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Abstract

Stochastic optimization is one of the central prob-

lems in Machine Learning and Theoretical Com-

puter Science. In the standard model, the algo-

rithm is given a fixed distribution known in ad-

vance. In practice though, one may acquire at a

cost extra information to make better decisions.

In this paper, we study how to buy information for

stochastic optimization and formulate this ques-

tion as an online learning problem. Assuming the

learner has an oracle for the original optimization

problem, we design a 2-competitive deterministic

algorithm and a e/(e − 1)-competitive random-

ized algorithm for buying information. We show

that this ratio is tight as the problem is equiva-

lent to a robust generalization of the ski-rental

problem, which we call super-martingale stop-

ping. We also consider an adaptive setting where

the learner can choose to buy information after

taking some actions for the underlying optimiza-

tion problem. We focus on the classic optimiza-

tion problem, Min-Sum Set Cover, where the goal

is to quickly find an action that covers a given

request drawn from a known distribution. We

provide an 8-competitive algorithm running in

polynomial time that chooses actions and decides

when to buy information about the underlying

request.

1. Introduction

1.1. Offline and Adaptive Stochastic Optimization

Stochastic optimization is one of the core problems in ma-

chine learning and theoretical computer sciences. In stochas-

tic optimization, the input parameters of the problems are

random variables drawn from a known distribution. Given

the distribution of the parameters, a learner constructs a fea-
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sible solution in advance (offline stochastic optimization) or

adaptively (adaptive stochastic optimization) to optimize the

objective function in expectation. Formally, the two types

of stochastic optimization problems can be defined in the

following way.

Definition 1.1 (Offline Stochastic Optimization). Let S
be a set of scenarios and X (S) be a set of actions. Let

ℓ(A, s) : 2X × S → R+ be a loss function. An offline

stochastic optimization problem (X ,S, ℓ,D) is to find a

set of actions A that minimize Es∼Dℓ(A, s), where D is a

distribution over S .

Definition 1.2 (Adaptive Stochastic Optimization). Let S
be a set of scenarios and X (S) be a set of actions. Ini-

tially, a random scenario s is drawn according to a distri-

bution D. Then, the learner sequentially chooses actions

a1, a2, . . . and after the t-th action observes a (possibly ran-

domized) outcome r((a1, a2, . . . , at), s) ∈ R. The goal of

the learner is to take a sequence of actions A that minimizes

Es∼Dℓ(A, s) for a given loss function ℓ(A, s), possibly ex-

ploiting the information gained about s along the way.

A huge body of work among different communities such as

machine learning, theoretical computer science, statistics,

and operations research has studied stochastic optimization

problems given their numerous applications. For example,

methods of offline stochastic optimization have been widely

applied to problems such as training machine learning mod-

els (Shalev-Shwartz et al., 2009; Bottou, 2010; Kingma &

Ba, 2014) and mechanism design (Nisan & Ronen, 1999;

Hartline, 2013; Roughgarden, 2016). On the other hand,

many adaptive stochastic optimization problems such as

Pandora’s Box problem (Weitzman, 1979; Chawla et al.,

2020), active learning (Dasgupta, 2004; Settles, 2012) and

optimal decision tree (Adler & Heeringa, 2012; Li et al.,

2020) have also been applied to areas like artificial intelli-

gence, microeconomics, and operations research.

A common assumption in these works is that the distribution

D of the scenario s is considered as a given. However,

such an assumption is not realistic in practice. A learner

in practice has many ways to gain extra knowledge on the

optimization problem he is going to solve. With the extra

knowledge, it is reasonable that the learner updates the

prior distribution D to some posterior distribution D′ and

uses a better strategy to solve the problem. As a concrete
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example, consider n bidders that compete over an item in an

auction. Classic auction theory assumes that the auctioneer

only knows a prior distribution D over the buyer values and

wants to design an auction to optimize a target objective

such as welfare or revenue. In practice though, there is a

number of information sources available to the auctioneer

that provide information about the bidders such as their

demographics, their preferences or their purchase history.

Such information can be very useful.

However, this information does not come for free. It may

cost significant amounts of money or time and it is not clear

in advance, how helpful this information will be. In the ex-

ample, the auctioneer may pay an information provider only

to receive irrelevant pieces of information or information

already known.

1.2. Our Contribution and Techniques

In this paper, we study the problem of buying information

for stochastic optimization. We consider a learner that wants

to minimize the total cost spent on solving the optimization

problem and the cost of acquiring information.

We model the information acquisition process using a sig-

naling scheme (Emek et al., 2014). A signaling scheme is

a (randomized) function f from the set of scenarios S to a

signal space R. If a learner asks for feedback from f , he will

receive a signal y and the prior distribution can be updated

as D|f(s)=y. In our model, we assume there is a sequence

of signaling schemes F = {ft}
∞
t=0 arriving online. At any

timestep t, based on the signals received so far, the learner

has the choice to continue purchasing the next signal given

by ft or stop. Our goal is to construct a learner who is

competitive to the cost of a prophet who knows the structure

of F in advance and can take optimal actions.

For offline optimization, all signals must be purchased be-

fore taking any actions in the underlying stochastic optimiza-

tion problem. We assume the learner is able to compute an

(approximate) optimal solution for the underlying problem

given the available information at any point in time. The

goal of the learner is then to adaptively decide when to

stop buying feedback. Our main results in this setting are

summarized below:

Theorem 1.3 (Informal Version of Theorem 3.6 and Theo-

rem 3.8). There exist a 2-competitive deterministic learner

and an e
e−1 -competitive randomized learner to buy informa-

tion for offline stochastic optimizations.

We show that both learners can be implemented efficiently

and have competitive ratios that are information theoretically

optimal. Thus, we give a comprehensive understanding of

buying feedback for offline stochastic optimization. To solve

the problem, we formulate it as a super-martingale stopping

problem: There is an unknown sequence of random vari-

ables (X0, X1, . . . ) satisfying E(Xi+1 | Xi) ≤ Xi. The

realizations of the random variables arrive online and an al-

gorithm outputs a stopping index i∗ adaptively to minimize

E(i∗ +Xi∗). The super-martingale stopping problem can

be seen as a generalization of the classic ski-rental problem

introduced in (Karlin et al., 1994) where all Xi ∈ {0, B}
and its variant introduced in (Chawla et al., 2020), where

(X0, X1, . . . ) are monotone decreasing constants. In the

more general setting of super-martingale stopping though,

the values of Xi may not be monotone, and they are only

monotone in expectation. This makes the problem signif-

icantly more challenging and as we show in Appendix C,

natural algorithms for ski-rental problems are not competi-

tive for our problem.

For adaptive stochastic optimization, it is also natural to

intertwine purchasing information with taking actions. For

example, several actions may be taken first in the problem

and then information may be purchased conditional on their

outcome. As this setting is more problem dependent, we

focus on a paradigmatic case of adaptive stochastic opti-

mization, where there is a random set of good actions, and

the learner takes actions in each round until a good action

is chosen. Such a problem is called Min Sum Set Cover

(MSSC), a well-studied adaptive stochastic optimization

problem (Bar-Noy et al., 1998; 1999; Feige et al., 2004). In

our model, the learner has an extra action at each round to

buy information getting a better estimate of the probability

that an action is good.

We provide an algorithm for this problem competitive to a

prophet that knows the sequence of signaling schemes in

advance:

Theorem 1.4 (Informal Version of Theorem 4.6). There is

a poly-time learner that is 8-competitive for buying infor-

mation for Min Sum Set Cover.

We achieve this in two steps. In the first step, we show we

can shrink the action space so that we don’t need to con-

sider when to buy feedback. We introduce a simpler model

called adaptive stochastic optimization with time dependent

feedback, where a learner takes an action in each round, and

feedback arrives for free after an action is taken. We show

in Theorem 4.3 that if there is a learner that is α-competitive

for adaptive stochastic optimization with time dependent

feedback, then we can use it to construct a 2α-competitive

learner to buy information for adaptive stochastic optimiza-

tion. Our second step is to prove the following technical

theorem, which is of independent interest.

Theorem 1.5 (Informal Version of Theorem 4.4). The

greedy algorithm is 4-competitive for MSSC with time de-

pendent feedback.

There is a lot of work done for analysis of the greedy algo-

rithm of min sum coverage objective under different settings
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(Feige et al., 2004; Streeter & Golovin, 2008; Golovin &

Krause, 2011). The analysis is usually based on an elegant

histogram approach proposed in (Feige et al., 2004). How-

ever, in our model, the decision made by the learner is fully

adaptive and it is hard to adapt such an analysis directly.

Instead, we bypass such difficulty and use an interesting

linear programming dual approach to analyze the greedy

algorithm. Besides algorithmic results, we also present hard

instances to build information theoretic lower bound for

MSSC under our models.

1.3. Applications of our Model

Buying information is very common in practice. In fact, our

model fits well in both theory and practical applications. In

this section, we give several applications of our model. We

first give a typical example of buying information for offline

stochastic optimization.

Selling One Item with Feedback There is a seller who

wants to sell an item to a buyer. The seller sets a price p for

the item. The buyer has a value v for the item and would

like to pay the price p for the item if p ≤ v. However, if

p > v, the buyer will not buy the item. Given a pair of (v, p),
denote by P (v, p) = p1p≤v the payment of the buyer. The

value of the buyer may depend on his nationality, education,

or other factors. The information can be collected from the

historic trade and thus the seller has a prior distributionD of

the value v. The goal of the learner is to set up the price p to

minimize Ev∼D (v − P (v, p)). However, instead of setting

the price immediately, the seller may pay some money to

collect more information about the buyer. This can help the

seller update the prior distribution of the value v. In practice,

it is hard to predict the quality of the information. The

question for the seller is how much information is sufficient

for him to set up a good price.

Our second example is on buying information for adaptive

stochastic optimization.

Optimal Decision Tree with Feedback A doctor wants

to diagnose the disease of a patient. There are X = [n]
different tests that can be performed by the doctor and S =
[m] different possible diseases. If the patient has a disease

s ∈ S and a test a ∈ X is performed, then the doctor

will receive an outcome r(s, a). The doctor has a prior

distribution D of the disease s based on the symptom of

the patient. In the standard optimal decision tree problem,

based on the knowledge of D, the goal of the doctor is

to perform a sequence of tests adaptively to identify the

disease while minimizing the expected cost of the tests. In

practice, the doctor may choose not to run tests but instead

send the patient home to see whether the symptoms worsen.

However, this is also costly and it may be challenging to

predict what symptoms will appear and how much time it

will take for them to appear. Combined with an algorithm

for computing approximately optimal decision trees, our

work shows how to incorporate the symptom monitoring

component to efficiently identify the disease.

Beyond these applications, our model fits well with many

existing theoretical frameworks in learning theory. Here we

take adaptive submodular optimization, a recently popular

research direction in the field of machine learning as our

example.

Adaptive Submodularity with Feedback Motivated by

applications on artificial intelligence, (Golovin & Krause,

2011) introduces the notion of adaptive submodularity,

which was a popular research topic in the last decade. A

function f(A, s) of a set of actions A and a random scenario

s is adaptive submodular if Esf(A, s) is a submodular func-

tion. After an action a is taken, the learner will see an

outcome s(a). Given the distribution of s, the learner will

construct the action set A adaptively to optimize classic

objectives for submodular functions (Fujishige, 2005) such

as submodular maximization, min submodular coverage,

and min sum submodular coverage. Many natural questions

arise when feedback is involved in this framework. For

example, if feedback is costly, how can we buy feedback to

help us make adaptive decisions? If the feedback is free and

time dependent, are existing policies still competitive?

1.4. Organization of paper

In Section 2, we formally introduce the model studied by

the paper. In Section 3, we introduce the super-martingale

stopping problem to study buying information for offline

stochastic optimization. We give a tight deterministic al-

gorithm and a tight randomized algorithm for the super-

martingale stopping problem. Furthermore, we will discuss

the robustness of these algorithms. In Section 4, we focus

on buying information for adaptive stochastic optimization.

We introduce the model of time dependent feedback and

build a connection between adaptive stochastic optimiza-

tion with time dependent feedback and buying information

for adaptive stochastic optimization in Section 4.1. In Sec-

tion 4.2, we show a simple greedy learner is 4-competitive

for Min Sum Set Cover with time dependent feedback. And

in Section 4.3, we design an 8-competitive algorithm for

buying information for Min Sum Set Cover. Furthermore,

we discuss the information theoretic lower bound for Min

Sum Set Cover under both settings.

2. Stochastic Optimization with Feedback

2.1. Feedback Signals for Stochastic Optimization

Let S be a set of scenarios with a distribution D over S and

let Y be a set of random variables over R. A randomized
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signaling scheme f : S → Y is a map from S to Y . Let s
be a scenario drawn from D. A signal received from f is a

realization y ∈ R of the random variable f(s). Similarly,

a deterministic signaling scheme f : S → R is a function

from S to R. When a scenario s is drawn, a signal received

from f is defined by y = f(s) ∈ R. In particular, any

deterministic signaling scheme gives a partition of S . Given

the definition of a signaling scheme, we are able to define

feedback for stochastic optimization problems.

Definition 2.1 (Feedback). Let (X ,S, ℓ,D) be a stochas-

tic optimization problem. A sequence of feedback F =
{ft}

∞
t=0 is a sequence of unknown randomized (determin-

istic) signaling scheme. The tth feedback received by a

learner is the pair (yt,D |ft(s)=yt,ft−1(s)=yy−1,...,f0(s)=y0
),

where yt is the signal from ft.

For convenience, we assume f0 is a constant for every sce-

nario, throughout the paper. Such an assumption is used

to reflect the fact that the learner has no extra knowledge

at time 0. In fact, for our model, randomized signaling

schemes are equivalent to deterministic ones. We leave a

discussion for this in Appendix A. In this paper, we consider

deterministic signaling schemes. A deterministic signaling

scheme can simplify our analysis and provide more intuition.

In particular, if each signaling scheme f ∈ F is determinis-

tic, then F can be represented as a tree. For such feedback

F , we define a feedback tree T (F) as follows.

Definition 2.2 (Feedback Tree). Let feedbackF = {ft}
∞
t=0

be a set of deterministic signaling schemes. The feedback

tree T (F) for F is a tree that is defined as follows. Each

node v ∈ T (F) contains a set of scenarios and the children

of v form a partition of the set of scenarios contained in v.

The root of T (F) contains all scenarios. For every s ∈ S , let

P (s) = (v0, v1, . . . , vn) be the longest path in T (F) such

that every node in P (s) contains s. Then the set of scenarios

contained in vi is defined by {s′ ∈ vi−1 | fi(s
′) = fi(s)}.

2.2. Problem Formulation

Although feedback is helpful for a learner to make better

decisions for stochastic optimization problems, obtaining

feedback always requires some cost. The cost can be either

time or money. Thus, it is natural for a learner to consider

how to balance the cost of asking for feedback and the

cost of solving the optimization problem. We consider

formulating this problem in an online fashion for offline

and adaptive stochastic optimization problems.

Definition 2.3 (Buying Information for Offline Stochastic

Optimization). Let (X ,S0, ℓ,D0) be an offline stochastic

optimization problem and F = {ft}
∞
t=0 be a sequence of

unknown feedback. Let C = {ct}
∞
t=0 be a sequence of cost

for receiving a signal from ft+1 ∈ F . Here, ct : R→ Z+ is

a nonnegative function that depends on the last received sig-

nal. In each time round t ≥ 0, a learner receives an offline

stochastic optimization problem (X ,St, ℓ,Dt) and a cost

ct(yt) to obtain a signal from ft+1, where yt is the signal re-

ceived from ft. Here, St = {s ∈ St−1 | yt ∈ dom(ft(s))}
and Dt = Dt−1 |ft(s)=yt

for t ≥ 1. The learner can ei-

ther stop and pay
∑t−1

j=0 cj(yj) + minA⊆X Es∼Dt
ℓ(A, s)

or enter the next time round. An offline stochas-

tic optimization with feedback (X ,S, ℓ,D,F , C) is to

decide a stopping time T adaptively to minimize

ET

(

∑T−1
j=0 cj(yj) + minA⊆X Es∼DT

ℓ(A, s)
)

.

Let I = (X ,S, ℓ,D,F , C) be an instance of offline stochas-

tic optimization with feedback, denote by cost(A, I) the

cost of the stopping time output by a learner A for the

given instance. A learner is α-competitive if for every

instance (X ,S, ℓ,D,F , C), cost(A, I) ≤ αOPT(I) =
αminA cost(A, I).

We can describe the problem in a more intuitive way in

terms of the feedback tree. Let (X ,S, ℓ,D) be a stochastic

optimization problem and T (F) be a feedback tree. Each

node v of T (F) represents a new stochastic optimization

problem (X ,Sv, ℓ,Dv), where Sv is the set of scenarios

contained in v andDv = D |s∈Sv
. Solving this optimization

problem needs a cost minA⊆X Es∼Dv
ℓ(A, s). Each node

also has a cost cv to move down for one step. The stochastic

optimization problem and the cost will be revealed to the

learner when the learner reaches v. T (F) is unknown to

the learner and a path of T (F) is selected according to D
initially. The learner will keep moving along the path by

paying the cost cv and will decide when to stop and solve the

optimization problem. The benchmark we want to compare

is a learner who knows the whole feedback tree in advance

and thus can compute the optimal stopping time.

Definition 2.4 (Buying Information for Adaptive Stochastic

Optimization). Let (X ,S, ℓ,D) be an adaptive stochastic

optimization problem. F = {ft}
∞
t=0 be a sequence of

unknown feedback. Let C = {ct}
∞
t=0 be a sequence of cost

for receiving a signal from ft+1 ∈ F . Here, ct : R → Z+

is a nonnegative function that depends on the last received

signal. Initially, a scenario s is drawn according to D. In

each time round t, a learner first adaptively receives an

arbitrary number of signals y(s) from the sequence F by

paying the corresponding cost, then selects an action at ∈ X .

Let T (s) be the number of signals received by the learner

if s is drawn. An adaptive stochastic optimization problem

with feedback is to make decisions to ask for feedback

and take actions adaptively in each time round to minimize

Es∼D

(

ℓ(A, s) +
∑T (s)−1

j=0 cj(yj(s))
)

.

Let I = (X ,S, ℓ,D,F , C) be an instance of adaptive

stochastic optimization with feedback, denote by cost(A, I)
the expected cost of the decisions made by a learner A for

the given instance. A learner is α-competitive if for ev-

ery instance (X ,S, ℓ,D,F , C), cost(A, I) ≤ αOPT(I) =
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αminA cost(A, I).

3. Buying Information for Offline Stochastic

Optimization and Super-Martingale

Stopping Problem

Let (X ,S, ℓ,D) be an offline stochastic optimization prob-

lem and f be a signaling scheme. Denote by Dy the

posterior distribution of D after receiving signal y from

f . Although it is possible that minA⊆X Es∼Dℓ(A, s) <
minA⊆X Es∼Dy

ℓ(A, s), it is always true that

Ey min
A⊆X

Es∼Dy
ℓ(A, s) ≤ min

A⊆X
Es∼Dℓ(A, s).

That is to say, feedback is always helpful in expectation.

This implies the sequence of minimum value of the stochas-

tic optimization problems is a super-martingale. Formally,

given a sequence of feedback F , denote by Di the posterior

distribution after receiving signals from f0, f1, . . . , fi. Let

random variable Xi = minA⊆X Es∼Di
ℓ(A, s). Then for

every i ≥ 0, we have E (Xi+1 | Xi) ≤ Xi. This motivates

us to formulate the problem of buying information as the

following super-martingale stopping problem. As we dis-

cuss in Appendix B, super-martingale stopping is equivalent

to buying information for stochastic optimization.

3.1. Super-Martingale Stopping Problem

Definition 3.1 (Super-Martingale Stopping Problem). Let

X0, X1, . . . , Xn be a sequence of nonnegative random

variables unknown to the learner. Assume for every i,
E(Xi+1 | Xi) ≤ Xi. The problem has n + 1 rounds. In

the ith round, given an observed realization of X0, . . . , Xi,

a learner decides either to stop and pay i+Xi or to obtain

the realization of Xi+1 and go to the next round. The goal

of the learner is to compute a decision rule to obtain a stop-

ping time i∗ only based on the observed realization of the

sequence to minimize E(i∗ +Xi∗).

For convenience, we assume X0 is a constant throughout

the paper. Suppose each random variable Xi has finite

support, then the sequence can be represented by a tree T ,

where a node v with depth i stores a realization of Xi. To

simplify the notation, we use v to denote both the node

and the value stored at the node. When we make a single

movement from node v, we will reach a child v′ of v with

probability Pr(Xi+1 = v′ | Xi = v). An optimal learner

knows tree T in advance and can decide in advance which

node to stop to optimize the expected cost. Formally, a

set of stopping nodes S is feasible for T if every path of

T with length n contains one and only one stopping node.

The cost of S is
∑

v∈S Pr(v)(depth(v) + v). We denote

by OPT(T ) the minimum cost among all feasible sets of

stopping nodes of T . An algorithm is α-competitive if for

every instance of the super-martingale stopping problem

with a representation T , the expected cost of the algorithm

ALG(T ) = E(i∗ +Xi∗) ≤ αOPT(T ).

In the ski-rental problem studied in (Karlin et al., 1994),

there is a pair of positive numbers (B, T ) such that Xi = B
if i < T and Xi = 0 if i ≥ T . This implies that ski-rental

problem is a special case of the super-martingale stopping

problem. Thus, we have the following information theoretic

lower bound for the super-martingale stopping problem.

Theorem 3.2. For every ϵ > 0, no randomized algorithm

is e
e−1 − ϵ-competitive for the super-martingale stopping

problem.

Theorem 3.3. For every ϵ > 0, no deterministic algorithm

is 2− ϵ-competitive for super-martingale stopping problem.

Recall that the key idea in the design of algorithms for ski-

rental problem is to balance the payment Xi and the index

i. However, this idea cannot be simply applied to the super-

martingale stopping problem. There are two difficulties

faced in the super-martingale stopping problem. First, since

any algorithm can only get information from one path of the

tree, it is hard to estimate the expected stopping time for the

whole tree. Second, unlike most ski-rental type problems,

the value Xi is not necessarily decreasing. It is possible

that an algorithm moves for one step but sees an Xi with a

very large value. We will show in Appendix C that some

natural algorithms that work for ski-rental problems are not

competitive for the super-martingale stopping problem. On

the other hand, in Appendix D, we establish a simple ran-

domized 2-competitive algorithm for the super-martingale

stopping problem using a completely novel idea. Although

the algorithm we present in Appendix D shows competitive

algorithms do exist for super-martingale stopping problem,

the competitive ratio doesn’t match the information theo-

retic lower bound in Theorem 3.2 and Theorem 3.3. In the

following sections, we will give a tight deterministic algo-

rithm and randomized algorithm for the super-martingale

stopping problem. Furthermore, we will also discuss the

robustness of these algorithms, when the input is not a super-

martingale.

The key idea for designing our algorithms is to maintain

the following estimator Qp(t) throughout the execution of

the algorithms. Let (X1, . . . , Xn) be an instance of super-

martingale stopping and let T be its tree representation.

Initially, a path p = (v0, v1, . . . , vn) of T will be drawn ran-

domly according to the joint distribution of (X0, . . . , Xn).
We define a function vp(t) = vi, if t ∈ [i, i + 1). Further-

more, we define Qp(t) =
∫ t

0
1

vp(t)
dt. In particular, Qp(t)

only depends on our observed realization and doesn’t de-

pend on the realization of the random variables we have not

seen. We notice that Qp(t) is strictly increasing with respect

to t and thus for every s ≥ 0, we can define its inverse func-

tion Q−1
p (s) = t, where Qp(t) = s. The power of Q is that

it can be used to upper bound and lower bound the optimal
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stopping time, which can be summarized by the following

two lemmas that we will frequently used in our proof. The

proof of Lemma 3.5 can be found in Appendix E.1 due to a

lack of space.

Lemma 3.4. Let T be a tree representation of an instance

of the super-martingale stopping problem and let p be a

path of T . Then for every s > r > 0, Q−1
p (s)−Q−1

p (r) =
∫ s

r
vp(Q

−1
p (w))dw.

Proof. The proof follows a change of variable. We write

w = Qp(t). Then we have

∫ s

r

vp(Q
−1
p (w))dw =

∫ Q−1

p (s)

Q−1

p (r)

vp(t)dQp(t)

=

∫ Q−1

p (s)

Q−1

p (r)

vp(t)

vp(t)
dt = Q−1

p (s)−Q−1
p (r).

Lemma 3.5. Let v ∈ T be a node with depth i and

let {pj}
k
j=1 be the set of paths that passes v. For ev-

ery ρ∗ ∈ [Qpj
(i), Qpj

(i + 1)] and for every ρ ≥ ρ∗,
∑k

j=1 Pr(pj)(Q
−1
pj

(ρ)−Q−1
pj

(ρ∗)) ≤ Pr(v)(ρ− ρ∗)v.

3.2. A Tight Deterministic Algorithm for Martingale

Stopping

In this section, we propose a simple deterministic 2-

competitive algorithm for the super-martingale stopping

problem. The competitive ratio is tight according to Theo-

rem 3.3. We leave the proof for Appendix E.2 due to the

space limit.

Theorem 3.6. There is a deterministic poly-time algorithm

that is 2-competitive for the super-martingale stopping prob-

lem.

Algorithm 1 DETERMINISTICSTOPPING (2-competitive

deterministic algorithm for super-martingale stopping)

for i=0,1,2,. . . do

Observe Xi = vi and compute Qp(t) for t ∈ [i, i+ 1]
based on the realization of X0, . . . , Xi.

if ∃t ∈ (i, i+ 1] such that Qp(t) = 1 then

Stop at time i and pay i+ vi.
end if

end for

In particular, if the sequence of random variables is mono-

tone decreasing, then our algorithm can even compete

against a prophet who knows the realization of the sequence

in advance.

Corollary 3.7. Let I be an instance of the super-martingale

stopping problem and (X0, X1, . . . ) be the input sequence.

Denote by ALG(I) the cost of Algorithm 1 over instance I .

If (X0, X1, . . . ) is monotone decreasing, then ALG(I) ≤
2Emini (i+Xi).

Proof. Let x = (x0, x1, . . . ) be a realization of

(X0, X1, . . . ) and denote by ALG(x) the cost of Algo-

rithm 1 if the realization is x. Since x is monotone de-

creasing, we have ALG(x) ≤ 2mini (i+ xi). Thus,

ALG(I) ≤ Ex2min
i

(i+ xi) = 2Emin
i

(i+Xi) .

3.3. A Tight Randomized Algorithm for Martingale

Stopping

In this section, we extend the idea of Theorem 3.6 to ob-

tain a e
e−1 -competitive randomized algorithm for the super-

martingale stopping problem. Notice that according to The-

orem 3.2, the competitive ratio is tight. Recall that in the

Algorithm 1, we maintain an estimator QP (t) throughout

the execution of the algorithm and stop when QP (t) = 1.

To obtain a better randomized algorithm, we select a ran-

dom threshold ρ initially, and stop when QP (t) exceeds

this threshold. The proof of Theorem 3.8 can be found in

Appendix E.3.

Theorem 3.8. There is a randomized poly-time algorithm

for the super-martingale stopping problem that is e
e−1 -

competitive.

Algorithm 2 RANDOMIZEDSTOPPING ( e
e−1 -competitive

algorithm for super-martingale stopping)

Randomly draw a threshold ρ ∈ [0, 1] with a probability

density function p(ρ) = eρ

e−1 .

for i=0,1,2,. . . do

Observe Xi = vi and compute Qp(t) for t ∈ [i, i+ 1]
based on the realization of X0, . . . , Xi.

if ∃t ∈ [i, i+ 1] such that Qp(t) = ρ then

Stop at time t and pay i+ vi. {Every time we stop,

i ≤ t.}
end if

end for

Similarly, we have the following corollary, when the input

sequence is monotone decreasing.

Corollary 3.9. Let I be an instance of the super-martingale

stopping problem and (X0, X1, . . . ) be the input sequence.

Denote by ALG(I) the cost of Algorithm 2 over instance I .

If (X0, X1, . . . ) is monotone decreasing, then ALG(I) ≤
e

e−1Emini (i+Xi).

Proof. Let x = (x0, x1, . . . ) be a realization of

(X0, X1, . . . ) and denote by ALG(x) the cost of Algo-
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rithm 2 if the realization is x. Since x is monotone de-

creasing, we have ALG(x) ≤ e
e−1 mini (i+ xi). Thus,

ALG(I) ≤ Ex

e

e− 1
min
i

(i+ xi) =
e

e− 1
Emin

i
(i+Xi) .

3.4. A Discussion on Benchmark

In this section, we discuss the benchmark of the super-

martingale stopping problem. According to Corollary 3.7

and Corollary 3.9, if the input sequence is monotone de-

creasing, then our algorithms can compete with a prophet

who knows the realization of the sequence in advance. How-

ever, in general, it is not possible to compete against such

a strong benchmark, since the gap between the two bench-

marks can be arbitrarily large. Thus, it is only reasonable

to compete with an algorithm that knows the structure of

the feedback in advance. We formalize the discussion as the

following theorem, whose proof is in Appendix E.4.

Theorem 3.10. No algorithm is competitive against

Emini (i+Xi) for the super-martingale stopping prob-

lem.

3.5. On the Robustness of Algorithm 1 and Algorithm 2

In this part, we consider the robustness of Algorithm 1 and

Algorithm 2. Back to our motivation, buying information

for offline stochastic optimization. In the model of buying

information for offline stochastic optimization, we assume

that given a stochastic optimization problem, the learner can

solve the problem exactly. However, since most stochastic

optimization problems are NP-hard, usually, the learner

might only have an α-approximate algorithm to solve it.

If Xi is the optimal value of the stochastic optimization

problem after receiving the ith feedback, then the cost to

solve the problem for the learner is instead X̃i, where X̃i ∈
[Xi, αXi]. That is to say, if the learner stops at Xi, he will

pay i+ X̃i. We remark that in this case, X̃0, . . . , X̃n may

not satisfies the super-martingale property anymore, thus we

cannot apply the analysis of Algorithm 1 and Algorithm 2

directly. However, we will show that the two algorithms are

robust under such perturbation. In other words, Algorithm 1

is 2α-competitive and Algorithm 2 is e
e−1α-competitive.

Formally, we have the following theorem, whose proof is

deferred to Appendix E.5.

Theorem 3.11. Let T be a tree representation of an instance

of the super-martingale stopping problem. Let T̃ be any tree

constructed by changing the value of every leaf v ∈ T by

some value ṽ ∈ [v, αv]. If we run Algorithm 1 over T̃ , then

ALG(T̃ ) ≤ 2αOPT(T ) and if we run Algorithm 2 over T̃ ,

then ALG(T̃ ) ≤ e
e−1αOPT(T ).

4. Buying Information for Adaptive Stochastic

Optimization and Prophet Inequality

Unlike offline stochastic optimization with feedback, buying

information for adaptive stochastic optimization is much

more problem-dependent. For this reason, we consider de-

signing competitive learners to buy information for specific

problems. We choose Min Sum Set Cover, an extreme case

of the adaptive stochastic optimization problem as the first

problem studied under the feedback setting.

Definition 4.1 (Min Sum Set Cover). Let B = [n] be a set of

boxes, each box i contains an unknown number bi ∈ {0, 1}.
A learner can know bi by querying box i, i.e. the action

space X = B. A scenario s ∈ {0, 1}n is a binary vector that

represents the number contained in each box. If scenario s is

realized, then for every box i ∈ B, si = bi. A scenario s is

covered if a box i such that si = 1 is queried. Let S be a set

of scenarios and D be a probability distribution over S . Let

f be a sequence of feedback. A scenario s∗ is drawn fromD
initially. In each round t, a learner takes an action at ∈ X to

query the box at and observes the number contained in that

box. Given an instance (B,S,D) of Min Sum Set Cover,

the goal of a learner is to construct the sequence of boxes

A to query to minimize Es∼Dℓ(A, s), where ℓ(A, s) is the

number of boxes in A to query until the drawn scenario s is

covered.

The main contribution of this section can be broken down

into two parts. In the first part, we give a general strategy

to shrink the action space of buying information for a broad

class of stochastic optimization problems. For such a class

of problems, we show that if an α-prophet inequality ex-

ists for an adaptive stochastic optimization problem with

time dependent feedback, which we will define later, then

there is a 2α-competitive learner for buying information for

adaptive stochastic optimization. In the second part, using

such an idea, we construct an 8-competitive learner to buy

information for Min Sum Set Cover(MSSC) by showing a

4-prophet inequality for MSSC with time dependent feed-

back. Furthermore, we will establish information theoretic

lower bounds for MSSC under both settings.

4.1. Time Dependent Feedback and Prophet Inequality

A prophet inequality for an adaptive stochastic optimization

is established when a signal arrives from ft for free in each

round. Formally, we have the following model.

Definition 4.2 (Adaptive Stochastic Optimization with Time

Dependent Feedback). Let (X ,S, ℓ,D) be an adaptive

stochastic optimization problem. F = {ft}
∞
t=0 be a se-

quence of feedback. Initially, a scenario s is drawn accord-

ing to D. In each time round t, a learner receives a signal

yt(s) from ft(s), then takes an action at ∈ X . An adap-

tive stochastic optimization problem with time dependent

7
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feedback (X ,S, ℓ,D,F) is to make decisions to construct a

sequence of actions A adaptively to minimize Es∼Dℓ(A, s).

If we denote by cost(A, I) be the expected cost of a learner

A at a given instance I , then a learner is α-competitive if

for every instance I , cost(A, I) ≤ minA cost(A, I). In par-

ticular, here we are competing with a learner who knows F
in advance. We say a stochastic optimization (X ,S, ℓ,D)
satisfies an α-prophet inequality if there is an α-competitive

learner for the corresponding stochastic optimization prob-

lem with time dependent feedback. We have the following

theorem to establish the relation between the two problems.

Theorem 4.3. If there is an α-competitive learner for Min

Sum Set Cover with Time Dependent Feedback, then there

is a 2α-competitive learner for Buying Information for Min

Sum Set Cover.

Although the statement of Theorem 4.3 is on MSSC here,

the same results actually hold for a broader class of prob-

lems, where the loss function can be written as a covering

function. Due to space limitations, we leave the general

statement and the proof of Theorem 4.3 for Appendix F.1.

4.2. Min Sum Set Cover with Time Dependent Feedback

In this part, we establish a 4-prophet inequality for MSSC

with time dependent feedback via the following theorem.

Theorem 4.4. Algorithm 3, a simple greedy learner is 4-

competitive for Min Sum Set Cover with Time Dependent

Feedback.

Algorithm 3 GREEDY (4-competitive Learner for MSSC

with Time Dependent Feedback)

for t=0,1,2,. . . do

Receive scenario set St that are consistent with the

feedback and outcomes received so far.

Compute Pr(i) :=
∑

s∈St:si=1 Pr(s | St)
Query any box i∗ ∈ argmax{Pr(i) | i ∈ B}.
if s∗i∗ = 1 then

return

end if

end for

Here we give an overview of our proof, the whole proof is

deferred to Appendix F.2. Our proof is based on a linear

programming approach. Assume the feedback is known in

advance, then the problem becomes to assign a box for each

node of the feedback tree T (F) to minimize the average

number of boxes used to cover the drawn scenario. This

problem can be naturally lower bounded by a linear program,

and thus every feasible solution to the dual of the linear

program gives a lower bound for OPT. We will show that a

simple greedy algorithm with no knowledge of T (F) can

be used to construct a feasible solution to the dual program

such that the cost of the greedy algorithm is at most a quarter

times the dual objective of the solution it constructs.

By Theorem 13 in (Feige et al., 2004), we know that for

every ϵ > 0, it is NP-hard to approximate MSSC within

a ratio of 4 − ϵ. MSSC is a very special case of MSSC

with Time Dependent Feedback, thus the result given by

Theorem 4.4 is tight if we only consider learners that can be

implemented in poly-time. However, in the classic MSSC,

if we allow a learner to be implemented in super-polynomial

time, then we can simply compute the optimal order of box

to query using a brute force method. This gives a natural

question. Is the knowledge of F useful? We show that

such knowledge is indeed useful by giving the following

information theoretical lower bound for MSSC with Time

Dependent Feedback. That is to say, we consider all learners

regardless of their running time. We establish the following

information theoretic lower bound for MSSC with time

dependent feedback. The proof is deferred to Appendix F.3.

Theorem 4.5. For every ϵ > 0, there is no deterministic

learner that is 2−ϵ-competitive for Min Sum Set Cover with

Time Dependent Feedback.

4.3. Buying Information for Min Sum Set Cover

In the last section, we establish a prophet inequality for

MSSC. In this section, we go back to the original motivation

of buying feedback for adaptive stochastic optimization to

discuss the upper bound and information theoretic lower

bound for MSSC when asking for feedback requires some

cost. The model of the problem is given as follows.

According to Theorem 4.4 and Theorem 4.3, we can immedi-

ately obtain an efficient competitive learner to buy feedback

for Min Sum Set Cover, which is described in Algorithm 4.

Theorem 4.6. There is a poly-time learner that is 8-

competitive for buying information for Min Sum Set Cover.

The main goal of this section is to obtain an information

theoretical lower bound for buying information for MSSC.

We establish the information theoretic lower bound via the

following theorem, whose proof is in Appendix F.4.

Theorem 4.7. For every ϵ > 0, there is no deterministic

algorithm that is 2− ϵ-competitive for buying information

for Min Sum Set Cover.
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Algorithm 4 GREEDYBUYING (8-competitive learner for

MSSC with Feedback)

for t = 0, 1, 2, . . . do

Receive scenario set St that are consistent with the

feedback and outcomes received so far.

Receive the cost ct to receive a signal yt+1 from ft+1

for j = 1 . . . , ct do

Compute Pr(i) :=
∑

s∈St:si=1 Pr(s | St).
Query any box i∗ ∈ argmax{Pr(i)min i ∈ B}.
if s∗i∗ = 1 then

return

else

Update St ← St ∩ {s ∈ S | si∗ = 0}.
end if

end for

Pay ct to obtain signal yt+1 from ft+1.

end for
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A. Equivalence of Randomized and Deterministic Signaling Schemes

In our model, it is sufficient to study the case when each signaling scheme is deterministic. In this part, we give a brief

discussion on the equivalence of randomized and deterministic signaling schemes.

Given a set of scenarios S, a distribution D over S, and a randomized signaling scheme f . We show we can construct a

modified triple (S ′,D′, f ′) such that f ′ is a deterministic signaling scheme and (S ′,D′, f ′) is equivalent to (S,D, f). The

triple is constructed in the following way. S ′ contains multiple copies for each s ∈ S . D′ is a uniform distribution over S ′.
For every s ∈ S, assume the range of f(s) is {y1(s), . . . , yk(s)} and the set of copies is {Y1(s), . . . , Yk(s)} accordingly.

The sizes of the copies are made such that if we draw a scenario according to D′, the probability that it is a copy of s is

equal to the probability of obtaining s from D. Furthermore, if we uniformly draw a copy from {Y1(s), . . . , Yk(s)} the

probability that we obtain a copy from Yi(s) is equal to the probability that we receive yi(s) from f(s). In this way, we

define f ′(s′) = yi(s) if s′ ∈ Yi(s). Thus, we obtain an equivalent triple (S ′,D′, f ′) with a deterministic signaling scheme.

B. Equivalence of Super-Martingale Stopping and Buying Information for Offline Stochastic

Optimization

In this part, we give a brief discussion on the equivalence of the super-martingale stopping problem and buying information

for offline stochastic optimization problems.

We have seen that the super-martingale stopping problem is a special case of buying information for offline stochastic

optimization. To see the other direction, it remains to see that given an instance I = (X ,S, ℓ,D,F , C) of buying information

for offline stochastic optimization, we can assume each ct = 1 ∈ C. We give the intuition here via the definition of feedback

tree. Let T (F) be a feedback tree. Assume a learner arrives at a node v of T (F), the posterior distribution of the stochastic

optimization problem at v is Dv and the cost to move to the next node v′ is cv. Then we can add cv − 1 virtual nodes

between v and v′ such that the posterior distribution at each node is Dv and the cost to move to the next node is 1. After

the modification, we can run any algorithm for the super-martingale stopping problem over the modified instance. We

pay cv to move to v′ if and only if we reach v′ in the modified instance. In this way, any α-competitive algorithm for

the super-martingale stopping problem can be used to construct an α-competitive learner to buy information for offline

stochastic optimization problems.

C. Natural Algorithms Fail for Martingale Stopping Problem

In this section, we show some natural algorithms that work for ski-rental problems but fail for the super-martingale stopping

problem. According to (Karlin et al., 1994), it is well-known that the following algorithm is 2-competitive for the ski-rental

problem.

Algorithm 5 CLASSICSKIRENTAL (2-competitive deterministic algorithm for ski-rental)

for i = 0, 1, 2, . . . do

Observe Xi = vi
if vi ≤ i then

Stop and pay i+ vi.
end if

end for

Theorem C.1. Algorithm 5 is not competitive for the super-martingale stopping problem.

Proof. We construct a sequence of instance In of the super-martingale stopping problem. Denote by ALG(In) the cost of

Algorithm 5 over instance In and denote by OPT(In) the optimal cost of In. We will show that ALG(In) ≥ HnOPT(In),
where Hn is the nth harmonic number.

Let (X0, . . . , Xn) be the sequence of random variables for instance In. Define X0 = 1 to be a constant. For every i ≥ 1,

Xi can take two possible values. Given Xi−1, Xi = 0 with probability 1
i+1 and with probability i

i+1 , Xi =
i+1
i
Xi−1. That

is to say, Xi is either 0 or i+ 1 and EXi = 1.

Assume we run Algorithm 5 over instance In. Suppose we just observe Xi. If Xi = 0, then we stop and pay i right away.
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If Xi = i + 1, then Algorithm 5 will keep querying Xi+1. Denote by i∗ the random variable of the stopping time of

Algorithm 5. Then, we have

Ei∗ =

n
∑

i=1

i

i+ 1

i−1
∏

j=1

j

j + 1
=

n
∑

i=1

1

i+ 1
= Hn − 1.

On the other hand, we know from the construction of the instance that EXi∗ = 1, since EXi = 1 for every i. Thus the total

cost of the algorithm is ALG(In) = Ei∗ +Xi∗ = Hn. On the other hand, we have OPT(In) ≤ 1, since it can simply stop

at the beginning. This gives ALG(In) ≥ HnOPT(In), which implies that Algorithm 5 is not competitive.

The reason why Algorithm 5 fails is that (X1, . . . , Xn) might be an increasing sequence, which forces the algorithm to keep

querying the next box forever. To avoid keeping querying boxes forever, a natural idea is to change the stopping rule by

looking at the smallest value we have seen so far. However, it turns out that such a stopping rule still fails. We consider the

following algorithm.

Algorithm 6 REVISEDSKIRENTAL (2-competitive deterministic algorithm for ski-rental)

for i = 0, 1, 2, . . . do

Observe Xi = vi and set v∗ = min{v0, . . . , vi}.
if v∗ ≤ i then

Stop and pay i+ vi.
end if

end for

Theorem C.2. Algorithm 6 is not competitive for the super-martingale stopping problem.

Proof. We construct a sequence of instance In of the super-martingale stopping problem. Denote by ALG(In) the cost of

Algorithm 6 over instance In and denote by OPT(In) the optimal cost of In. We will show that ALG(In) ≥ Ω(n)OPT(In).

Let (X0, . . . , Xn, Xn+1) be the sequence of random variables of instance In of the super-martingale stopping problem.

Define X0 = n and Xn+1 = 0. For i ∈ [n], Xi can take two possible values. Given Xi−1, Xi = enXi−1 with probability

e−n and Xi = 0 with probability 1− e−n. That is to say for i ∈ [n], EXn = n. Notice that according to the stopping rule

of Algorithm 6, Xn+1 will never be queried by the algorithm. Thus, we have ALG(In) ≥ EXi = n.

On the other hand, we consider an algorithm that keeps querying Xi+1 if Xi ̸= 0. Denote by i∗ the stopping time of this

algorithm. We know that EXi∗ = 0. Furthermore, we have

Ei∗ =

n+1
∑

i=1

i(1− e−n)

i−1
∏

j=1

e−n ≤ e−n

n+1
∑

i=1

i ∈ O(1).

This implies that OPT(In) ≤ Ei∗ +Xi∗ ∈ O(1), while ALG(In) ∈ Ω(n). Thus, Algorithm 6 is not competitive.

D. A Simple Randomized Algorithm for Martingale Stopping Problem

In this section, we give a simple randomized 2-competitive algorithm for the super-martingale stopping problem.

Algorithm 7 THROWCOIN (Simple 2-competitive randomized algorithm for super-martingale stopping)

for i = 0, 1, 2, . . . do

Observe Xi = vi.
Stop and pay i+ vi with probability min{1, 1/vi}.

end for
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Theorem D.1. Algorithm 7 is 2-competitive for the super-martingale stopping problem.

Proof. Let (X0, . . . , Xn) be a sequence of random variables, and let T be the tree representation of the sequence. Denote

by OPT(T ) the optimal cost of the instance and denote by ALG(T ) the cost of Algorithm 7 over the instance. We prove the

theorem using inductions on the number of random variables, which is also the depth of T .

If depth(T ) = 0, which means there is only one random variable X0 in the sequence, the cost of any algorithm is X0 and the

theorem holds trivially. Assuming the theorem holds for any tree with depth n− k, we show the theorem holds for any tree

with depth n− k − 1. Let T be a tree of an instance of super-martingale stopping problem such that depth(T ) = n− k − 1.

Let v be the root of T and let v1, . . . , vk be the children of v. Denote by T i the subtree rooted at vi. By a dynamic

programming approach, we know that

OPT(T ) = min{v, 1 +
k
∑

i=1

Pr(vi)OPT(T i)}.

We consider two cases. In the first case, OPT(T ) = v. Without loss of generality, we assume v > 1, otherwise, the algorithm

will simply stop at v. The cost of Algorithm 7 is

ALG(T ) =
1

v
v + (1−

1

v
)(1 +

k
∑

i=1

Pr(vi)ALG(T i))

≤
1

v
v + (1−

1

v
)(1 + 2

k
∑

i=1

Pr(vi)OPT(T i))

≤
1

v
v + (1−

1

v
)(1 + 2

k
∑

i=1

Pr(vi)vi)

≤ 1 + 1−
1

v
+ 2v − 2 ≤ 2v.

Here, in the first inequality, we use the induction hypothesis, in the third inequality, we use the super-martingale property.

In the second case, OPT(T ) = 1 +
∑k

i=1 Pr(v
i)OPT(T i). Similarly, we have

ALG(T ) =
1

v
v + (1−

1

v
)(1 +

k
∑

i=1

Pr(vi)ALG(T i))

≤
1

v
v + (1−

1

v
)(1 + 2

k
∑

i=1

Pr(vi)OPT(T i))

≤ 2

(

1 +

k
∑

i=1

Pr(vi)OPT(T i)

)

.

This shows that for every instance with a tree representation T , ALG(T ) ≤ 2OPT(T ). This implies Algorithm 7 is

2-competitive.

E. Miss Proof in Section 3

E.1. Proof of Lemma 3.5

Proof. We prove this lemma using induction on the depth of v. If v has a depth of n (v is a leaf), then Lemma 3.5 follows

directly by Lemma 3.4, since Q−1
pj

(ρ)−Q−1
pj

(ρ∗) =
∫ ρ

ρ∗
vdw = (ρ− ρ∗)v. Assume Lemma 3.5 holds for every node v′

with depth n− k, we show this for a node v with depth n− k − 1. We notice that if ρ ≤ Qpj
(n− k), then this is correct

by Lemma 3.4. So in the rest of the proof, we assume ρ > Qpj
(n − k). Let {uj}

ℓ
j=1 be the set of children of v and let

12
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D(uj) ⊆ {pj}
k
j=1 be the set of paths that passes uj . then we have

k
∑

j=1

Pr(pj)(Q
−1
pj

(ρ)−Q−1
pj

(ρ∗)) =
k
∑

j=1

Pr(pj)(n− k −Q−1
pj

(ρ∗)) +
ℓ
∑

j=1

∑

p∈D(uj)

Pr(p)(Q−1
pj

(ρ)− (n− k))

≤
k
∑

j=1

Pr(pj)(Qpj
(n− k)− ρ∗)v +

ℓ
∑

j=1

Pr(uj)(ρ− (Qp(n− k)))uj

= Pr(v)(Qp(n− k)− ρ∗)v +

ℓ
∑

j=1

Pr(uj)(ρ− (Qp(n− k)))uj

≤ Pr(v)(Qp(n− k)− ρ∗)v + Pr(v)(ρ− (Qp(n− k)))v

= Pr(v)(ρ− ρ∗)v.

Here, in the first inequality, we use the assumption of induction and in the second inequality, we use the fact that
∑ℓ

j=1 Pr(uj | v)uj ≤ uj .

E.2. Proof of Theorem 3.6

Proof. We show Algorithm 1 is 2-competitive. Let T be a tree representation of an instance of the super-martingale stopping

problem. We maintain two sets of nodes Õ and Ã in the following way. For each path p ⊆ T . We travel down p from the

root of T and stop traveling at a node v of p if either v is a stopping node of OPT(T ) or it is a stopping node of Algorithm 1.

In the first case, we add v to Õ, otherwise, we add it to Ã. We denote by T̃ the subtree of T with the set of leaves Ã ∪ Õ.

Furthermore, let P (v) be the path of T̃ that ends at v ∈ Õ ∪ Ã. Then we have the following lower bound for OPT(T ).

OPT(T ) ≥
∑

v∈Õ

Pr(v) (v + depth(v)) +
∑

v∈Ã

Pr(v)depth(v)

To upper bound ALG(T ), we will need to establish the following inequality and claim. Let P be a path such that there is

some v ∈ P ∩ Õ, then there must be some stopping node fP (v) ∈ P of ALG(T ) that has v as its ancestor. Let D(v) be the

set of paths that passes v. We know from the stopping rule of Algorithm 1 that for every P ∈ D(v), QP (depth(fP (v))) ≤ 1.

By Lemma 3.5, we have

∑

P∈D(v)

Pr(P )(depth(fP (v))− depth(v)) ≤
∑

P∈D(v)

Pr(P )(Q−1
P (1)− depth(v)) ≤ Pr(v) (1−QP (v)) v ≤ Pr(v)v. (1)

Furthermore, we next prove the following claim.

Claim 1. Let T ′ be a subtree of T with the same root of T . Let S be the set of leaves of T ′. For each v ∈ S, denote by P (v)
the path from the root to v. If every path of T has a node in S, then

∑

v∈S Pr(v)vQP (v)(depth(v)) ≤
∑

v∈S Pr(v)depth(v).

Proof of Claim. Let v ∈ S be a leave of T ′. Assume that depth(v) = i and P (v) = (v0, . . . , vi). Then

vQP (v)(i) = vi

i−1
∑

j=0

1

vj
. (2)

Now we prove this claim by induction on the depth of T ′. If T ′ has a depth of 0, then the claim holds trivially. Now we

assume the claim for any tree with depth k, we show this holds for a tree T ′ with depth k + 1. We remove the nodes with

depth k + 1 in T ′ and denote by the remaining tree T̄ . Denote by S̄ the leaves of T̄ and denote by K the set of leaves of T̄

13
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with depth k. For every node v, let N(v) be the set of children of v. Then we have

∑

v∈S

p(v)vQP (v)(depth(v)) =
∑

v∈S̄

Pr(v)vQP (v)(depth(v))

+
∑

v∈K

Pr(v)
∑

u∈N(v)

(

Pr(u | v)(uQP (u)(k + 1)− vQP (v)(k))
)

≤
∑

v∈S̄

Pr(v)depth(v) +
∑

v∈K

Pr(v)
∑

u∈N(v)

(

Pr(u | v)(uQP (u)(k + 1)− vQP (v)(k))
)

≤
∑

v∈S̄

Pr(v)depth(v) +
∑

v∈K

Pr(v)
∑

u∈N(v)

(

Pr(u | v)u(QP (u)(k + 1)−QP (v)(k))
)

=
∑

v∈S̄

Pr(v)depth(v) +
∑

v∈K

Pr(v) =
∑

v∈S

Pr(v)depth(v).

Here, the first inequality follows by our induction, the second inequality follows by the super-martingale property and the

second equality follows by (2).

⋄

This gives the following upper bound for ALG(T ).

ALG(T ) ≤
∑

v∈Õ



Pr(v) (v + depth(v)) +
∑

P∈D(v)

Pr(P )(depth(fP (v))− depth(v))



+
∑

v∈Ã

Pr(v) (v + depth(v))

≤
∑

v∈Õ

Pr(v) (depth(v) + 2v) +
∑

v∈Ã

Pr(v) (v + depth(v))

≤
∑

v∈Õ

Pr(v) (depth(v) + 2v) +
∑

v∈Ã

Pr(v)
(

v(QP (v)(depth(v)) + 1) + depth(v)
)

≤
∑

v∈Õ

Pr(v) (depth(v) + 2v) +
∑

v∈Ã

Pr(v)
(

v(QP (v)(depth(v)) + 1) + depth(v)
)

+
∑

v∈Õ

Pr(v)
(

vQP (v)(depth(v))
)

≤ 2
∑

v∈Õ

Pr(v)v + 2
∑

v∈Ã

Pr(v)v + 2
∑

v∈Ã

Pr(v)depth(v) + 2
∑

v∈Ã

Pr(v)depth(v)

≤ 2OPT(T ).

Here, in the first inequality, we used the super-martingale property of T . In the second inequality, we use (1). In the third

inequality, we use the stopping rule of Algorithm 1. The second last inequality follows by Claim 1.

E.3. Proof of Theorem 3.8

Proof. We show Algorithm 2 is e/(e− 1)-competitive. Let T be a representation of an instance of the super-martingale

stopping problem. Let S = {v∗j }
k
j=1 be the set of stopping nodes of OPT(T ). Let u ∈ S and let P (u) ⊆ T be the path

from the root to u. We notice that we can assume the depth of u is at most Q−1
P (u)(1). Since the cost of Algorithm 2 only

depends on the value of nodes with depth strictly less than Q−1
P (u)(1), we can assume every node with a depth larger than

Q−1
P (u)(1) has a value of 0. This assumption doesn’t affect the cost of Algorithm 2 but will force every u ∈ S has depth

at most ⌈Q−1
P (u)(1)⌉. Under this assumption, if a node u has depth exactly ⌈Q−1

P (u)(1)⌉, we can furthermore assume the

contribution of u to the cost of OPT(T ) is Q−1
P (u)(1). This will only decrease the cost of OPT(T ). So in the rest of the proof,

every u in S has a depth at most Q−1
P (u)(1). In particular, this implies for every u ∈ S, there exists some ρu ∈ [0, 1] such

14
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that QP (u)(depth(u)) = ρu. Thus, we can write

OPT(T ) =
∑

u∈S

Pr(u)
(

u+Q−1
P (u)(ρu)

)

.

On the other hand, we can decompose the cost of the algorithm according to S. For every u ∈ S, we define D(u) to be the

set of paths in T from the root to a leaf that passes u. Then we can write the cost of the algorithm

ALG(T ) ≤
∑

u∈S

Pr(u)
∑

p′∈D(u)

Pr(p′ | u)

∫ 1

0

(

vp′(Q−1
p′ (ρ)) +Q−1

p′ (ρ)
)

p(ρ)dρ,

where we use the fact that when the algorithm stops at time t, the depth of the stopping node is at most t. This implies

ALG(T )− OPT(T ) ≤
∑

u∈S

Pr(u)

∫ 1

0

∑

p′∈D(u)

Pr(p′ | u)
[(

vp′(Q−1
p′ (ρ)) +Q−1

p′ (ρ)
)

−
(

u+Q−1
P (u)(ρu)

)]

p(ρ)dρ

=
∑

u∈S

Pr(u)

∫ ρu

0

∑

p′∈D(u)

Pr(p′ | u)
[(

vp′(Q−1
p′ (ρ)) +Q−1

p′ (ρ)
)

−
(

u+Q−1
P (u)(ρu)

)]

p(ρ)dρ

−
∑

u∈S

Pr(u)

∫ 1

ρu

∑

p′∈D(u)

Pr(p′ | u)
[(

u+Q−1
P (u)(ρu)

)

−
(

vp′(Q−1
p′ (ρ)) +Q−1

p′ (ρ)
)]

p(ρ)dρ

≤
∑

u∈S

Pr(u)

∫ ρu

0

∑

p′∈D(u)

Pr(p′ | u)
[(

vp′(Q−1
p′ (ρ)) +Q−1

p′ (ρ)
)

−
(

u+Q−1
P (u)(ρu)

)]

p(ρ)dρ

+
∑

u∈S

Pr(u)

∫ 1

ρu

∑

p′∈D(u)

Pr(p′ | u)
(

Q−1
p′ (ρ)−Q−1

P (u)(ρu)
)

p(ρ)dρ

≤
∑

u∈S

Pr(u)

∫ ρu

0

∑

p′∈D(u)

Pr(p′ | u)
[(

vp′(Q−1
p′ (ρ)) +Q−1

p′ (ρ)
)

−
(

u+Q−1
P (u)(ρu)

)]

p(ρ)dρ

+
∑

u∈S

Pr(u)

∫ 1

ρu

(ρ− ρu)up(ρ)dρ

=
∑

u∈S

Pr(u)

∫ ρu

0

(

vP (u)(Q
−1
P (u)(ρ)) +Q−1

P (u)(ρ)−Q−1
P (u)(ρu)

)

p(ρ)dρ

+
∑

u∈S

Pr(u)

(∫ 1

ρu

(ρ− ρu)up(ρ)dρ−

∫ ρu

0

up(ρ)dρ

)

.

Here, the second inequality follows the super-martingale property of the sequence of random variables starting from node u.

The second inequality follows by Lemma 3.5.

Recall our goal is to show that ALG(T )− e
e−1OPT(T ) = ALG(T )− OPT(T )− 1

e−1OPT(T ) ≤ 0. For every u ∈ S, we

define two functions Fu(s) and Gu(τ) as follows. Let

Fu(s) :=

∫ s

0

(

vP (u)(Q
−1
P (u)(ρ)) +Q−1

P (u)(ρ)−Q−1
P (u)(s)

)

p(ρ)dρ−
1

e− 1
Q−1

P (u)(s)

and

Gu(τ) :=

∫ 1

ρu

(ρ− ρu)τp(ρ)dρ−

∫ ρu

0

τp(ρ)dρ−
1

e− 1
τ.

From our above discussion, we know that

ALG(T )−
e

e− 1
OPT(T ) = ALG(T )− OPT(T )−

1

e− 1
OPT(T ) ≤

∑

u∈S

Pr(u) (Fu(ρu) +Gu(u)) .
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It is sufficient to show for every u, Fu(s) ≤ 0, ∀s ∈ [0, ρu] and Gu(τ) ≤ 0, ∀τ ≥ 0. We first look at Fu(s). Recall the

definition of the density function is p(ρ) = eρ

e−1 . We know from Lemma 3.4 that

Fu(s) =

∫ s

0

(

vP (u)(Q
−1
P (u)(ρ))−

∫ s

ρ

vP (u)(Q
−1
P (u)(w)dw

)

p(ρ)dρ−
1

e− 1

∫ s

0

vP (u)(Q
−1
P (u)(w)dw

=

∫ r

0

vP (u)(Q
−1
P (u)(w)dw

er

e− 1

∣

∣

∣

∣

r=s

r=0

−

∫ s

0

∫ ρ

0

vP (u)(Q
−1
P (u)(w)dwp(ρ)dρ

−

∫ s

0

∫ s

ρ

vP (u)(Q
−1
P (u)(w)dwp(ρ)dρ−

1

e− 1

∫ s

0

vP (u)(Q
−1
P (u)(w)dw

=
es

e− 1

∫ s

0

vP (u)(Q
−1
P (u)(w)dw −

∫ s

0

∫ s

0

vP (u)(Q
−1
P (u)(w)dwp(ρ)dρ−

1

e− 1

∫ s

0

vP (u)(Q
−1
P (u)(w)dw

=

(

es

e− 1
−

es − 1

e− 1
−

1

e− 1

)∫ s

0

vP (u)(Q
−1
P (u)(w)dw = 0.

Then we look at Gu(τ). We have

dGu(τ)

dτ
=

∫ 1

ρu

(ρ− ρu)p(ρ)dρ−

∫ ρu

0

p(ρ)dρ−
1

e− 1

=
ρeρ

e− 1

∣

∣

∣

∣

ρ=1

ρ=ρu

−

∫ 1

ρu

p(ρ)dρ−
ρu(e− eρu)

e− 1
−

∫ ρu

0

p(ρ)dρ−
1

e− 1

= −
ρue

e− 1
≤ 0.

This implies that Gu(τ) ≤ Gu(0) = 0. Put the above arguments together, we obtain ALG(T ) ≤ e
e−1OPT(T ).

E.4. Proof of Theorem 3.10

Proof. Let I be an instance of super-martingale stopping problem. Let OPT(I) = minE (i∗ +Xi∗) and OPT′ =
Emini (i+Xi). We will construct a sequence of instance IN such that OPT(IN ) ≥ Ω(N)OPT′(IN ), showing that

the gap between the two benchmarks can be arbitrarily large.

Let (X0, X1, . . . ) be the sequence of random variables of instance IN . Define X0 = N . For every i ≥ 1, Xi can take two

possible values. Given Xi, Xi+1 = eNXi with probability e−N and Xi+1 = 0 with probability 1− e−N . That is to say,

the sequence of random variables is a super-martingale with a mean equal to N . Thus, the optimal stopping rule is to simply

stop at X0 and OPT(IN ) = N . On the other hand, consider any realization (x0, x1, . . . ) of the sequence. We notice from

the construction that if xi = 0 then for every j > i, xj = 0. Denote by i′ the smallest index such that xi′ = 0. Then we

have min i+ xi = i′ if i′ ≤ N and min i+ xi = N if i′ > N . Since Pr(i′ = i) = (1− e−N )e−(i−1)N , we have

OPT′(IN ) =

N
∑

i=1

i(1− e−N )e−(i−1)N +

∞
∑

i=N+1

N(1− e−N )e−(i−1)N ∈ O(1).

This implies OPT(IN ) ≥ Ω(N)OPT′(IN ).

E.5. Proof of Theorem 3.11

Proof. It is sufficient to show that if we run Algorithm 1 or Algorithm 2 then ALG(T̃ ) ≤ αALG(T ). Recall that the

only difference between Algorithm 1 and Algorithm 2 is that they use different threshold ρ. Algorithm 1 uses ρ = 1 and

Algorithm 2 uses a random threshold. Let ρ ∈ [0, 1] be a realization of the random threshold used in Algorithm 1 and

Algorithm 2. We denote by ALGρ(T̃ ) and ALGρ(T ) the cost of the Algorithm on the corresponding instances with a

threshold ρ. In the rest of the proof, we will show ALGρ(T̃ ) ≤ αALGρ(T ) for every ρ ∈ [0, 1]. This will directly imply

that ALG(T̃ ) ≤ αALG(T ).
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Since the only difference between T and T̃ is the value of each node, let p = (v0, v1, . . . , vn) be a path in T , we define

ṽp(t) = ṽi if t ∈ [i, i+ 1). We can also define Q̃p(t) and Q̃−1
p (t) in the similar way. Using these notations, we have

ALGρ(T ) = Ep

(

Q−1
p (ρ) + vp(Q

−1
p (ρ))

)

=

∫ ρ

0

Epvp(Q
−1
p (w))dw +Epvp(Q

−1
p (ρ) ≥ ρEpvp(Q

−1
p (ρ)) +Epvp(Q

−1
p (ρ)).

Here, the second equality follows by Lemma 3.4 and the inequality follows by the super-martingale property of T .

On the other hand, for every path p, since for every v ∈ T , ṽ ≥ v, we know that Q̃−1
p (ρ) ≥ Q−1

p (ρ). If we denote by

t′ = Q−1
p (ρ), then this implies there exists some ρ′ ≤ ρ such that Q̃p(t

′) = ρ′. In particular, since ṽp(t) ≤ αvp(t) for every

t, it follows that ρ′ ≥ 1
α
ρ. Thus, we can write

ALGρ(T̃ ) = Ep

(

Q−1
p (ρ) + Q̃−1

p (ρ)− Q̃−1
p (ρ′) + ṽp(Q̃

−1
p (ρ))

)

= EpQ
−1
p (ρ) +Ep

∫ ρ

ρ′

ṽp(Q̃
−1
p (w))dw +Epṽp(Q̃

−1
p (ρ))

≤ EpQ
−1
p (ρ) + α(ρ− ρ′)Epvp(Q

−1
p (ρ)) + αEpvp(Q

−1
p (ρ))

≤ EpQ
−1
p (ρ) + (α− 1)ρEpvp(Q

−1
p (ρ)) + αEpvp(Q

−1
p (ρ)).

Here, the equality follows Lemma 3.4, the first inequality follows by the super-martingale property of the T and the second

inequality follows by the fact that ρ′ ≥ 1
α
ρ. Thus, we obtain

ALGρ(T̃ )

ALGρ(T )
≤

EpQ
−1
p (ρ) + (α− 1)ρEpvp(Q

−1
p (ρ)) + αEpvp(Q

−1
p (ρ))

EpQ
−1
p (ρ) + Epvp(Q

−1
p (ρ))

≤ max{α, 1 + (α− 1)
ρEpvp(Q

−1
p (ρ))

EpQ
−1
p (ρ)

}.

Here we use the fact that if a, b, c, d ≥ 0, then a+b
c+d
≤ max{a

c
, b
d
}. By Lemma 3.4 and the super-martingale property, we

know that

EpQ
−1
p (ρ) =

∫ ρ

0

Epvp(Q
−1
p (w))dw ≥ ρEpvp(Q

−1
p (ρ)).

This implies

1 + (α− 1)
ρEpvp(Q

−1
p (ρ))

EpQ
−1
p (ρ)

≤ 1 + α− 1 = α.

Thus, ALGρ(T̃ ) ≤ αALGρ(T ) for every ρ ∈ [0, 1].

F. Missing Proof in Section 4

F.1. Proof of Theorem 4.3

As we mentioned in the main body of the paper, Theorem 4.3 not only holds for MSSC but also holds for a broader class of

stochastic optimization problems. In this part, we give the general statement and the proof for Theorem 4.3. To begin with,

we define a broad class of adaptive stochastic optimization problems for which Theorem 4.3 holds.

Definition F.1 (Adaptive Stochastic Optimization with Covering Loss). Let (X ,S, ℓ,D) be an adaptive stochastic optimiza-

tion problem. For every s ∈ S, we define a family of sets of actions C(s) ⊆ 2X . We say a scenario s is covered if a set of

actions A ∈ C(s) are taken. We say the loss function ℓ is a covering loss if for every scenario s ∈ S and every sequence of

actions a⃗ = (a1, a2, . . . ), ℓ(⃗a, s) = min{t | ∃A ∈ C(s), s.t.A ⊆ {a1, . . . , at}}, which is the time for a⃗ to cover s.

Many adaptive stochastic optimization problems such as MSSC and optimal decision tree problems have covering objective

functions. Next, we give a general statement of Theorem 4.3, which builds a connection between adaptive stochastic

optimization with time dependent feedback and buying information for adaptive stochastic optimization.

Theorem F.2 (General Version of Theorem 4.3). Let (X ,S, ℓ,D) be an adaptive stochastic optimization problem with

a covering loss function. If (X ,S, ℓ,D) satisfies an α-prophet inequality, then there is a 2α-competitive learner for the

adaptive stochastic optimization problem with feedback (X ,S, ℓ,D,F , C).
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Proof. Denote by I = (X ,S, ℓ,D,F , C) the instance of buying information for stochastic optimization and OPT(I) be the

optimal value of the instance. Since (X ,S, ℓ,D) satisfies an α-prophet inequality, let A be an α-competitive learner for the

stochastic optimization problem with feedback. At time round t, denote by Rt the set of outcomes received after taking a set

of actions and denote by Yt a set of signals received from the signaling schemes. Notice that Rt, Yt are random sets that

depend on the random scenarios s. Then a = A(Rt, Yt) is the next action taken by the learner A. Based on the notations,

we design the following algorithm, which will be shown as 2α-competitive for I = (X ,S, ℓ,D,F , C).

Algorithm 8 BUYINGINFORMATION (2α-competitive algorithm for (X ,S, ℓ,D,F , C))

for t = 0, 1, 2, . . . do

Receive Rt−1 the set of outcomes received so far and Yt−1 the signals received so far.

Receive a cost ct to receive a signal from ft+1.

for i = 1, . . . , ct do

Take action ai = A(Rt−1, Yt−1) and receive outcome ri.
Update Rt−1 ← Rt−1 ∪ {ri}.
if s is covered then

return

end if

end for

Pay ct to get signal yt+1 from ft+1.

Update Rt ← Rt−1, Yt ← Yt−1 ∪ {yt+1}
end for

We notice that during the execution of Algorithm 8, we count the time round in a different way for convenience. This doesn’t

affect the final cost of the algorithm. We now decompose the cost of Algorithm 8 into two parts. Denote by A′ Algorithm 8.

For each scenario s ∈ S , let cost(s) be the total cost of A′ when s is drawn. We write

cost(s) = costf (s) + costc(s),

where costf (s) is the feedback cost, the total cost A′ spends on buying signals when s is drawn and costc(s) is the coverage

cost, the number of actions taken by A′ to cover s. That is to say

cost(A′, I) = Es∼Dcost(s) = Es∼Dcostf (s) +Es∼Dcostc(s)

≤ 2Es∼Dcostc(s),

since the feedback cost is always less than the coverage cost.

In the rest of the proof, we will construct an instance Ĩ = (X ,S, ℓ,D,F ′) of stochastic optimization with time dependent

feedback based on I such that Es∼Dcostc(s) ≤ αOPT(Ĩ) and OPT(Ĩ) ≤ OPT(I). We construct the feedback F ′ by

constructing every possible sequence of signals received from F ′. Let (y0, y1, . . . ) be a sequence of signals received from

the signaling schemes (f0, f1, . . . ). Let ct(yt) be the cost to obtain signal yt+1 for the sequence. Then for every t ≥ 0, we

make ct(yt) copies for yt. Thus, the corresponding signals sequence in F ′ is (y0, . . . , y0, y1, . . . , y1, . . . ), where yt appears

ct(yt) times.

Now we consider Algorithm 8. If we ignore the step where we pay ct to get yt+1, then the remaining algorithm is exactly

running A over Ĩ = (X ,S, ℓ,D,F ′). Since A is an α-competitive learner for Ĩ , we know that

Es∼Dcostc(s) = cost(A, Ĩ) ≤ αOPT(Ĩ).

It remains to show that OPT(Ĩ) ≤ OPT(I). Consider instance I . Assume s is the drawn scenario and the corresponding

sequence of signals is (y0, y1, . . . ). Assume the sequence of actions taken in OPT(I) for this sequence of signals is

(a0, a1, . . . ). We construct a sequence of actions taken for instance Ĩ with sequence of signals (y0, . . . , y0, y1, . . . , y1, . . . )
by modifying (a0, a1, . . . ). Assume that in OPT(I), the learner pays a cost c to obtain the next signal after taking actions ai.
Then in the modified sequence, we take c arbitrary actions after ai. For every drawn scenario s, the modified sequences can

take less cost to cover s. This implies that OPT(Ĩ) ≤ OPT(I). Putting things together, we have

cost(A′, I) ≤ 2Es∼Dcostc(s) ≤ 2αOPT(Ĩ) ≤ 2αOPT(I),

which means Algorithm 8 is 2α-competitive for adaptive stochastic optimization with feedback.
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F.2. Proof of Theorem 4.4

Before presenting the proof, we define the model of MSSC with time dependent feedback as a remainder.

Definition F.3 (Min Sum Set Cover with Time Dependent Feedback). Let B = [n] be a set of boxes, each box i contains an

unknown number bi ∈ {0, 1} A learner can know bi by querying box i, i.e. the action space X = B. A scenario s ∈ {0, 1}n

is a binary vector that represents the number contained in each box. If scenario s is realized, then for every box i ∈ B,

si = bi. A scenario s is covered if a box i such that si = 1 is queried. Let S be a set of scenarios and D be a probability

distribution over S. Let f be a sequence of feedback. A scenario s∗ is drawn from D initially. In each round t, a learner

receives signal yt(s
∗) from signaling scheme ft and takes an action at ∈ X to query the box at and observed the number

contained in that box. Given an instance (B,S,D,F) of Min Sum Set Cover with Time Dependent Feedback, the goal of a

learner is to construct the sequence of boxes A to query to minimize Es∼Dℓ(A, s), where ℓ(A, s) is the number of boxes to

query to cover the drawn scenario s.

As a remainder, we restate Algorithm 3, the simple greedy algorithm that we want to analyze here.

Algorithm 9 GREEDY (4-competitive Learner for MSSC with Time Dependent Feedback)

for t=0,1,2,. . . do

Receive scenario set St that are consistent with the feedback and outcomes received so far.

Compute Pr(i) :=
∑

s∈St:si=1 Pr(s | St)
Query any box i∗ ∈ argmax{Pr(i) | i ∈ B}.
if s∗i∗ = 1 then

return

end if

end for

Proof. Without loss of generality, we can assume D is a uniform distribution over S and F contains only deterministic

signaling schemes. This is because given a distribution D, we can modify S by making multiple copies of each scenario

and uniformly draw a scenario from the modified set of scenarios according to our discussion in Appendix A. Under this

assumption, we will write a linear program to lower bound OPT(I). We say a scenario s is covered by a box i if si = 1. For

every scenario, s, denote by Ls the set of boxes that cover s.

Fix a sequence of feedback F , let T (F) be the feedback tree induced by F . Let P (s) be the longest path in T (F) such that

s is contained in every node in P (s). Any learner A will assign a box to each node in T (F) such that for every scenario

s, there is some node v ∈ P (s) such that the box assigned to v by A covers s. We derive the following integer program

to capture the cost of a learner. For every node v ∈ T (F) and for every box i ∈ B, let xvi ∈ {0, 1} be the indicator if A
assigns box i to node v. For every node, v ∈ T (F) and for every scenario s ∈ v, let yvs ∈ {0, 1} be the indicator if s is

not covered by any box assigned to an ancestor of v. Here, we use the notation v′ < v to denote that v′ is an ancestor of v.

For every scenario s, let cost(s) :=
∑

v∈P (s) yvs, which is the time when s is first covered by an assigned box. Then, any

learner A gives a feasible solution to the following integer program.

min
x,y

∑

s∈S

cost(s)

s.t.
∑

i∈B

xvi ≤ 1 ∀v ∈ T (F)

yvs +
∑

i∈Ls

∑

v′:v′<v

xv′i ≥ 1 ∀v ∈ T (F), ∀s ∈ v

xvi ∈ {0, 1} ∀v ∈ T (F), ∀i ∈ B

yvs ∈ {0, 1} ∀v ∈ T (F), ∀s ∈ S.

(IP)

Here, the first set of constraints implies that for any node v, any learner can assign at most 1 box. The second set of

constraints implies that for every node v and every s ∈ v, either s has not been covered so far or there is an ancestor v′ of v
that is assigned a box i ∈ Ls by learner A. In particular, since D is uniform over S , |S|cost(A, I) =

∑

s∈S cost(s). Thus,

the following linear programming relaxation gives a natural lower bound for |S|OPT(I).
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min
x,y

∑

s∈S

cost(s)

s.t.
∑

i∈B

xvi ≤ 1 ∀v ∈ T (F)

yvs +
∑

i∈Ls

∑

v′:v′<v

xv′i ≥ 1 ∀v ∈ T (F), ∀s ∈ v

xvi ≥ 0 ∀v ∈ T (F), ∀i ∈ B

yvs ≥ 0 ∀v ∈ T (F), ∀s ∈ v.

(LP)

Let {Av}v∈T (F) be the set of dual variables for the first set of constraints in (LP) and let {Bvs}v∈T (F),s∈v be the set of

dual variables for the second set of constraints in (LP). Then we derive the following dual linear program for (LP).

max
A,B

∑

v∈T (F)

∑

s∈v

Bvs −
∑

v∈T (F)

Av

s.t. Bvs ≤ 1 ∀v ∈ T (F)
∑

s:s∈v,i∈Ls

∑

v′:v<v′

Bv′s ≤ Av ∀v ∈ T (F), ∀i ∈ B

Bvs ≥ 0 ∀v ∈ T (F), ∀s ∈ v

Av ≥ 0 ∀v ∈ T (F).

(DUAL)

Since (LP) is feasible and bounded, we know from linear programming dual theory that (DUAL) is feasible, furthermore,

(DUAL) and (LP) have the same optimal value. Denote by D the optimal value of (DUAL), then we know that |S|OPT(I) ≥
D.

Next, we will show that there is an optimal solution to (DUAL) that has a special structure. We have the following

observations.

Observation 1. Let (A,B) be any feasible solution to (DUAL). For every v ∈ T (F), let A′
v =

maxi
∑

s:s∈v,i∈Ls

∑

v′:v<v′ Bv′s. For every v ∈ T (F), s ∈ v, let B′
vs = Bvs. Then (A′, B′) is feasible to (DUAL),

furthermore, (A′, B′) has a larger objective value than (A,B).

The proof of Observation 1 follows directly by the second set of constraints in (DUAL).

Observation 2. Let (A,B) be any feasible solution to (DUAL). For every s ∈ S , let Cs :=
∑

v∈P (s) Bvs. For every s ∈ S

and for every v ∈ P (s), define

B′
vs =











1 if depth(v) < ⌊Cs⌋,

Cs − ⌊Cs⌋ if depth(v) = ⌊Cs⌋,

0 otherwise.

For every v ∈ T (F), define A′
v = maxi

∑

s:s∈v,i∈Ls

∑

v′:v<v′ B′
v′s. Then (A′, B′) is feasible to (DUAL) and (A′, B′) has

a larger objective value than (A,B).

Proof of Observation. The feasibility of (A′, B′) follows by Observation 1. Thus, we only need to show (A′, B′) has a

larger objective value. We notice that

∑

v∈T (F)

∑

s∈v

Bvs =
∑

s∈S

∑

v∈P (s)

Bvs =
∑

s∈S

Cs =
∑

s∈S

∑

v∈P (s)

B′
vs =

∑

v∈T (F)

∑

s∈v

B′
vs.

It remains to show that
∑

v∈T (F) Av ≥
∑

v∈T (F) A
′
v. By Observation 1, we may assume Av =

maxi
∑

s:s∈v,i∈Ls

∑

v′:v<v′ Bv′s for every v ∈ T (F). It is sufficient to show for every v and every s ∈ v,
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∑

v′∈P (s):v<v′ Bv′s ≥
∑

v′∈P (s):v<v′ B′
v′s. We have

∑

v′∈P (s):v<v′

Bv′s = Cs −
∑

v′∈P (s):v′≤v

Bv′s ≥ Cs −
∑

v′∈P (s):v′≤v

Bv′s =
∑

v′∈P (s):v<v′

B′
v′s.

⋄

Observation 1 and Observation 2 imply that an optimal solution to (DUAL) can be constructed in the following way. For

each s ∈ S , assign Cs ≥ 0 to s. For every s ∈ S and for every v ∈ P (s), define

Bvs =











1 if depth(v) < ⌊Cs⌋,

Cs − ⌊Cs⌋ if depth(v) = ⌊Cs⌋,

0 otherwise.

For every v ∈ T (F), define Av = maxi
∑

s:s∈v,i∈Ls

∑

v′:v<v′ Bv′s. Let (A,B) be such a solution constructed in the way

we discussed above using a vector C ∈ RS
+. Denote by D(C) the objective value of (A,B). Then we have

D(C) =
∑

v∈T (F)

∑

s∈v

Bvs −
∑

v∈T (F)

max
i∈B

∑

s:s∈v,i∈Ls

∑

v′:v<v′

Bv′s

=
∑

s∈S

Cs −
∑

v∈T (F)

∑

i∈B

∑

s:s∈v,i∈Ls

∑

v′:v<v′

Bv′s1vi

=
∑

s∈S

Cs −
∑

v∈T (F)

∑

i∈B

∑

v′:v<v′

∑

s:s∈v,i∈Ls

Bv′s1vi

=
∑

s∈S

Cs −
∑

v∈T (F)

∑

v′:v<v′

∑

i∈B

∑

s:s∈v,i∈Ls

Bv′s1vi

=
∑

s∈S

Cs −
∑

v′∈T (F)

∑

v:v<v′

∑

i∈B

∑

s:s∈v,i∈Ls

Bv′s1vi,

where 1vi is the indicator function if i ∈ argmaxj
∑

s:s∈v,j∈Ls

∑

v′:v<v′ Bv′s. For convenience, we assume there is only

one box that achieves the max.

We interpret D(C) via the following physical process. For each scenario s ∈ S , we generate a particle Ps. Ps moves along

the path P (s) with a rate of 1 and stops at time t = Cs. The length of an edge in T (F) is 1. Let Vs(t) be the speed of Ps at

time t. That is to say Cs =
∫∞

0
Vs(t)dt for every s ∈ S . From this point of view, we can write the first term in D(C) as

∑

s∈S

Cs =

∫ ∞

0

∑

s∈S

Vs(t)dt. (3)

On the other hand, for each node v ∈ T (F), there is a box i(v) such that 1vi(v) = 1. At a given time t, we will charge each

moving particle Gs(t) := |{v | v ∈ P (s), depth(v) ≤ t, i(v) ∈ Ls}|. In other words, for every moving particle, we will

charge it the number of visited nodes v such that box i(v) covers the corresponding scenario. Next, we build a connection

between Gs(t) and D(C). For every s ∈ S , write P (s) = (v0, v1, . . . , vn). Then we have

Gs(t) =
∑

i∈Ls

∑

v∈P (s):depth(v)≤t

Vs(t)1vi =
∑

i∈Ls

⌊t⌋
∑

j=0

Vs(t)1vji,

which implies

∫ ∞

0

Gs(t)dt =

∫ ∞

0

∑

i∈Ls

⌊t⌋
∑

j=0

Vs(t)1vjidt =
∑

v′∈P (s)

∑

v:v≤v′

∑

i∈Ls

Bv′s1vi,
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according to the construction of B. Thus, we can write the second term in D(C) as

∑

v′∈T (F)

∑

v:v<v′

∑

i∈B

∑

s:s∈v,i∈Ls

Bv′s1vi ≤

∫ ∞

0

∑

s∈S

Gs(t)dt. (4)

Combine (3) and (4), we get

D(C) ≥

∫ ∞

0

∑

s∈S

Vs(t)−
∑

s∈S

Gs(t)dt. (5)

In the rest of the proof, instead of constructing the optimal solution to (DUAL), we will construct a vector Cg based on

Algorithm 3 such that |S|ALG(I) ≤ 4D(Cg) ≤ 4D ≤ 4|S|OPT(I), which implies that Algorithm 3 is 4-competitive.

Consider the implementation of Algorithm 3, the greedy algorithm. We notice that if we arrive at some node v ∈ T (F),
the set of scenarios St we received is exactly Rv, the set of scenarios s ∈ v that has not been covered so far. Since D
is uniform, the box A(v) queried by the algorithm at node v is the box that can cover most scenarios in Rv. Denote by

Xv = {s ∈ Rv | A(v) ∈ Ls}, which is the scenarios in Rv covered by the box that Algorithm 3 queries in this round. Now

we define Cs for each scenario s. Let P = (v0, v1, . . . , vn) be a path of T (F) from the root to some leaf. For each vi ∈ P ,

define Cvi = max{Cvi−1
,

|Rvi
|

c|Xvi
|}, where c > 0 is a constant that we will determine later and Cv0 =

|Rv0
|

c|Xv0
| . Notice that

{Xv}v∈T (F) forms a partition of S, so each s belongs to a unique Xv. For every node v ∈ T (F) and for every s ∈ v, we

set Cs = Cv . Denote by Cg the vector we just constructed. We next show that |S|ALG(I) ≤ 4D(Cg). Notice that

|S|ALG(I) =
∑

v∈T (F)

(depth(v) + 1)|Xv| =
∑

v∈T (F)

|Rv|.

Based on this observation, we first derive the following lower bound for
∫∞

0

∑

s∈S Vs(t)dt. We have

∫ ∞

0

∑

s∈S

Vs(t)dt =
∑

v∈T (F)

∑

s∈Xv

∫ ∞

0

Vs(s)dt =
∑

v∈T (F)

∑

s∈Xv

Cs ≥
1

c

∑

v∈T (F)

|Rv| =
1

c
|S|ALG(I).

Next, we will show that
∫∞

0

∑

s∈S Gs(t)dt ≤
1
c

∫∞

0

∑

s∈S Vs(t)dt. To do this, we upper bound
∑

s Gs(t) for every t ≥ 0.

For every s ∈ S , let P t(s) = (v0(s), v1(s), . . . , v⌈t⌉(s)) be the truncation of path P (s) with length of ⌈t⌉. We know that for

every t, P t, the set of such truncated paths, forms a partition of S . So we can write
∑

s∈S Gs(t) =
∑

P∈P t

∑

s∈P Gs(t).

Let P = (v0, . . . , v⌈t⌉) ∈ P t be such a truncated path. The set of particles that are moving along P corresponds to scenarios

in v⌈t⌉ with Cs ≥ t. We observe that along the path P , Cvi
is a step function with respect to the index i. Based on the

definition of Cs, for every v and every s ∈ Rv , we have Cs ≥ Cv . This implies that along the path P , there must be some

i∗ ≤ ⌊t⌋ such that the set of particles that are moving along P at time t corresponds to scenarios exactly in Rvi∗
∩ v⌈t⌉. In

particular, if we consider the set P t(i∗) of all paths in P t that passes vi∗ , then at time t, the set of particles moving along

these paths is exactly Rvi∗
.

By the greedy property of Algorithm 3, every box can cover at most |Xvi∗
| scenarios from Rvi∗

. Since each path P ∈ P t(i∗)
contains at most t nodes and each node is charged by at most |Xvi∗ | moving particles at time t, we have

∑

P∈P t(i∗)

∑

s∈P

Gs(t) ≤ t|Xvi∗
| ≤
|Rvi∗ |

c|Xvi∗ |
|Xvi∗

| =
1

c
|Rvi∗

| =
1

c

∑

P∈P t(i∗)

∑

s∈P

Vs(t).

Here, the second inequality follows by Cvi∗
=

|Rvi∗
|

c|Xvi∗
| ≥ t. The last equality holds because

∑

P∈P t(i∗)

∑

s∈P Vs(t) is the

number of moving particles along paths in P t(i∗), which is |Rvi∗ |. Thus we have

∫ ∞

0

∑

s∈S

Gs(t)dt ≤
1

c

∫ ∞

0

∑

s∈S

Vs(t)dt.
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Put the above discussions together, we have

D(Cg) ≥

∫ ∞

0

∑

s∈S

Vs(t)−
∑

s∈S

Gs(t)dt ≥ (1−
1

c
)

∫ ∞

0

∑

s∈S

Vs(t)dt ≥
1

c
(1−

1

c
)|S|ALG(I) =

1

4
|S|ALG(I),

by setting c = 2 to maximize the ratio. This shows Algorithm 3 is 4-competitive.

F.3. Proof of Theorem 4.5

Proof. We consider the following instance of min sum set cover with time dependent feedback. Let B be the set of n boxes.

The set of scenarios S = {si}ni=1, where sij = 1 if i = j and 0 otherwise. D is a uniform distribution over S . Let A be any

deterministic learner. We design a set of feedback FA such that cost(A, I) = n
2 − o(1), while there is a learner A′ such that

cost(A′, I) = n
4 + o(1). Here, I = (B,S,D,FA) and cost(A, I) is the cost of a learner A over instance I .

We describe FA via its feedback tree representation T (FA). We first fix the structure of T (FA), then define the scenario

contained in each node of T (FA). Let T (FA) be a binary tree. Let v be a node in T (FA). We denote by L(v) its left child

and R(v) its right child. Let {vi}
n
i=1 be a path of T (FA) such that vi+1 = R(vi) and v1 be the root of T (FA). We define

the set of scenarios contained in each node in T (F). We know that v1 = S. Let Ai = A(vi) be the box queried by A at

node vi. We define L(vi) = {sAi
} and R(vi) = vi \ L(vi). This gives the definition of FA. Intuitively, every time A

queries a box, F only tells A if it queries the unique box that contains 1. This is to say F is useless for A and the cost of A
is

cost(A, I) =
1

n

n
∑

j=1

j =
n− 1

2
.

On the other hand, let A′ be the following learner. Let A′(vi) = An+1−i, for i ∈ [n] and A′(L(vi)) = Ai. That is, along

the path {vi}
n
i=1, the order of the queried box by A′ is the inverse of that of A and at every node L(vi), A

′ queries the box

corresponding to the unique scenario contained in L(vi). This implies

cost(A′, I) =
1

n
+

n−1

2
∑

j=2

2j

n
=

n2 − 5

4n
.

Thus, we have
cost(A,I)
cost(A′,I) → 2, which implies no deterministic learner is 2− ϵ-competitive.

F.4. Proof of Theorem 4.7

Before presenting the proof, we remind the definition of buying information for MSSC.

Definition F.4 (Buying Information for Min Sum Set Cover). Let (B,S,D) be an instance of Min Sum Set Cover,

F = {ft}
∞
t=0 be a sequence of feedback and C = {ct}

∞
t=0 be a sequence of cost for receiving a signal from ft+1 from F .

Initially, a scenario s is drawn from D. In each time round t, before s is covered, a learner adaptively receives an arbitrary

number of signals from the sequence F by paying the corresponding cost and then selects a box to query. An instance

(B,S,D,F , C) of Buying Information for Min Sum Set Cover is to make decisions adaptively to minimize the expected

number of the queried box plus the expected cost paid for the feedback to cover the random scenario.

Proof. We consider the following instance of buying information for min sum set cover. Let B be the set of n boxes. The set

of scenarios S = {si}ni=1, where sij = 1 if i = j and 0 otherwise. D is a uniform distribution over S . We assume the cost

of obtaining any single feedback is 1. Let A be any deterministic learner. We design a set of feedback FA for A.

We describe FA via its feedback tree representation T (FA). To do this, we will first fix the structure of T (FA), then

describe the scenarios contained in each node. The structure of T (FA) is defined in the following way. There are ni + 1
nodes in T (FA) that have depth of i. Here n0 = 0 and for i ≥ 1, ni ≥ 0 is a number that depends on A. Furthermore, for

each level of T (FA), only the rightmost node has children. In particular, for i ≥ 1, let vi+1 = R(vi) be the right most child

of vi, where v1 is the root of T (FA).
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We notice that given the structure of T (FA), any deterministic learnerA can be described in the following way using T (FA).
For every node v ∈ T (FA), A will query a set of boxes Bv in some order, where |Bv| ≥ 0. Denote by Bi, the set of boxes

queried by A at node vi. Let ni = |B
i| ≥ 0, then set of scenarios that contained in R(vi) is defined by {sj ∈ vi | j ̸∈ B

i}.
Recall that there are ni + 1 nodes in T (FA) that have depth i and we have defined the set of scenarios contained in one of

these nodes. For the rest of ni nodes, we assign a unique scenario covered by Bi to each of them. This gives the definition

of FA. In particular, FA is useless for A, since every time A asks for feedback, the feedback only tells A which scenarios

are not covered so far.

Now we compute the cost of A. Consider the path (v1, v2, . . . , vk) in T (FA), such that
∑k

i=1 |B
i| = n. That is to say, all

scenarios are covered before the kth feedback is asked. Notice that (B1, . . . ,Bk) forms a partition of S . Let s ∈ Bi be the

jth scenario in Bi covered by A, then the cost of A when scenario s is drawn is

cost(A, s) =

i−1
∑

ℓ=1

nℓ + i− 1 + j,

which implies

cost(A, I) = Escost(A, s) =
1

n

k
∑

i=1

ni
∑

j=1

(

i−1
∑

ℓ=1

nℓ + i− 1 + j

)

=
1

n





n
∑

i=1

i+

k
∑

i=1

ni
∑

j=1

i− n



 .

We consider the two different cases. In the first case,
∑n

i=1 i ≤
∑k

i=1

∑ni

j=1 i. We notice that any deterministic learner A∗

that asks for no feedback has a cost Escost(A∗, s) = 1
n

∑n
i=1 i. This means

cost(A, I)

cost(A∗, I)
≥

2
n

∑n
i=1 i− 1

1
n

∑n
i=1 i

= 2− on(1).

In the second case, we assume
∑n

i=1 i >
∑k

i=1

∑ni

j=1 i. In this case, we define a deterministic learner A∗ in the following

way. A∗ keeps asking for feedback until the feedback reveals the drawn scenario, then A∗ covers the drawn scenario via the

unique box. It is not hard to see, any scenario in Bi will cost A∗, i+ 1. Thus, Escost(A∗, s) = 1 + 1
n

∑k
i=1

∑ni

j=1 i. In

this case, we have

cost(A, I)

cost(A∗, I)
≥

1
n

(

∑n
i=1 i+

∑k
i=1

∑ni

j=1 i
)

− 1

1 + 1
n

∑k
i=1

∑ni

j=1 i
=

1
n

(

∑n
i=1 i+

∑k
i=1

∑ni

j=1 i
)

1
n

∑k
i=1

∑ni

j=1 i
− on(1) ≥ 2− on(1).

Thus, for every ϵ > 0, there is no deterministic learner that is 2− ϵ competitive.
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