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Abstract

Large-scale training of modern deep learning models
heavily relies on publicly available data on the web. This
potentially unauthorized usage of online data leads to con-
cerns regarding data privacy. Recent works aim to make
unlearnable data for deep learning models by adding small,
specially designed noises to tackle this issue. However,
these methods are vulnerable to adversarial training (AT)
and/or are computationally heavy. In this work, we pro-
pose a novel, model-free, Convolution-based Unlearnable
DAtaset (CUDA) generation technique. CUDA is generated
using controlled class-wise convolutions with filters that are
randomly generated via a private key. CUDA encourages
the network to learn the relation between filters and labels
rather than informative features for classifying the clean
data. We develop some theoretical analysis demonstrat-
ing that CUDA can successfully poison Gaussian mixture
data by reducing the clean data performance of the optimal
Bayes classifier. We also empirically demonstrate the effec-
tiveness of CUDA with various datasets (CIFAR-10, CIFAR-
100, ImageNet-100, and Tiny-ImageNet), and architectures
(ResNet-18, VGG-16, Wide ResNet-34-10, DenseNet-121,
DelT, EfficientNetV2-S, and MobileNetV2). Our experi-
ments show that CUDA is robust to various data augmenta-
tions and training approaches such as smoothing, AT with
different budgets, transfer learning, and fine-tuning. For
instance, training a ResNet-18 on ImageNet-100 CUDA
achieves only 8.96%, 40.08%, and 20.58% clean test accu-
racies with empirical risk minimization (ERM), L., AT, and
Lo AT, respectively. Here, ERM on the clean training data
achieves a clean test accuracy of 80.66%. CUDA exhibits
unlearnability effect with ERM even when only a fraction
of the training dataset is perturbed. Furthermore, we also
show that CUDA is robust to adaptive defenses designed
specifically to break it.

1. Introduction

Modern deep learning training frameworks heavily de-
pend on large-scale datasets for achieving high accuracy.
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This encourages deep learning practitioners to scrape data
from the web for data collection [8,31,39,42]. Since a lot
of the data is publicly available online, sometime this scrap-
ping of data is unauthorized. For instance, a recent arti-
cle [15] discloses that a private company trained a commer-
cial face recognition system using over three billion facial
images collected from the internet without any user consent.
Although such massive data can significantly boost the per-
formance of deep learning models, it raises serious concerns
about data privacy and security.

To prevent the unauthorized usage of personal data, a se-
ries of recent papers [10, 17,55] propose to poison data with
additive noise. The idea is to make datasets unlearnable for
deep learning models by ensuring that they learn the cor-
respondence between noises and labels. Thereby, they do
not learn much useful information about the clean data, sig-
nificantly degrading their clean test accuracy. However, in
recent works [11, 17,49], these unlearnability methods are
shown to be vulnerable to adversarial training (AT) frame-
works [34]. Motivated by this problem, Fu e al. [11] devel-
oped Robust Error-Minimization (REM) noises to make un-
learnable data that is protected from AT. While the authors
show the effectiveness of REM in multiple scenarios, we
demonstrate that these methods are still not robust against
different data augmentations or training settings (see Sec-
tion 3.2). Furthermore, current unlearnability frameworks
[10,11,17,55] are model-dependent and require expensive
optimization steps on deep learning models to obtain the
additive noises. They also need to train the deep learning
models from scratch to obtain noises for each new data set.

In this paper, we propose a novel Convolution-based
Unlearnable DAtaset (CUDA) generation technique. We
address limitations of existing unlearnable data generation
techniques in Section 3.2 and motivate our CUDA tech-
nique in Section 3.3. For generating CUDA, an attacker
randomly generates different convolutional filters for each
class in the dataset using a private key or seed value. These
filters are used to perform controlled class-wise convolu-
tions on the clean training dataset to obtain CUDA. As we

Code available here: https://github.com/vinusankars/
Convolution-based-Unlearnability
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Figure 1. CIFAR-10 CUDA images from each of the 10 classes convolved using convolutional filters generated with blur parameter ps.
As seen in the plot, a higher p;, value results in better unlearnability (lower clean test accuracy), but increased blurring. CIFAR-10 CUDA
does not break with ERM for all the three p;, values. In Section 5.2, we propose Deconvolution-based Adversarial Training (DAT) that we
specifically design to break CUDA. DAT adversarially learns class-wise filters to deconvolve CUDA images. However, CIFAR-10 CUDA
with p, € {0.3,0.5} does not break with DAT. Therefore, we select p, = 0.3 (lesser blurring) for CIFAR-10 CUDA as discussed in

Section 5.1. More details on DAT in supplementary material.

describe in Sections 3.3 and 5.2, CUDA generation per-
forms controlled convolutions using a blur parameter p;, to
ensure that the semantics of the dataset are preserved (see
Figure 1). CUDA generation with a lower blurring param-
eter p, adds less perceptible noises to clean samples. A
network trained by a defender on CUDA is encouraged to
learn the shortcut relation between class-wise convolutional
filters and labels rather than useful features for classifying
the clean data. Since the seed value for generating the filters
are private, its not possible for the defender to obtain clean
data from CUDA alone. Additionally, CUDA exhibits un-
learnability effect with ERM even when only a fraction of
the training dataset is perturbed (see Section 5). While the
existing unlearnability works use additive noises, CUDA
generation technique enjoys the advantage of introducing
multiplicative noises in the Fourier domain due to the con-
volution theorem (since convolution of signals is the same
as element-wise multiplication in the Fourier domain). This
lets CUDA generation add higher amounts of noise in the
image space, specifically along the edges in images, and
makes it resilient to AT with small additive noise budgets.
In Figure 2, with the help of t-SNE plots [51], we also find
that the noises added by CUDA generation is not linearly
separable while they are linearly separable for the existing
works on unlearnability [54].

In Section 4, we theoretically show that CUDA genera-
tion can successfully poison Gaussian mixture data by de-
grading the clean data accuracy of the optimal Bayes classi-
fier. We state our result informally below while the formal
version is presented in Theorem 2.

Theorem 1 (Informal) Let D denote a Gaussian mixture
data with two modes, Pp denote the optimal Bayes clas-
sifier trained on D, and tp(Pp) denote the accuracy of
the classifier Pp on D. Then, under some assumptions,
for every clean data D, there is a CUDA D such that

T’D(Pﬁ) < TD(PD).

Furthermore, our empirical experiments in Section 5
demonstrate the effectiveness of CUDA under various train-
ing scenarios such as ERM with various augmentations
and regularizations, AT with different budgets, randomized
smoothing [6, 22, 27], transfer learning, and fine-tuning.
For instance, training a ResNet-18 on CIFAR-10 CUDA
achieves only 18.48%, 44.4%, and 51.14% clean test ac-
curacies with ERM, L., AT, and Lo AT, respectively (see
Figure 2). Here, ERM on the clean training data achieves
a clean test accuracy of 94.66%. In addition, we also de-
sign adaptive defenses to investigate if CUDA breaks with
random or adversarial defense mechanisms. We find that
CUDA is robust to the adaptive defenses that we specifi-
cally design to break it.

2. Related Works

Our CUDA generation technique is intimately related
with adversarial and poisoning attacks. We first discuss
some of this literature and then explain their relation with
CUDA generation.

Adversarial attacks. Adversarial examples are spe-
cially designed examples that can fool deep learning mod-
els at test time [4, 12, 23,24, 47]. The adversary crafts
these examples by addlng error-maximizing noises to the
clean data. Even slightly perturbed data can serve as ad-
versarial examples. AT is a training framework proposed
to make deep learning models robust to adversarial exam-
ples [19,25,34,53,59]. AT is a min-max optimization prob-
lem where the model is trained to minimize loss on adver-
sarial examples that have the maximum loss.

Poisoning attacks. In data poisoning, an attacker aims
to hurt the deep learning model’s performance by perturbing
the training data [2,20,28,32,43,52]. The backdoor attack
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Figure 2. In the left column, clean test accuracies of ResNet-18 on clean CIFAR-10 and CIFAR-10 CUDA are shown. The lower the test
accuracy, the higher the effectiveness of unlearnability is. We show that CUDA is robust to various training settings such as ERM, Lo AT,
and L, AT. The error bars represent the standard deviation of test accuracy over 5 independent trials. CUDA is robust to the randomness
in its data generation process. In the right column, t-SNEs of the noises generated by REM (top) and CUDA (bottom) for the first 3 classes

of CIFAR-10 are plotted.

is a special type of poisoning attack where a trigger pattern
is injected into clean data at training time [5, 29, 33, 36].
The model trained on this data would misclassify an image
with a trigger pattern at test time. Gu et al. [13] and Li et
al. [30] use perceptible amounts of noises similar to CUDA
for data poisoning. However, backdoor attacks do not affect
the performance of the model on clean data [ 1, 5,43].

Recent literature utilize data poisoning to protect data
from being used for model training without authorization.
Yuan and Wu [55] use neural tangent kernels [18] to gen-
erate clean label attacks that can hurt the generalization of
deep learning models. Huang et al. [17] show that error-
minimizing noise addition can serve as a poisoning tech-
nique. Fowl et al. [10] show that error-maximizing noises
as well can make strong poison attacks. However, all these
poisoning techniques do not offer data protection with AT
[49,54]. Fu et al. [11] proposes a min-min-max optimiza-
tion technique to generate poisoned data that offers better
unlearnability effects with AT.

3. Convolution-based Ulearnable DAtaset
(CUDA)

In this section, first we give some preliminaries about
unlearnability. Then we discuss the limitations of the exist-
ing unlearnability methods. Finally, we propose our CUDA
generation technique.

3.1. Preliminaries

Let {(z;,y:)}"; ~ D" be the clean training dataset
where D is the clean data distribution, x; € X C R? are
the samples, and y; € Y are the corresponding labels. Sup-
pose a network is given as fy : X — ) where § € ©

is the network parameter and ¢ : ) x ) — R is the loss
function. ERM trains a network using a minimization prob-
lem of the form: ming 2 "7, ¢(fo(w;), ;). Standard L,,-
based AT (for p € R™) solves the following min-max prob-
lem: ming % Z?:l maXH(sz‘HpSPa g(fg(illl + 61‘), yz) where
Pa 1s the adversarial perturbation radius.

We will use 7p(#), with 6 the clean model parameter,
to denote the clean test accuracy of a model trained on
the clean training dataset (i.e., clean model accuracy). In
unlearnable dataset generation, an attacker uses an algo-
rithm A : X — X to generate an unlearnable dataset
{(&; = A(z;), )}, ~ D™ from the clean training data.
Here, the attacker assumes access to the full clean train-
ing datatset. Moreover, the attacker cannot modify the un-
learnable dataset once it is released publicly. A defender
trains using the unlearnable dataset to obtain a network f5.
The objective of the attacker is to design an unlearnable
dataset such that the defender’s model trained on the un-
learnable data achieves a clean test accuracy (i.e., unlearn-
able model accuracy) worse than the clean model accuracy

ie. 7p(0) < mp(0).

3.2. Limitations of existing works

Fuetal |
ods including Error-Minimization (EM) [
versarial Poisoning (TAP) [10], and Neural Tangent Gener-
alization Attack (NTGA) [55] are vulnerable to AT. Hence,
they propose a Robust Error-Minimization (REM) [11]
method that exploits a min-min-max optimization proce-
dure to generate unlearnable noises. REM first trains a noise
generator fj on data points {(x;,y;)}7_, over a loss func-

] show that the previous unlearnability meth-
], Targeted Ad-



Table 1. Time taken for generating unlearnable noises for various
datasets using different unlearnability techniques.

Dataset EM TAP NTGA REM CUDA

CIFAR-10 0.4 hr 0.5 hr 5.2 hrs 22.6hrs  10.8s
CIFAR-100 0.4 hr 0.5 hr 5.2 hrs 226hrs  15.5s

ImageNet-100  39hrs 52hrs 14.6hrs 51.2hrs  0.15 hr
tion £ as follows
1 n
min — min E; 7
0 nZnsruspu
=1
anax L(fp(t@i+8) +00).y). (D)
i I=>Pa

Here, T is a distribution over a set of transformations {¢ :
X — X}, p, is the defensive perturbation radius, and p,
controls the protection level of REM against AT. After train-
ing the noise generator, an unlearnable example (Z,y) is
generated via

& =ax + argmin E;op
ll6“l<pu

max ((fp(t(x +6%)+d%),y) (2
6¢l1<pa

First, note that REM is computationally expensive since
it needs to generate unlearnability noises through solving
optimization equation 2. Moreover, the existing techniques
are model-dependent and they require gradient-based train-
ing with a neural network to generate unlearnable data.
They also require neural network training from scratch for
every dataset that is to be made unlearnable. Table 1 shows
the amount of time required to generate various unlearn-
able datasets using NVIDIA® Tesla V100 GPU and 10 CPU
cores. CUDA generation is significantly faster than the
existing methods since it uses a model-free approach (no
training required). Furthermore, REM is sensitive to hy-
perparameters and norm-budgets of AT since they gener-
ate noises with fixed L., norm budgets. For instance, a
ResNet-18 trained on clean CIFAR-10 dataset achieves a
clean test data accuracy of 94.66%. L, AT with perturba-
tion radius p, = 4/255 on REM CIFAR-10 data (generated
using p,, = 8/255 and p, = 4/255) achieves only a clean
test accuracy of 48.16%. However, L., AT with perturba-
tion radius p, = 8/255 and Lo AT with perturbation radius
pa = 0.75 can achieve a clean test accuracy of 78.71% and
79.65%, respectively, on the same REM data. We also find
that ERM with a ResNet-18 on grayscaled REM CIFAR-10
images can achieve a high test accuracy of 70.76% on the
grayscaled CIFAR-10 test data. This shows that REM relies
upon the color space for poisoning clean data. Fu et al. [11]
also show that REM noise generated using ResNet-18 is not
transferable to DenseNet-121.

3.3. Our method: CUDA

The major limitations of the previous works are that they
are vulnerable to AT, and computationally expensive. We
think the major reason for the former limitation is the us-
age of small additive noises for unlearnability. AT is de-
signed to train in the presence of such additive noises. In-
creasing the budget of the amount of additive noises for un-
learnability might destroy the semantics of the images while
perturbing them. The latter limitation arises from the fact
that these methods are model-dependent and they require
multilevel optimizations. Hence, we are motivated to de-
sign a compute-efficient unlearnability method that is robust
to AT. CUDA technique can perform convolutions to add
larger amounts of noises to clean images without destroying
its semantics. This can help CUDA to be robust against AT.
CUDA uses randomly generated convolution filters for blur-
ring images from each class. This makes a model trained on
CUDA to learn shortcut relations between filters and labels.
We empirically support these claims in Section 5.2. Ad-
ditionally, randomly generating the filters makes our tech-
nique model-free. Since the keys for generating the filters
are private, it is not possible to reverse the blurring effect
in CUDA without having access to the corresponding clean
images. Hence, we assume that the data publisher deletes
the clean images after perturbing them. Moreover, CUDA
technique is a novel class of non-additive noise based poi-
soning attack that needs to be studied.

CUDA uses convolutional filters s; € RF** for each
class i € [1, K]. A random parameter, out of the k% param-
eters, in each of the filters is set to have a value of 1. The
rest of the filter parameters are randomly initialized from
a uniform distribution U/(0, p,) using a private seed where
Py 1s the blur parameter. Blur parameter controls the level
of blurring that occurs when an image x € [0, 1]d1*d2xds
is convolved with a filter s;. Here, di,ds, and d3 are the
height, width, and number of channels of the image, respec-
tively. For example, a CIFAR-10 image has a dimension of
32 x 32 x 3. The higher py is, the higher the blurring effect
is. Let & = x * s; where x belongs to class . The CUDA
data point for x is given by & = &/MAX(&). Rescaling
is performed to make sure that the CUDA image pixels lie
between 0 and 1. We find that the unlearnability effect gets
stronger with larger p;, and k values (see supplementary ma-
terial for details).

4. Theory for CUDA

In this section, we define a binary classification setup
similar to [19,35] to theoretically analyze CUDA. Let D be
a clean dataset modelled by an isotropic Gaussian mixture
model given by N(yp, I), where y € {£1} is the class
label, p € R4, and I € R4 ig the identity matrix. We
defer the proofs for all the lemmas and theorem to the sup-
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Figure 3. We plot the contour plots for clean test accuracy of the CUDA Bayes classifier p (given as Tp (]5)) for varying a, parameters
where y € {+1} in Figures 3(a—c). Gaussian mixture model A (ypu, I) denotes the clean data. In the top row, we use Lemmas 1 & 4 to
empirically generate the plots. In the bottom row, we plot the theoretical upper bound of 7p (P) we obtain using Theorem 2.

plementary material. The Bayes optimal decision boundary
for classifying this Gaussian mixture model is as follows.

Lemma 1 The Bayes optimal decision boundary for classi-
fying D is given by P(x) = p' = = 0. The accuracy of the
decision boundary P on the clean dataset D (i.e. Tp(P))
is equal to ¢(||p||2). Here, ¢(.) represents the CDF of the
standard normal distribution.

Now, to obtain D (i.e., CUDA), we perform class-wise 1D
convolutions. Here, we consider a class of 1D convolu-
tional filters with kernel size 3 of the form f, = [a,1,q]
where a € [0,0.5]. The convolution of signal z € R¢
with filter f, using stride 1 (denoted by x * f,), can be
treated as a matrix operation Ax. Here, A € R4xd g g
tri-diagonal Toeplitz matrix denoted by T'(d;a,1,a). For
CUDA generation, we use class-wise convolution matri-
ces A, = T(d;ay,1,a,) to perturb a clean data point
(z,y) ~ D to an unlearnable data point (A,x,y), where
a, € [0,0.5] for y € {£1}. Note that in CUDA, the la-
bels remain the same. Next we show that such a perturbed
dataset (i.e. CUDA) can be represented as a Gaussian mix-
ture model.

Lemma 2 A CUDA generated from clean data distribu-
tion D and the A,’s defined above can be modelled as
a Gaussian mixture model with the distribution given by

D = N(yAyp, A2).

To characterize the decision boundary for CUDA, we
need to use some properties of Toeplitz matrices from
Noschese et al. [37] given in the following Lemma 3.

Lemma 3 Any tri-diagonal Toeplitz matrix A
T(d;a,1,a) € R¥>4 with a € [0,0.5] can be diago-

nalized as A = QDQ where Q; ; = (%)1/2 sin (;fl)

and D is a diagonal matrix with D; ; = 1 + 2a cos (difrrl)
forl <5 <d.

Next we use Lemma 3 to show that the Bayes optimal deci-
sion boundary for classifying D is a quadratic plane.

Lemmad Let Ay = T(d;a_1,1,a_1) and A; =
T(d;a1,1,ay1). The Bayes optimal decision boundary for
classifying D is given by P(x) = T Az + b x + ¢ = 0,
where A = A" — A2, b = 2(A°1 + A;l)u_, and
c=25"7 [In(1+2a_1 cos(F5))~In(1+2a1 cos(22))].

Now we state a lemma regarding the tail of Gaussian
quadratic forms which plays a crucial role in our main re-
sult.

Lemma 5 Let || - || denote the operator norm, || - ||2 denote
the vector 2-norm, z ~ N'(0,1),and Z = z" Az+z"b+c
where A = QAQT. Using Chernoff bound, for any t > 0
and v € R,

P{Z-EZ >~} <
exp { qraay — t(7 + Tr(A) + [[bll2) }
|I — 2tA|2

Lemma 5 allows us to provide an upper bound for the ac-
curacy of the unlearnable decision boundary P on the clean

dataset D, given as 7p(P), in Theorem 2 below.

Theorem 2 (Main result) Let A = QAQ = A”] — A7
For any non-negative constants t1 and ty, the accuracy of
the unlearnable decision boundary P on the clean dataset



D can be upper-bounded as
T T 1
exp [tl(b w+p Ap+c— W)}
2T — 2t,A|2
1
. exp [tz (bTH —pAp—c— W)]
2|7 — 2ty A3

D (P) <

=p1+p2.

Furthermore, if u" Ap+b" p+c+Tr(A)+|2Ap+b|| < 0,
we have 7p(P) < (p1+1) < 1. Also, if —pu" Ap+b" p—
c—Tr(A)+||24p—b|| < 0, we have Tp(P) < 1(1+p2) <
1. Moreover, for any p # 0 and a_, € [0,0.5], 3a, such

that 7p(P) < mp(P).

Poisoning is effective only if the accuracy of the unlearn-
able model P is less than that of the clean model P on
the clean dataset D, that is, 7p(P) < 7p(P). To satisfy
this condition, we need to carefully select a,’s. In Theo-
rem 2, we formally state this condition'. Theorem 2 shows
that CUDA can effectively poison when there are two dis-
tinct modes in the clean Gaussian mixture data model. We
validate our theoretical claim through empirical analysis as
well (see Figure 3). Details for the analysis is given in sup-
plementary material. We find that our upper bound for the
clean test accuracy of CUDA classifiers are consistent with
our empirical analysis. In our experiments, we also find that
the unlearnability effect is stronger with a larger blur pa-
rameter. This effect is evident from Figure 3 where we find
that it is likely to get a lower 7p(P) with higher a, values.
These results are consistent with our experimental results in
Section 5 with CIFAR-10, CIFAR-100, and ImageNet-100

datasets.

5. Experiments

In this section, we first discuss our experimental setup.
More details on the setup is deferred to supplementary ma-
terial. We then show the robustness of CUDA generation
with various datasets and architectures. We also run vari-
ous experiments to analyze the effectiveness of CUDA un-
der different training techniques (ERM, AT with varying
budgets, randomized smoothing, transfer learning, and fine-
tuning) and augmentation techniques (mixup [58], grayscal-
ing, random blurring, cutout [9], cutmix [56], autoaugment
[7], and orthogonal regularization [3]). Finally, we also de-
sign adaptive defenses to test the robustness of CUDA. One
might think that CUDA filters can be obtained by adversar-
ially training them with the data. We show that CUDA is
robust to such adaptive defenses that we design.

'We note that the conditions g T At + b7 g+ ¢+ Tr(A) + ||2Ap +
blla < Oor —p T A + b — ¢ — Tr(A) + ||2Ap — b]2 < 0 can
always be satisfied by picking a sufficiently large p in the direction of an
eigenvector corresponding to a negative or positive eigenvalue of A (note
that A has negative and positive eigenvalues).

Table 2. Test accuracy (%) of ResNet-18 trained on various un-
learnable datasets. We use Loo AT with budget p, = 4/255.

Unlearnability method
EM TAP NTGA REM CUDA

Training Clean

Dataset method

ERM 94.66 1320 2251 1627 27.09 1848

CIFAR-I0 oy 8951 8862 88.02 8896 48.16 44.40
ERM 7627 160 1375 322 1014 12.69

CIFAR-100 — xp 6450 6343 6230 6244 27.10 3434
ImascNer109 ERM 8066 126 910 842 1374 896
2 AT 66.62 6340 63.56 63.06 4166 38.68

5.1. Experimental setup

Datasets. We use three image classification datasets —
CIFAR-10, CIFAR-100, [21] and ImageNet-100 (a subset
of ImageNet made of the first 100 classes) [40]. We use
the data augmentation techniques such as random flipping,
cropping, and resizing [44].

Architectures. We use ResNet-18 [14], VGG-16 [45],
Wide ResNet-34-10 [57], and DenseNet-121 [16]. We train
the networks with hyperparameters used in Fu et al. [11].
Previous works mainly employ ResNet-18 for most of their
evaluations. Additional experiments on Tiny-ImageNet
[26], DelT [50], EfficientNetV2-S [48], and MobileNetV2
[41] are provided in the supplementary material.

CUDA generation. We use filters of size k = 3 and blur
parameter p, = 0.3 for both CIFAR-10 and CIFAR-100
datsets. ImageNet-100 is a higher dimensional 224 x224 x3
image dataset when compared to the 3232 x3 dimensional
CIFAR datasets. Hence, we use larger filters of size k = 9
with p, = 0.06 for ImageNet-100. These hyperparameters
are chosen such that the CUDA images are not perceptibly
highly perturbed and give good unlearnability effect (see
plot in Figure 1). In supplementary matrial, we show the
results of training on CUDA with different hyperparameters
for data generation.

Baselines. We compare CUDA generation technique
with four state-of-the-art unlearnability methods — REM
[11], EM [17], TAP [10], and NTGA [55]. We adopt the
results reported in [11] since we use the same hyperpa-
rameters for training. For REM, we select hyperparame-
ters p, = 8/255 and p, = 4/255, the highest radii values
in [11]. For comparing unlearnable methods, we look at
the clean test accuracy. The lower the test accuracy, the
better the unlearnability method is. As mentioned in the
supplementary material, we use publicly released official
codebases for reproducing the baselines using their default
hyperparameters.

5.2. Effectiveness of CUDA

Why does CUDA work? In order to measure how much
CUDA technique’s blurring affects the dataset’s quality, we
compare class-wise blurring (CUDA technique) against uni-



Table 3. Test accuracy (%) of network architectures trained on var-
ious CIFAR-10 unlearnable datasets with Lo AT (po = 4/255).

Unlearnability method

Model Clean
EM TAP NTGA REM CUDA
ResNet-18 89.51 88.62 88.02 8896 48.16 44.40
VGG-16 87.51 86.48 86.27 86.65 65.23 42.98
Wide ResNet-34-10 91.21 90.05 90.23 89.95 4839 53.02
DenseNet-121 83.27 82.44 81.72 80.73 81.48 4595

Table 4. Test accuracy (%) of ResNet-18 with CUDA under vari-
ous training settings.

Dataset Clean Training method CUDA (ours)

ERM 18.48

AT Lo (pa = 4/255) 44.40

AT Lo (pa = 8/255) 32.85

CIFAR-10 94.66 AT Lo (pa = 16/255) 19.32
AT L2 (pg = 0.25) 39.05

AT L3 (po = 0.50) 51.19

AT L (po = 0.75) 51.14

ERM 12.69

AT Lo (pa = 4/255) 34.34

CIFAR-100 76.27 AT L (py = 8/255) 30.00
AT L3 (po = 0.75) 36.90

ERM 8.96

AT Lo (pa = 4/255) 38.68

ImageNet-100 80.66 AT L (po = 8/255) 40.08
AT L3 (po = 0.75) 20.58

versal blurring where a single convolutional filter is used for
blurring all the images. We keep the filter generation pa-
rameters fixed (p, = 0.3 and &k = 3) for both CUDA class-
wise blurring and universal blurring. ResNet-18 trained
with clean CIFAR-10, universally blurred CIFAR-10, and
CIFAR-10 CUDA achieve clean test accuracies of 94.66%,
90.47%, and 18.48%, respectively. This suggests that our
controlled blurring does not obscure the semantics of the
dataset. Hence, the significant drop in the clean test accu-
racy introduced by CUDA is most likely due to the usage
of class-wise filters. This suggests that a model trained on
CUDA learns the relation between the class-wise convolu-
tion filters and their corresponding labels. Therefore, during
test time when this convolution effect is absent, the CUDA
trained model fails to make correct classifications. Further-
more, the model trained on CUDA achieves an accuracy
of 99.91% on the CIFAR-10 CUDA testset. This strongly
supports our claim that the CUDA model learns to classify
images based on the convolutional filters used to blur them.
In addition, if we permute the class-wise filters for blurring
the test set (i.e., blurring class 1 images with class 2 fil-
ters, class 2 images with class 3 filters, and so on), we get
a very low accuracy of 2.53% on this test set. Further de-
tails are provided in the supplementary material. Finally, we
note that real-world datasets might also contain blurred im-
ages due to various factors such as motion blurring, weather

conditions, issues with the camera, etc. Hence, detecting
if a blurred image is poisoned might not always be possi-
ble. However, one might argue that it is possible to detect
if an entire dataset is blurred. Interestingly, later in this sec-
tion we show that CUDA technique exhibits unlearnability
effect even when only a fraction of the training dataset is
poisoned.

Different datasets. We first compare the effectiveness of
CUDA with different datasets using ERM and L., AT with
pa = 4/255. We use ResNet-18 for the experiments. The
results are shown in Table 2. These results show that EM,
TAP, and NTGA are not robust to AT. However, both CUDA
and REM are successful. Here, our method CUDA out-
performs REM with CIFAR-10 and ImageNet-100 datasets.
Smartly designed additive noise in AT helps in achieving
better generalization than ERM on the unlearnable datasets.
This experiment thus demonstrates that ERM and AT are
not good choices for training with CUDA and REM dataset.

Different models. Next we compare the effectiveness
of CUDA using various deep learning architectures with
Loo AT (p, = 4/255). We use CIFAR-10 for the experi-
ments. The results are shown in Table 3. As we see in the
table, CUDA is effective with all the five network architec-
tures. However, REM is not seen to be transferrable with
DenseNet-121.

Robustness to different training settings. In Section
3.2, we show that REM is sensitive to the training settings.
REM generated using L, radii budgets of p, = 8/255
and p, = 4/255 for CIFAR-10 breaks with Lo, AT (p, =
8/255) and Lo AT (p, = 0.75) to get test accuracy of
78.71% and 79.65%, respectively. Hence, we run experi-
ments to check the robustness of CUDA with various AT
norm budgets. The results are shown in Table 4. As we
see in the table, CUDA is robust to ERM, L., and L, AT
settings with varying training budgets. Impressively, the
highest test accuracy achieved with training on CIFAR-10
CUDA, CIFAR-100 CUDA, and ImageNet-100 CUDA are
as low as 51.19%, 36.90%, and 40.08%, respectively. We
also find that using a pre-trained ResNet-18 with CIFAR-
10 CUDA only achieves clean test accuracy of 42.42%
and 48.22% with fine-tuning the full network and a newly
trained final layer, respectively (details are deferred to the
supplementary material).

Different protection percentages. In Section 3.1, we
assume that the attacker has access to the full clean training
data. However, in real life settings, this might not be always
possible. Hence, we train ResNet-18 on a mix of CIFAR-
10 CUDA and clean CIFAR-10 training datasets to evaluate
the effectiveness of poisoning with varying data protection
percentages. Protection percentage denotes the percentage
of the training data that is poisoned.

‘We show the results in Table 5. In the table, the “Mixed”
column denotes the clean test accuracy of a model trained



Table 5. Test accuracy (%) of ResNet-18 on CIFAR-10 with different data protecion percentages. The last row shows the results for CUDA
with ERM setting. The rest of the rows show results for unlearnability methods trained in the Lo AT (po = 4/255) setting.

Data Protection Percentage

Unlearnability
method 0% 20% 40% 60% 80% 100%
? Mixed Clean | Mixed Clean | Mixed Clean | Mixed Clean ?
EM 89.60 89.40 89.49 89.10 88.62
TAP 89.01 88.66 88.40 88.04 88.02
NTGA 89511 g956 8817 go35  BOTO | go5p BT ggq7 794N 556
REM 89.60 89.34 89.61 88.09 48.16
CUDA (ours) 88.54 87.24 86.03 84.34 44.40
CUDA +ERM 9466 | 9328 9375 | 91.34 92.56 | 89.91 89.77 | 85.61  84.30 | 1848

using a mix of both clean and poisoned data. The “Clean”
column denotes the clean test accuracy of a model trained
only using the clean subset of the training data. In the last
row of Table 5, we provide the results for CUDA trained
using ERM with varying data protection percentages. The
remainder of the rows provide the results for the L., AT
(pa = 4/255) scenario. For example, CUDA trained with
ERM using an 80% clean training data partition achieves
a test accuracy of 93.75%. Adding the 20% CUDA data
partition to the training dataset drops the test accuracy of
the model to 93.28%. Results from the last row of Table 5
show that CUDA with varying data protection percentages
is effective with the ERM setting. However, with the AT
scenario, the unlearnability techniques are not as success-
ful as with ERM with varying data protection percentages.
Nevertheless, it is interesting to note that CUDA technique
performs better than all the other unlearnability techniques
with AT.

Robustness to smoothing and data augmentations.
Cohen et al. [6] proposes randomized smoothing which is
a provable adversarial defense in Ly norm. Since CUDA
does not use additive noise, CUDA is robust to random-
ized smoothing. A smoothed ResNet-18 (with a noise level
of 0.5) with CIFAR-10 CUDA achieves only a clean test
accuracy of 43.85%. In Section 3.2, we see that REM
breaks with grayscaling. While ResNet-18 training using
grayscaled REM achieves 70.76% test accuracy, grayscaled
CUDA only achieves 20.12% test accuracy on the clean
grayscaled CIFAR-10 test data. This shows that CUDA
technique exhibits the desirable property of not relying
upon the color space for its attack. CIFAR-10 CUDA train-
ing achieves only 25.53%, 25.80%, 26.93%, 34.09%, and
50.72% clean test accuracy with mixup, cutout, cutmix, au-
toaugment, and orthogonal regularization, respectively (see
supplementary material for more details).

Adaptive defenses for CUDA. Here, we first investi-
gate the effect of training CIFAR-10 CUDA with random
blurring augmentations using ResNet-18. Each batch of the
CUDA training data is convolved with random 3 x 3 filters
of varying blur parameters pj. With p; values of 0.1 and

0.3, CUDA training achieves lower test accuracy 9.2% and
13.37%, respectively. This shows that the noise added by
CUDA technique is robust to random convolution augmen-
tations.

One may think that CUDA technique can be broken by
learning the private filters from the data. We test this idea
by training deconvolution filters to find if we can reverse the
blurring effect in CUDA with adversarially trained filters.
We use a novel Deconvolution-based Adversarial Training
(DAT) technique that is similar to AT (check supplementary
material for details). While the adversarial step in AT learns
sample-wise error-maximizing additive noises, the adver-
sarial step in DAT learns class-wise error-maximizing de-
convolution filters. We train DAT with filters of varying
sizes (3, 5, and 7) on CIFAR-10 CUDA using ResNet-18.
The filter parameters are constrained within a finite range
to make sure that the images do not get distorted with the
adversarial step similar to projection in projected gradient
descent. We find that CUDA is robust to DAT. DAT us-
ing filters of size 3, 5, and 7 with CUDA achieves only
test accuracy of 39.05%, 46.21%, and 38.48%, respectively.
DAT is not successful against CUDA since we can not invert
convolutions without the knowledge of the private filters or
clean images corresponding to CUDA.

Limitations and future directions. The unlearnability
effect of CUDA can be defended if some fraction of the
clean data and its corresponding CUDA images are leaked.
The defender must also be able to detect if all samples in the
dataset are poisoned. However, our work assumes a setup
where the filters remain private. For example, a data pub-
lisher could simply publish their CUDA images and delete
the clean images permanently to prevent this scenario. As
discussed in this section, CUDA as well as other prior works
do not perform well with different protection percentages
with AT. Improving this can be an interesting research direc-
tion. We believe that extending CUDA technique to other
domains such as tabular and text data is also an interesting
future direction. It would also be interesting to see theoret-
ical analysis of CUDA considering more complex setups.
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A. Appendix
A.1. Proof for Lemma 1

At the optimal decision boundary the probabilities of any
point z € R? belonging to class y = —1 and y = 1 mod-

eled by D are the same. Here, p = p3 = —p—1 and
I=_41=%.
exp[—g(z —p_1) "7 { (2 — p_1)] _
(2m) 4|51
exp[—3(2 — p1) "T (@ — )]

(2m)¢[%]

1 1
= —3 log |I| — i(mTw —2z p_y+plipg) =

1 1
—5log [ — 5(915T3'3 -2z pa + pq pa)

1
= @ (o1 —p1) = S(plypa —pi ) =0

2
— —x'pu=0
— P(x)=x'p=0.

Now, the accuracy of the clean model P is to be com-
puted. Note that if P(x) < 0 the Bayes optimal classi-
fication is class -1, else the classification is class 1. Let
z ~N(0,I),and Z ~ N(0,1), and sgn(.) be the signum
function.

7 (P) = E(g y)~p [1(y = sgn(P(z)))] = Plyx " pu > 0]
=Ply(yp+ 2) " p > 0]
=Pl(p+2)"p>0
= P[l|ull3 + [1ll2Z > 0] = ¢(||ll2)-
([l
A.2. Proof for Lemma 2
Let D; = N(p, I). For every data point (z, y) ~ D1, let

the perturbed data (A;2,y) be modelled by a distribution
D;. We prove that D1 = N (A, A] Ay).

]E(m,y)w’Dl Alm = AIE(m,y)N’Dl Tr = Al[lJ

11

E(zy)~p, (A1 — Ajp)(Are — Ayp)

= E(zy)~p, A1 — p)[Ar(z — p)] "
= E(m,y)le Ay (w l'l’)( ”)TAT
= M E (g y)op, (@ — p) (@ —p) " A]

= AJA] = A1 AT

Tri-diagonal Toeplitz matrices A, = T'(d; ay,1,a,) are
symmetric. Hence, D = N (yA, u, Af/) O

A.3. Remarks on Lemma 3

A tri-diagonal Toeplitz matrix T'(d; a1, as, as) is repre-
sented as

a as 0 0 “e 0
ap a2 as 0 ‘e 0
0 a ay a3 0| ¢ pixd
0 . . 0 al a2

The class of matrices A,
metric and can be diagonalized as QDQ'.
((%)1/2 sin (;fl))” is symmetric and it is the com-
mon eigenvector matrix to all A, matrices. As shown in
Lemma 3, () and D can be represented using trigonomet-
ric functions. Also, we have A(n) := A} + A", =
Q(Dy+D™)Q where Ay = QD1Qand A1 = QD_1Q.
Further, Tr(A(n)) = Tr(Q(D} £ D™,)Q) = Tr((D} +
D" )Q?) = Tr(D} + D"y).

= T(d;ay,1,a,) are sym-

Q =

A.4. Proof for Lemma 4

At the optimal decision boundary the probabilities of any
point € R% belonging to class y = —1 and y = 1 mod-
eled by D are the same. Here, p=p1=—p_q1and A,’s
are symmetric.
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Note that here if ]S(w) < 0, the Bayes optimal classi-
fication is class -1, else the classification is class 1. Here,
for shorthand notations we denote A = (A~% — A;?), b=

14 2a_1 cos(2X 2
AAZ}+ A D e= Y I ( (d“)) :

14 2a; cos(ﬁ)

A.5. Proof for Lemma 5

LetZ = 2" Az+2z"b+cand z ~ N(0,1) C R? where
A= QAQT. Also,

Z=z"Az+2z"b+c
—(z+Ltaw TA 2+ A7) fem SpTA
2 2 4 '
For any ¢t > 0 and x ~ N(0, I), we write the moment

generating function for a quadratic random variable ¥ =
x' Az as’

2 [40]
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exp{—n"pn/2} (2m)%? exp {%MT(I - 2tA)_1N}
(2mr)d/2 |1 — 2tA[1/2
eXp{ — gk [T - (I~ 2tA)—1]u}
17— 2tA|1/2 :
= Elexp(tZ)] =
eXp{—%A_l[I — (I =2tA) A b+ te — % A~b])
11 —2tA|2 :

Using the Chernoff bound and E 2TAz =
Tr(AE[zz]) = Tr(A), for some v,

Elexp(tZ)] B
P{Z > E[Z] +~} < oplth + E(Z)]} =
eXp{*%Ail[I —(I- QtA)il]A71b+ tle — %Ailb]}

exp{t([y + Tr(A) + ||b]l2 + ] }|I — 2tA|2

Let us take u = Q'b.
2tA) AT = 2tA~Y(I — 2tA)! since A is a diag-
onal matrix. Using Woodbury matrix identity, we get
(I —2tA)~' =T — (I — 4 A")~1. This gives us

Also, —A7YT — (I —



P{Z >E[Z] +7} <
exp{—%bTA_l[I —(I—2tA)~YA b
+tle— 25T A7b]} exp{—tly + Tx(4) + b + )
1T —2tA|=
= exp{—gu AT T — (1 - 260) A
#tle— 2uT A~ u]} exp{—tly + Tr(A) + [ + ]}
T —2tA| =
= exp{%uTAfl(I —2tA)
+tle— 2uT A u]} exp{~tly + Tr(A) + [b]> + ]}
T —2tA|=
— exp{luT AT — (T — 2 A1) u

4 2t
+tle— 2uT A~ ]} exp{—tly + Tr(A) + [ + ]}
T —2tA|=

_ exp{Fu AT (I — LA u + tc}
exp{t[y + Tr(A) + [Ibll2 + ]} — 2¢A]

—t 1
v . A—l I _ 7A—1 —1
P e
—t(y + Te(A) + [|bll2) I — 2tA] =
—t 1
— exp{ —t(y + Tr(A) + [|bl2)}

4l[bll5 Al —1/(2¢)
eXp{WSt”A” —t(y 4+ Tr(A) + ||b]l2)}

|I - 215A|7Tl < 1
[T —2tA|=z

A.6. Proof for Theorem 2

Note that if P(x) < 0, the classifier predicts a label for
class -1, else the predicted label would be 1. Here, x =
yp + z where z ~ N(0,1) and y € {£1} since (xz,y) ~
D.
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mp(P) = E{l(y(x Az + b z +¢) > 0)}
= Ply(p"Ap+ 2" Az + 2y Az+
yb ' +b'z+¢) >0}
= Py=1)P{y(pn" Ap+ 2" Az
+2yp Az +yb p+b'z+c)>0|y=1}+
P(y = —1) P{y(p' Ap+ 2" Az
+2yp Az +yb p+b 2z +¢) >0y =1} =
1
5JP{zTAz +(b+24p) " z4+p " Ap+b "+ c >0} +
1
5JP>{—zTAz —(b—2Ap) " z—p"Ap+b"p—c >0}
= p1+p2
We can see that
-7 =
E{z"Az+ (b+24p) " z+p " Ap+b" p+c}
= Tr(A) + b+ 2Au|s +p" Ap+b"pu+ ¢, and
— 72 =
E{—2"Az— (b—24Ap) 2z —pu " Ap+b"p—c}
= —Tr(A) +||b—2Aplls —p Ap+b"p—c
Using Lemma 5, with v = ~1,t = t; for computing p;

and v = 79,t = t5 for computing po where ¢1, to are some
non-negative constants, we get

1 [ T T
v o luluTAu b
Pr= o oA P | 1(“ ptbopte

and

! .
4|2Au+bII2IAII>_
1

p2 = 72|I — 2t2A|1/2 exp

tg(—/LTA/,L—l-bTH—C

1
4[12Ap — bl2[|All ) '

This gives us the upper bound for 7p(P). However,
to make sure that this upper bound is smaller than 1, we
need to assert more conditions. p; and p, become smaller
as 1 and o are larger positive numbers. However, v +
7o = —(24p + bllo + |24 — b2 + 4uT QT (D +
D™ 1Qu) < 0since (D;' + D7) = 0. Hence, we look
at separately at cases when either y; > 0 or y2 > 0.

If y1 > 0, then 7p(P) = 3(p1+1) < 1. Else, if y2 > 0,
then 7p(P) = 1(p2 +1) < 1. We know that for p # 0,
mp(P) = ¢(p) > 3. Moreover, for any a_; € [0,0.5], Ja;
such that 7p(P) < 7p(P). This can be satisfied by picking



a1 such that either ; or 5 is very large, i.e., % < TD(]S) =
£[1 4 min(p1, p2)] < 7p(P). We note that the conditions
—y1 =p Ap+b"p+c+Tr(A) +||2Ap + b2 < 0 and
Yo =—p  Ap+b"p—c—Tr(A) + ||2Apn — b2 < 0
can always be satisfied by picking a sufficiently large p in
the direction of an eigenvector corresponding to a negative
eigenvalue of A (note that A has negative eigenvalues). [J

A.7. Details on generating Figure 3

We use € R d = 100 to generate clean dataset
with 1000 data points. They are randomly split into train-
ing and testing partitions of equal size. All the assump-
tions are consistent with the details provided in the main
body. We use 30 x 30 mesh-grid to plot the contour
plots. While plotting the theoretical upper bounds, we
choose the best t1, t5 with grid search from a search space
[21,20 271 272 2=3 2=4 2-5]

A.8. Experimental details

This subsection provides the details for experiments in
Section 5.

Hardware. We use NVIDIA® RTX A4000 GPU with
16GB memory with 16 AMD® EPYC 7302P CPU cores.

Data augmentations. For CIFAR-10 and CIFAR-100,
we use random flipping, 4 pixel padding, and random
32 x 32 size cropping. For ImageNet-100, we use random
flipping and random cropping with resizing to 224 x 224
size. All the images are rescaled to have pixel values in the
range [0, 1].

Baselines. We compare CUDA against error-minimizing
noise [17], targeted adversarial poisoning [10], neural tan-
gent generalization attack [55], and robust error-minimizing
noise [ 1]. We use the experimental outputs reported in [ 1]
for our comparisons. For REM we choose p,, = 8/255 and
pa = 4/255 since REM works the best when p, = 2p,
[11]. We perform experiments on REM not present in their
work using their code available publicly on GitHub * (MIT
License).

Networks. For consistency, we use the same architec-
tures used in [11]. We use their GitHub script* for this pur-
pose.

Training. We train all the networks for 100 epochs. The
initial learning rate is 0.1. Learning rate decays to 0.01 at
epoch 40 and to 0.001 at epoch 80. We use a stochastic
gradient descent optimizer with a momentum factor of 0.9,
weight decay factor of 0.0005, and batch size of 128. For
adversarial training, we follow the procedure in [34]. We
use 10 steps of projected gradient descent with a step size
of 0.15p,.

3https://github.com/fshp971/robust-unlearnable—
examples

4https://github.com/fshp971/robust-unlearnable—
examples/tree/main/models
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Analysis of CUDA. For grayscaling experiments, we use
images with their average channel values as the input to the
network. Test accuracy is computed on the grayscaled test
datasets. For smoothing, we use the GitHub codes’ from [6]
(MIT License). For mixup [58], we use the default value of
a=1.0.

Deconvolution-based adversarial training (DAT). We
experiment with various filter sizes of 3,5, and 7 for the
transpose convolution filters. For each batch of data, we use
10 steps of projected gradient descent with a learning rate
of 0.1 to learn transpose convolution filters for each class.
The weights and biases of the transpose convolution filters
are constrained to be within [—C, C]. We choose C' = 5.
After 10 steps of inner maximizing optimization, the result-
ing image is rescaled such that the pixel values lie in [0, 1].
See Figure 4 for clean test accuracy vs. epochs plot for
DAT with varying transpose filter sizes. As seen in Figure
1, DAT can break CUDA CIFAR-10 with a low blur param-
eter value of p, = 0.1 to get a clean test accuracy ~78%.
However, with higher p; values DAT can not achieve more
than 50% clean test accuracy. DAT solves the following op-
timization problem:

1
arg min - Z

3 <
ke[K] [Isklloe<

max U fo(x;*sk), k 3)
o 32, itxix B

where * denotes the transpose convolution operator, s,,
denotes the transpose convolution filter for class y;, and ¢ is
the soft-max cross-entropy loss function.

CUDA with augmentations. We use mixup with the
default o = 1.0 [58]. See Figure 5 for the training curve.
For random blurring augmentations, we use p; = 0.1,0.3
and k£ = 3. With both these parameters, CUDA is seen to be
effective. See Figure 5 for the training curve with pj = 0.3.

A.9. More experimental results

Figure 6 shows the CUDA CIFAR-10 data generated us-
ing k = 3 and different p; blur parameters. Figure 7 shows
the CUDA CIFAR-100 and CUDA ImageNet-100 data gen-
erated using k = 3,pp = 0.3 and k = 9, p, = 0.06, respec-
tively. Figure 8 shows the clean test accuracy of ResNet-18
with CUDA CIFAR-10 generated using different blur pa-
rameters. As we see in the plots, higher the blur param-
eter, better the effectiveness of CUDA is. However, we
choose p, = 0.3 for our experiments since the the images
generated using this hyperparameter look perceptibly more
similar to the clean images (when compared to p, = 0.5)
while giving a very low clean test accuracy. A lower value
of p, = 0.1 gives better unlearnability. However, CUDA
CIFAR-10 generated using p, = 0.1 is not robust with

Shttps : / / github .
adversarial

com / Hadisalman / smoothing -


https://github.com/fshp971/robust-unlearnable-examples
https://github.com/fshp971/robust-unlearnable-examples
https://github.com/fshp971/robust-unlearnable-examples/tree/main/models
https://github.com/fshp971/robust-unlearnable-examples/tree/main/models
https://github.com/Hadisalman/smoothing-adversarial
https://github.com/Hadisalman/smoothing-adversarial

100

3\o/ -——- EIEaBn + ERM

80 -
o — k=5
g — k=7
3 60
(©)
(v
th 40
Q
]
S 20
Q
@)

0

0 20 40 60 80 100
Epochs

Figure 4. CUDA CIFAR-10 images (k = 3,pp, = 0.3) trained using ResNet-18 with the Deconvolution-based Adversarial Training
framework with varying transpose convolution filter sizes k.
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Figure 5. CUDA CIFAR-10 images (k = 3, p, = 0.3) trained using ResNet-18 with mixup and random blurring augmentations.

our Deconvolution-based Adversarial Training, as shown in We show the effectiveness of CUDA with Tiny-
Figure 1. Figure 9 shows the clean test accuracy of ResNet- ImageNet [26], DelT [50], EfficientNetV2 [48], and Mo-
18 with CUDA ImageNet-100 dataset generated using dif- bileNetV2 [41] below.

ferent filter sizes. Figure 10 shows the adversarial training

curves for ResNet-18 with different CUDA datasets.
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(®b)pp, =0.3

L |1 Bl

(©)pp = 0.5

Figure 6. CUDA CIFAR-10 images generated using different blur parameters p,. The top row shows the clean images, the bottom row
shows the corresponding CUDA image, and the middle row shows the normalized difference between the clean and the CUDA image.

Model ERM Lo AT (e = 0.5)
DelT [50] 24.85% 38.90 %
EfficientNetV2-S [48] | 20.47 % 42.19 %
MobileNetV2 [41] 21.10 % 32.00 %

Table 6. Effectiveness of CUDA on CIFAR-10.

A.10. Effects of blurring

Here, we study the effects of blurring. We investigate
if class-wise blurring is required for achieving unlearnabil-
ity. For this, we use a universal filter (generated using the
same p, = 0.3 and £ = 3 hyperparameters) to blur all the

16

Training method Clean CUDA
ERM 48.14% | 5.98%
Lo AT (e =0.5) | 42.72% | 1454 %

Table 7. Effectiveness of Tiny-ImageNet CUDA with ResNet-18.
We use the same hyperparameters as our CIFAR experiments.

training images in the dataset. A ResNet-18 trained on this
dataset achieves a clean test accuracy of 90.47%. Essen-
tially, the blurring that is performed only degrades the clean
test accuracy by ~4%. This means that class-wise blurring
(CUDA) is required for achieving the unlearnability effect



(b) ImageNet-100

Figure 7. CUDA CIFAR-100 and ImageNet-100 images generated using £ = 3,p, = 0.3 and &k = 9, p, = 0.06, respectively. The top
row shows the clean images, the bottom row shows the corresponding CUDA image, and the middle row shows the normalized difference
between the clean and the CUDA image.
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Figure 8. ResNet-18 trained using CUDA CIFAR-10 data generated using different blur parameters py.
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Figure 9. ResNet-18 trained using CUDA ImageNet-100 dataset generated using different filter sizes k.
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Figure 10. Adversarial training curves for ResNet-18 with CIFAR-10, CIFAR-100, and ImageNet-100 CUDA datasets.

(see Figure 11). This experiment also demonstrates that the
blurring we perform does not make the dataset useless or
destroy its semantics. For this experiment, we use models
with fixed initialization and random seeds.

A.11. Why does CUDA work?

In this section, we perform experiments that show that a
model trained on CUDA dataset learns the relation between
the class-wise filters and the labels. We train ResNet-18 us-
ing the CUDA CIFAR-10 dataset for the experiments. We
perform three independent trials for each of the experiments
and report the mean performance scores. Trained models
achieve a mean clean test accuracy of 21.34%. Now, we
use the class-wise filters to perturb the images in the test
set based on their corresponding labels. Trained models
achieve a very high mean accuracy of 99.91% on this per-
turbed test set. This shows that the trained models learned
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the relation between the filters and their corresponding la-
bels. Next, we permute the filters to perturb the test set such
that test set images with label ¢ are perturbed with the filters
of class (i + 1)%10. Trained models achieve a very low
mean accuracy of 2.53% on this perturbed test set. This is
evidence that CUDA can also be used for backdoor attacks.

A.12. Effect of transfer learning

In this section, we experiment the effect of using a pre-
trained ResNet-18 with PyTorch [38]. We train it on the
CUDA CIFAR-10 dataset in two different ways. First, we
fine-tune the whole network on the CUDA dataset with a
learning rate of 0.001 for 15 epochs. This achieves a clean
test accuracy of 42.42%. Fine-tuning the network with
clean training data gives 94.19% clean test accuracy. Next,
we freeze all the layers except the final layer to train a lin-
ear classifier with the pre-trained weights using the CUDA
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Figure 11. ResNet-18 trained using clean, CUDA, and universally blurred CIFAR-10 datasets.

CIFAR-10 dataset. We call this “Freeze and learn”. We use
a SGD optimizer to train the linear layer for 15 epochs with
an initial learning rate of 0.1. The learning rate is decayed
by a factor of 10 after every 5 epochs. This achieves a clean
test accuracy of 48.22%. The results are shown in Figure
12. This experiment shows that pre-trained network with
CUDA data training does not help achieve good generaliza-
tion on the clean data distribution.

A.13. Effect of CUDA with regularization tech-
niques

In this section, we study the effect of training a ResNet-
18 with CUDA CIFAR-10 dataset using various regular-
ization techniques such as mixup [58], cutout [9], cut-
mix [56], autoaugment [7], and orthogonal regularization
[3]. We perform mixup, cutout, cutmix, autoaugment,
and orthogonal regularization to achieve 25.53%, 25.80%,
26.93%, 34.09%, and 50.72%. Even though these regular-
izations help in improving the vanilla ERM training, these
networks still do not achieve good generalization on the
clean data distribution. We use cutout using GitHub codes®
with length=16 and n_holes=1, cutmix using GitHub
codes’ with o = 1, autoaugment using PyTorch [38], mixup
using GitHub codes® with o = 1, and orthogonal regular-
ization using GitHub codes’ with reg=1e-6 (all MIT li-
censes).

Shttps://github.com/uoguelph-mlrg/Cutout /blob/
master/util/cutout.py

Thttps://github.com/hysts/pytorch_cutmix/blob/
master/cutmix.py

8https : / / github . com / facebookresearch / mixup -
cifarl0/blob/main/train.py

9https://qithub.com/kevinzakka/pvtorchfqoodies
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A.14. Network parameter distribution

In this section, we compare the network parameter distri-
butions of ResNet-18 trained on clean and CUDA CIFAR-
10 datasets (see Figure 13). Both the distributions are sim-
ilar to normal distributions with a mean of 0. However,
the parameter distribution of the clean model has a higher
standard deviation than the CUDA-based model’s parame-
ter distribution.


https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
https://github.com/hysts/pytorch_cutmix/blob/master/cutmix.py
https://github.com/hysts/pytorch_cutmix/blob/master/cutmix.py
https://github.com/facebookresearch/mixup-cifar10/blob/main/train.py
https://github.com/facebookresearch/mixup-cifar10/blob/main/train.py
https://github.com/kevinzakka/pytorch-goodies
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Figure 12. Pre-trained ResNet-18 with fine-tuning and training the linear layer using CUDA and clean CIFAR-10 datasets.
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Figure 13. Network parameter distributions of ResNet-18 trained on clean and CUDA CIFAR-10 datasets.
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