transforms the dataset so that it is in (approximate) Radially Isotropic Position. There are

several efficient algorithms (see e.g., Artstein-Avidan et al. (2020); Diakonikolas et al. (2021)) to

compute such an invertible matrix A and more recently in Diakonikolas et al. (2022) a strongly

polynomial-time algorithm for computing Forster transforms was given, see Proposition 14.

Definition 13 (Radially Isotropic Position) Let X be a multiset of n non-zero points of Rd. We

say that X is in δ-approximate Radially Isotropic Position if:

1. For every x ∈ X , it holds ∥x∥2 = 1. (Unit Norm)

2. For any unit vector u ∈ R
d, it holds (1/|X|)∑

x∈X(u · x)2 ≥ 1/d− δ. (Isotropic Position)

Assuming that the dataset X is in Radially Isotropic Position, one can show that X has ªsoft-marginº

with respect to every halfspace, in the sense that for every unit vector w it holds that at least Ω(1/d)-
fraction of X has margin |w · x| ≥ Ω(1/

√
d), see Lemma 15. Now that we have this ªsoft-marginº

we are able to show that the margin-perceptron will correctly label a non-trivial (Ω(1/d)-fraction)

part of the dataset. We refer to Appendix D.1 and Algorithm 2 for more details.

3.2. Proof of Proposition 11

We shall use the strongly polynomial time algorithmic result to compute a Forster transform (or show

that one does not exist) given in the recent work of Diakonikolas et al. (2022).

Proposition 14 (Algorithmic Forster Transform, Diakonikolas et al. (2022)) Given a set of non-

zero points X , and an invertible matrix A ∈ R
d×d, we denote by SA(X) = {Ax/∥Ax∥2 : x ∈ X}.

There exists an algorithm, that given a set of points X in Z
d \ {0} and some δ > 0, runs in time

poly(n, d, log(1/δ)) and returns a subspace V of Rd containing at least a dim(V )/d-fraction of

the points X and an invertible matrix A ∈ R
d×d such that SA(X ∩ V ) is in δ-approximate radially

isotropic position.

In the next lemma we show that a dataset in (approximate) Radially Isotropic Position, satisfies a

notion of ªsoft-marginº in the sense that non-trivial part of the dataset has non-trivial margin with

respect to every halfspace. Its proof can be found on Appendix D.

11
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Input: An unlabeled dataset X ⊆ R
d.

Output: A sequence of labeled data (x(t), z(t)).

1. Find subspace V of dimension k so that |X ∩ V | ≥ (k/d) n and X ∩ V is in 1/(2d)-
approximate Radially Isotropic Position using Proposition 32. Set U = X ∩ V .

2. Randomly initialize guess w(0) ∼ Sk.

3. For t = 0, . . . , 5k log k:

(a) Obtain U
w(t) by sorting the points of U in decreasing order of margin from w(t), i.e.,

|x(i+1) ·w(t)| ≤ |x(i) ·w(t)|.
(b) Initialize the set of correctly predicted points C ← ∅.
(c) For x ∈ U

w(t) :

i. Predict the label of x with w(t).

ii. If the prediction is incorrect, update w(t+1) ← w(t) − (w(t) · x) x, add

(x,−sign(w(t) · x)) to C, and exit the inner loop.

iii. If the prediction is correct, add (x, sign(w(t) · x)) to C.

(d) If |C| ≥ |U |/(4k) then return C and exit the loop.

Algorithm 2:A Weak Self-Directed Learner for an Arbitrary Dataset X .

Lemma 15 (Soft-Margin via Radially Isotropic Position) Let X be a multi-set of non-zero points

in 1/(2d)-approximate Radially Isotropic Position. For every unit vector u ∈ R
d, we have

Prx∼X [|u · x| ≥ 1/(2
√
d)] ≥ 1/(4d) .

Denote by N = |U | the number of points that are returned in Step 1 of Algorithm 2, and note that

N ≥ nk/d. From Lemma 3.2.4 Vershynin (2018), we get that with probability larger than an absolute

constant, the random initialitation gives a point w(0), so that w(0) · v ≥ 1/(2
√
k). In what follows,

we condition on the initialization satisfying this correlation bound. We show that if Algorithm 2

terminates, then 1/(4d)-fraction of points is correctly classified. Note that Algorithm 2 terminates

if the algorithm makes 5d log d mistakes or when |C| ≥ |U |/(4k) ≥ (k/d)n/(4k) ≥ n/(4d) (and

therefore, the algorithm classifies at least 1/(4d)-fraction of X correctly. Thus the bad event is that

algorithm does 5d log d mistakes and |C| < |U |/(4k). We argue that this cannot happen. Let ni be

the remaining points in the i-th iteration. Note that N = ni + |C|. We make use of the following

lemma (a variant of which was shown in Dunagan and Vempala (2004)); its proof can be found on

Appendix D. It shows that when we are using the margin-perceptron update, not many mistakes with

large margin can occur.

Lemma 16 (Margin Perceptron (Dunagan and Vempala, 2004) ) Let w∗,w(0) ∈ R
d be unit

vectors such that w∗ · w(0) ≥ α, for some α > 0. Assume the following: w(t+1) ← w(t) −
x(t)(x(t) ·w(t)) and let t0 ∈ Z+, so that for all t ∈ Z+ with t ≤ t0, |x(t) ·w(t)| ≥ β∥w(t)∥2 and

(x(t) ·w(t))(x(t) · v) < 0. Then, t0 ≤ (2/β2) log(1/α).

Assume that after t1 = (5d log d−1) mistakes, |C| < |U |/(4k). That means for all t ≤ t1 it holds

nt = |U | − |C| ≥ n(k/d− 1/(4d)) ≥ |U |/2, as d ≥ 1. Let St = {x(i) : |w(t) · x(i)| ≥ 1/(2
√
k)}.

From Lemma 15, it holds that for each t, |St| ≥ |U |/(4k) and combining with the fact that

12
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nt ≥ |U |/2, that means that either in each iteration, the algorithm makes no mistakes in the set St,
which means that |C| ≥ |U |/(4k) and the algorithm terminates, or that it makes one mistake in the

set St, which means that if x(t) is the vector that w(t) made a mistake then |w(t) · x(t)| ≥ 1/(2
√
k).

Hence, conditional on the event that the algorithm did not terminate before the iteration t0, by

Lemma 16 if t0 ≥ 5d log d, then w(t0) makes no mistakes in the set St0 , so it classifies correctly

|U |/(4k) points, and the algorithm terminates.
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Appendix A. Preliminaries and Notation

For n ∈ Z+, let [n] := {1, . . . , n}. We use small boldface characters for vectors and capital

bold characters for matrices. For x ∈ R
d and i ∈ [d], xi denotes the i-th coordinate of x, and

∥x∥2 := (
∑d

i=1 x
2
i )

1/2 denotes the ℓ2-norm of x. We will use x · y for the inner product of

x,y ∈ R
d and θ(x,y) for the angle between x,y. We slightly abuse notation and denote ei the i-th

standard basis vector in R
d. We will use 1A to denote the characteristic function of the set A, i.e.,

1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. We use the standard O(·),Θ(·),Ω(·) asymptotic

notation. We also use Õ(·) to omit poly-logarithmic factors. We use Ex∼D[x] for the expectation of

the random variable x according to the distribution D and Pr[E ] for the probability of event E . To

simplicity notation, we may omit the distribution when it is clear from the context. For a set X we

use the x ∼ X to denote sampling x uniformly at random from X . For example, x ∼ Sd means that

we sample x uniformly at random from the d-dimensional unit sphere.

Appendix B. Random-Order Learners Make Ω(d log n) Mistakes

In this section we show that random- and worst-order learners make at least Ω(d log n) mistakes.

This is true even for weak learning (i.e., labeling only 1% of the dataset) and even when the dataset

X is drawn i.i.d. from the unit sphere Sd. The proof relies on a distribution specific (for Sd) PAC

learning lower-bound given in Long (1995).

Proposition 17 (Mistake Lower Bound for Random-Order) Let x(1), . . . ,x(n) be a set of n i.i.d.

samples from Sd with ground-truth labels given by some halfspace with normal vector w∗, i.e., the

label of x(i) is sign(w∗ · x(i)). Then any algorithm that predicts the labels of x(1), . . . ,x(n) in

random order makes at least Ω(d log n) mistakes in expectation. Moreover, this is true even if the

labeling algorithm predicts labels for only 1% of the samples x(1), . . . ,x(n).

Proof We consider the time t in the labeling algorithm, i.e., the algorithm has predicted (and therefore

also observed the correct labels) of a random subset of t examples. Since all points x(1), . . . ,x(n)

are drawn i.i.d. from the uniform distribution on the unit sphere we have that any random subset of t
points is also an i.i.d. sample of uniformly random points on the sphere. We are going to show that

any algorithm that has observed the labels of the random subset of size t, makes a mistake on the

next example (that is also a uniformly random sample on the unit sphere) with probability at least

Ω(d/t). Although this is generally given by standard VC bounds since our distribution is uniform

on the sphere, we require the following result from Long (1995). In what follows we shall denote

by A(x;S) the prediction of some generic learning algorithm A on an example x given a labeled

dataset S. When the training dataset is clear from the context we may also simply write A(x).

Lemma 18 (PAC Learning Halfspaces on the Unit Sphere (Long, 1995)) Fix a ground-truth half-

space f(x) = sign(w∗ · x) for some weight vector w∗ ∈ R
d. Let x(1), . . . ,x(t) be a set of t i.i.d.

samples drawn uniformly at random on the unit sphere. The expected error of any learning algorithm

A that has observed x(1), . . . ,x(t) (and their ground-truth labels) is at least Ω(d/t)

E
x(1),...,x(t)∼Sd

[
Pr
x∼Sd

[A
(
x; (x(1), f(x(1))), . . . , (x(t), f(x(t)))

)
̸= f(x)]

]
≥ c

d

t
,

where c is some universal constant.

17
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Using Lemma 18, we obtain that after predicting the labels on t examples, the expected probability

that any algorithm makes an incorrect prediction on a fresh example is at least 2/3. Given any

prediction algorithm A, we define the error of A to be the probability that A makes an incorrect

prediction on a fresh sample from Sd, i.e., err(A,x) = 1{A(x) ̸= sign(w∗ · x)}. To simplify

notation, we shall denote by St = {(x(1), f(x(1))), . . . , (x(t), f(x(t)))} a set of t labeled examples

and by Ft the corresponding filtration (so that St is adapted to Ft). We have that

E
[ n∑

t=1

err(A(·;St),x
(t+1))

]
=

n∑

t=1

E[err(A(·;St),x
(t+1))

]
≥

n∑

t=1

c
d

t
≥ cd log n ,

where for the last inequality, we used the fact that the harmonic number
∑n

t=1 1/t = Ω(log n).
Finally, we see that the same is true if we only label only 1%n points since

∑0.01n
t=1 1/t = Ω(log n).

Appendix C. Self-Directed Learning on Sd: Proof Details

Input: An initialization w. Output: A sequence of labeled data (x(t), z(t)).

1. Initialize guesses w(0) ← w, v(0) ← w.

2. Initialize the set of unlabeled data U ← X , t← 0.

3. Split U in 2k sets U1, . . . , U2k.

4. For t = 1, . . . , k:

w(t) ← MARGIN-PERCEPTRON(Ut, w
(t−1)), v(t) ← MARGIN-PERCEPTRON(Uk+t,

v(t−1)).

5. For t = 1, . . . , k:

Label points of Uk+t with w(k) and label points of Ut with v(k).

MARGIN-PERCEPTRON(U,w)

Input: An initialization w and a set of points U . Output: A vector w′.

1. Obtain U ′ by sorting the points of U in decreasing order of margin from w, i.e.,

|x(i+1) ·w| ≤ |x(i) ·w|.
2. For x ∈ U ′:

(a) Predict the label of x with w.

(b) If the prediction is incorrect, exit the loop and return w′ ← w − (w · x)x.

Algorithm 3:Self-Directed Learning on Sd

C.1. The Proof of Theorem 6

We restate and prove Theorem 6 in this section.

18
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Theorem 19 Let δ ∈ (0, 1/2] and let n be larger than some sufficiently large universal constant.

Let X be a set of n i.i.d. samples from Sd with true labels given by a homogeneous halfspace,

f(x) = sign(w∗ · x). There exists a self-directed classifier that makes O(d log log n log(1/δ))
mistakes, runs in time poly(d, n) and classifies all points of X with probability at least 1− δ.

We first show our anti-concentration result for the maximum-margin of the conditional dis-

tribution on the disagreement region C. We believe that our tight anti-concentration bound is

of independent interest and may find other applications in convex geometry and learning linear

classifiers.

Proposition 20 Let C be the indicator of the disagreement region of two homogeneous halfspaces,

i.e., C = 1{(v · x)(u · x) ≤ 0} for some unit vectors v,u ∈ R
d with angle θ(v,u) = θ. Let Sd

denote the uniform distribution on the unit sphere and by Sd(C) the conditional distribution on the

disagreement region C.

1. For any α ∈ [0, 1], it holds:

Pr
x(1),...,x(m)∼Sd(C)

[
max

i=1,...,m
|u · x(i)| ≤ α sin(θ/2)

]
≤ exp

(
−m (1− α2)d/2−1/2

)
.

2. For any β ∈ [0, 1], it holds:

Pr
x(1),...,x(m)∼Sd(C)

[
max

i=1,...,m
|u · x(i)| ≤ (1− β) sin(θ)

]
≤ exp

(
−m (β/2)d/2/2

)
.

Proof To simplify notation, set ∆ = α sin(θ). We first compute the probability that a single sample

in C has |u · x| ≥ ∆. By the symmetry of the set C and the uniform distribution on the sphere Sd

Pr
x∼Sd

[x ∈ C, |u · x| ≥ ∆] = 2 Pr
x∼Sd

[x ∈ C,u · x ≥ ∆] = 2 Pr
x∼Sd

[E1] .

where E1 = {x : x ∈ C,u · x ≥ ∆}. Assume, without loss of generality that u = e2 and

v = − sin θe1 + cos θe2. Observe that the set E1 can now be written as E1 = {(x1,x2) : x2 ≥
∆, cos θx2 ≤ sin θx1}. Using polar coordinates x1 = r cosϕ, x2 = r sinϕ we have that E1 =
{(r, ϕ) : 0 ≤ r ≤ 1, r sinϕ ≥ ∆, r cos θ sinϕ ≤ r sin θ cosϕ} = {(r, ϕ) : 0 ≤ r ≤ 1, r sinϕ ≥
∆, sin(θ− ϕ) ≥ 0}, where we used the trigonometric identity sin(ϕ− θ) = sinϕ cos θ− cosϕ sin θ
and the fact that sin(−z) = − sin(z). Moreover, by r sinϕ ≥ ∆ we obtain that sinϕ ≥ 0 and

therefore ϕ ∈ [0, π]. Combining this with the fact that the angle between two halfspaces can be at

most θ ≤ π, we obtain that sin(θ − ϕ) ≥ 0 implies that ϕ ≤ θ. Finally, observe that the constraint

r sinϕ ≥ ∆ = α sin θ implies that the radius r ≥ α. Therefore the set E1 can be equivalently

written as

E1 = {(r, ϕ) : α ≤ r ≤ 1, r sinϕ ≥ α sin θ, ϕ ≤ θ}
The set E1 has coupled constraints (i.e., constraints that depend on both r, ϕ). The set E2 = {(r, ϕ) :
α ≤ r ≤ 1, θ/2 ≤ ϕ ≤ θ} has decoupled constraints and is a subset of E1. To see that E2 ⊆ E1,

notice that for (r, ϕ) ∈ E2 it holds r sinϕ ≥ α sin(θ/2) = ∆ and θ − ϕ ∈ [0, π/2] which implies

that sin(θ − ϕ) ≥ 0 and therefore, (r, ϕ) ∈ E1. We can now directly estimate the probability of the
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set E1. The 2-dimensional projection of the uniform on the sphere has density d−2
2π (1− r2)d/2−2r

(in polar coordinates).

Pr
x∼Sd

[E2] =
d− 2

2π

∫ 1

α

∫ θ

θ/2
(1− r2)d/2−2 r dϕdr =

θ(d− 2)

4π

∫ 1

α
(1− r2)d/2−2 r dr

=
θ

4π
(1− α2)d/2−1 .

By the symmetry of Sd we directly obtain that Prx∼Sd
[C] = θ/π. We conclude that the

conditional probability Prx∼Sd(C)[|u ·x| ≥ ∆] ≥ (1/2)(1−α2/d)d/2−1. We can now bound above

the probability that the maximum of m independent samples from Sd(C) is small.

Pr
x1,...,xm∼Sd(C)

[
max

i=1,...,m
|u · xi| ≤ ∆

]
= (1− Pr

x∼Sd(C)
[|u · x| ≥ ∆])m

≤ exp

(
−m Pr

x∼Sd(C)
[|u · x| ≥ ∆]

)
≤ exp

(
−m (1− α2)d/2−1/2

)
,

where, for the first inequality, we used the fact ex ≥ 1 + x.

We now prove the second inequality that allows us to achieve correlation arbitrarily close to

sin θ albeit with worse success probability. To keep the proof similar to the previous one, we shall

use continue using the parameter α = 1 − β and replace it with β in the final expression for the

probability. Recall that the expression of the set E1 in polar coordinates is

E1 = {(r, ϕ) : α ≤ r ≤ 1, r sinϕ ≥ α sin θ, ϕ ≤ θ} .

This time, we estimate directly the probability of E1. To simplify notation, set q = α sin θ. We have:

Pr
x∼Sd

[E1] =
d− 2

2π

∫ θ

sin−1(q)

∫ 1

q

sinφ

(1− r2)d/2−2 r drdϕ =
1

2π

∫ θ

sin−1(q)

(
1−

( q

sinϕ

)2)d/2−1
dϕ .

Since the quantity inside the integral is positive, we can bound its value from below by slightly

increasing the lower threshold to sin−1(s sin θ) for s = (1 + α)/2 (where we used that sin−1(·) is

increasing. We have

Pr
x∼Sd

[E1] ≥
1

2π

∫ θ

sin−1(s sin θ)

(
1−

( q

sinϕ

)2)d/2−1
dϕ ≥ 1

2π

∫ θ

sin−1(s sin θ)

(
1−

(α
s

)2)d/2−1
dϕ .

Finally, observe that since s = (1 + α)/2, it holds that a/s ≤ s and therefore:

Pr
x∼Sd

[E1] ≥
1

2π
(1− s2)d/2−1(θ − sin−1(s sin θ)) ≥ θ

2π

1− α

2
(1− s2)d/2−1(θ − sin−1(s sin θ)) .

where, for the last inequality, we used the inequality sin−1(αx) ≤ α sin−1(x). Therefore, we have

proved the bound

Pr
x∼Sd

[E1] ≥
1

2
s(1− s2)d/2−1 =

1− α

4

(
1−

(
1 + α

2

)2
)d/2−1

.
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We can now switch back to using the parameter β = 1− α to obtain the bound

Pr
x∼Sd

[E1] ≥
β

4
(1− (1− β/2)2)d/2−1 ≥ (β/2)d/2/2 ,

where we used the inequality 1− (1− x)2 ≥ x for all x ∈ [0, 1]. The final steps to obtain the upper

bound for the probability that the maximum is small are the same as those of the previous case.

Using Proposition 20 we now show considering the original n i.i.d. samples from Sd the

maximum-margin of those that fall in the disagreemeent region is going to be significantly larger

than that of a random sample of Sd. This is the formal version of Proposition 7.

Lemma 21 Let v,u ∈ R
d be unit vectors with angle θ(v,u) = θ. Let C be the indicator of the

disagreement region of the two homogeneous halfspaces defined by v,u, i.e., C = 1{(v ·x)(u ·x) ≤
0}. Furthermore, let Sd denote the uniform distribution on the unit sphere.

1. For all n, s ≥ 1 and c ≥ 2 such that e−dc/4 ≤ 4πs/(nθ) ≤ 1, it holds

Pr
x(1),...,x(n)∼Sd

[
max

i=1,...,n
|u · x(i)|1{x(i) ∈ C} ≤

√
log(nθ/(4πs))

2c d
sin(θ)

]
≤ 2e−s/2 .

2. For all n, s ≥ 1 such that 4πs/(nθ) ≤ 1 it holds: it holds

Pr
x(1),...,x(n)∼Sd

[
max

i=1,...,n
|u · xi|1{x(i) ∈ C} ≤

(
1−

(4πs
nθ

)2/d)
sin(θ)

]
≤ 2e−s/2 .

Proof Denote by S the set of samples that fall in the disagreement region C and denote by m = |S|
the number of samples that fall in the disagreement region. We observe that by the rotational

symmetry of the uniform distribution on the sphere, the probability of the set C is exactly θ/π.

Therefore, on expectation, out of the n samples that we draw from Sd, the number of samples that

fall in C is E[|S|] = µ = nθ/π. We first show that with high-probability we are going to observe

at least µ/2 samples in C. Denote by m the number of samples that fall in C. Using Chernoff’s

bound, we obtain that Pr[m ≤ µ/2] ≤ e−µ/8 ≤ e−nθ/8 ≤ e−4πs/8 ≤ e−s/2. Therefore, from now

on, we condition on the event that at least m ≥ nθ/(2π) samples fall in C. In other words, out of

the n original samples from Sd, with probability at least 1− e−s/2, we have drawn at least nθ/(2π)
samples from the conditional distribution Sd(C).

We first prove the second case of Lemma 21. Using the second case of Proposition 20 we

have that for β = (4πs/(nθ))2/d, it holds that Pr[maxi=1,...,m |u · x(i)| ≤ (1 − β) sin θ] ≤
exp(−m 2πs/(nθ)). Since we have conditioned on the event that m ≥ nθ/(2π), we obtain that this

probability is at most e−s. Combining this probability with the rejection sampling failure probability

(that the number of conditional samples, i.e., those that fell in S, is smaller than nθ/(2π)), we obtain

that the total probability of failure is at most 2e−s/2.

We now prove the first case of Lemma 21. Observe first that for n, using the fact that sin(θ)/2 ≤
sin(θ/2) it holds that

√
log(nθ/(4πs))

2c d
sin θ ≤

√
2 log(nθ/(4πs))

c d
sin(θ/2) .
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At this point, notice that by the assumption of the first case of Lemma 21 that e−cd/4 ≤ nθ/(4πs), we

have that 2 log(nθ/(4πs))/(cd) ≤ 1/2. In particular, we never ask for margin larger than sin(θ/2)/2
(notice that the maximum possible margin is always sin(θ)). Using the first case of Proposition 20,

we have that

Pr

[
max

i=1,...,m
|u · x(i)| ≤

√
log(nθ/(4πs))

4d
sin θ

]
≤ exp

(
−(m/2)

(
1−2log(nθ/(4πs))

cd

)d/2−1)
.

(4)

Next, we will use the inequality 1− x ≥ e−2x that holds for all x ∈ [0, 1/2], to obtain that

(
1− 2 log(nθ/(4πs))

cd

)d/2−1

≥ exp
(
− 2d− 4

cd
log(nθ/(4πs))

)
≥ 4πs

nθ

where for the first inequality we used the fact that 2 log(nθ/(4πs))/(cd) ≤ 1/2 (so that we are able

to use the inequality 1− x ≥ e−2x), and for the second inequality the fact that c ≥ 1. Using the fact

that m ≥ nθ/(4π) we have that this probability of Equation (4) is at most e−s/2. Combining this

failure probability with the probability that we do not observe at least nθ/(2π) samples in C we

obtain that the total failure probability is at most 2e−s/2.

We prove the following lemma, showing on each mistake the margin-perceptron has good

probability of significantly (super-linearly) decreasing tan θ. We require that the current guess w is

not exactly orthogonal with the target w∗ (notice the assumption 1/ cos θ ≤ O(ζ)). We show that it

is not hard to obtain such an initialization.

Lemma 22 Let w ∈ R
d and let θ(w∗,w) = θ ∈ [0, π/2) and assume that for some parameter

ζ > 0, 1/ cos θ ≤ ζ/(12π). Let C be the indicator of the disagreement region of w∗,w, i.e.,

C = 1{(w∗ · x)(w · x) ≤ 0}. Let X = {x(1), . . . ,x(n)} be a sample set drawn from Sd with

n larger than a sufficiently large constant and let x̂ = argmaxx∈X |w · x|1{x ∈ C}. Denote

w′ = w′ − (w · x̂)x̂ and let θ′ = θ(w′,w∗).

1. We have that tan2 θ′ ≤ tan2 θ. (Monotonicity)

2. With probability at least 2/3, it holds tan θ′ ≤ tan1−1/(8d) θ(ζ/n)1/(8d) .

Proof First, we claim that this update rule decreases tan θ.

Claim 23 Let w ∈ R
d and let x ∈ {x : (w∗ · x)(w · x) ≤ 0}. Furthermore, assume that

|w · x| ≥ r sin θ, where θ(w∗,w) = θ ∈ [0, π/2) and r > 0. Denote w′ = w − (w · x)x and let

θ′ = θ(w′,w∗). Then tan2 θ′ ≤ tan2 θ(1− r2) .

Proof We first observe that the correlation with w∗ does not decrease, w′·w∗ = (w−(w·x)x)·w∗ =
w ·w∗− (w · x)(x ·w∗) ≥ w ·w∗, where we used that the hypothesis w disagrees with the ground-

truth w∗ on x, i.e., (w · x)(x ·w∗) ≤ 0. Furthermore, since w ·w∗ ≥ 0 (by the assumption that

θ ∈ [0, π/2]) we also have that (w′ ·w∗)2 ≥ (w ·w∗)2. We next show that the norm of w′ decreases

multiplicatively. We have that ∥w′∥22 = ∥(w−(w·x)x)∥22 = ∥w∥22−(w·x)2 ≤ ∥w∥22(1−r2 sin2 θ) .
Using (twice) the trigonometric identity tan2 ϕ = (1/ cos2 ϕ)− 1, we show that tan2 θ decreases by

a factor of (1− r2):

tan2 θ′ =
∥w′∥22

(w′ ·w∗)2
− 1 ≤ ∥w∥

2
2(1− r2 sin2 θ)

(w ·w∗)2
− 1 =

1− r2 sin2 θ

cos2 θ
− 1 = (1− r2) tan2 θ .
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We note that from Claim 23 whenever we use the update rule on mistakes, it gives that tan(θ′) ≤
tan(θ). We show that with constant probability, we can argue that the decrease is significantly larger.

We split our analysis into two cases, one that 12π/(nθ) ≤ exp(−d/2) and the later case is when

1 ≥ 12π/(nθ) ≥ exp(−d/2). We first consider the case where 12π/(nθ) ≤ exp(−d/2). From

Lemma 21, we have that with probability at least 2/3, it holds |w · x̂| ≥ (1− (12π/(nθ))2/d) sin θ.

Therefore, from Claim 23, we have that

tan θ′ ≤ tan θ
(
1− (1− (12π/(nθ))2/d)2

)1/2
≤ tan θ

(
2(12π/(nθ))2/d

)1/2
,

where we used that 1 − (1 − x)2 ≤ 2x for x > 0. Note that by our assumption 12π/(nθ) ≤
exp(−d/2), therefore

(
2(12π/(nθ))2/d

)1/2 ≤ (12π/(nθ))1/(2d) ≤ (12π/(nθ))1/(8d).

Next, we consider the case where 1 ≥ 12π/(nθ) ≥ exp(−d/2). In this case, from Lemma 21,

we have that with probability at least 2/3, it holds |w · x̂| ≥
√

log(nθ/(12π))/(4d) sin θ. Therefore,

from Claim 23, we have that

tan θ′ ≤ tan θ

(
1− log(θn/(12π))

4d

)1/2

≤ tan θ exp

(
− log(θn/(12π))

8d

)

= tan θ (12π/(nθ))1/(8d) .

Therefore, in both cases, with probability at least 2/3 that tan θ′ ≤ tan θ (12π/(nθ))1/(8d). Let

ρ = 1/(8d). We have that

tan θ′ ≤ tan1−ρ θ

(
12π sin θ

θ cos θ

1

n

)ρ

≤ tan1−ρ(θ)

(
ζ

n

)ρ

,

where we used our assumption that cos θ ≥ (12π/ζ). This completes the proof of Lemma 22.

In the following lemma we show that given a decreasing stochastic process ξt that has good

probability to decrease in a superlinear-rate then after T = O(log log(1/α)) iterations it holds that

ξT ≤ α.

Lemma 24 (Super-Linear Convergence) Fix κ, ρ ∈ (0, 1). Consider a stochastic process ξt
adapted to a filtration Ft that satisfies:

1. 0 ≤ ξ0 ≤M (Bounded Initialization),

2. For all t: 0 ≤ ξt+1 ≤ ξt (Monotonicity),

3. For all t: Pr[ξt+1 ≤ ξ
(1−ρ)
t κρ | Ft] ≥ 2/3 (Super-Linear Decay).

Then, for any T larger than (3/2) ((1/ρ)max(log log(1/κ), log log(M + 1)) + log(e/δ)), with

probability at least 1− δ, it holds that ξT ≤ e2κ.
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Proof Define the random variable It to be the indicator of the event that the super-linear decay step

happens at step t, i.e., that ξt+1 ≤ (ξt)
(1−ρ)κρ. We first observe that by the fact that the stochastic

process is monotone in the sense that ξt ≤ ξt+1 for all t, it does not matter at which steps the

super-linear decay happens (but only how many times it does so). Assume that
∑T

k=1 Ik = m,

and denote by tj be the subsequence of {1, . . . , T} of length m where the super-linear decay steps

happen. Using the monotonicity of ξt, we have that

ξT ≤ ξtm ≤ (ξtm−1)
1−ρκρ ≤ (ξtm−1)

1−ρκρ ≤ (ξtm−1−1)
(1−ρ)2κρ(1−ρ)+ρ

≤ (ξtm−2)
(1−ρ)2κρ(1−ρ)+ρ .

By continuing to unroll the recurrence, we obtain ξT ≤ ξ
(1−ρ)m

0 κ1−(1−ρ)m , where we used the fact

that ρ+ ρ(1− ρ) + . . .+ ρ(1− ρ)k−1 = 1− (1− ρ)k. Using the fact that ξ0 ≤ M , we have that

ξT ≤Mκ1−(1−ρ)m . We show the following in Appendix C.

Fact 25 If m ≥ (1/ρ)max(log log(1/κ), log log(M + 1)), then M (1−ρ)mκ1−(1−ρ)m ≤ e2κ.

Proof We first show that with m ≥ log log(M + 1)/ρ it holds that M (1−ρ)m ≤ e. We first observe

that this is trivially true when M ≤ 1. For M > 1 we can take logarithms in both sides of M (1−ρ)m ≤
e and obtain m log(1− ρ) + log logM ≤ 0 or equivalently m ≥ log logM/ log(1/(1− ρ)). Since

log(1/(1− ρ) ≥ 1/ρ for all ρ ∈ (0, 1) we obtain that for the chosen m the inequality is true. Next

we show that for m ≥ log log(1/κ)/ρ it holds that κ1−(1−ρ)m ≤ eκ. We first observe that we can

rewrite this inequality as (1/κ)(1−ρ)m ≤ e. Using the same argument as in the previous case (by

replacing M with 1/κ > 1), we obtain the result.

To complete the proof, it remains to show that many ªfast-decayº updates will happen with good

probability, or, in other words, that the number m defined above is at least

m∗ := (1/ρ)max(log log(1/κ), log log(M + 1)),

with good probability. We show that if the total number of updates T ≥ 8 log(e/δ)m∗, then, with

probability at least 1− δ, m ≥ m∗. To do this, we shall Azuma’s inequality for martingales.

Lemma 26 (Azuma-Hoeffding) Let (Dt) be a martingale with bounded increments, i.e., Dt −
Dt−1 ≤ L. It holds that Pr[DT ≤ D0 − λ] ≤ e−λ2/(2L2T ).

We define the martingale DT =
∑T

t=1(It − E[It | Ft−1]), with D0 = 0. Using the fact that the

super-linear decay step happens with probability at least 2/3 (see Item 3 of Lemma 24) we have that

with probability at least 2/3 we have It = 1 and therefore
∑T

t=1E[It | Ft−1] ≥ (2/3) T . Moreover,

we observe that the increments of DT are bounded by 1 and therefore Azuma’s inequality Lemma 26

implies that Pr[DT ≤ −
√

2T log(1/δ)] ≤ δ . Equivalently, we obtain that with probability at least

1− δ, it holds that the number of super-linear decay steps is bounded below by m ≥∑T
t=1E[It |

Ft−1] ≥ (2/3) T −
√

2T log(1/δ). For T = (3/2)m∗ + (3/2) log(e/δ) we obtain that m ≥ m∗

with probability at least 1− δ.

The following lemma shows that a halfspace that has angle θ with the ground-truth w∗ makes roughly

nθ mistakes on a sequence of n i.i.d. examples from the uniform distribution on the sphere.
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Lemma 27 Fix v,w ∈ R
d and assume that θ(v,w) = θ. Let C be the indicator of the disagreement

region of v,w, i.e., C = 1{(v·x)(w·x) ≤ 0}. Let X = {x(1), . . . ,x(n)} be a sample set drawn i.i.d.

from Sd. Then, with probability at least 1− δ, the set X ∩C has size at most O(nθ+
√

nθ log(1/δ)).

Proof Let Zi = 1{x(i) ∈ C}. From the fact that Pr[(v · x)(w · x) ≤ 0] = θ/π, we have that

E[Zi] = θ/π. We use the following version of the standard Hoeffding bound.

Fact 28 Let z1, . . . , an be i.i.d. random variables on {0, 1} with E[z1] = p. Then, it holds that

Pr

[
n∑

i=1

zi ≥ np+ ϵn

]
≤ exp

(
− ϵ2n

2p(1− p)

)
.

An application of Fact 28, gives that

Pr

[
N∑

i=1

Zi ≥ nθ/π + nt

]
≤ exp(−πt2n/θ) .

Choose t ≥ Ω(
√

θ/n log(1/δ)), and the result follows.

C.1.1. PUTTING EVERYTHING TOGETHER: THE PROOF OF THEOREM 6

First, assume that n ≤ Cd log log(d) log(1/δ), for some large enough absolute constant C > 0. In

this case, even if the algorithm makes a wrong prediction in all the points, the mistake bound will be

n = O(d log log(d) log(1/δ)). For the rest of the proof, we assume that n ≥ Cd log log(d) log(1/δ).
We use the following algorithm for the initialization process.

Lemma 29 (Theorem 2 of Dasgupta et al. (2005)) Let ϵ, δ ∈ (0, 1]. Consider a stream of data

points x(t) drawn uniformly at random from the surface of the unit sphere in R
d, and the correspond-

ing labels y(t) are consistent with an LTF sign(w∗ · x). There is an algorithm that, if it is applied to

this stream of data, then with probability at least 1− δ, after O(d(log(1/ϵ) + log(1/δ))) mistakes,

we get a halfspace w with generalization error at most ϵ.

From Lemma 29, we have that with O(d log(1/δ)) mistakes, we get with probability at least 1− δ/2,

a halfspace w ∈ R
d with generalization error 1/10, therefore θ(w,w∗) = π/10 ≤ 1/2, hence

cos(θ(w,w∗)) ≥ 1/2. Let T = c′d log log(n) log(1/δ) for some sufficiently large absolute constant

c > 0. We split X into 2k subsets U1, . . . , U2k, with k = n/(2T ), so that all the subsets contain at

least N = n/T ≥ C/c′, which we can make C > 0 to be large enough so that C/c′ is greater than a

sufficiently large absolute constant. Note that each set is independent of the other.

Let w(0) = w and u(0) = w. We analyze first the algorithm Algorithm 3 for w(0). Step 5 of

Algorithm 3 runs Margin-Perceptron in each set and goes to the next set when a mistake occurs. Let

w(t) be the current hypothesis and θ(t) = θ(w(t),w∗). From Lemma 22, conditioned on w(t), we

have that if a mistake occurred, then we construct a new vector w(t+1) with θ(t+1) = θ(w(t+1),w∗)
so that tan θ(t+1) ≤ tan θ(t) and furthermore with probability at least 2/3 we have that

tan(θ(t+1)) ≤ tan1−1/(8d) θ(t)(C ′′/N)1/(8d) ,
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where C ′′ > 0 is an absolute constant. Denote ξt = tan θ(t), we have that 0 ≤ ξ0 = tan θ(0) ≤ 1
and that ξt+1 ≤ ξt. Hence, we have that

Pr[ξt+1 ≤ ξ
1−(1/8d)
t (C ′′/N)1/(8d)|w(t)] ≥ 2/3 .

Therefore, using Lemma 24, we get that ξT ≤ e2C ′′/N , with probability at least 1− δ/4. Therefore

θT ≤ e2C ′′/n = e2C ′′T/n. Therefore, in Step 5a of Algorithm 3, the algorithm made at most

M1 = 2T mistakes. Next, we bound the number of mistakes in Step 6a. Note that U = ∪2ki=kUi,

contains Ω(n) samples. From Lemma 27, we have that with probability at least 1− δ/4 conditioned

on the event that θ(T ) ≤ e2C ′′T/n, Algorithm 3, labels the points in U , with at most O(T ) mistakes.

The same arguments show the same for the hypothesis u(T ). Therefore, the number of mistakes is at

most O(d log log(n)) log(1/δ), with probability at least 1− δ. Combining the two cases above, we

obtain that the number of mistakes is

M = O(d log(1/δ)) ∗
{
O(log log n) if n ≥ Cd log log d log(1/δ)

O(log log d) otherwise

Finally, we may simplify further the above mistake bound by noticing that if the number of unlabeled

points n ≤ d the number of mistakes is always at most d. Therefore, the total number of mistakes is

M = O(dmax(log log n, 1)) log(1/δ).

Appendix D. Self Directed Learning on Arbitrary Datasets

Input: An unlabeled dataset X ⊆ R
d.

Output: A sequence of labeled data (x(t), z(t)).

1. Find subspace V of dimension k so that |X ∩ V | ≥ (k/d) n and X ∩ V is in 1/(2d)-
approximate Radially Isotropic Position using Proposition 32. Set U = X ∩ V .

2. Randomly initialize guess w(0) ∼ Sk.

3. For t = 0, . . . , 5k log k:

(a) Obtain U
w(t) by sorting the points of U in decreasing order of margin from w(t), i.e.,

|x(i+1) ·w(t)| ≤ |x(i) ·w(t)|.
(b) Initialize the set of correctly predicted points C ← ∅.
(c) For x ∈ U

w(t) :

i. Predict the label of x with w(t).

ii. If the prediction is incorrect, update w(t+1) ← w(t) − (w(t) · x) x, add

(x,−sign(w(t) · x)) to C, and exit the inner loop.

iii. If the prediction is correct, add (x, sign(w(t) · x)) to C.

(d) If |C| ≥ |U |/(4k) then return C and exit the loop.

Algorithm 4:A Weak Self-Directed Learner for any set X .
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D.1. The proof of Proposition 11

We restate and prove the following proposition giving a weak, self-directed learner for arbitrary

datasets that does O(d log d) mistakes and with non-trivial success probability (say above 1%) labels

roughly Ω(1/d)-fraction of X .

Proposition 30 (Weak, Self-Directed Learner for Arbitrary Datasets) Let C be the class of LTFs

on R
d and let X be a set of n unlabeled points in R

d. There exists a universal constant c and an

algorithm that runs in poly(d, n) time, makes O(d log d) mistakes, and, with probability at least c,
correctly classifies an Ω(1/d)-fraction of the points of X .

We start by defining the ªlinear-map plus rescalingº transformation that puts the dataset in

Radially Isotropic Position.

Definition 31 (Normalized Linear Transformation) Let A ∈ R
d×d be an invertible matrix. Given

a non-zero vector x ∈ R
d, we denote by SA(x) = Ax/∥Ax∥2. We will also overload notation and,

given a set of points X , we denote by SA(X) = {SA(x) : x ∈ X}.

We shall use the strongly polynomial time algorithmic result to compute a Forster transform (or

show that one does not exist) given in the recent work of Diakonikolas et al. (2022).

Proposition 32 (Algorithmic Forster Transform, (Diakonikolas et al., 2022)) There exists an al-

gorithm, that given a set of points X in Z
d \ {0}and some δ > 0, runs in time poly(n, d, log(1/δ))

and returns a subspace V of Rd containing at least a dim(V )/d-fraction of the points X and an

invertible matrix A ∈ R
d×d such that SA(X ∩ V ) is in δ-approximate radially isotropic position.

In the next lemma we show that a dataset in (approximate) Radially Isotropic Position, satisfies a

notion of ªsoft-marginº in the sense that non-trivial part of the dataset has non-trivial margin with

respect to every halfspace.

Lemma 33 (Soft-Margin via Radially Isotropic Position) Let X be a multi-set of non-zero points

in 1/(2d)-approximate Radially Isotropic Position. For every unit vector u ∈ R
d, we have

Prx∼X [|u · x| ≥ 1/(2
√
d)] ≥ 1/(4d)) .

Proof Since the set X is in Radially Isotropic Position, we have that ∥x∥2 ≤ 1 for every x ∈ X ,

and therefore, by Cauchy-Schwarz, |u · x| ≤ 1. For a random variable z taking values in [0, 1],
the following reverse Markov inequality holds, Pr[z ≥ a] ≥ E[z] − a (see, e.g., Appendix B1 in

Shalev-Shwartz and Ben-David (2014)). We obtain that

Pr
x∈X

[
|u · x| ≥ 1

2
√
d

]
= Pr

x∈X

[
(u · x)2 ≥ 1

4d

]
≥ E

x∼X
[(u · x)2]− 1

4d
≥ 1

2d
− 1

4d
=

1

4d
,

where we used the fact that the set X is in 1/(2d)-approximate Radially Isotropic Position to replace

Ex∼X [(u · x)2] by its lower bound 1/d− 1/(2d) = 1/(2d).

Denote by N the number of points that are returned in Step 1 of Algorithm 4, and note that

N ≥ nk/d. From Lemma 3.2.4 in Vershynin (2018), we get that with probability larger than an

absolute constant, the random initialitation gives a point w(0), so that w(0) · v ≥ 1/(2
√
k). We start
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the analysis of our algorithm. We show that if Algorithm 4 terminates, then 1/(4d)-fraction of points

is correctly classified. Note that Algorithm 4 terminates if the algorithm makes 5d log d mistakes

or when |C| ≥ n/(4d), i.e., the algorithm classified 1/d-fraction of points correctly which is the

goal of the algorithm. The only bad event is if the algorithm terminated after 5d log d mistakes and

|C| < n/(4d). We argue that this cannot happen. Let ni be the remaining points in i iteration. Note

that N = ni + |C|. We make use of the following lemma (a variant of which was shown in Dunagan

and Vempala (2004)).

Lemma 34 (Margin Perceptron (Dunagan and Vempala, 2004) ) Let v,w(0) ∈ R
d be unit vec-

tors such that v ·w(0) ≥ α, for some α > 0. Assume the following: w(t+1) ← w(t)−x(t)(x(t) ·w(t))
and let t0 ∈ Z+, so that for all t ∈ Z+ with t ≤ t0, |x(t) ·w(t)| ≥ β∥w(t)∥2 and (x(t) ·w(t))(x(t) ·
v) < 0. Then, t0 ≤ (2/β2) log(1/α).

Proof From our assumption, we have that w(0) · v ≥ α. We have that

w(t+1) · v = (w(t) − (w(t) · x(t))x(t)) · v = w(t) · v − (w(t) · x(t))(x(t) · v) ≥ w(t) · v ,

where we used that (w(t) · x(t))(x(t) · v) ≤ 0. Therefore, for all w(t), we have inner product with

the target vector at least as large as the initialization, i.e., w(t) · v ≥ α. We show that the norm of w

decreases multiplicatively. We have that

∥w(t) − (w(t) · x(t))x(t)∥22 = ∥w(t)∥22 − (w(t) · x(t))2

≤ ∥w(t)∥22(1− β2) .

Hence, after t iterations, we have that ∥w(t)∥2 ≤ (1−β2)t/2 ≤ exp(−tβ2/2). If t ≥ (2/β2) log(1/α),
we would have w(t) · v/∥w(t)∥2 > 1, which is a contradiction. Hence, after t = (2/β2) log(1/α)
updates, we have that either |x(t) ·w(t)| ≤ β∥w(t)∥2 or (x(t) ·w(t))(x(t) · v) ≥ 0.

Assume that after the t1 = (5d log d − 1) mistake, |C| < n/(4d). That means nt = N − |C| ≥
n(k/d − 1/(4d)) ≥ N/2, as d ≥ 1. Let St = {x(i) : |w(t) · x(i)| ≥ 1/(2

√
k)}. From Lemma 33,

we have that for each t, we have |St| ≥ N/(4k) and combining with the fact that nt ≥ N/2, that

means that either in each iteration, the algorithm makes no mistakes in the set St, which means

that |C| ≥ N/(4k) and the algorithm terminates, or that it makes one mistake in the set St, which

means that if x(t) is the vector that w(t) made a mistake then |w(t) · x(t)| ≥ 1/(2
√
k). Hence,

condition to the event that the algorithm did not terminate before the iteration t0, then by Lemma 34

if t0 ≥ 5d log d, then w(t0) makes no mistakes in the set St0 , so it classifies correctly N/(4k) points,

and the algorithm terminates. To derive the result, note that N/(4k) ≥ n/(4d) by definition.

D.2. Boosting: Obtaining Strong Self-Directed Learners from Weak Learners

In this section we present our boosting result showing that given a weak self-directed learner that

labels some non-trivial part of the dataset one can obtain a strong self-directed that labels arbitrarily

large fractions of the dataset.

Lemma 35 (Boosting) Let A be a distribution-free self-directed learner that makes M mistakes

and correctly labels a (1− α)-fraction of X for some fixed α ∈ (0, 1), with probability at least c ∈
(0, 1). Then, there exists a strong self-directed learner that makes Õ((M/c) log(1/(δϵ))/ log(1/α))
mistakes and labels (1− ϵ)-fraction of X with probability at least 1− δ.
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Proof We first boost the success probability of the self-directed learner to 1− δ by repeating the

algorithm log(1/δ) times. When we perform independent runs of the algorithm, we stop a run if the

algorithms make more than M mistakes. By the assumption that the algorithm succeeds in labeling at

least (1− α)-fraction with probability at least c, in each run, we obtain that after O((1/c) log(1/δ′))
runs one of them will succeed with probability at least 1− δ′. Therefore, we can boost the success

probability of the algorithm to 1 − δ′ by doing O((M/c) log(1/δ′)) mistakes. After performing

a single successful run of the algorithm we have that the number of remaining unlabeled data is

αn. Similarly, after k runs the number of unlabeled data is going to be at most αkn. In order for

the fraction of unlabeled data to become smaller than ϵn we have to pick k = log(1/ϵ)/ log(1/α).
Therefore, in order to have probability of success above 1− δ overall, we can do a union bound over

the k repetitions of the algorithm in order to cover 1− ϵ-fraction of the data. Therefore, we have to

pick the success probability δ′ of each run of the algorithm to be δ′ = 1/(kδ). We conclude that the

overhead in the number of mistakes is a factor of O(log(1/δ)(log log(1/ϵ)− log log(1/α))).

D.2.1. THE PROOF OF THEOREM 10

We restate and prove Theorem 10

Theorem 36 Let C be the class of LTFs on R
d and let X be a set of n unlabeled points in R

d.

There exists a algorithm that runs in poly(d, n) time, makes Õ(d2 log(d/(ϵδ))) mistakes, and, with

probability at least 1− δ, correctly classifies a (1− ϵ)-fraction of the points of X .

Proof From Proposition 11, we get that there is a weak learner so that with probability at least c, for

some absolute constant c > 0, classifies C/d-fraction of the points of X , where C > 0 is an absolute

constant and makes O(d log d) mistakes. Applying Lemma 35 on this algorithm, we get that the total

number of mistakes is Õ(d log(d/(δϵ)))/ log(1/(1 − 1/d)). Using the inequality log(1 + x) ≤ x
for x > −1, we get that the total number of mistakes is Õ(d2 log(1/(δϵ))).
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