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Abstract

The need for reliable model explanations is prominent for many machine learning applications,
particularly for tabular and time-series data as their use cases often involve high-stakes
decision making. Towards this goal, we introduce a novel interpretable modeling framework,
Interpretable Mixture of Experts (IME), that yields high accuracy, comparable to ‘black-box’
Deep Neural Networks (DNNs) in many cases, along with useful interpretability capabilities.
IME consists of an assignment module and a mixture of experts, with each sample being
assigned to a single expert for prediction. We introduce multiple options for IME based on the
assignment and experts being interpretable. When the experts are chosen to be interpretable
such as linear models, IME yields an inherently-interpretable architecture where the
explanations produced by IME are the exact descriptions of how the prediction is computed.
In addition to constituting a standalone inherently-interpretable architecture, IME has the
premise of being integrated with existing DNNs to offer interpretability to a subset of samples
while maintaining the accuracy of the DNNs. Through extensive experiments on 15 tabular
and time-series datasets, IME is demonstrated to be more accurate than single interpretable
models and perform comparably with existing state-of-the-art DNNs in accuracy. On most
datasets, IME even outperforms DNNs, while providing faithful explanations. Lastly, IME’s
explanations are compared to commonly-used post-hoc explanations methods through a
user study – participants are able to better predict the model behavior when given IME
explanations, while finding IME’s explanations more faithful and trustworthy.

1 Introduction

Tabular and time-series data appear in numerous applications, including healthcare, finance, retail, environ-
mental sciences and cybersecurity, and constitute a major portion of the addressable artificial intelligence
market (Chui et al., 2018). Although simple interpretable models like linear regression (LR) or decision trees
(DTs) or ARIMA had dominated the real-world applications with these data types, deep neural networks
(DNNs) have recently shown state-of-the-art performance, often significantly improving the interpretable
models (Arik & Pfister, 2021; Lim et al., 2021; Popov et al., 2019; Joseph, 2021; Gorishniy et al., 2021; Wen
et al., 2018), and now they are being used more commonly. Yet, one challenge hindering the widespread
deployment of DNNs is their black-box nature (Lipton, 2017) — humans are unable to understand their
complex decision-making process. For most tabular and time-series data applications, explainability is crucial
(Caruana et al., 2015; Lipton, 2018) — physicians need to understand why a drug would help, and retail data
analysts need to gain insights on the trends in the predicted sales, and bankers need to understand why a
certain transaction is categorized as fraudulent.

In an attempt to produce explanations, various interpretable architectures have been proposed. Attention-
based DNNs (Arik & Pfister, 2021; Lim et al., 2021) constitute one approach with attention weights being
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used as explanations; however, recent works (Bibal et al., 2022) show the limitations of such explanations.
Differentiable neural versions of generalized additive models (Agarwal et al., 2020; Chang et al., 2021) and
soft DTs (Luo et al., 2021) are effective for tabular data but they do not generalize to time-series data.
Trend-seasonality decomposition-based architectures (Oreshkin et al., 2019) are proposed for univariate
time-series data but can not be used for tabular or multivariate time-series data. Recently, Puri et al. propose
DNNs with explanations in the form of continued fractions, whose interpretation complexity increases with
the addition of network layers. The above methods have one or more of the following problems: (a) yielding
unreliable explanations; (b) yielding complex explanations; (c) can not generalize to different structured
data (i.e, both time series and tabular); (d) have varying amounts of accuracy degradation as they trade
model interpretability for accuracy. Overall, a systematic interpretable framework while preserving accuracy,
remains to be an important direction.
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Figure 1: Interpretable Mixture of Experts (IME) framework for time-series and tabular data, with single-level
and hierarchical assignment options. Solid lines denote the selected assignments. (a) shows S-IMEi, a single-level
assignment IME where both the assignment module and the experts are interpretable. (b) shows S-IMEd, a
single-level assignment IME where the assignment module is a DNN, and interpretability is provided only via the
experts. For hierarchical assignment, the primary assignment module chooses between a pre-trained black box expert
or S-IMEi/d, offering partial interpretability by giving insights into which samples benefit from the complexity of black
box models. (c) shows H-IMEi, a hierarchical IME where both the assignment and expert modules are interpretable.
(d) shows H-IMEd, a hierarchical IME where assignment modules are DNNs and experts are interpretable.

We propose a novel framework for inherently-interpretable modeling for tabular and time-series data, with
the idea of combining multiple models, that can all or partially be interpretable, in a mixture of experts (ME)
framework. ME frameworks are composed of multiple “experts” and an assignment module that decides
which expert to pick for each sample. Recent works (Shazeer et al., 2017; Fedus et al., 2021) used ME to
replace DNN layers for efficient capacity scaling. On the other hand, we propose employing a single ME
to fit different subsets by interpretable experts. Although complex distributions cannot be fit by simple
interpretable models, we postulate that small subsets of them can be. Building upon this idea, we show that
IME can preserve accuracy while providing useful interpretability capabilities by replacing black-box models
with multiple interpretable models. Enabled by innovations in its design, IME is a novel framework with
interpretable models that can partially/fully replace or encapsulate DNNs to achieve on-par with or better
accuracy, based on the desired explainability-accuracy trade-off. Explanations produced by IME are faithful
to the model – we show through user studies that IME explanations are easier to interpret and users tend to
trust the explanations produced by IME over those produced by saliency methods.

To address interpretability needs of different applications,we propose multiple options for IME: Single-
level assignment S-IMEi & S-IMEd (Fig.1 (a) & (b)) employs an assignment module, either interpretable
(yielding both assignment and expert interpretability) or a DNN (yielding only expert interpretability) with
interpretable experts. Hierarchical assignment H-IMEi & H-IMEd (Fig.1 (c) & (d)) first selects between a
pre-trained black-box expert and an IME, and then between different interpretable experts. S-IMEi (Fig.1
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(a)) generates explanations in the form of the exact description of predictions as a concise formula, enabling
its use in high-stakes applications that require precise explanations. S-IMEd (Fig.1 (b)) can be used for local
interpretability, a capability to gain insights on the group of predictions in each cluster. H-IMEi & H-IMEd
(Fig.1 (c) & (d)) offer interpretable decision making for a subset of samples while maintaining accuracy. As an
example, for a real-world Retail task, approximately 40% of samples can be assigned to an interpretable expert
while preserving the same accuracy. The trade-off can be adjusted by the user based on the application needs.

2 IME Framework

2.1 Overall design
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Figure 2: S-IME consists ‘interpretable experts’ (3 in this example) and an ‘assignment module’. The input to IME
can be time-series or tabular data. Each expert produces a single prediction. The input to the assignment module is
both a feature embedding and the past error made by the experts (when the time dimension exists). The assignment
module selects a single expert during inference to make the final prediction. We define various losses (shown in red
boxes) that are used to supervise the assignment module and expert weights.

IME consists of a set of ‘interpretable experts’ and an ‘assignment module’, as overviewed in Fig. 2 (Note
that this shows S-IME, a detailed overview of H-IME is shown in the Appendix A Fig. 9). The experts
can be any interpretable differentiable model, each with its own trainable weights. They can be different
architectures (assuming they accept inputs and generate outputs of particular sizes), e.g. one expert can be
linear regression (LR) while the other can be a soft decision tree (DT) (Frosst & Hinton, 2017; Luo et al.,
2021; Irsoy et al., 2012). The only requirement for them is being differentiable (for which (Ghods & Cook,
2021) provides an overview). The assignment module can be either an interpretable model or a DNN, as
shown in Fig. 1. When we have a pre-trained DNN as one of the experts (in H-IMEi and H-IMEd), we
employ a hierarchical assignment structure so that the first assignment module (DNN assignment module)
decides whether a sample should be assigned to a DNN or IME. If the assignment is not a DNN, a second
(expert assignment module) selects the interpretable model to assign. Furthermore, we introduce a mechanism
to control the use of the pre-trained DNN, enabling an accuracy-interpretability trade-off (see Sec. 3.3).
Hierarchical assignment is essential with a pre-trained DNN, since adding a pre-trained DNN as an expert
candidate (along with other interpretable experts) biases the assignment module, which may lead to choosing
the DNN over other experts. During training, the assignment module outputs the selection likelihood for
each expert and the target prediction. During inference, the most probable expert is selected. IME can be
used for tabular data (where a sample consists of a single observation at a given timestep) or time-series
(where a sample consists of multiple observations over a time period).
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Notation. Broadly, consider a regression problem for input data with S samples {(Xi, Yi)}Si=1; with
X = [x1, . . . , xT ] ∈ RN×T , where T is the number of timesteps (for tabular data, we have T = 1) and N
is the number of features. Outputs are Y = [y1, . . . , yH ] ∈ RH , where H is the horizon (for tabular data
H = 1). The inputs until timestep t are denoted as Xt. For an IME with n experts, each expert is denoted
as fi with i being the expert index. The predictions made by the expert i are given as fi(X) = Ŷi and the
corresponding prediction error, for which we use mean squared error (MSE), at a given horizon h, is denoted
as ei,h = 1

S

∑S
i=1 (yh − ŷh)2. The errors made by all experts at time t are denoted as Et = [e1,t, · · ·, en,t]. The

assignment module has two functions: (a) Ay outputs prediction ŶA. (b) Aw outputs n-dimensional vector
representing the weight wi as the probability of choosing a particular expert such that

∑n
i=1 wi = 1. Both Ay

and Aw share the same weights except for the last layer. Note that this can be generalized to classification
by simply changing the model outputs.

2.2 Learning from past errors

IME can be applicable to general tabular data without any time-dependent feature. However, with time-
dependent features available, IME benefits from incorporating past errors (with the accuracy improvements
shown in Sec. 4.5). For most datasets, the input-output relationships between consecutive timesteps are
relevant. This is often due to consecutive timesteps having overlapping information, or external conditions
not changing rapidly. For data with time information, we propose to use past errors as informative signals for
the assignment. Specifically, concatenation of both the feature embedding Xt and past error made by the
experts Et−1, Xt = [Xt;Et−1], is used as the input to the assignment module so that it can take into account
of the errors while assigning weights for the next timestep. Note that with causal masking, we ensure that
the forecasting error never overlaps with the forecasting horizon. For example, if we are forecasting horizon
H from timesteps t+ 1 to H + t+ 1, only the expert errors until timestep t are added to the input of the
assignment module.

2.3 Training objectives

IME training is based on the following desiderata:

• Overall model accuracy should be maximized.
• The assignment module should be accurate in selecting the most appropriate experts.
• Utilization of individual experts shouldn’t be imbalanced, avoiding all samples being assigned to one expert.
• Experts should yield diverse predictions, helping the assignment module to better discriminate between them.
• For inputs with time information, assignments should be smooth for consecutive inputs, for better
generalization and interpretability.

Correspondingly, we propose the following objective functions:

L
(
f,Aw, Ay, X,X, Y

)
=Lpred

(
f,Aw, X,X, Y

)
+ βLutil

(
Aw, X

)
+ γLdiv (f,X) +

δLsmooth
(
Aw, X

)
+ λLAy

(
Ay, X, Y

)
,

(1)

where β, γ, δ and λ are hyperparameters. Lpred, Lutil, Ldiv, Lsmooth and LAy are prediction accuracy, expert
utilization, expert diversity, assignment smoothness and assignment accuracy losses, respectively, explained
in detail below.

Prediction accuracy. As in (Jacobs et al., 1991), we propose the log likelihood loss under a Mixture of
Gaussians assumption:

Lpred(f,Aw, X,X, Y ) = − log
∑n

i=1
Aw(X)i

e−‖Y−fi(X)‖2/2
√

2π
. (2)

This loss can help encourage expert specialization by comparing each expert separately with the target to
reduce the average of all these discrepancies. Here, we consider a regression problem. For classification, the
loss in Eq. 2 can be adjusted accordingly, Appendix B includes more details.
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Expert utilization. The assignment module can converge to a state where it produces large assignment
weights for the same few experts, resulting in some experts being trained more rapidly and thus selected
more. To circumvent this, (Eigen et al., 2013) uses hard constraints at the beginning of training to avoid local
minimum, (Bengio et al., 2015) uses soft constraints on the batch-wise average of each expert, and (Shazeer
et al., 2017) encourages all experts to have equal importance (i.e, uniform expert utilization) by penalizing
the coefficient of variation between different expert utilization. For IME, we propose that each expert should
focus on a subset of the distribution. These subsets do not have to be equal in size, so all experts should be
utilized but not necessarily in a uniform manner. Given this, we propose the following utilization objective:

Lutil = (1/N)
∑N

i=1
e−kUi − e−k, (3)

where Ui is the utilization of expert i such that Ui = 1/N
∑N
j=1 wi,j and k is a hyperparameter to encourage

utilization without enforcing uniformity across experts.

Expert diversity. Experts should specialize in different data subspaces (i.e., they would have different
expertise), as specialization helps the assignment module in choosing the correct expert for a given data
point resulting in better accuracy. Diversity between the outputs of different experts encourages expert
specialization. We encourage diversity by employing a contrastive loss:

Ldiv(f,X) = −
∑n
i=1 log exp(S(fi(X),fi(X+η))/τ)∑n

k=1
1[k 6=i] exp(S(fi(X),fk(X))/τ)

, (4)

where S(u, v) = uT v/‖u‖‖v‖ denote the dot product between l2 normalized u and v, 1[k 6=i] ∈ {0, 1} is the
indicator function such that 1 iff k 6= i, and τ is the temperature parameter. We propose it as minimizing the
distance between outputs from the same expert and maximizing the distance between outputs from different
experts. We add a Gaussian noise η with zero mean and unit variance to the inputs, and define positive pairs
as outputs coming from the same expert (with and without the noise) and negative pairs as outputs coming
from two different experts (both without noise).

Assignment smoothness. For data with time component, consecutive inputs should have mostly overlap-
ping information, so one would expect mostly similar assignment for them. To promote smooth transition of
assignments over time, we adopt the Kullback–Leibler (KL) divergence (Kullback & Leibler, 1951) between
the weights output by the assignment module for consecutive timesteps t−1 and t:

Lsmooth
(
Aw, X

)
= DKL

(
Aw
(
Xt−1

)
‖ Aw(Xt)

)
, (5)

where DKL(P ‖ Q) denote the KL divergence between two distributions P and Q defined on the same
probability space. Here, we assume a forecasting horizon of 1, and this can be modified for longer forecasting
horizons by summing over forecasting timesteps. Assignment smoothness can also be helpful for improving
the interpretability, as users can build more reliable insights.

Assignment module accuracy. The assignment module is designed to generate predictions (that are
only used during training) along with the weights, and we propose to minimize the following error for superior
assignment accuracy:

LAy

(
Ay, X, Y

)
= (1/N)

∑N

i=1

(
Y −Ay

(
X
))2

. (6)

H-IME regularization. In H-IME to avoid all samples being assigned to the pre-trained DNN expert, an
additional regularization term is added to Eq. 1: αUDNN, where UDNN is the DNN expert utilization.

UDNN = (1/N)
∑N

j=1
wDNN,j . (7)

wDNN is the weight assigned to pre-trained DNN by the hierarchical assignment module.
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2.4 Training procedure

The training procedure of IME is overviewed in Algorithm 1. First, the model is trained in an end-to-end way
to minimize the overall loss given in Eq. 1, until convergence. Then, the experts are frozen, and the assignment
module is trained independently to minimize the prediction loss given in Eq. 2. This alternating optimization
approach first promotes expert specialization, and then improves the assignment module accuracy on trained
experts. Since experts and the assignment module might be based on different architectures, they might
converge at different rates (Ismail et al., 2020b), thus, different learning rates are employed for them.

Algorithm 1: Train Interpretable Mixture of Experts
Input: Features X, targets Y , expert learning rate τ , assignment learning rate ρ, hyperparameters β, γ, δ, λ
Initialize: All experts parameters f , the assignment module Aw & Ay. Also set previous error E = 0
while not converged do

X = [X;E];
L = Lpred

(
f,Aw, X,X, Y

)
+ βLutil

(
Aw, X

)
+ γLdiv (f,X) + δLsmooth

(
Aw, X

)
+ λLAy

(
Ay, X, Y

)
;

f = f − τ ∇L;
Aw = Aw − ρ ∇L;
Ay = Ay − ρ ∇L;
Update E;

Freeze experts and train assignment module;
while not converged do
L = Lpred

(
f,Aw, X,X, Y

)
;

Aw = Aw − ρ ∇L;

3 IME interpretability capabilities

3.1 S-IMEi

Each prediction can be expressed as a switch statement with the cases specifying the prediction functions of
experts, and the case conditions specifying the assignment predicate corresponding to each expert. Thus,
we effectively have a single interpretable function defining each prediction as a globally-interpretable model.
This can be useful for regulation-sensitive applications where the exact input-output relationships are needed,
such as criminal justice systems.

3.2 S-IMEd

When the assignment isn’t interpretable, the stability property of IME allows the data to be clustered into n
subsets such that the prediction in each subset comes from a single interpretable expert. This can be likened
to local interpretability, as a separate interpretable function expresses the prediction in each cluster. Post-hoc
interpretability methods can be used to assess feature importance for different assignments. This can be used
for model debugging to verify that each expert’s logic is correct.

3.3 H-IMEi & H-IMEd

For hierarchical assignment, the DNN assignment module decides whether a sample is easy i.e. it can be
accurately predicted by simple interpretable models vs. difficult i.e. it requires complex models, this is shown
through additional experiments in the Appendix C.6. Similar to S-IMEd, one can obtain local interpretations
for the easy samples. If explainability for the difficult samples is desired, post-hoc interpretability methods
such as (Lundberg & Lee, 2017) may be adapted, however, their fidelity and faithfulness would be worse
than the explanations coming from the inherently-interpretable experts. In addition, understanding why
particular samples are assigned as easy vs. difficult can give insights into different data distribution modes
(e.g. different seasonal climates and clothing sales), significant regime changes over time (e.g. after an ad
campaign is launched for a product), and data anomalies (e.g. when a pandemic outbreak occurs).
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Accuracy-interpretability trade-off with H-IME. The main difference between H-IME and S-IME
is using a pre-trained DNN as an expert. The number of samples that are assigned to pre-trained DNN
expert can be controlled by αUDNN as described in Eq. 7. Increasing α yields less samples being assigned
to the DNN expert, and hence constitutes a mechanism to increase the ratio of samples for which we use
interpretable decision making. The effect of changing the value of α is empirically shown in Sec. 4.1. For some
real-world datasets, H-IME can be highly valuable in preserving the accuracy (better than fully-interpretable
S-IME) while utilizing interpretable models for a significant majority of samples.

4 Experiments

We evaluate the performance of IME on numerous real-world tabular and time-series datasets. As tabular
data, we examine both the ones with time component, where the assignment module takes past errors as
input, and the ones without past errors. Detailed descriptions of datasets and hyperparameter tuning are
available in the Appendix C.

4.1 Tabular tasks with time component

We conduct experiments on the Rossmann Store Sales data (Rossmann), which has 30 features. Note that for
this dataset, there is time feature, but we do not have sequential encoding of features from many timesteps,
thus the problem is treated as tabular data prediction task.

Baselines. We compare IME to black-box models including Multi-layer Perceptron (MLP) (Gardner &
Dorling, 1998), CatBoost (Dorogush et al., 2018), LightGBM (Ke et al., 2017) and XGBoost (Chen &
Guestrin, 2016); and Inherently-interpretable Neural Additive models (NAM) (Agarwal et al., 2020), linear
regression (LR) and shallow DTs. Our goal is to analyze the achievable performance and the accuracy vs.
interpretability trade-off.

Training and evaluation. We use n=20 experts, either LR, shallow soft DTs (Frosst & Hinton, 2017),
or a mixture of both. For interpretable assignment, a LR is used as the assignment module.

Results. Table 1 shows the performance of baselines and IME in RMSE. We observe a significant performance
gap between a single interpretable model and a black-box model like MLP. Using S-IMEi with an interpretable
assignment module (the first two rows in the IME section in Table 1), we observe significant outperformance
compared to a single interpretable model, but underperformance compared to black-box models – as expected.
The performance becomes comparable to black-box models with S-IMEd, using a DNN assignment module.
This underlines the importance of high capacity assignment for some problems. IME with hierarchical-level
assignment, H-IMEi and H-IMEd, yields the the best accuracy, while offering partial interpretability, as shown
in Fig. 3, and is achieved by changing the penalty parameter for DNN assignment. As expected, the more
samples are assigned to interpretable experts, the less accurate the model becomes. We observe that 20% of
samples can be assigned to interpretable models with LR experts and 40% with soft DT experts, with almost
no loss in accuracy – a large portion of the data is sufficiently easy to be captured by interpretable models.

Baselines Model Name RMSE IME Assigner Expert Expert type Interp. samples RMSE
MLP 457.72 S-IMEi Interp. Interp. Linear 100.00 % 1298.57 ± 96.95

Black-box CatBoost 520.07 S-IMEi Interp. Interp. SDT 100.00 % 820.83 ± 84.50
Model LightGBM 490.57 S-IMEd DNN Interp. Linear 100.00 % 671.46 ± 94.34

XGBoost 567.8 S-IMEd DNN Interp. SDT 100.00% 547.72 ± 43.06
S-IMEd DNN Interp. Linear/SDT 100.00 % 565.20 ±91.43
H-IMEi Interp. Interp./DNN DNN/Linear 18.10% 453.33 ± 37.53

Interpretable Linear 1499.45 H-IMEi Interp. Interp./DNN DNN/SDT 40.01% 486.94 ± 17.84
Model Soft DTs (SDT) 1181.17 H-IMEd DNN Interp./DNN DNN/Linear 32.00% 506.53 ± 11.93

NAM 1497.47 H-IMEd DNN Interp./DNN DNN/SDT 43.32% 451.93 ±14.08

Table 1: Performance of different methods on Rossmann dataset in terms of root mean-squared error (RMSE) . “IME
with interpretable assignment module” performs better than a single interpretable model but worse than black box
models. “IME with DNN assignment module” performance is comparable with that of black box models. “Hierarchical
IME with a DNN expert” outperforms the best model while offering partial interpretability.
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Figure 3: Partial interpretability by H-IMEi and H-IMEd. Different accuracy values are obtained by sweeping the
DNN penalty hyperparameter α. With ∼ 40% of samples assigned to soft DT experts, almost no degradation in
accuracy is observed.

4.2 Tabular tasks without time component

On standard tabular tasks without time component, we compare the performance of S-IMEi (interpretable
assignment and interpretable experts) with other interpretable models. For classification, Telecom Churn
Prediction (tel, 2018), Breast Cancer Prediction (Dua & Graff, 2017) and Credit Fraud Detection (Dal Pozzolo,
2015) datasets; while for regression, FICO Score Prediction (fic, 2018) datasets are used.

Baselines. For classification tasks, we compare with other inherently-interpretable such as Neural Additive
models (NAMs) (Agarwal et al., 2020), Explainable Boosting Machines (EBMs) (Caruana et al., 2015), Black
box models such as Deep Neural Networks (DNNs) and Gradient Boosted Trees (XGBoost).

Results. For classification tasks, we observe the outperformance of S-IMEi compared to other inherently-
interpretable and black-box models, as shown in Table 2. For regression tasks, none of the inherently-
interpretable models outperforms DNNs on the FICO dataset, however, S-IMEi is observed to be the second
best. Results for partially interpretable versions of IME are provided in the Appendix C.3.

Models AUC RMSE
Telecom Churn Breast Cancer Credit FICO

Simple Interpretable Regression .849 .995 .975 4.344
DTs .824 .992 .956 4.900

Inherently Interpretable
NAMs - - .980 3.490
EBMs .852 .995 .976 3.512
S-IMEi .860 .999 .980 3.370

Non-Interpretable (Black-Box) XGBoost .828 .992 .981 3.345
DNNs .851 .997 .980 3.324

Table 2: Higher AUCs and lower RMSEs are better. Bold indicates best results, while italic is second best. We report
results on a regression dataset (FICO) for understanding credit score predictions, as well as three classification datasets:
Credit, Telecom Churn, and Breast Cancer. Baseline results are from (Caruana et al., 2015) and (Interpretml, 2020).

4.3 Time-series forecasting tasks

We conduct experiments on multiple real-world time-series datasets for forecasting tasks, including Electric-
ity (Electricity), Climate (Climate) and ETT (Zhou et al., 2021). Unlike tabular data, time-series datasets
have models that encode information from multiple timesteps for each prediction.

Baselines. We compare to DNNs including LSTM (Hochreiter & Schmidhuber, 1997), Transformer (Vaswani
et al., 2017), TCN (Lea et al., 2017) and Informer (Zhou et al., 2021); and interpretable models including LR
and autoregressive (AR) models (Triebe et al., 2019).

Training and evaluation. We use n=10 LR experts for IME and LR or LSTM assignment modules for S-
IMEi and S-IMEd. We conduct hyperparameter tuning using grid search based on the validation performance.
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Features Datasets Forecast horizon Black Box Models White Box Models IME
LSTM Informer Transformer TCN AR LR S-IMEi S-IMEd

Univariate

Electricity
24 .178 .159 .163 .172 .173 .167 .158 .158
48 .204 .188 .199 .195 .198 .188 .180 .180
168 .251 .234 .252 .235 .242 .224 .217 .224

Climate
24 .094 .106 .094 .092 .095 .098 .090 .091
48 .128 .176 .131 .134 .140 .141 .137 .140
168 .230 .313 .242 .209 .228 .234 .222 . 220

ETTh1
24 .085 .075 .077 .084 .030 .034 .027 .027
48 .202 .109 .131 .133 .049 .054 .040 .042
168 .293 .228 .140 .225 .089 .109 .071 .071

ETTh2
24 .093 .121 .073 .076 .067 .071 .065 .066
48 .122 .145 .108 .110 .104 .101 .096 .096
168 .256 .253 .169 .248 .176 .173 .167 .167

ETTm1
24 .017 .018 .017 .017 .013 .011 .012 .011
48 .029 .056 .036 .032 .020 .020 .021 .020
168 .161 .171 .137 .110 .060 .049 .047 .044

Multivariate

Climate
24 .066 .088 .092 .067 .127 .079 .072 .072
48 .098 .119 .216 .095 .171 .106 .097 .097
168 .204 .220 .252 .188 .285 .197 .192 .191

ETTh1
24 .112 .282 .138 .129 .392 .051 .047 .047
48 .301 .694 .274 .148 1.167 .085 .072 .070
168 .518 1.027 .303 .172 1.788 .142 .124 .144

ETTh2
24 .224 .385 .346 .263 .244 .105 .098 .091
48 .590 1.557 .582 .772 .738 .390 .260 .263
168 .923 2.110 1.124 .817 .770 .578 .477 .548

ETTm1
24 .034 .070 .029 .035 .024 .022 .017 .017
48 .065 .109 .074 .038 .067 .031 .029 .029
168 .242 .371 .430 .127 .929 .069 .078 .078

Winning counts 2 0 0 3 1 2 16 14

Table 3: The MSE of baselines and S-IME for various time-series datasets at different forecasting horizons. Note
that here S-IME already outperforms DNNs H-IME is not considered.

Results. Table 3 shows the MSE for different datasets and forecasting horizons. For univariate forecasting,
IME outperforms black-box models, while for multivariate forecasting, IME is comparable with black-box
models (second-best accuracy after TCN). We also observe that using an interpretable assignment doesn’t
degrade the accuracy.

4.4 Interpretability analyses

Global interpretability. In S-IMEi, with both the assignment module and experts being interpretable,
explanations are reduced to concise formulations. Algorithm 2 exemplifies the discovered interpretable model
for Electricity dataset with input sequence length t = 3 and the number of experts n = 2, with e denoting
the expert errors. Note that when comparing global interpretability offered by IME with that of a single
interpretable model, IME explanations might be harder to interpret since they involve an n-way classification
followed by the explanation produced by each expert.

Algorithm 2: The interpretable model discovered by S-IMEi
Aexpert1 = −.05xt−1+.03xt−2+.9xt−3+.38e1−.06e2
Aexpert2 = −.03xt−1+.11xt−2+.08xt−3+.23e1+.05e2
if Aexpert1 > Aexpert2 then

yt+1 = −.049xt−1 − .29xt−2 + 1.17xt−3
else

yt+1 = −.081xt−1 − .23xt−2 + 1.13xt−3
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Expert interpretability. All IME options provide local expert interpretability, in which case, explanations
can be given as equations for each expert, or can be conveniently visualized. Fig. 4 exemplifies this on
Rossmann.

Figure 4: Expert interpretability. Normalized weights for different LR experts on Rossmann, allowing expert behavior
to be easily interpreted. “Expert 1” puts high positive weights on ‘the number of customers’, ‘open’ and ‘competition
distance’; “Expert 2” on ‘assortment’; and “Expert 3” on ‘the number of customers’.

Sample-wise expert interpretability. Fig. 5 shows feature weights of the interpretable LR model for
different samples on Rossmann. For the first sample shown in Fig. 5a, the most influential feature is the
number of customers entering the store. Whereas for the second sample shown in Fig. 5b, multiple features
influence the model output.

(a) The most influential feature is the number of customers. (b) Multiple features influence the model output.

Figure 5: Sample-wise feature weights on Rossmann dataset.

Identifying data distribution modes. We construct a synthetic dataset (Fig. 6a) to showcase the
additional interpretability capabilities. We run S-IMEi with LR assignment (Fig. 1a) and S-IMEd with MLP
assignment (Fig. 1b). Fig. 6b shows that both S-IMEi and S-IMEd assign most samples so that Y = x1 are
assigned to Expert 1, Y = x2 to Expert 2 and Y = x3 to Expert 3. In this way, IME yields insights into how
different subsets can be split based on unique characteristics.

Identifying incorrect model behavior. Another use case for interpretability is model debugging and
identifying undesired behaviours. To showcase IME for this, we focus on synthetic data shown in Fig. 6a.
Fig. 6c shows the weights for the experts for S-IME with interpretable (top) and DNN assignment (bottom)
respectively. S-IMEi yields almost ideal behavior; Expert 1 assigns highest weight to feature x1, Expert 2 to
x2 and Expert 3 to x3. However, Expert 1 in S-IMEd incorrectly assigns the highest weights to feature x2.
Investigating different weights in this way can help verify whether the expert logic is correct. Model builders
can benefit from this insights to debug and improve model performance, e.g. by replacing or down-weighing
certain experts.

Identifying temporal regime changes. Fig. 7a shows a synthetic univariate dataset where the feature
distribution changes over time. S-IMEi with LR assignment and S-IMEd with an LSTM assignment module
are used, and all interpretable experts are simple auto-regressive models. Fig. 7b and 7c show that IME can
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(b) (c)

IME Assignment

(a)

[ [ [

IME Expert Weights

Figure 6: Identifying different clusters for S-IMEi and S-IMEd. (a) Synthetic data with three features. (b) Number
of samples from different modes assigned to each expert. (c) Weights given to each feature by different experts.

identify changes over time, using different experts for distribution modes. This capability can be used to get
insights into temporal characteristics and major events.

Expert 1
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Time TimeTime
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e 
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(a) (b) (c)

S-IMEi S-IMEdiFeatures

Figure 7: Identifying regime changes. (a) Synthetic univariate time-series where feature distribution changing over
time. (b) S-IMEi identifies changes in time regime and utilize all 3 experts. (c) S-IMEd identifies changes in regime
but only 2 experts are used.

User study on IME explanations. IME offers faithful local explanations, as the actual interpretable
models behind each prediction are known. This is in contrast to post-hoc methods used to explain black-box
methods such as SmoothGrad (Smilkov et al., 2017), SHAP (Lundberg & Lee, 2017), Integrated Gradients
(Sundararajan et al., 2017), and DeepLift (Shrikumar et al., 2017). Such methods may be unreliable (Adebayo
et al., 2018; Hooker et al., 2019; Ghorbani et al., 2019), especially for time series (Ismail et al., 2020a). To
demonstrate the quality of IME’s explanations, we design a user study that focuses on comparisons with the
commonly-used post-hoc method, SHAP (Lundberg & Lee, 2017) (we are referring to the quality of the explana-
tions from a user perspective i.e., given an explanation will the user be able to understand, interact and modify
a model based on the explanation?). We base the objective component on human-grounded metrics (Doshi-
Velez & Kim, 2018), where the tasks conducted by users are simplified versions of the original task. We use the
task of sales prediction on Rossmann, and experiment with S-IMEi (LR assignment & 20 experts) and MLP as
the black-box model. First, we consider a counterfactual simulation scenario. For each sample, the participants
are given an input and an explanation (along with access to training data for analyses) and asked how the
model output (sales prediction) would change with the input changes. The participant are able to choose one of
the options: no change, increase or decrease. The same sample with explanations from the chosen interpretable
experts of IME and SHAP (Lundberg & Lee, 2017) are provided (as shown in Appendix Fig 12 & Fig 13. All
examples shown are correctly classified by both models. In total, we collect 77 samples from 15 participants.
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When provided with IME explanations, participants can predict model behavior with an accuracy of 69%
vs. 42% of SHAP. This shows that explanations provided by IME can be easily understood by participants
and are more faithful. Next, we also ask the participants which explanations they trust more for each sample:
explanation A/B, both, or neither. IME is chosen for 87% of the cases vs. 6.5% of SHAP (and neither gets
6.5%), demonstrating the trustworthiness of IME’s explanations. The Appendix D.1 includes more details.

4.5 Ablation studies
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Figure 8: (a) Error with increased model capacity for S-IME with LR on Electricity. (b) Number of experts vs.
accuracy on Rossmann.

Comparison to black-box model performance. Table 3 shows that IME can outperform black-box
models. To further shed light on this, we investigate the effect of changing the interpretable model’s capacity.
For LR experts, as we increase the input sequence length (and hence the number of learnable coefficients),
the model accuracy increases as shown in Fig. 8a. Note that increasing the sequence length doesn’t affect
the number of parameters for an LSTM. IME outperforms a single interpretable model for any sequence
length, and starts outperforming LSTM when the accuracy gap between LR and LSTM gets smaller.

Effect of the number of experts. Fig. 8b shows the effect of the number of experts. As the number
of experts increases, the accuracy increases until a certain optimal (40 for LR experts, 20 for soft DTs). After
this, increasing the number of experts causes a slight decrease in accuracy as experts become underutilized.
The number of experts can be treated as a hyperparameter and optimized on a validation dataset. We also
note that IME with fewer experts can be desirable for improving overall model interpretability.

Contributions of IME components. We perform ablation studies on important IME components,
shown in Table 4. Removing each yields worse performance. Note that IME can be used for any tabular
dataset without a time component by removing the past error from the input to the assignment module,
i.e A([Xt;Et−1]) −→ A(X) (as shown in Sec. 4.2). However, the availability of errors over time improves
the performance of the assignment module.

5 Related Work

Mixture of experts. Jacobs et al. introduced ME over three decades ago. Since then many expert
architectures have been proposed such as SVMs (Collobert et al., 2002) , Dirichlet Processes (Shahbaba &
Neal, 2009) and Gaussian Processes (Tresp, 2001). (Jordan & Jacobs, 1994) propose hierarchical assignment
for MEs. (Shazeer et al., 2017) propose an effective deep learning method that stacked ME as a layer between
LSTM layers. (Shazeer et al., 2018; Lepikhin et al., 2020; Fedus et al., 2021) incorporate ME as a layer in
Transformers. (Pradier et al., 2021) introduce human-ML ME where the assignment module depends on
human-based rules, and the experts themselves are black-box DNNs. IME combines interpretable experts
with DNNs to produce inherently-interpretable architectures with similar accuracy, comparable to DNNs.
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Loss function S-IMEi S-IMEd

Proposed IME 1298.57 671.46
Without Lutil 1369.54 710.61
Without Lsmooth 1481.87 844.15
Without LAy

1342.89 701.50
Without using past errors 1338.57 745.23
Without freezing step (Sec. 2.4) 1315.70 760.25

Table 4: Ablation studies on Rossmann (metrics in RSME).

Interpretable DNNs for structured data. (Agarwal et al., 2020) propose NAM which uses a DNN per
feature. NAM does not consider feature-feature interactions and thus is not suitable for high-dimensional data.
To address this, NODE-GAM (Chang et al., 2021) is introduced, modifying NODE (Popov et al., 2019) into
a generalized additive model. Both NAM and NODE-GAM are only applicable to tabular data. (Luo et al.,
2021; Irsoy et al., 2012; Frosst & Hinton, 2017) propose the use of a soft DT to make DNNs more interpretable.
N-Beats (Oreshkin et al., 2019) uses residual stacks to constrain trend and seasonality functional forms to
generate interpretable stacks for univariate time series. (Shulman & Wolf, 2020) create a per-user decision
tree for tabular recommendation systems. In contrast to these, IME (1) provides explanations that accurately
describe the overall prediction process with minimal loss in accuracy, (2) supports both tabular and time-series
data, and (3) can be easily used for complex large-scale real-world datasets.

6 Conclusions

We propose IME, a novel inherently-interpretable framework. IME offers different options, from providing
explanations that are the exact description of how prediction is computed via interpretable models, to adjusting
what ratio of samples can be predicted with interpretable models. On real-world tabular and time-series data,
while achieving useful interpretability capabilities (demonstrated on synthetic datasets as well as with user
studies), the accuracy of IME is on par with, and in some cases even better than, state-of-the-art DNNs. We
leave extension of IME to unstructured high-dimensional data types, such as image and text, to future work.
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A H-IME Framework
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Figure 9: H-IME consists with DNN expert and IME.

B IME for classification

To adapt IME for classification problems, the model outputs are the output class probabilities instead of
regression value. Correspondingly, the prediction loss Lpred is changed from Eq. 2 to the following:

Lpred(f,Aw, X,X, Y ) = − log
∑n

i=1
Aw(X)i

e−CE(Y,fi(X))/2
√

2π
, (8)

where CE(Y, fi(X)) is standard softmax cross entropy.
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C Experimental details

All experiments were ran on a NVIDIA Tesla V100 GPU. We perform time-series data experiments in two
settings – multivariate and univariate forecasting. The multivariate setting involves multivariate inputs and a
single output. The univariate setting involves univariate inputs and outputs, which are the target values
described below. We use MSE as the evaluation metric.

C.1 Datasets

We perform a 70/10/20 train/validation/test split for each dataset.

Tabular tasks without time component

• Telecom Churn Prediction [Classification] Customer churn is the rate at which customers are lost,
used by telecom companies to predict the number of customers that will leave a telecom service provider.
Churn dataset (tel, 2018) consists of features such as services booked, account information, and demographics
overall there are 20 features and 7043 samples. The task is to classify a customer as churn or not churn.
• Breast Cancer Prediction [Classification] The dataset is based on ML Breast Cancer Wisconsin
dataset (Dua & Graff, 2017), consisting 30 real-valued features that are computed for each cell nucleus
and 569 samples. The goal is to predict if the tissue is malignant or benign.
• Credit Fraud Detection [Classification] The dataset (Dal Pozzolo, 2015) contains transactions made

by credit cards. The dataset consists of 28 features obtained from PCA and 284,807 transactions. The task
is to predict whether a given transaction is fraudulent or not. Note that this dataset is highly unbalanced
with only 0.172% of samples labeled as fraud.
• FICO Score Prediction [Regression] The FICO score is a proprietary credit score to determine
creditworthiness for loans in the United States. The dataset (fic, 2018) is comprised of real-world credit
applications made by customers and their assigned FICO Score, based on their credit report information.
The dataset consists of 23 features and the goal is to predict scores based on different features.

Tabular tasks with time component

We conduct experiments on the Rossmann Store Sales data (Rossmann), which has 30 features. Note that
there is time feature, but we do not have sequential encoding of features from many timesteps, thus the
problem is treated as tabular. The dataset consists of samples from 1115 stores. The goal is to predict daily
product sales based on sales history and other factors, including promotions, competition, school and state
holidays, seasonality, and locality.

Time-series forecasting tasks

• Electricity1 The dataset measures the electricity consumption of 321 clients. We convert the dataset
into hourly-level measurements and forecast the consumption of different clients over time.
• Climate2 The dataset consists of 14 different quantities (air temperature, atmospheric pressure, humidity,
wind direction, etc.), recorded every 10 minutes between 2009-2016. We convert the dataset into
hourly-level measurements and forecast the hourly temperature over time.
• ETT We conduct experiments on ETT (Electricity Transformer Temperature) (Zhou et al., 2021). This
consists three datasets: two hourly-level datasets (ETTh) and one 15-minute-level dataset (ETTm),
measuring six power load features and “oil temperature”, the chosen target value for univariate forecasting.

C.2 Hyperparameters

All baselines were tuned using (Liaw et al., 2018) with at least 20 trials. Hyperparameter search grid used
for each model is available in Table 5. To avoid overfitting, dropout and early stopping were used. The
best hyperparameters were chosen based on the validation dataset while the results reported in the table

1https://archive.ics.uci.edu/ml/datasets
2https://www.kaggle.com/mnassrib/jena-climate
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are on the test dataset. For all IME experiments we set k = 1 for Lutil. For Ldiv(f,X), we set τ = 0.2. All
models were trained using Adam optimizer, and the batch size and learning rate values were modified at each
experiment.

Rossmann Hyperparameter used for IME are give in table 6. For baselines: CatBoost, LightGBM and
XGBoost, we used parameters specified by benchmark 3. LR: The batch size is 512 and learning rate is .001.
Soft DT (SDT): The batch size is 512, learning rate is .0001 and the depth is 5. MLP: The batch size is 512,
5 layers are used, each containing 128 hidden units with a learning rate .001. NAM : Each feature is modeled
using a MLP with 2 hidden layer each with 32 hidden units, with a batch size 512 and learning rate .001.

Electricity For IME, we use a batch size of 512 and a sequence length 336; the remaining hyperparameters
are available in Table 8. While hyperparameters for baseline are in Table 9.

Climate For IME, a batch size of 512 and a sequence length 336 was used the remaining hyperparameters
are available in Table 10. While for baselines detailed hyperparameters are available in Table 11.

LSTM TCN Transformer Informer
Learning rate 0.00001 to 0.1 0.00001 to 0.01 0.00001 to 0.01 0.00001 to 0.01
Batch size 64,128,256 64,128,256 64,128,256 64,128,256
Hidden units 128, 256,512 128, 256,512 128, 256,512 2048
Encoder layers 2 to 6 N/A 2 to 6 1 to 3
Decoder layers N/A N/A 2 to 6 1 to 3
Levels N/A 1 to 10 N/A N/A
Kernal N/A 5 to 15 N/A N/A
Attention heads N/A N/A 2,4,8 8
Embedding sizes N/A N/A 128, 256, 512 512

Table 5: Hyperparameter search grid used for different models

IME Number of Learning rates Model Hyperparameters
experts τ ρ β γ δ λ

Linear Assign. LR Expert 20 .0001 .001 10 0 .1 1
Linear Assign. SDT Expert 20 .0001 .001 .1 0 .1 1
MLP Assign. LR Expert 20 .0001 .001 .1 0 .1 1
MLP Assign. SDT Expert 20 .0001 .001 .1 0 .1 1

Table 6: IME Hyperparameters for Rossmann dataset.

Dataset Assigner Expert Number of Learning rates Hyperparameters
experts τ ρ β γ δ λ

Telecom Churn LR LR 2 0.001 0.0001 1 0 0 1
Breast Cancer LR LR 2 0.1 0.01 1 1 0 1
Credit LR LR 3 0.001 0.0001 1 0 0 1
FICO LR SDT 2 0.01 0.0005 1 20 0 1

Table 7: IME Hyperparameters for different tabular datasets.

3https://github.com/catboost/benchmarks/blob/master/kaggle/rossmann-store-sales/README.md
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IME Number of Learning rates Model Hyperparameters
experts τ ρ β γ δ λ

Linear Assigner LR Expert 10 .0001 .001 10 0 .1 1
LSTM Assigner LR Expert 10 .0001 .001 1 0 .1 1

Table 8: IME Hyperparameters for Electricity dataset.

Model Forecast horizon Batch size Sequence length Learning rate

Auto-regressive
24 512 336 .0001
48 512 336 .0001
168 512 336 .0001

LR
24 512 336 .0001
48 256 336 .0001
168 512 336 .0001

Forecast Horizon Batch Size Sequence Length Learning Rate Hidden Units Layers

LSTM
24 512 168 .001 256 2
48 256 96 .01 128 5
168 512 168 .001 256 2

Forecast Horizon Batch Size Sequence Length Learning Rate Hidden Units Kernel Level

TCN
24 256 96 .0001 512 8 8
48 256 96 .0001 512 8 8
168 256 96 .0001 512 8 8

Forecast Horizon Batch size Sequence length Learning rate Hidden units Encoder Decoder Heads

Transformer
24 512 168 .001 256 3 5 4
48 256 168 .01 256 3 5 4
168 512 168 .001 256 3 5 4

Informer
24 512 168 .0001 512 2 1 8
48 512 168 .0001 512 2 1 8
168 512 168 .0001 512 2 1 8

Table 9: Baseline Hyperparameters for Electricity dataset.

Features IME Number of Learning rates Model Hyperparameters
Experts τ ρ β γ δ λ

Univariate Linear Assigner LR Expert 2 .002 .005 1 0 .1 1
LSTM Assigner LR Expert 2 .001 .01 10 0 .1 1

Multivariate Linear Assigner LR Expert 10 .0001 .001 1 .001 10 1
LSTM Assigner LR Expert 10 .0001 .001 1 0 10 1

Table 10: IME Hyperparameters for Climate dataset.
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Univariate

Model Forecast horizon Batch size Sequence length Learning rate

Auto-regressive
24 256 336 .001
48 256 336 .005
168 256 336 .005

LR
24 256 336 .005
48 256 336 .001
168 256 336 .005

Forecast horizon Batch size Sequence length Learning rate Hidden units Layers

LSTM
24 1024 24 .01 128 4
48 256 240 .001 128 5
168 1024 24 .01 128 4

Forecast Horizon Batch Size Sequence Length Learning Rate Hidden Units Kernel Level

TCN
24 1024 96 .001 512 4 3
48 1024 96 .001 512 4 3
168 256 96 .0001 512 8 8

Forecast Horizon Batch Size Sequence Length Learning Rate Hidden Units Encoder Decoder Heads

Transformer
24 64 168 .0005 256 3 3 4
48 64 96 .0001 512 2 4 8
168 128 336 .0005 256 4 4 8

Informer
24 512 720 .0001 512 2 1 8
48 512 720 .0001 512 2 1 8
168 512 720 .0001 512 2 1 8

Multivariate

Model Forecast horizon Batch size Sequence length Learning rate

Auto-regressive
24 256 168 .0005
48 256 168 .0005
168 256 336 .001

LR
24 256 96 .001
48 256 96 .001
168 256 168 .0005

Forecast Horizon Batch Size Sequence Length Learning Rate Hidden Units Layers

LSTM
24 512 168 .001 256 2
48 512 168 .001 128 2
168 512 168 .001 256 2

Forecast horizon Batch size Sequence length Learning rate Hidden units Kernel Level

TCN
24 1024 96 .001 256 12 1
48 1024 96 .001 256 13 1
168 1024 96 .001 256 13 1

Forecast horizon Batch size Sequence Length Learning rate Hidden units Encoder Decoder Heads

Transformer
24 128 96 .0005 256 5 4 8
48 128 336 .0005 128 4 4 8
168 128 168 .00005 256 2 3 4

Informer
24 512 168 .0001 512 3 2 8
48 512 96 .0001 512 2 1 8
168 512 336 .0001 512 3 2 8

Table 11: Hyperparameters for Climate dataset.
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C.3 Additional regression experiments

For regression tasks on FICO dataset, we preformed partial interpretable variations of IMEs including S-IMEd,
H-IMEi and H-IMEd
Regression Results: From Table 12, we observe that for none of the inherently-interpretable models
outperforms DNNs on FICO dataset, however, we partial interpretable models H-IMEi can outperform DNN,
with only 0.2% of samples assigned to the DNN.

Models RMSE
(FICO dataset)

Simple Interpretable Regression 4.344
DTs 4.900

Inherently Interpretable
NAMs 3.490
EBMs 3.512
S-IMEi 3.370

Partial Interpretable
S-IMEd 3.380
H-IMEi 3.290
H-IMEd 3.360

Non-Interpretable (Black-Box) XGBoost 3.345
DNNs 3.324

Table 12: Lower RMSEs are better. Bold indicates best results, while italic is second best. We report results on a
regression dataset (FICO) for understanding credit score predictions.

C.4 DNNs using past errors

Past errors are considered as useful information for the IME assignment module as they can help the
assignment module choose the best expert in the next time step. IME has a direct mechanism of benefiting
from past errors – by yielding better assignment. One natural question can be whether the past errors would
also benefit DNNs if they are simply input to the models for the downstream prediction task. To shed light
onto this question, we experiment by using past errors as inputs to DNNs. The results on ETTm1 dataset
are shown in Table 13. We find that adding past errors can help the accuracy of DNNs but even with past
errors, the performance is significantly worse than that of IME. We also underline that IME does not use
past errors for its experts while yielding downstream predictions, but only for its assignment module. We
note that explainability with past errors is more natural for the assignment module, while less so for the
predictive experts.

Forecast horizon Black Box Models Black Box Models + Past Errors IME
LSTM Informer Transformer TCN LSTM Informer Transformer TCN S-IMEi S-IMEd

24 .017 .018 .017 .017 .015 .015 .017 .016 .012 .011
48 .029 .056 .036 .032 .032 .033 .033 .027 .021 .020
168 .161 .171 .137 .110 .113 .142 .123 .168 .047 .044

Table 13: The MSE of baselines, baselines with past errors and S-IME for univariate ETTm1 time-series dataset at
different forecasting horizons.

C.5 The impact of diversity loss

Multiple loss terms are employed in IME, as given in Eq. 1 and their contributions can be controlled via
hyperparameters. In general, the benefit of some loss terms might be more prominent on some datasets. In
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Table 4, we show the contribution of different IME components on the Rossmann dataset. For this particular
dataset, Ldiv is observed to have a minor effect. We find that adding Ldiv has more effect on time series
datasets where the output consists multiple forecasts rather than a single point prediction. In Table 14, we
show the effect of Ldiv on the ETTm1 dataset – it is observed to help reduce MSE for different forecasting
horizons.

Forecast horizon S-IMEi
Without Ldiv With Ldiv

24 .014 .012
48 .023 .021
168 .055 .047

Table 14: The MSE for S-IMEi with and without Ldiv on univariate ETTm1 time-series dataset at different
forecasting horizons.

C.6 Hierarchical assignment differentiating between ‘difficult’ and ‘easy’ samples

H-IME assignments module can also identify ‘difficult’ samples (i.e., samples requiring a DNN for an accurate
prediction) and ‘easy’ samples (i.e., samples that can be predicted by a simple interpretable model) offering
insights on the task. To verify this we looked into the difference in accuracy between samples assigned to a
DNN versus an interpretable expert for the Rossmann dataset. Table 1 showed that the best-performing
model was H-IME where 43.32% of samples were assigned to an interpretable expert, in Table 15 we compare
the RMSE of samples assigned to DNN with those assigned to SDT. We find that for samples assigned to
DNN, DNN accuracy is much better than a single SDT this shows that these samples are in fact ‘difficult’
requiring more complex models to get an accurate prediction. For samples assigned to a single interpretable
model, we find that a single SDT for those samples outperforms DNN, confirming that those samples are ‘easy’
samples where model complexity is not required for high performance rather it may harm overall accuracy.

Sample Assignement DNN SDT S-IME H-IME
DNN i.e., difficult samples 570.05 1292.12 842.27 518.97
Interpretable expert (SDT) i.e., easy samples 120.87 92.1 97.64 23.54

Table 15: RMSE for different H-IME assignment on Rossmann.

C.7 IME in comparison to other ME variants:

Sparsely-gated ME (Shazeer et al., 2017) assigns samples to a subset of experts and then combines the outputs
of gates. Switch ME (Fedus et al., 2021) assigns each sample to a single expert. For fair comparison, a single
expert is used at inference. Table 16 also shows that IME’s assignment mechanism yields superior results.

ME variant RMSE

S-IMEi 1298.57
Sparsely-gated ME (Shazeer et al., 2017) 1575.18
Switch ME (Fedus et al., 2021) 2839.56

Table 16: IME in comparison to other ME variants on Rossmann (metrics in RSME).
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D Interpretability Results

D.1 User study details:

• The participants were given instructions shown in Fig. 10.
• Then, a data-sample from Rossmann was provided as shown in Fig. 11 and the participant s were asked

to answer questions based on two explanations.
• Explanations from different models , and questions were shown to participant as shown in Fig. 12 and Fig. 13.
• Finally, the participant was asked which model he trusts more as shown in Fig. 14.

Figure 10: User study instructions
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Figure 11: Data-sample from Rossmann dataset.
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Figure 12: Explanation from Model A and sample question. Color code is red to green representing positive value to
negative value of explanation.
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Figure 13: Explanation from Model B and sample question. Color code is red to green representing positive value to
negative value of explanation.
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Figure 14: User study model trust question
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