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Abstract

We revisit the classic PandoraŠs Box (PB) problem under correlated distributions on the box values.

Recent work of [13] obtained constant approximate algorithms for a restricted class of policies for the

problem that visit boxes in a Ąxed order. In this work, we study the complexity of approximating

the optimal policy which may adaptively choose which box to visit next based on the values seen so

far.

Our main result establishes an approximation-preserving equivalence of PB to the well studied

Uniform Decision Tree (UDT) problem from stochastic optimization and a variant of the Min-Sum

Set Cover (MSSCf ) problem. For distributions of support m, UDT admits a log m approximation,

and while a constant factor approximation in polynomial time is a long-standing open problem,

constant factor approximations are achievable in subexponential time [43]. Our main result implies

that the same properties hold for PB and MSSCf .

We also study the case where the distribution over values is given more succinctly as a mixture

of m product distributions. This problem is again related to a noisy variant of the Optimal Decision

Tree which is signiĄcantly more challenging. We give a constant-factor approximation that runs in

time nÕ(m2/ε2) when the mixture components on every box are either identical or separated in TV

distance by ε.
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1 Introduction

Many everyday tasks involve making decisions under uncertainty; for example driving to

work using the fastest route or buying a house at the best price. Although we donŠt know

how the future outcomes of our current decisions will turn out, we can often use some prior

information to facilitate the decision making process. For example, having driven on the

possible routes to work before, we know which is usually the busiest one. It is also common

in such cases that we can remove part of the uncertainty by paying some additional cost.

This type of online decision making in the presence of costly information can be modeled

as the so-called Pandora’s Box problem, Ąrst formalized by Weitzman in [52]. In this
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problem, the algorithm is given n alternatives called boxes, each containing a value from a

known distribution. The exact value is not known, but can be revealed at a known opening

cost speciĄc to the box. The goal of the algorithm is to decide which box to open next and

whether to select a value and stop, such that the total opening cost plus the minimum value

revealed is minimized. In the case of independent distributions on the boxesŠ values, this

problem has a very elegant and simple optimal solution, as described by Weitzman [52]:

calculate an index for each box1, open the boxes in increasing order of index, and stop when

the expected gain is worse than the value already obtained.

WeitzmanŠs model makes the crucial assumption that the distributions on the values are

independent across boxes. This, however, is not always the case in practice and as it turns

out, the simple algorithm of the independent case fails to Ąnd the optimal solution under

correlated distributions. Generally, the complexity of the Pandora’s Box with correlations

is not yet well understood. In this work we develop the first approximately-optimal

policies for the Pandora’s Box problem with correlated values.

We consider two standard models of correlation where the distribution over values can be

speciĄed explicitly in a succinct manner. In the Ąrst, the distribution over values has a small

support of size m. In the second the distribution is a mixture of m product distributions,

each of which can be speciĄed succinctly. We present approximations for both settings.

A primary challenge in approximating Pandora’s Box with correlations is that the

optimal solution can be an adaptive policy that determines which box to open depending on

the instantiations of values in all of the boxes opened previously. It is not clear that such a

policy can even be described succinctly. Furthermore, the choice of which box to open is

complicated by the need to balance two desiderata Ű Ąnding a low value box quickly versus

learning information about the values in unopened boxes (a.k.a. the state of the world or

realized scenario) quickly. Indeed, the value contained in a box can provide the algorithm

with crucial information about other boxes, and inform the choice of which box to open next;

an aspect that is completely missing in the independent values setting studied by Weitzman.

Contribution 1: Connection to Decision Tree and a general purpose
approximation

Some aspects of the Pandora’s Box problem have been studied separately in other contexts.

For example, in the Optimal Decision Tree problem (DT) [30, 43], the goal is to identify

an unknown hypothesis, out of m possible ones, by performing a sequence of costly tests,

whose outcomes depend on the realized hypothesis. This problem has an informational

structure similar to that in Pandora’s Box. In particular, we can think of every possible

joint instantiation of values in boxes as a possible hypothesis, and every opening of a box

as a test. The difference between the two problems is that while in Optimal Decision

Tree we want to identify the realized hypothesis exactly, in Pandora’s Box it suffices to

terminate the process as soon as we have found a low value box.

Another closely related problem is the Min Sum Set Cover [21], where boxes only have

two kinds of values Ű acceptable or unacceptable Ű and the goal is to Ąnd an acceptable value

as quickly as possible. A primary difference relative to Pandora’s Box is that unacceptable

boxes provide no further information about the values in unopened boxes.

One of the main contributions of our work is to unearth connections between Pandora’s

Box and the two problems described above. We show that Pandora’s Box is essentially

equivalent to a special case of Optimal Decision Tree (called Uniform Decision Tree

1 This is a special case of Gittins index [25].
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or UDT) where the underlying distribution over hypotheses is uniform Ű the approximation

ratios of these two problems are related within log-log factors. Surprisingly, in contrast,

the non-uniform DT appears to be harder than non-uniform Pandora’s Box. We relate

these two problems by showing that both are in turn related to a new version of Min

Sum Set Cover, that we call Min Sum Set Cover with Feedback (MSSCf ). These

connections are summarized in Figure 1. We can thus build on the rich history and large

collection of results on these problems to offer efficient algorithms for Pandora’s Box. We

obtain a polynomial time Õ(log m) approximation for Pandora’s Box, where m is the

number of distinct value vectors (a.k.a. scenarios) that may arise; as well as constant factor

approximations in subexponential time.

PB UMSSCfUMSSCf UDT
Section 4 Section 5

Log-log factors Constant factors

Figure 1 A summary of our approximation preserving reductions.

It is an important open question whether constant factor approximations exist for

Uniform Decision Tree: the best known lower-bound on the approximation ratio is 4

while it is known that it is not NP-hard to obtain super-constant approximations under

the Exponential Time Hypothesis. The same properties transfer also to Pandora’s Box

and Min Sum Set Cover with Feedback. Pinning down the tight approximation ratio

for any of these problems will directly answer these questions for any other problem in the

equivalence class we establish.

The key technical component in our reductions is to Ąnd an appropriate stopping rule for

Pandora’s Box: after opening a few boxes, how should the algorithm determine whether a

small enough value has been found or whether further exploration is necessary? We develop

an iterative algorithm that in each phase Ąnds an appropriate threshold, with the exploration

terminating as soon as a value smaller than the threshold is found, such that there is a

constant probability of stopping in each phase. Within each phase then the exploration

problem can be solved via a reduction to UDT. The challenge is in deĄning the stopping

thresholds in a manner that allows us to relate the algorithmŠs total cost to that of the

optimal policy.

Contribution 2: Approximation for the mixture of distributions model

Having established the general purpose reductions between Pandora’s Box and DT, we

turn to the mixture of product distributions model of correlation. This special case of

Pandora’s Box interpolates between WeitzmanŠs independent values setting and the fully

general correlated values setting. In this setting, we use the term ŞscenarioŤ to denote the

different product distributions in the mixture. The information gathering component of the

problem is now about determining which product distribution in the mixture the box values

are realized from. Once the algorithm has determined the realized scenario (a.k.a. product

distribution), the remaining problem amounts to implementing WeitzmanŠs strategy for that

scenario.

We observe that this model of correlation for Pandora’s Box is related to the noisy

version of DT, where the results of some tests for a given realized hypothesis are not

deterministic. One challenge for DT in this setting is that any individual test may give us

APPROX/RANDOM 2023
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very little information distinguishing different scenarios, and one needs to combine information

across sequences of many tests in order to isolate scenarios. This challenge is inherited by

Pandora’s Box.

Previous work on noisy DT obtained algorithms whose approximations and runtimes

depend on the amount of noise. In contrast, we consider settings where the level of noise is

arbitrary, but where the mixtures satisfy a separability assumption. In particular, we assume

that for any given box, if we consider the marginal distributions of the value in the box

under different scenarios, these distributions are either identical or sufficiently different (e.g.,

at least ε in TV distance) across different scenarios. Under this assumption, we design a

constant-factor approximation for Pandora’s Box that runs in nÕ(m2/ε2) (Theorem 18),

where n is the number of boxes. The formal result and the algorithm is presented in Section 6.

1.1 Related work

The Pandora’s Box problem was Ąrst introduced by Weitzman in the Economics literat-

ure [52]. Since then, there has been a long line of research studying Pandora’s Box and

its many variants ; non-obligatory inspection [19, 8, 7, 22], with order constraints [37, 9],

with correlation [13, 24], with combinatorial costs [6], competitive information design [18],

delegated version [5], and Ąnally in an online setting [20]. Multiple works also study the

generalized setting where more information can be obtained for a price [12, 32, 15, 14] and

in settings with more complex combinatorial constraints [50, 26, 33, 1, 35, 36, 31].

Chawla et al. [13] were the Ąrst to study Pandora’s Box with correlated values, but they

designed approximations relative to a simpler benchmark, namely the optimal performance

achievable using a so-called Partially Adaptive strategy that cannot adapt the order in which

it opens boxes to the values revealed. In general, optimal strategies can decide both the

ordering of the boxes and the stopping time based on the values revealed. [13] designed an

algorithm with performance no more than a constant factor worse than the optimal Partially

Adaptive strategy.

In Min Sum Set Cover the line of work was initiated by [21], and continued with

improvements and generalizations to more complex constraints by [3, 46, 4, 51].

Optimal decision tree is an old problem studied in a variety of settings ([49, 48, 30, 29]),

while its most notable application is in active learning settings. It was proven to be NP-Hard

by HyaĄl and Rivest [38]. Since then the problem of Ąnding the best approximation algorithm

was an active one [23, 45, 42, 17, 10, 11, 30, 34, 16, 2], where Ąnally a greedy log m for the

general case was given by [30]. This approximation ratio is proven to be the best possible [10].

For the case of Uniform decision tree less is known, until recently the best algorithm was the

same as the optimal decision tree, and the lower bound was 4 [10]. The recent work of Li et

al. [43] showed that there is an algorithm strictly better than log m for the uniform decision

tree.

The noisy version of optimal decision tree was Ąrst studied in [29]2, which gave an algorithm

with runtime that depends exponentially on the number of noisy outcomes. Subsequently,

Jia et al. in [40] gave an (min(r, h) + log m)-approximation algorithm, where r (resp. h) is

the maximum number of different test results per test (resp. scenario) using a reduction to

Adaptive Submodular Ranking problem [41]. In the case of large number of noisy outcome

they obtain a log m approximation exploiting the connection to Stochastic Set Cover [44, 39].

2 This result is based on a result from [27] which turned out to be wrong [47]. The correct results are
presented in [28]
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2 Preliminaries

In this paper we study the connections between three different sequential decision making

problems Ű Optimal Decision Tree, Pandora’s Box, and Min Sum Set Cover. We

describe these problems formally below.

Optimal Decision Tree

In the Optimal Decision Tree problem (denoted DT) we are given a set S of m scenarios

s ∈ S, each occurring with (known) probability ps; and n tests T = ¶Ti♢i∈[n], each with cost

1. Nature picks a scenario s ∈ S from the distribution p but this scenario is unknown to the

algorithm. The goal of the algorithm is to determine which scenario is realized by running a

subset of the tests T . When test Ti is run and the realized scenario is s, the test returns a

result Ti(s) ∈ R.

Output. The output of the algorithm is a decision tree where at each node there is a test

that is performed, and the branches are the outcomes of the test. In each of the leaves there

is an individual scenario that is the only one consistent with the results of the test in the

unique path from the root to this leaf. Observe that there is a single leaf corresponding to

each scenario s. We can represent the tree as an adaptive policy deĄned as follows:

▶ Definition 1 (Adaptive Policy π). An adaptive policy π : ∪X⊆T R
X → T is a function that

given a set of tests done so far and their results, returns the next test to be performed.

Objective. For a given decision tree or policy π, let costs(π) denote the total cost of all

of the tests on the unique path in the tree from the root to the leaf labeled with scenario

s. The objective of the algorithm is to Ąnd a policy π that minimizes the average cost
∑

s∈S pscosts(π).

We use the term Uniform Decision Tree (UDT) to denote the special case of the problem

where ps = 1/m for all scenarios s.

Pandora’s Box

In the Pandora’s Box problem we are given n boxes, each with cost ci ≥ 0 and value vi.

The values ¶vi♢i∈[n] are distributed according to known distribution D. We assume that D

is an arbitrary correlated distribution over vectors ¶vi♢i∈[n] ∈ R
n. We call vectors of values

scenarios and use s = ¶vi♢i∈[n] to denote a possible realization of the scenario. As in DT,

nature picks a scenario from the distribution D and this realization is a priori unknown to

the algorithm. The goal of the algorithm is to pick a box of small value. The algorithm can

observe the values realized in the boxes by opening any box i at its respective costs ci.

Output. The output of the algorithm is an adaptive policy π for opening boxes and a

stopping condition. The policy π takes as input a subset of the boxes and their associated

values, and either returns the index of a box i ∈ [n] to be opened next or stops and selects the

minimum value seen so far. That is, π : ∪X⊆[n]R
X → [n] ∪ ¶⊥♢ where ⊥ denotes stopping.

APPROX/RANDOM 2023
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Objective. For a given policy π, let π(s) denote the set of boxes opened by the policy prior

to stopping when the realized scenario is s. The objective of the algorithm is to minimize the

expected cost of the boxes opened plus the minimum value discovered, where the expectation

is taken over all possible realizations of the values in each box.3 Formally the objective is

given by

Es∼D



 min
i∈π(s)

vis +
∑

i∈π(s)

ci



,

For simplicity of presentation, from now on we assume that ci = 1 for all boxes, but we

show in the Appendix of the full version how to adapt our results to handle non-unit costs,

without any loss in the approximation factors.

We use UPB to denote the special case of the problem where the distribution D is uniform

over m scenarios.

Min Sum Set Cover with Feedback

In Min Sum Set Cover, we are given n elements and a collection of m sets S over them,

and a distribution D over the sets. The output of the algorithm is an ordering π over the

elements. The cost of the ordering for a particular set s ∈ S is the index of the Ąrst element

in the ordering that belongs to the set s, that is, costs(π) = min¶i : π(i) ∈ s♢. The goal of

the algorithm is to minimize the expected cost Es∼D[costs(π)].

We deĄne a variant of the Min Sum Set Cover problem, called Min Sum Set Cover

with Feedback (MSSCf ). As in the original problem, we are given a set of n elements, a

collection of m sets S and a distribution D over the sets. Nature instantiates a set s ∈ S

from the distribution D; the realization is unknown to the algorithm. Furthermore, in this

variant, each element provides feedback to the algorithm when the algorithm ŞvisitsŤ this

element; this feedback takes on the value fi(s) ∈ R for element i ∈ [n] if the realized set is

s ∈ S.

Output. The algorithm once again produces an ordering π over the elements. Observe

that the feedback allows the algorithm to adapt its ordering to previously observed values.

Accordingly, π is an adaptive policy that maps a subset of the elements and their associated

feedback, to the index of another element i ∈ [n]. That is, π : ∪X⊆[n]R
X → [n].

Objective. As before, the cost of the ordering for a particular set s ∈ S is the index of the

Ąrst element in the ordering that belongs to the set s, that is, costs(π) = min¶i : π(i) ∈ s♢.

The goal of the algorithm is to minimize the expected cost Es∼D[costs(π)].

Commonalities and notation

As the reader has observed, we capture the commonalities between the different problems

through the use of similar notation. Scenarios in DT correspond to value vectors in PB and

to sets in MSSCf ; all are denoted by s, lie in the set S, and are drawn by nature from a

known joint distribution D. Tests in DT correspond to boxes in PB and elements in MSSCf ;

3 In the original version of the problem studied by Weitzman [52] the values are independent across boxes,
and the goal is to maximize the value collected minus the costs paid, in contrast to the minimization
version we study here.
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we index each by i ∈ [n]. The algorithm for each problem produces an adaptive ordering

π over these tests/boxes/elements. Test outcomes Ti(s) in DT correspond to box values

vi(s) in PB and feedback fi(s) in MSSCf . We will use the terminology and notation across

different problems interchangeably in the rest of the paper.

2.1 Modeling Correlation

In this work we study two general ways of modeling the correlation between the values in the

boxes. Explicit Distributions. In this case, D is a distribution over m scenarios where

the jŠth scenario is realized with probability pj , for j ∈ [m]. Every scenario corresponds

to a Ąxed and known vector of values contained in each box. SpeciĄcally, box i has value

vij ∈ R
+ ∪ ¶∞♢ for scenario j.

Mixture of Distributions. We also consider a more general setting, where D is a

mixture of m product distributions. SpeciĄcally, each scenario j is a product distribution;

instead of giving a deterministic value for every box i, the result is drawn from distribution

Dij . This setting is a generalization of the explicit distributions setting described before.

3 Roadmap of the Reductions and Implications

In Figure 2, we give an overview of all the main technical reductions shown in Sections 4

and 5. An arrow A→ B means that we gave an approximation preserving reduction from

problem A to problem B. Therefore an algorithm for B that achieves approximation ratio

α gives also an algorithm for A with approximation ratio O(α) (or O(α log α) in the case

of black dashed lines). For the exact guarantees we refer to the formal statement of the

respective theorem. The gray lines denote less important claims or trivial reductions (e.g. in

the case of A being a subproblem of B).

PB

UMSSCfMSSCf

UDT

DT

Claim 7

Claim 16

Claim 16

Thm 8

Thm 17

Thm 8

Main Theorem (log factors)

Main Theorem (const. factors)

Minor Claim

Subproblem

Figure 2 Summary of all our reductions. Bold black lines denote our main theorems, gray dashed

are minor claims, and dotted lines are trivial reductions.

3.1 Approximating Pandora’s Box

Given our reductions and using the best known results for Uniform Decision Tree

from [43] we immediately obtain efficient approximation algorithms for Pandora’s Box.

We repeat the results of [43] below.

APPROX/RANDOM 2023



26:8 Approximating Pandora’s Box with Correlations

▶ Theorem 2 (Theorems 3.1 and 3.2 from [43]).

There is a O(log m/ log OPT)-approximation algorithm for UDT that runs in polynomial

time, where OPT is the cost of the optimal solution of the UDT instance.

There is a 9+ε
α -approximation algorithm for UDT that runs in time nÕ(mα) for any

α ∈ (0, 1).

Using the results of Theorem 2 combined with Theorem 8 and Claim 16 we get the

following corollary.

▶ Corollary 3. From the best-known results for UDT, we have that

There is a Õ(log m)-approximation algorithm for PB that runs in polynomial time4.

There is a Õ(1/α)-approximation algorithm for PB that runs in time nÕ(mα) for any

α ∈ (0, 1).

An immediate implication of the above corollary is that it is not NP-hard to obtain a

superconstant approximation for PB, formally stated below.

▶ Corollary 4. It is not NP-hard to achieve any superconstant approximation for PB assuming

the Exponential Time Hypothesis.

Observe that the logarithmic approximation achieved in Corollary 3 loses a log log m

factor (hence the Õ) as it relies on the more complex reduction of Theorem 8. If we

choose to use the more direct naive reduction (given in the full version of our paper) to

the Optimal Decision Tree where the tests have non-unit costs (which also admits a

O(log m)-approximation [34, 41]), we get the following corollary.

▶ Corollary 5. There exists an efficient algorithm that is O(log m)-approximate for Pan-

dora’s Box and with or without unit-cost boxes.

3.2 Constant approximation for Partially Adaptive PB

Moving on, we show how our reduction can be used to obtain and improve the results of [13].

Recall that in [13] the authors presented a constant factor approximation algorithm against

a Partially Adaptive benchmark where the order of opening boxes must be Ąxed up front.

In such a case, the reduction of Section 4 can be used to reduce PB to the standard Min

Sum Set Cover (i.e. without feedback), which admits a 4-approximation [21].

▶ Corollary 6. There exists a polynomial time algorithm for PB that is O(1)-competitive

against the partially adaptive benchmark.

The same result applies even in the case of non-uniform opening costs. This is because

a 4-approximate algorithm for Min Sum Set Cover is known even when elements have

arbitrary costs [46]. The case of non-uniform opening costs has also been considered for

Pandora’s Box by [13] but only provide an algorithm to handle polynomially bounded

opening costs.

4 If additionally the possible number of outcomes is a constant K, this gives a O(log m) approximation
without losing an extra logarithmic factor, since OPT ≥ logK m, as observed by [43].
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4 Connecting Pandora’s Box and MSSCf

In this section we establish the connection between Pandora’s Box and Min Sum Set

Cover with Feedback. We show that the two problems are equivalent up to logarithmic

factors in approximation ratio.

One direction of this equivalence is easy to see in fact: Min Sum Set Cover with

Feedback is a special case of Pandora’s Box. Note that in both problems we examine

boxes/elements in an adaptive order. In PB we stop when we Ąnd a sufficiently small value;

in MSSCf we stop when we Ąnd an element that belongs to the instantiated scenario. To

establish a formal connection, given an instance of MSSCf , we can deĄne the ŞvalueŤ of each

element i in scenario s as being 0 if the element belongs to the set s and as being L + fi(s)

for some sufficiently large value L where fi(s) is the feedback of element i for set s. This

places the instance within the framework of PB and a PB algorithm can be used to solve it.

We formally describe this reduction in Section A of the Appendix.

▷ Claim 7. If there exists an α(n, m)-approximation algorithm for PB then there exists a

α(n, m)-approximation for MSSCf .

The more interesting direction is a reduction from PB to MSSCf . In fact we show

that a general instance of PB can be reduced to the simpler uniform version of Min Sum

Set Cover with Feedback. We devote the rest of this section to proving the following

theorem.

▶ Theorem 8 (Pandora’s Box to MSSCf ). If there exists an a(n, m) approximation

algorithm for UMSSCf then there exists a O(α(n + m, m2) log α(n + m, m2))-approximation

for PB.

Guessing a stopping rule and an intermediate problem

The feedback structure in PB and MSSCf is quite similar, and the main component in

which the two problems differ is the stopping condition. In MSSCf , an algorithm can stop

examining elements as soon as it Ąnds one that ŞcoversŤ the realized set. In PB, when the

algorithm observes a value in a box, it is not immediately apparent whether the value is

small enough to stop or whether the algorithm should probe further, especially if the scenario

is not fully identiĄed. The key to relating the two problems is to ŞguessŤ an appropriate

stopping condition for PB, namely an appropriate threshold T such that as soon as the

algorithm observes a value smaller than this threshold, it stops. We say that the realized

scenario is ŞcoveredŤ.

To formalize this approach, we introduce an intermediate problem called Pandora’s

Box with costly outside option T (also called threshold), denoted by PB≤T . In this version

the objective is to minimize the cost of Ąnding a value ≤ T , while we have the extra option

to quit searching by opening an outside option box of cost T . We say that a scenario is

covered in a given run of the algorithm if it does not choose the outside option box T .

We show that Pandora’s Box can be reduced to PB≤T with a logarithmic loss in

approximation factor, and then PB≤T can be reduced to Min Sum Set Cover with

Feedback with a constant factor loss. The following two results capture the details of these

reductions.

▷ Claim 9. If there exists an α(n, m) approximation algorithm for UMSSCf then there

exists an 3α(n + m, m2)-approximation for UPB≤T .

APPROX/RANDOM 2023



26:10 Approximating Pandora’s Box with Correlations

▶ Main Lemma 10. Given a polynomial-time α(n, m)-approximation algorithm for UPB≤T ,

there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

The relationship between PB≤T and Min Sum Set Cover with Feedback is relatively

straightforward and requires explicitly relating the structure of feedback in the two problems.

We describe the details in Section A of the Appendix.

Putting it all together. The proof of Theorem 8 follows by combining Claim 9 with

Lemmas 11 and 10 presented in the following sections. Proofs of Claims 7, 9 deferred to

Section A of the Appendix. The rest of this section is devoted to proving Lemmas 11 and 10.

4.1 Reducing Pandora’s Box to PB≤T

Recall that a solution to Pandora’s Box involves two components ; (1) the order in which

to open boxes and (2) a stopping rule. The goal of the reduction to PB≤T is to simplify

the stopping rule of the problem, by making values either 0 or ∞, therefore allowing us to

focus on the order in which boxes are opened, rather than which value to stop at. We start

by presenting our main tool, a reduction to Min Sum Set Cover with Feedback in

Section 4.1.1 and then improve upon that to reduce from the uniform version of MSSCf

(Section 4.1.2).

4.1.1 Main Tool

The high level idea in this reduction is that we repeatedly run the algorithm for PB≤T with

increasingly larger value of T with the goal of covering some mass of scenarios at every step.

The thresholds for every run have to be cleverly chosen to guarantee that enough mass is

covered at every run. The distributions on the boxes remain the same, and this reduction

does not increase the number of boxes, therefore avoiding the issues faced by the naive

reduction given in the full version of the paper. Formally, we show the following lemma.

▶ Main Lemma 11. Given a polynomial-time α(n, m)-approximation algorithm for PB≤T ,

there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

Algorithm 1 Reduction from PB to PB≤T .

Input: Oracle A(T ) for PB≤T , set of all scenarios S.

1 i← 0 // Number of current Phase

2 while S ≠ ∅ do

3 Use A to Ąnd smallest Ti via Binary Search s.t.

Pr [accepting the outside option Ti] ≤ 0.2

4 Call the oracle A(Ti) on set S to obtain policy πi

5 S ← S\ {scenarios with total cost ≤ Ti}

6 end

7 for i← 0 to ∞ do

8 Run policy πi until it terminates and selects a box, or accumulates probing cost

Ti.
9 end

We will now analyze the policy produced by this algorithm.
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Proof of Main Lemma 11. We start with some notation. Given an instance I of PB, we

repeatedly run PB≤T in phases. Phase i consists of running PB≤T with threshold Ti on a

sub instance of the original problem where we are left with a smaller set of scenarios, with

their probabilities reweighted to sum to 1. Call this set of scenarios Si for phase i and the

corresponding instance Ii. After every phase i, we remove the probability mass that was

covered5, and run PB≤T on this new instance with a new threshold Ti+1. In each phase, the

boxes, costs and values remain the same, but the stopping condition changes: thresholds Ti

increase in every subsequent phase. The thresholds are chosen such that at the end of each

phase, 0.8 of the remaining probability mass is covered. The reduction process is formally

shown in Algorithm 1.

Accounting for the cost of the policy. We Ąrst note that the total cost of the policy in

phase i conditioned on reaching that phase is at most 2Ti: if the policy terminates in that

phase, it selects a box with value at most Ti. Furthermore, the policy incurs probing cost at

most Ti in the phase. We can therefore bound the total cost of the policy as ≤ 2
∑∞

i=0(0.2)iTi.

We will now relate the thresholds Ti to the cost of the optimal PB policy for I. To this end,

we deĄne corresponding thresholds for the optimal policy that we call p-thresholds. Let π∗
I

denote the optimal PB policy for I and let cs denote the cost incurred by π∗
I when scenario

i is realized. A p-threshold is the minimum possible threshold T such that at most p mass of

the scenarios has cost more than T in PB, formally deĄned below.

▶ Definition 12 (p-Threshold). Let I be an instance of PB and cs be the cost of scenario

s ∈ S in π∗
I , we deĄne the p-threshold as

tp = min¶T : Pr [cs > T ] ≤ p♢.

The following two lemmas relate the cost of the optimal policy to the p-thresholds, and

the p-thresholds to the thresholds Ti our algorithm Ąnds. The proofs of both lemmas are

deferred to Section A.1 of the Appendix. We Ąrst formally deĄne a sub-instance of the given

Pandora’s Box instance.

▶ Definition 13 (Sub-instance). Let I be an instance of ¶PB≤T , PB♢ with set of scenarios

SI each with probability pI
s . For any q ∈ [0, 1] we call I ′ a q-sub instance of I if SI′ ⊆ SI

and
∑

s∈S
I′

pI
s = q.

▶ Lemma 14 (Optimal Lower Bound). Let I be the instance of PB. For any q < 1, any

α > 1, and β ≥ 2, for the optimal policy π∗
I for PB it that

cost(π∗
I) ≥

∞
∑

i=0

1

βα
· (q)

i
tqi/βα.

▶ Lemma 15. Given an instance I of PB; an α-approximation algorithm AT to PB≤T ;

and any q < 1 and β ≥ 2, suppose that the threshold T satisĄes

T ≥ tq/(βα) + βα
∑

cs∈[tq,tq/(βα)]
s∈S

cs
ps

q
.

Then if AT is run on a q-sub instance of I with threshold T , at most a total mass of (2/β)q

of the scenarios pick the outside option box T .

5 Recall, a scenario is covered if it does not choose the outside option box.
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Calculating the thresholds. For every phase i we choose a threshold Ti such that Ti =

min¶T : Pr [cs > T ] ≤ 0.2♢ i.e. at most 0.2 of the probability mass of the scenarios are not

covered. In order to select this threshold, we do binary search starting from T = 1, running

every time the α-approximation algorithm for PB≤T with outside option box T and checking

how many scenarios select it. We denote by Inti = [t(0.2)i , t(0.2)i/(10α)] the relevant interval

of costs at every run of the algorithm, then by Lemma 15 for β = 10, we know that for

remaining total probability mass (0.2)i, any threshold which satisĄes

Ti ≥ t(0.2)i−1/10a + 10α
∑

s∈S
cs∈Inti

cs
ps

(0.2)i

also satisĄes the desired covering property, i.e. at least 0.8 mass of the current scenarios is

covered. Therefore the threshold Ti found by our binary search satisĄes the following

Ti = t(0.2)i−1/10a + 10α
∑

s∈S
cs∈Inti

cs
ps

(0.2)i
. (1)

Bounding the final cost. To bound the Ąnal cost, we recall that at the end of every phase

we cover 0.8 of the remaining scenarios. Furthermore, we observe that each threshold Ti is

charged in the above Equation (1) to optimal costs of scenarios corresponding to intervals of

the form Inti = [t(0.2)i , t(0.2)i/(10α)]. Note that these intervals are overlapping. We therefore

get

cost(πI) ≤ 2

∞
∑

i=0

(0.2)i
Ti

= 2

∞
∑

i=0






(0.2)i

t(0.2)i−1/10a + 10α
∑

s∈S
cs∈Inti

csps






From equation (1)

≤ 4 · 10απ
∗
I + 20α

∞
∑

i=0

∑

s∈S
cs∈Inti

csps Using Lemma 14 for β = 10, q = 0.2

≤ 40α log α · π
∗
I .

Where the last inequality follows since each scenario with cost cs can belong to at most log α

intervals, therefore we get the theorem. ◀

Notice the generality of this reduction; the distributions on the values are preserved, and

we did not make any more assumptions on the scenarios or values throughout the proof.

Therefore we can apply this tool regardless of the type of correlation or the way it is given

to us, e.g. we could be given a parametric distribution, or an explicitly given distribution, as

we see in the next section.

4.1.2 An Even Stronger Tool

Moving one step further, we show that if we instead of PB≤T we had an α-approximation

algorithm for UPB≤T we can obtain the same guarantees as the ones described in Lemma 11.

Observe that we cannot directly use Algorithm 1 since the oracle now requires that all

scenarios have the same probability, while this might not be the case in the initial PB

instance. The theorem stated formally follows.
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▶ Main Lemma 10. Given a polynomial-time α(n, m)-approximation algorithm for UPB≤T ,

there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

We are going to highlight the differences with the proof of Main Lemma 11, and show

how to change Algorithm 1 to work with the new oracle, that requires the scenarios to have

uniform probability. The function Expand shown in Algorithm 2 is used to transform the

instance of scenarios to a uniform one where every scenario has the same probability by

creating multiple copies of the more likely scenarios. The function is formally described in

Algorithm 3 in Section A.2 of the Appendix, alongside the proof of Main Lemma 10.

Algorithm 2 Reduction from PB to UPB≤T .

Input: Oracle A(T ) for UPB≤T , set of all scenarios S, c = 1/10, δ = 0.1.

1 i← 0 // Number of current Phase

2 while S ≠ ∅ do

3 Let L =
{

s ∈ S : ps ≤ c · 1
♣S♣

}

// Remove low probability scenarios

4 S ′ = S \ L

5 UI = Expand(S ′)

6 In instance UI use A to Ąnd smallest Ti via Binary Search s.t.

Pr [accepting Ti] ≤ δ

7 Call the oracle A(Ti)

8 S ←
(

S ′ \ ¶s ∈ S ′ : cs ≤ Ti♢
)

∪ L

9 end

5 Connecting MSSCf and Optimal Decision Tree

In this section we establish the connection between Min Sum Set Cover with Feedback

and Optimal Decision Tree. We show that the uniform versions of these problems are

equivalent up to constant factors in approximation ratio. The proofs of this section are

deferred to the full version of the paper in ArXiv.

▷ Claim 16. If there exists an α(n, m)-approximation algorithm for DT (UDT) then there

exists a (1 + α(n, m))-approximation algorithm for MSSCf (resp. UMSSCf ).

▶ Theorem 17 (Uniform Decision Tree to UMSSCf ). Given an α(m, n)-approximation

algorithm for UMSSCf then there exists an O(α(n + m, m))-approximation algorithm for

UDT.

The formal proofs of these statements can be found in the full version, here we sketch

the main ideas.

One direction of this equivalence is again easy to see. The main difference between

Optimal Decision Tree and MSSCf is that the former requires scenarios to be exactly

identiĄed whereas in the latter it suffices to simply Ąnd an element that covers the scenario.

In particular, in MSSCf an algorithm could cover a scenario without identifying it by, for

example, covering it with an element that covers multiple scenarios. To reduce MSSCf to

DT we simply introduce extra feedback into all of the elements of the MSSCf instance

such that the elements isolate any scenarios they cover. (That is, if the algorithm picks an

element that covers some subset of scenarios, this element provides feedback about which of

the covered scenarios materialized.) This allows us to relate the cost of isolation and the

cost of covering to within the cost of a single additional test, implying Claim 16.
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Proof Sketch of Theorem 17. The other direction is more complicated, as we want to

ensure that covering implies isolation. Given an instance of UDT, we create a special element

for each scenario which is the unique element covering the scenario and also isolates the

scenario from all other scenarios. The intention is that an algorithm for MSSCf on this

new instance only chooses the special isolating element in a scenario after it has identiĄed

the scenario. If that happens, then the algorithmŠs policy is a feasible solution to the UDT

instance and incurs no extra cost. The problem is that an algorithm for MSSCf over the

modiĄed instance may use the special covering element before isolating a scenario. We argue

that this choice can be ŞpostponedŤ in the policy to a point at which isolation is nearly

achieved without incurring too much extra cost. This involves careful analysis of the policyŠs

decision tree and we present details in the appendix.

Why our reduction does not work for DT. Our analysis above heavily uses the fact

that the probabilities of all scenarios in the UDT instance are equal. This is because

the ŞpostponementŤ of elements charges increased costs of some scenarios to costs of other

scenarios. In fact, our reduction above fails in the case of non-uniform distributions over

scenarios Ű it can generate an MSSCf instance with optimal cost much smaller than that of

the original DT instance.

To see this, consider an example with m scenarios where scenarios 1 through m − 1

happen with probability ε/(m− 1) and scenario m happens with probability 1− ε. There are

m− 1 tests of cost 1 each. Test i for i ∈ [m− 1] isolates scenario i from all others. Observe

that the optimal cost of this DT instance is at least (1− ε)(m− 1) as all m− 1 tests need to

be run to isolate scenario m. Our construction of the MSSCf instance adds another isolating

test for scenario m. A solution to this instance can use this new test at the beginning to

identify scenario m and then run other tests with the remaining ε probability. As a result,

it incurs cost at most (1− ε) + ε(m− 1), which is a factor of 1/ε cheaper than that of the

original DT instance.

6 Mixture of Product Distributions

In this section we switch gears and consider the case where we are given a mixture of m

product distributions. Observe that using the tool described in Section 4.1.1, we can reduce

this problem to PB≤T . This now is equivalent to the noisy version of DT [28, 40] where for

a speciĄc scenario, the result of each test is not deterministic and can get different values

with different probabilities.

Comparison with previous work. previous work on noisy decision tree, considers limited

noise models or the runtime and approximation ratio depends on the type of noise. For

example in the main result of [40], the noise outcomes are binary with equal probability. The

authors mention that it is possible to extend the following ways:

to probabilities within [δ, 1− δ], incurring an extra 1/δ factor in the approximation

to non-binary noise outcomes, incurring an extra at most m factor in the approximation

Additionally, their algorithm works by expanding the scenarios for every possible noise

outcome (e.g. to 2m for binary noise). In our work the number of noisy outcomes does not

affect the number of scenarios whatsoever.

In our work, we obtain a constant approximation factor, that does not depend in

any way on the type of the noise. Additionally, the outcomes of the noisy tests can be

arbitrary, and do not affect either the approximation factor or the runtime. We only require
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a separability condition to hold ; the distributions either differ enough or are exactly the

same. Formally, we require that for any two scenarios s1, s2 ∈ S and for every box i, the

distributions Dis1
and Dis2

satisfy ♣Dis1
−Dis2

♣ ∈ R≥ε ∪ ¶0♢, where ♣A − B♣ is the total

variation distance of distributions A and B.

6.1 A DP Algorithm for noisy PB≤T

We move on to designing a dynamic programming algorithm to solve the PB≤T problem, in

the case of a mixtures of product distributions. The guarantees of our dynamic programming

algorithm are given in the following theorem.

▶ Theorem 18. For any β > 0, let πDP and π∗ be the policies produced by Algorithm DP(β)

described by Equation (2) and the optimal policy respectively and UB = m2

ε2 log m2T
cminβ . Then

it holds that

c(πDP) ≤ (1 + β)c(π∗).

and the DP runs in time nUB, where n is the number of boxes and cmin is the minimum cost

box.

Using the reduction described in Section 4.1.1 and the previous theorem we can get a

constant-approximation algorithm for the initial PB problem given a mixture of product

distributions. Observe that in the reduction, for every instance of PB≤T it runs, the chosen

threshold T satisĄes that T ≤ (β + 1)c(π∗
T )/0.2 where π∗

T is the optimal policy for the

threshold T . The inequality holds since the algorithm for the threshold T is a (β + 1)

approximation and it covers 80% of the scenarios left (i.e. pays 0.2T for the rest). This is

formalized in the following corollary.

▶ Corollary 19. Given an instance of PB on m scenarios, and the DP algorithm described

in Equation (2), then using Algorithm 1 we obtain an O(1)-approximation algorithm for PB

that runs in nÕ(m2/ε2).

Observe that the naive DP, that keeps track of all the boxes and possible outcomes, has

space exponential in the number of boxes, which can be very large. In our DP, we exploit

the separability property of the distributions by distinguishing the boxes in two different

types based on a given set of scenarios. Informally, the informative boxes help us distinguish

between two scenarios, by giving us enough TV distance, while the non-informative always

have zero TV distance. The formal deĄnition follows.

▶ Definition 20 (Informative and non-informative boxes). Let S ⊆ S be a set of scenarios.

Then we call a box k informative if there exist si, sj ∈ S such that

♣Dksi
−Dksj

♣ ≥ ε.

We denote the set of all informative boxes by IB(S). Similarly, the boxes for which the above

does not hold are called non-informative and the set of these boxes is denoted by NIB(S).

Recursive calls of the DP. Our dynamic program chooses at every step one of the following

options:

1. open an informative box: this step contributes towards eliminating improbable scenarios.

From the deĄnition of informative boxes, every time such a box is opened, it gives TV

distance at least ε between at least two scenarios, making one of them more probable
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than the other. We show (Lemma 21) that it takes a Ąnite amount of these boxes to

decide, with high probability, which scenario is the one realized (i.e. eliminating all but

one scenarios).

2. open a non-informative box: this is a greedy step; the best non-informative box to open

next is the one that maximizes the probability of Ąnding a value smaller than T . Given

a set S of scenarios that are not yet eliminated, there is a unique next non-informative

box which is best. We denote by NIB∗(S) the function that returns this next best

non-informative box. Observe that the non-informative boxes do not affect the greedy

ordering of which is the next best, since they do not affect which scenarios are eliminated.

State space of the DP. the DP keeps track of the following three quantities:

1. a list M which consists of sets of informative boxes opened and numbers of non-

informative ones opened in between the sets of informative ones. SpeciĄcally, M has the

following form: M = S1♣x1♣S2♣x2♣ . . . ♣SL♣xL
6 where Si is a set of informative boxes, and

xi ∈ N is the number of non-informative boxes opened exactly after the boxes in set Si.

We also denote by IB(M) the informative boxes in the list M .

In order to update M at every recursive call, we either append a new informative box bi

opened (denoted by M ♣bi) or, when a non-informative box is opened, we add 1 at the

end, denoted by M + 1.

2. a list E of m2 tuples of integers (zij , tij), one for each pair of distinct scenarios (si, sj)

with i, j ∈ [m]. The number zij keeps track of the number of informative boxes between

si and sj that the value discovered had higher probability for scenario si, and the number

tij is the total number of informative for scenarios si and sj opened. Every time an

informative box is opened, we increase the tij variables for the scenarios the box was

informative and add 1 to the zij if the value discovered had higher probability in si.

When a non-informative box is opened, the list remains the same.We denote this update

by E++.

3. a list S of the scenarios not yet eliminated. Every time an informative test is performed,

and the list E updated, if for some scenario si there exists another scenario sj such that

tij > 1/ε2 log(1/δ) and ♣zij − E[zij ♣si]♣ ≤ ε/2 then sj is removed from S, otherwise si is

removed7. This update is denoted by S++.

Base cases. if a value below T is found, the algorithm stops. The other base case is when

♣S♣ = 1, which means that the scenario realized is identiĄed, we either take the outside option

T or search the boxes for a value below T , whichever is cheapest. If the scenario is identiĄed

correctly, the DP Ąnds the expected optimal for this scenario. We later show that we make a

mistake only with low probability, thus increasing the cost only by a constant factor. We

denote by Nat(·, ·, ·) the ŞnatureŠsŤ move, where the value in the box we chose is realized,

and Sol(·, ·, ·) is the minimum value obtained by opening boxes. The recursive formula is

shown below.

Sol(M, E, S) =



















min(T, cNIB∗(S) + Nat(M+1, E, S)) if ♣S♣ = 1

min
(

T, min
i∈IB(M)

(ci+ Nat(M ♣i, E, S))

, cNIB∗(S) + Nat(M+1, E, S)
)

else

6 If bi for i ∈ [n] are boxes, the list M looks like this: b3b6b13|5|b42b1|6|b2
7 This is the process of elimination in the proof of Lemma 21
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Nat(M, E, S) =

{

0 if vlast box opened ≤ T

Sol(M, E++, S++) else
(2)

The Ąnal solution is DP(β) = Sol(∅, E0,S), where E0 is a list of tuples of the form (0, 0),

and in order to update S we set δ = βcmin/(m2T ).

▶ Lemma 21. Let s1, s2 ∈ S be any two scenarios. Then after opening
log(1/δ)

ε2 informative

boxes, we can eliminate one scenario with probability at least 1− δ.
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A Proofs from Section 4

▷ Claim 7. If there exists an α(n, m)-approximation algorithm for PB then there exists a

α(n, m)-approximation for MSSCf .

Proof of Claim 7. Let I be an instance of MSSCf . We create an instance I ′ of PB the

following way: for every set sj of I that gives feedback fij when element ei is selected,

we create a scenario sj with the same probability and whose value for box i, is either 0 if

ei ∈ sj or ∞fij
otherwise, where ∞fij

denotes an extremely large value which is different for

different values of the feedback fij . Observe that any solution to the PB instance gives a

solution to the MSSCf at the same cost and vice versa. ◁
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▷ Claim 9. If there exists an α(n, m) approximation algorithm for UMSSCf then there

exists an 3α(n + m, m2)-approximation for UPB≤T .

Before formally proving this claim, recall the correspondence of scenarios and boxes of

PB-type problems, to elements and sets of MSSC-type problems. The idea for the reduction

is to create T copies of sets for each scenario in the initial PB≤T instance and one element

per box, where if the price a box gives for a scenario i is < T then the corresponding element

belongs to all T copies of the set i. The Ąnal step is to ŞsimulateŤ the outside option T , for

which we we create T elements where the kŠth one belongs only to the kŠth copy of each set.

Proof of Claim 9. Given an instance I of UPB≤T with outside cost box bT , we construct the

instance I ′ of UMSSCf as follows.

Construction of the instance. For every scenario si in the initial instance, we create T

sets denoted by sik where k ∈ [T ]. Each of these sets has equal probability pik = 1/(mT ).

We additionally create one element eB per box B, which belongs to every set sik for all k iff

vBi < T in the initial instance, otherwise gives feedback vBi. In order to simulate box bT

without introducing an element with non-unit cost, we use a sequence of T outside option

elements eT
k where eT

k ∈ sik for all i ∈ [m] i.e. element eT
ik belongs to Şcopy kŤ of every set 8.

Construction of the policy. We construct policy πI by ignoring any outside option elements

that πI′ selects until πI′ has chosen at least T/2 such elements, at which point πI takes the

outside option box bT . To show feasibility we need that for every scenario either bT is chosen

or some box with vij ≤ T . If bT is not chosen, then less than T/2 isolating elements were

chosen, therefore in instance of UMSSCf some sub-sets will have to be covered by another

element eB, corresponding to a box. This corresponding box however gives a value ≤ T in

the initial UPB≤T instance.

Approximation ratio. Let si be any scenario in I. We distinguish between the following

cases, depending on whether there are outside option tests on siŠs branch.

1. No outside option tests on siŠs branch: scenario si contributes equally in both policies,

since absence of isolating elements implies that all copies of scenario si will be on the

same branch (paying the same cost) in both πI′ and πI

2. Some outside option tests on iŠs branch: for this case, from Lemma 22 we have that

c(πI(si)) ≤ 3c(πI′(si)).

Putting it all together we get

c(πI) ≤ 3c(πI′) ≤ 2α(n + m, m2)c(π∗
I′) ≤ 3α(n + m, m2)c(π∗

I),

where the second inequality follows since we are given an α approximation and the last

inequality since if we are given an optimal policy for UPB≤T , the exact same policy is also

feasible for any I ′ instance of UDT, which has cost at least c(π∗
I′). We also used that T ≤ m,

since otherwise the initial policy would never take the outside option. ◁

▶ Lemma 22. Let I be an instance of UPB≤T , and I ′ the instance of UMSSCf constructed

by the reduction of Claim 9. For a scenario si, if there is at least one outside option test run

in πI , then c(πI(si)) ≤ 3c(πI′(si)).

8 Observe that there are exactly T possible options for k for any set. Choosing all these elements costs T
and covers all sets thus simulating bT .
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Proof. For the branch of scenario si, denote by M the box elements chosen before there

were T/2 outside option elements, and by N the number of outside option elements in πI′ .

Note that the smallest cost is achieved if all the outside option elements are chosen Ąrst9.

The copies of scenario si can be split into two groups; those that were isolated before T/2

outside option elements were chosen, and those that were isolated after. We distinguish

between the following cases, based on the value of N .

1. N ≥ T/2: in this case each of the copies of si that are isolated after pays at least M +T/2

for the initial box elements and the initial sequence of outside option elements. For the

copies isolated before, we lower bound the cost by choosing all outside option elements

Ąrst.

The cost of all the copies in πI′ then is at least

Ki
∑

j=1

T/2
∑

k=1

cpℓ

T
k +

Ki
∑

j=1

T
∑

k=T/2+1

cpℓ

T
(T/2 + M) = cpi

T
2 ( T

2 + 1)

2T
+ cpi

T
2 (T/2 + M)

T

≥ cpi(3T/8 + M/2)

≥
3

8
pi(T + M)

Since N ≥ T/2, policy πI will take the outside option box for si, immediately after

choosing the M initial boxes corresponding to the box elements. So, the total contribution

si has on the expected cost of πI is at most pi(M + T ) in this case. Hence, we have that

siŠs contribution in πI is at most 8
3 ≤ 3 times siŠs contribution in πI′ .

2. N < T/2: policy πI will only select the M boxes (corresponding to box elements) and

this was sufficient for Ąnding a value less than T . The total contribution of si on c(πI) is

exactly piM . On the other hand, since N < T/2 we know that at least half of the copies

will pay M for all of the box elements. The cost of all the copies is at least

Ki
∑

j=1

T
∑

k=N

cpℓ

T
M = cpi

T −N

T
M ≥ cpiM/2,

therefore, the contribution si has on c(πI′) is at least cpiM/2. Hence, we have c(πI) ≤

3c(πI′). ◀

A.1 Proofs from subsection 4.1.1

▶ Lemma 15. Given an instance I of PB; an α-approximation algorithm AT to PB≤T ;

and any q < 1 and β ≥ 2, suppose that the threshold T satisĄes

T ≥ tq/(βα) + βα
∑

cs∈[tq,tq/(βα)]
s∈S

cs
ps

q
.

Then if AT is run on a q-sub instance of I with threshold T , at most a total mass of (2/β)q

of the scenarios pick the outside option box T .

9 Since the outside option tests cause some copies to be isolated and so can reduce their cost.
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Proof. Consider a policy πIq which runs π∗
I on the instance Iq; and for scenarios with cost

cs ≥ tq/(βα) aborts after spending this cost and chooses the outside option T . The cost of

this policy is:

c(π∗
Iq

) ≤ c(πIq
) =

T + tq/(βα)

βα
+

∑

cs∈[tq,tq/(10α)]
s∈S

cs
ps

q
, (3)

By our assumption on T , this cost is at most 2T/βα. On the other hand since AT is an

α-approximation to the optimal we have that the cost of the algorithmŠs solution is at most

αc(π∗
Iq

) ≤
2T

β

Since the expected cost of AT is at most 2T/β, then using MarkovŠs inequality, we get that

Pr [cs ≥ T ] ≤ (2T/β)/T = 2/β. Therefore, AT covers at least 1− 2/β mass every time. ◀

▶ Lemma 14 (Optimal Lower Bound). Let I be the instance of PB. For any q < 1, any

α > 1, and β ≥ 2, for the optimal policy π∗
I for PB it that

cost(π∗
I) ≥

∞
∑

i=0

1

βα
· (q)

i
tqi/βα.

Proof. In every interval of the form Ii = [tqi , tqi/(βα)] the optimal policy for PB covers at

least 1/(βα) of the probability mass that remains. Since the values belong in the interval Ii

in phase i, it follows that the minimum possible value that the optimal policy might pay is

tqi , i.e. the lower end of the interval. Summing up for all intervals, we get the lemma. ◀

A.2 Proofs from subsection 4.1.2

Algorithm 3 Expand: rescales and returns an instance of UPB.

Input: Set of scenarios S

1 Scale all probabilities by c such that c
∑

s∈S ps = 1

2 Let pmin = mins∈S ps

3 S ′ = for each s ∈ S create ps/pmin copies

4 Each copy has probability 1/♣S ′♣

5 return S ′

▶ Main Lemma 10. Given a polynomial-time α(n, m)-approximation algorithm for UPB≤T ,

there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

Proof. The proof in this case follows the steps of the proof of Theorem 11, and we are only

highlighting the changes. The process of the reduction is the same as Algorithm 1 with

the only difference that we add two extra steps; (1) we initially remove all low probability

scenarios (line 3 - remove at most c fraction) and (2) we add them back after running UPB≤T

(line 8). The reduction process is formally shown in Algorithm 2.

Calculating the thresholds. For every phase i we choose a threshold Ti such that

Ti = min¶T : Pr [cs > T ] ≤ δ♢ i.e. at most δ of the probability mass of the scen-

arios are not covered, again using binary search as in Algorithm 1. We denote by
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Inti = [t(1−c)(δ+c)i , t(1−c)(δ+c)i/(βα)] the relevant interval of costs at every run of the al-

gorithm, then by Lemma 15, we know that for remaining total probability mass (1−c)(δ +c)i,

any threshold which satisĄes

Ti ≥ t(1−c)(δ+c)i−1/βα + βα
∑

s∈S
cs∈Inti

cs
ps

(1− c)(δ + c)i

also satisĄes the desired covering property, i.e. at least (1− 2/β)(1− c)(δ + c) mass of the

current scenarios is covered. Therefore the threshold Ti found by our binary search satisĄes

Ti = t(1−c)(δ+c)i−1/βα + βα
∑

s∈S
cs∈Inti

cs
ps

(1− c)(δ + c)i
. (4)

Following the proof of Theorem 11, Constructing the final policy and Accounting

for the values remain exactly the same as neither of them uses the fact that the scenarios

are uniform.

Bounding the final cost. Using the guarantee that at the end of every phase we cover

(δ + c) of the scenarios, observe that the algorithm for PB≤T is run in an interval of the

form Inti = [t(1−c)(δ+c)i , t(1−c)(δ+c)i/(βα)]. Note also that these intervals are overlapping.

Bounding the cost of the Ąnal policy πI for all intervals we get

πI ≤
∞

∑

i=0

(1− c)(δ + c)iTi

=
∞

∑

i=0






(1− c)(δ + c)it(1−c)(δ+c)i−1/βα + βα

∑

s∈S
cs∈Inti

csps






From equation (4)

≤ 2 · βαπ∗
I + βα

∞
∑

i=0

∑

s∈S
cs∈Inti

csps Using Lemma 14

≤ 2βα log α · π∗
I ,

where the inequalities follow similarly to the proof of Theorem 11. Choosing c = δ = 0.1 and

β = 20 we get the theorem. ◀
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