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SUMMARY

The topological state of chromosomes determines their mechanical properties,
dynamics, and function. Recent work indicated that interphase chromosomes are
largely free of entanglements. Here, we use Hi-C, polymer simulations and multi-contact
3C, and propose that, in contrast, mitotic chromosomes are self-entangled. We explore
how a mitotic self-entangled state is converted into an unentangled interphase state
during mitotic exit. Most mitotic entanglements are removed during
anaphase/telophase, with remaining ones removed during early G1, in a
Topoisomerase |I-dependent process. Polymer models suggest a two-stage
disentanglement pathway: first, decondensation of mitotic chromosomes with remaining
condensin loops produces entropic forces that bias Topoisomerase |l activity towards
decatenation. At the second stage, the loops are released, and formation of new
entanglements is prevented by lower Topoisomerase |l activity, allowing the
establishment of unentangled and territorial G1 chromosomes. When mitotic
entanglements are not removed, in experiment and models, a normal interphase state

cannot be acquired.
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INTRODUCTION:

Topoisomerase Il (Topo Il) controls the topological state of the genome ' throughout the
cell cycle by catalyzing controlled double strand breaks and allowing DNA duplexes to
pass through one another '. There are two forms of Topo Il in the human genome, DNA
Topoisomerase 2-alpha and DNA Topoisomerase 2-beta, encoded by the TOP2A and
TOP2B genes, respectively '°. TOP2A has well studied roles in organizing mitotic
chromosomes where it is both a structural component and is required for decatenation
of sister chromatids at anaphase 451020, TOP2B is expressed throughout the cell cycle
and its activity has been detected at open chromatin sites and active chromatin

including promoters and CTCF sites during interphase 22

Whether and how the topological state of chromosomes changes during the cell cycle is
not well understood. Hi-C has been widely used to characterize chromosome folding in
mitosis and interphase 25. However, since Hi-C measures pairwise interactions, one
aspect of chromosome folding that is not detected by this method is the entanglement
or catenation state of the genome. For the purposes of this study, we define a
chromosome entanglement to be a local interlink between two regions of the genome,
on the same or different chromosomes. A special type of entanglement operating on
rings (loops) is a catenation; catenations can turn a ring into a knotted state or can link
two rings (e.g., two chromosome loops). A catenane can also knot a linear
chromosome, or a pair of chromosomes, if its ends are sufficiently far away from each
other as to behave like a polymer ring. Strand passage facilitated by Topo Il can both

remove and create entanglements, catenating or decatenating loops. Previous
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simulations of model polymers showed that highly entangled chains can become highly
“‘intermingled”. The level of intermingling can be detected using multi-contact 3C (MC-

3C) 7.

MC-3C and super-resolution chromosome tracing data are consistent with interphase
chromosomes being largely free of intra-chromosomal entanglements 27?8, Hi-C data
also suggest folding of interphase chromosomes into an unentangled polymer state
known as the crumpled (fractal) globule 262930 A recent theoretical study by some of us
has revealed a universal behavior of the Hi-C contact probability curve, which is only

consistent with the crumpled polymer organization with loops 3132

In contrast, the topological state of mitotic chromosomes is less understood. Self-
entanglement is supported by in vitro experiments, isolated chromosomes, and some
polymer models, with others supporting an unentangled state 33-3. In their seminal
paper A. Rosa and R. Everaers (2008) propose that the unentangled and territorial
interphase state is formed by decompaction from an unentangled mitotic chromosome if
Topo Il is inactive during exit from mitosis 3°. Although the assumed absence of Topo |l
activity during interphase has been challenged by experiments, the Rosa-Everaers
model highlights the importance of topological constraints in establishing and

maintaining unentangled and territorial chromosomes®°.

Here we characterized the topological states of mitotic chromosomes and how cells

reorganize the topological state of chromosomes upon exit from mitosis. We found that
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mitotic chromosomes are highly self-entangled. We propose that cells use a two-stage
process where Topo Il activity eliminates these entanglements upon mitotic exit and
prevent the formation of new ones, creating territorial, compartmentalized, and

unentangled interphase chromosomes.

RESULTS:

Topo Il inhibition leads to incomplete compartmentalization at G1 entry

Topo Il has roles in formation and maintenance of mitotic chromosome structure, as
well as in unlinking of sister chromatids 21337, In contrast, the relevance of Topo Il for
decondensation of individual chromatids after their separation and upon G1 entry is less
established?8. Here we investigated the genome-wide effect of Topo Il chemical
inhibition on chromosome folding and topology as cells exit mitosis and enter G1 using

Hi-C, imaging, and MC-3C.

To determine whether Topo Il activity is required for establishment of G1 chromosome
folding, we performed Hi-C 2.0 (Hi-C) on G1 sorted cells from synchronized HeLa S3
cultures during G1 entry (Figure 1A, Figure S1H-I) 3941, Cells were first arrested in
prometaphase using a single thymidine block + 12 hours nocodazole arrest (t = 0), and
then synchronously released into G1 with either DMSO, 30uM ICRF-193, or 30uM
ICRF-193 + 200uM Merbarone added at two hours post nocodazole wash-out (f = 2
hrs), when at least 50% of cells have entered or passed anaphase (Figure 1B, S1A-F).
30uM ICRF-93 is a sufficient dose to block Topo Il activity as it completely prevents

sister chromatid decatenation during anaphase and stabilizes Cyclin B when added
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during release from a mitotic arrest (see methods,*>#4) (Figure S1A-D). Aliquots were
fixed for Hi-C using 1% formaldehyde in early G1 (f = 4 hrs) or late G1 (f = 8 hrs), and

G1 cells were isolated using FACS (Figure S1A, B, E-G, 1) 4041,

In a representative prometaphase Hi-C contact map, a typical mitotic structure is
observed, without visible TAD or compartment patterns (Figure 1C). In Hi-C data
obtained from control (DMSO treated) cells, the checkerboard pattern representing
compartmentalization is first apparent in early G1, and then becomes stronger in late
G1, as previously reported (Figure 1D, H) %45, In cells treated with ICRF-193 we
observed two phenomena: First, at t = 4 hrs, we observe a very weak checkerboard and
a broad diagonal of enriched interactions reminiscent of mitotic Hi-C maps (Figure 1D,
Figure S2G, O) 404446 Second, at t = 8 hrs a nearly normal compartmentalization
pattern is observed, indicating that compartments can be established but with delayed
kinetics (Figure 1D). Combined addition of ICRF-193 and Merbarone, a Topo |l catalytic
inhibitor that acts at a different step than ICRF-193, further reduces compartment
strength at t = 8hrs compared to ICRF-193 alone, although compartments are still
somewhat increased compared to the t = 4 hrs timepoint (Figure 1H, Figure S1T).

Merbarone alone has no effect on compartment strength (Figure S1U).

The log-ratio of Hi-C interactions detected with ICRF-193 vs. DMSO treated cells at f =
4 hrs shows enriched interactions close to the diagonal between A and B domains
(Figure 1E), similar to what is observed in mitosis (Figure 1C) 404446, By t = 8 hrs, this

difference is much smaller, but is retained in ICRF-193 + Merbarone treatment (Figure
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11). In addition, analysis of the relationship of interaction frequency (P) of pairs of loci as
a function of the genomic distance (s) between them shows relatively frequent
interactions in early G1 with ICRF-193 treatment for loci separated by 2-20Mb
compared to interactions detected in untreated cells (Figure 1 F, Figure S1K, L). By late
G1 (t = 8 hrs) P(s) curves are more similar, although ICRF-193 treatment still shows
increased interactions in the 2-20Mb range, and this difference is more pronounced in
the ICRF-193 + Merbarone condition (Figure S1V). These changes are readily
detectable when the slope of P(s) is plotted as a function of genomic separation (S)
(Figure 1G, Figure S1W). These data suggest that mitotic-enriched interactions are
resolved only partially when cells exit mitosis in the presence of Topo Il inhibitors.
Finally, we quantified compartment strength at different distances. In ICRF-193 and
ICRF-193 + Merbarone treated cells, A-A and B-B compartment strength is weaker in
early G1 (t = 4 hrs) compared to DMSO treated cells, particularly for loci up to 20Mb
apart (Figure 1H, I). Compartment strength partially recovers by late G1 in ICRF treated
cells, but much less so when cells are treated with both inhibitors (f = 8 hrs). We
observed no change in chromosome folding at the TAD or loop level upon Topo Il
inhibition by ICRF-193 (Figure S1M, N). In contrast to the mitotic exit results, Topo Il
inhibition does not affect steady state intra-chromosomal folding in an asynchronous
(Async.) population of mainly interphase cells (Figure S1I-S). We conclude that the
interphase conformation can be maintained in the presence of Topo Il inhibition. In
summary, Topo Il activity is required during mitotic exit for complete dissolution of the

mitotic state and full establishment of interphase compartments.
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Disruption of compartmentalization with Topo Il inhibition can be observed by
confocal microscopy

We next tested whether a delay in compartmentalization upon Topo Il inhibition could
be observed by microscopic analysis of two histone modifications: acetylation of histone
H3 lysine 27 (H3K27ac), and trimethylation of H3 lysine 9 (H3K9me3) enriched in the A
or B compartments, respectively 4748 We fixed HeLa S3 cells to coverslips at t = 4 hrs
and t = 8 hrs after mitotic release for confocal microscopy, followed by immunostaining
to label H3K9me3 and H3K27ac. We also stained cells with DAPI to mark the DNA. In
the DMSO treated cells, the H3K9me3 signal is highest at the periphery, as expected
(Figure 2A, Figure S2A, B) 4993, H3K27ac is found in puncta in the interior of the
nucleus, as expected for active chromatin (Figure 2A, Figure S2C) 49%1-53, Compared to
DMSO treated cells, we find that ICRF-193 treatment during G1 entry significantly
increased co-localization of H3K9me3 with H3K27ac regions in early G1, corresponding
to the lower compartment strength observed by Hi-C as compared to DMSO treated
cells (Figure 2B). In addition, ICRF-193 treatment increases the fraction of H3K27ac
signal at the nuclear periphery compared to DMSO treatment at both timepoints (Figure

2C, Figure S2C).

Topo Il inhibition changes DNA morphology and Topo IlA localization in early G1
Individualized mitotic chromosomes display relatively high contrast when stained with
DAPI, which we quantified by calculating the contrast of DAPI signal at a 10-pixel
distance in HeLa S3 cells with Topo IIA-Venus (Figure 2D, E) %*. As cells exit mitosis,

this contrast reduces significantly as chromosomes become decondensed. In the
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presence of ICRF-193 treatment we observe a significantly smaller decrease in DAPI
contrast between mitotic exit (starting at t = 2 hrs) and early G1 (t = 4 hrs) as compared
to control cells. Additionally, we find that endogenously tagged Topo IIA-Venus signal
has the highest contrast at 2 hrs and decreases as cells enter G1 (Figure S2F). This
decrease is not observed in ICRF-193 treated cells. Axial TOP2A staining was observed

in some early G1 ICRF-193 treated cells (Figure 2D, see methods).

Topo Il inhibition must occur early during mitotic exit to delay compartment
establishment

We next tested whether the increase in compartment strength in late G1 was due to
reduced ICRF-193 potency during the six-hour treatment (Figure 3A). To address this,
we re-added DMSO or ICRF-193 every two hours throughout the time course and
collected cells in late G1 (t = 8 hrs) (Figure 3B). These experiments were performed
without G1 sorting, resulting in slightly larger number of cells with a G2 DNA content in
populations with ICRF-193 treatment (Figure 3C, D). We observe the same phenotype
in the late G1 (¢ = 8 hrs) timepoint with ICRF-193 added once or re-added every two
hours (Figures 3E-J), therefore the recovery in compartment strength is not due to loss
of potency of the inhibitor. Rather, ICRF-193 treatment does not inhibit all Topo |l

activity, and full inhibition requires use of multiple inhibitors (see above).

To determine whether there is a specific transient state in early G1 that requires Topo Il
activity, we added ICRF-193 at different times post mitotic release (Figure 3K-M).

Comparison of the compartment strength in both the A and B compartments between
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ICRF-193 and DMSO treated cells shows the largest difference for the earliest sample
where ICRF-193 was added at t = 2 hrs, while ICRF-193 addition att= 3 hrs and t = 4
hrs has a reduced effect on compartment establishment (Figure 3 N-Q, Figure S3J-O).
Addition of ICRF-193 at t = 3hrs or t = 4hrs does not prevent further strengthening of

compartments in late G1.

ICRF-193 induced delay in compartment establishment is independent of
transcription

Next, we examined whether the structural defects that we observe with Topo Il inhibition
are related to transcription induced changes in folding, thereby interfering with
reformation of G1 structure. We released HelLa S3 cells from mitosis in the presence of
Triptolide (TRP) and 5,6-Dichloro-1-beta-Ribo-furanosyl Benzimidazole (DRB), which
inhibit transcription initiation and elongation, respectively %°. (Figure S3K). By Hi-C,
transcription inhibition alone did not result in changes in intra-chromosomal
compartment strength at any distance, and transcription inhibition did not change the
ICRF-193 phenotype of decreased compartment strength in early G1 (Figure S3 M-Q,

Figure S3I-N).

Mitotic chromosomes are highly intermingled, and become swiftly unmingled
during mitotic exit

Previously, we showed using Multi-contact 3C (MC-3C) data that in interphase
interacting compartment domains are not extensively intermingled, which is consistent

with the genome being decondensed and topologically not entangled, as also inferred

10


https://doi.org/10.1101/2022.10.15.511838
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.15.511838; this version posted January 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

from the fractal globule scaling of Hi-C data?’. We now performed MC-3C for cells in
mitosis to determine the extent of intermingling of interacting domains along mitotic
chromosomes, how intermingling changes as cells exit mitosis, and how any changes

depend on Topo Il.

We collected synchronized cells for MC-3C at t = 0 (prometaphase arrest), t = 2 hrs
after nocodazole wash-out (anaphase/telophase), and at t = 4 hrs/early G1 ort=8
hrs/late G1 with either DMSO or 30uM ICRF-193 added at t = 2 hrs (Figure 4A, Figure
S4A; 3 replicates). MC-3C data recapitulate the Hi-C results in terms of differences in
compartmentalization and cis/trans ratio between cell cycle states and with ICRF-193
treatment (Figure 4B). Interaction distance distributions for direct pair-wise interactions
derived from MC-3C data for t = 4 hrs and t = 8 hrs DMSO treated cells were similar to
previously published MC-3C results in Async. cells, and Hi-C data (Figure 4C, D, Figure

S4C-H) 2",

MC-3C produces “C-walks”: strings of co-occurring interactions that can provide
information on the extent of intermingling between chromosomal regions. Relatively
high levels of intermingling can be caused by several factors, including chromatin
density, chromosome geometry, but also the presence of topological entanglements?’.
Low levels of intermingling, as we found for interphase cells?’, are consistent with the
decondensed unentangled interphase state. We explored the subset of C-walks that
detect interactions between two distal chromosomal domains (see Methods). C-walks at

an intermingled surface will include more steps that go back and forth between the two

11
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domains as compared to C-walks at non-intermingled surfaces (Figure 4E) ?7. The order
of steps for C-walks across highly intermingled domains approaches that expected for

randomized C-walks?’.

We used MC-3C data to calculate the extent of intermingling by calculating an
Intermingling Metric (IM), see Methods and Figure 4 F,G. IM is the fraction of C-walks
that transit between two regions of a chromosome more than once. IM can be
calculated as a function of genomic distance between the interacting domains
(Methods, Figure 4F). We first measured the IM in control (DMSO treated) cells during
mitotic exit. Comparing the t = 0 prometaphase sample to late G1, we find that
prometaphase chromosomes have a higher IM, with ~60% of C-walks containing more
than one step connecting the two regions for most distances between two regions
(Figure Gi; fully intermingled domains would be predicted, based on permutation, to
have IM=0.67). In late G1, the IM is significantly lower. The effect size observed here is
in line with what was observed in simulations of interactions between model polymers
with entangled and unentangled interaction surfaces 2’. This result shows that
chromosomes transition from a relatively intermingled to a relatively unmingled state

during mitotic exit.

The IM decreases quickly as cells exit mitosis (Figure 4G). At t = 2 hrs (consisting of
mainly anaphase/telophase cells), the IM is already greatly reduced compared to
prometaphase at all distances (Figure 4Gii). At the t = 4 hrs early G1 timepoint the IM

further decreases compared to t = 2 hrs anaphase/telophase, particularly at distances of

12
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12-22 Mb between interacting domains (Figure 4Giii, iv, see bracket). This is the same
distance range that has the highest level of the IM in the prometaphase sample. By t = 8

hrs (late G1), the IM was at the lowest level (Figure 4G)

Topo lI-dependent loss of intermingling during mitotic exit suggests that mitotic
chromosomes are internally catenated

We next investigated the effect of Topo Il inhibition on the changes in the IM during
mitotic exit. ICRF-193 treatment reduces the loss in the IM in the range of 15-20 Mb,
observed from t = 2 hrs to t = 4 hrs in the DMSO treated samples (Figure 4Hi, ii). This is
a similar distance range to the largest loss of compartment strength with ICRF-193
treatment by Hi-C (Figure 1J, K). However, by late G1 the IM at all distances is similar
to the DMSO treated sample (Figure 4Hiii, iv), reminiscent of the compartment strength
recovery by t = 8 hrs observed by Hi-C with ICRF-193 alone. The later restoration of low
intermingling is probably explained by residual Topo Il activity not blocked by ICRF-193,
as the compartment strength does not fully recover by t = 8 hrs in the ICRF-
193+Merbarone double inhibition Hi-C experiments (Fig. 1). Thus, mitotic chromosomes
are internally intermingled, and during mitotic exit become decondensed and less
intermingled. While high IM in mitosis can reflect, at least in part, the high level of
condensation during prometaphase, the dependence of the process of unmingling
during mitotic exit on Topo Il suggests that decondensation involves resolution of

topological entanglements.

13
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Polymer models of G1 entry without Topo Il activity support self-entangled
mitotic chromatids

We turned to polymer simulations to directly test the topological state of mitotic
chromosomes based on the observed effects of Topo Il inhibition by Hi-C and MC-3C.
We started simulations with mitotic chromosomes with or without intra-chromosomal
catenations, and simulated expansion of 90 Mb chromosomes without strand passage,
as in Topo Il inhibited cells (see Methods). Simulated interphase organization was then
compared to Hi-C results, to determine which initial catenation state is consistent with

experiments.

The mitotic chromosome was modelled by a dense array of condensin loops with the
average size of 400 kb, corresponding to the size of condensin Il loops, that were
further confined within a cylinder to reflect chromatin condensation in the mitotic
environment “6. We considered different topologies of the mitotic chromosome: an
“‘unknotted state”, with loops not catenated with each other, and a “knotted state”, where
loops are catenated (see Methods for details). As a global measure of catenations in a
mitotic chromosome, we compute a matrix of pairwise catenations (Gaussian linking
numbers) between all loop pairs (Figure 5A). While in the knotted state most loops
(~70%, Figure 5A) are catenated with at least one other loop, in the unknotted state less
than 3% are. Despite different topologies, the two mitotic states — knotted and unknotted

— produce equivalent P(s) curves (see Figure S5A).

14
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We simulated expansion of mitotic chromosomes by releasing the cylindrical constraints
and condensin loops, followed by activation of compartmental interactions and cohesin-
mediated loop extrusion (see Methods). We observed very different final states when
starting from knotted or unknotted mitotic states. When initiated from an unknotted
state, TADs and compartments can form in G1, even without strand passage (Figure
5B, left). In contrast, when started from the knotted state where condensin loops are
catenated, mitotic exit without strand passage results in a retained mitotic band of
interactions close to the diagonal (Figure 5B, right) and weaker compartmental
interactions, while TADs formed similarly to those in the unknotted chromosomes
(Figure 5B, C). The retained mitotic band, visible on the simulated interphase contact
map formed upon exit from the knotted but not from the unknotted mitotic state, closely
resembles Hi-C patterns seen in Topo Il inhibition experiments (Figures 5B, S5A-B and
Figure 1H). This mitotic band can be also seen as a broad shoulder on the

corresponding P(s) curves (Figure 5D).

Presence of this mitotic band visible during interphase, seen in experiments and in
simulations from the knotted mitotic state, reflects retention of mitotic entanglements in
the interphase chromosomes. The same is seen in simulations without compartments,
indicating that the band is not caused by compartmental interactions (Figure S5B-D).
Interestingly, interphase chromosomal conformation emerging from knotted and
unknotted mitotic states also have drastically different distance maps (Figure 5G-H),
with loci 0.8-2 Mb apart being about 1.5-times closer in space when exiting from the

knotted mitotic space. More compact chromosomes are also observed in microscopy
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when cells exit mitosis in the presence of ICRF-193 (Figure 2E). In the absence of Topo
Il activity, initial mitotic entanglements cannot be resolved and prevent full opening of
chromosomes (Videos S1-S2). This further prevents establishment of long-range
interactions between homotypic compartments both at short and large distances (Figure
5C,E), consistent with experiments. Thus, simulations suggest that retention of mitotic-
like morphology and weaker compartmentalization upon Topo Il inhibition during mitotic

exit indicate a highly self-entangled mitotic state.

Further evidence of entanglement in the mitotic state comes from comparison of
territoriality of interphase chromosomes between experiments and simulations,
quantified by the cis/trans ratio in simulations and MC-3C data (see Methods).
Simulations that start from knotted and unknotted mitotic chromosomes, with inhibited
strand passage, yield very different cis/trans ratios in the subsequent G1 phase. We
calculated cis/trans ratios as a function of time, for the two initial states (Figure 5F).
After several hours, the cis/trans ratios of chromosomes expanded from an unknotted
mitotic state fall below the range observed experimentally upon ICRF-193 treatment
(cis/trans ratio inferred from MC-3C data), see Fig. S61. At the same time, territoriality of
chromosomes expanded from a knotted mitotic state quickly saturates at values close to
those observed in the Topo Il inhibition experiments. This agreement between
experiments and simulations additionally indicates that mitotic chromosomes are

knotted.
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Two-stage exit allows chromosomes to transition from an entangled mitotic to an
unentangled interphase state

How can chromosomes transition from an entangled mitotic state into a largely
unentangled G1 state, while establishing proper interphase organization? Our goal is to
reproduce two global features of interphase chromosome organization, starting from
entangled mitotic chromosomes: (i) the fractal (crumpled) globule intra-chromosomal
organization measured on the P(s) curve; and (ii) chromosome territoriality (measured
by the cis/trans ratio). The fractal globule, a compact and unknotted polymer state, is
evident from the -1... -1.2 slope of the P(s) curve?®:56-6° and is best seen when cohesin-

mediated loops do not obscure this scaling, e.g., upon cohesin depletion®'-62,

First, we explored a model where entangled mitotic chromosomes simply expand in the
presence of high Topo Il activity (modeled by having a low barrier to strand passage). In
this “one-stage model”, condensin loops are released, which occurs by late
telophase*9-%3, with simultaneous release of cylindrical confinement of the chromosome
(Figure 6A-C). Simulations show that while the knotted mitotic state rapidly expands,
chromosomes extensively mix both in cis and in trans. Specifically, the fractal globule
organization cannot be established as evident from the slope of the P(s) curve (Figure
6B). To better check for the fractal scaling, we remove cohesin-mediated loops in the
late G1 timepoint 3':32. We observe that the slope of the P(s) curve approaching -1.5, far
below the expected -1...-1.2 for the fractal globule. This behavior is expected as high
Topo Il activity turns the chain into a topologically unconstrained and highly entangled

nearly ideal chain (Figure 6B) 4. Furthermore, we see that chromosomal territoriality
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falls below the levels observed in MC-3C for WT interphase cells (Figure 6C and Figure
S6l). Together, these results indicate that while Topo Il activity allows entangled mitotic
chromosomes to expand, it precludes establishment of chromosome territories and
formation of the fractal globule state, as generally expected for topologically

unconstrained polymers3%64,

One-stage exit from a knotted mitotic state with Topo Il activity does not reproduce the
features of an unentangled interphase. In fact, while Topo Il activity can allow expansion
of knotted chains, its continued activity leads to mixing and does not lead to formation of
the unentangled interphase. Thus, we seek a mechanism that can efficiently
disentangle the mitotic state and then maintain this unentangled state later through
interphase. Our key idea is that keeping mitotic loops while allowing chromosomes to
decondense could entropically bias Topo Il towards decatenation of the loops.

This could lead to formation of the sought unentangled state, that then needs to be

maintained through the rest of expansion.

On the basis of this idea, we developed a two-stage expansion process (Figure 6D).
During Stage |, Topo Il is active and the cylindrical constraints on the mitotic
chromosome are released, while mitotic loops are still present, i.e., the nuclear
environment/chromatin changes to their interphase state, but condensin loops remain.
Simulations show that the first stage results in directed decatenation of condensin loops
(Figure 6D-E); this is quantified using the matrices of linking numbers between the

loops. A simulated chromosome is reminiscent of a swollen bottlebrush, which gradually
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lengthens, as more and more loops become decatenated from each other. In 2 minutes
of the first stage around 50% of mitotic catenations are removed, while at T=10 minutes
after mitosis the average amount of catenations per one loop reduces almost 3-fold and
reaches the topological steady-state, in which the number of newly formed catenations
matches the number of removed catenations (Figure 6E). Temporal activation of Topo II
activity (or delayed inhibition) for 10-20% of duration of Stage | results in rapid
relaxation of catenations, with associated increase of G1 compartmental strength and
decrease of territoriality (Figure S5H-J). Importantly, inducing active Topo Il inside the
mitotic chromosome before it starts expanding (i.e., while in the cylinder) is not able to
decatenate the loops, indicating that disentanglement requires Topo |l activity during
expansion with intact loops (Figure S6A). Thus, directed expansion of the chains during
the first stage drives repulsion between the loops, and Topo Il activity mediates loop-

loop decatenation.

At Stage I, the mitotic loops are released, and Topo |l activity is significantly decreased.
It starts with already unentangled chromosomes and maintains this state during their
further expansion. Active cohesin-mediated loop extrusion and compartmentalization
are also introduced at Stage Il (Figure 6D). Simulations show that the remaining level of
catenations from Stage | is negligible, and chromosomes form the fractal globule with a
characteristic slope of P(s), clearly seen upon depletion of cohesin (Figure 61, 7F)
32,56,57,59-62.65 The fractal globule is also evident from the visual comparison of snapshots
of chromosomes colored along the chain (Figure 6D and 6A). The fractal globule is

known to produce clear “intra-chromosomal territoriality” of genomic segments within a
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chromosome, as seen for the two-stage exit, in contrast to mixing of segments in the
case of the one-stage exit 26. Simulations also show the fractal globule state can be
formed even in the presence of some low-level of Topo Il activity in Stage Il (occasional
strand passage) (Figure 7F). Furthermore, we find that the territoriality of simulated
chromosomes after the two-stage exit agrees with that of experimental interphase MC-
3C values, i.e., overlaps with the cis/trans range for chromosomes in DMSO treated
cells (Figure 6F). We note that territoriality is difficult to achieve in the one stage model

unless the Topo Il timing is precisely fine-tuned (Figure S6G).

In the course of the second stage of our model the chromosomes become more
compartmentalized, reaching the values of compartmental scores observed in DMSO
experiments (Figure 6G). Similar to experiments, we also see dissolution of the mitotic
band as chromosomes decompact, which is evident both in the contact maps and P(s)
curves (Figure 6G,H). Consistently, the mitotic band dissolves in the distance map of a
chromosome (Figure 6J), in sharp contrast with the distance map obtained as a result of

expansion without strand passage (Figure 5G, right).

We note that the two-stage expansion out of the hypothetical unknotted mitotic
configuration would produce a qualitatively different change of compartmental strength
than observed in Topo Il inhibition experiments (Figure S5E-F). Indeed, the Topo Il
activity in Stage | would increase the number of loop-loop catenations from negligible to
the level of the two-stage expansion from the knotted mitotic state (Figure S5G),

yielding a less compartmentalized state than in the situation of inhibited strand passage
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without catenations. This result highlights that the unknotted mitotic state is inconsistent

with experimental findings on Topo Il inhibition.

Taken together, the proposed two-stage mechanism of mitotic exit and decondensation
facilitates large-scale chromosome disentanglement, and then maintains this
unentangled state allowing the establishment of interphase organization with these
hallmarks: the fractal globule, chromosome territoriality, and strong

compartmentalization.

Topo Il activity is required for increased compartment strength upon loss of
cohesin

To test whether Topo Il activity is also required for other forms of chromosome
reorganization, we used the previously described HCT116 cell line carrying an auxin
inducible degron (AID) and mClover fusion of RAD21, a subunit of the cohesin complex
(HCT116 + RAD21-mAC cell line) 6166-68_|n this system, depletion of cohesin results in
weaker TADs and CTCF-CTCF loops, and stronger compartmentalization 6'-68. Using
this system, we measured how chromosome folding is affected by the combined loss of
Topo Il activity and cohesin by Hi-C. We treated Async. HCT116 + RAD21-mAC cells,
which are mainly in the G1 phase of the cell cycle, with 30uM of ICRF-193 to inhibit
Topo Il or with DMSO, and/or 500uM Auxin (Indole-3-acetic acid, IAA) to degrade
RADZ21 for two hours (Figure 7A, Figure S7A). Following fixation, the cell populations

were sorted for G1 DNA content, and +/- mClover expression (Figure S7B,C).
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As previously observed, short-range Hi-C interactions are decreased, while long-range
compartment-specific interactions are increased with RAD21 degradation (Figure 7B, C)
61, The loss of cohesin-mediated loop extrusion can be observed by a loss of the peak
in the derivative of P(s) at ~100 kb, and loss of TADs on 50kb binned heatmaps (Figure
7B, C, Figure S7D-F,H) 326970 RAD21 depletion + ICRF-193 did not significantly
changes the P(s) curves compared to RAD21 depletion alone. RAD21 depletion alone
reduces loop strength, as previously published &', while ICRF-193 treatment alone has
no effect on looping interactions, nor on the effect of cohesin depletion [IAA + ICRF-193]

(Figure 7D).

Simulations of cohesin depletion in late interphase, obtained through the two-stage
process with some weak Topo Il activity in Stage Il (see Methods), recapitulate the
subtle effects of Topo Il inhibition observed in P(s) curves (Figure 7F); importantly, the
model suggests that some Topo Il activity in Stage Il can still reproduce the fractal
scaling of P(s) observed experimentally (Figure 7G,H), as long as this activity is

sufficiently weak.

Compartment strength is increased with RAD21 degradation (Figure 71-L, FigureS7G)
61,6970 However, the compartment strength increase observed with IAA treatment is
partially blocked by the addition of ICRF-193, particularly in the B compartment (Figure
7L). Treatment with ICRF-193 alone has only minimal effects on compartment strength,
as also observed in the Async HelLa S3 cell line (see Figure S1K,L). We observe similar

results in the simulations: while complete inhibition of strand passage alone marginally
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affects compartmentalization of the interphase chains, in combination with cohesin
depletion it yields lower compartmental scores than in the situation of cohesin depletion
only (Figure 7M,N). Therefore, weak Topo Il activity contributes to the transition in

chromosome folding at the compartment scale upon the loss of cohesin.

Importantly, these results reveal two features of the interphase genome: first, loss of
cohesin-mediated loops reveal a crumpled chromatin state consistent with an
unentangled conformation. Second, the fact that the increase in compartmentalization
upon loss of cohesin is partly dependent on Topo Il activity suggests Topo Il activity
during interphase. The two features are consistent with each other as long as the

interphase Topo |l activity is sufficiently weak, see Figure 7H.

DISCUSSION

The mitotic chromosome is internally entangled

Whether intra-chromosomal entanglements occur in mitotic chromosomes has long
been an open question in the field, due to an inability to directly measure entanglements
in endogenous chromosomes. An unentangled mitotic state has long been the dominant
view, as it would naturally expand into an unentangled interphase, which is observed
experimentally, assuming strand passage is not active 343%. However, our results
demonstrate that artificial inhibition of Topo Il during mitotic exit results in dramatic
changes in the subsequent interphase structure. Our polymer simulations show that
these experimentally observed changes can be reconciled with an entangled mitotic

chromosome that requires Topo Il activity to expand into interphase.
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Entangled mitotic chromosomes have been previously predicted to form a stiffer
structure than unentangled chromosomes, which may be important for ensuring proper
chromosome segregation33. A recent study using in vitro mitotic chromosome
reconstitution in Xenopus egg extracts showed that Topo Il activity is required to
increase chromosome thickness when condensin is present but results in inter-
chromosome entanglements when condensin is depleted”!. This model of mitotic intra-
chromosomal entanglements mediated by Topo Il directed by condensin to form mitotic

chromosomes is consistent with our entanglement measurements during mitosis’".

Two-stage exit from mitosis

Formation of an unentangled interphase organization from an entangled mitotic
chromosome poses a serious challenge: While Topo Il activity is required for expansion
and compartmentalization, at the same time it prevents the establishment of hallmarks
of interphase organization such as chromosome territories and the unentangled fractal
globule state. Polymer simulations show that this paradox can be resolved by a two-
stage mitotic exit where chromosomes first become unentangled and then are

maintained at this state.

In the first stage, decompaction of mitotic chromosomes with mitotic (condensin) loops
still present produces a swollen bottlebrush conformation. Loops in this state
entropically repel each other, biasing Topo Il towards decatenation. As we find in time-

calibrated simulations, Topo Il needs to be active for ~10-20 min to largely

24


https://doi.org/10.1101/2022.10.15.511838
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.15.511838; this version posted January 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

disentangle condensin loops; this time is close to the condensin residence time 7273 In
the second stage, the disentangled chromosomes expand upon the loss of condensin
loops, yet with reduced Topo Il activity, allowing to maintain the unentangled state, and
thus enabling formation of territorial and fractal globule chromosomes. In accord with
our cohesin depletion experiments in G1, polymer simulations further demonstrate that
some weak Topo Il activity in the second stage is consistent with a largely unentangled

interphase organization (Figure 7G).

In a recent synchronized Hi-C study on mitotic exit, the existence of a loop-free, and
possibly unentangled state was demonstrated during telophase, when most of the
condensins have dissociated and cohesin has not re-associated with chromatin 4°. This
importantly suggests that the disentanglement of mitotic chromosomes takes place
during the stage after the metaphase-to-anaphase transition and before the condensins
are released from chromosomes. Our current experiments further highlight an important
role of Topo Il in these early stages of mitotic exit, as its early inhibition results in
retention of mitotic-like organization in the following interphase (Figures 1-3). Consistent
with these experimental observations, the two-stage model of mitotic exit demonstrates
that most of the mitotic entanglements can be removed via decompaction of mitotic
chromosomes with condensin loops under high Topo Il activity (Stage I). Thus, a
swollen bottlebrush state is likely present until telophase onset and linked to

decatenation of mitotic loops.
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Taken together, our work shows that cells control the entanglement state of the genome
during mitotic exit, with important roles for chromosome loops, chromatin

decondensation, and regulation of Topo Il activity levels.

Our study makes several predictions that future experiments can test. First, the two-
stage mechanism suggests the presence of a transient state with associated
condensins, expanded mitotic-like state, and high Topo Il activity. Detection and
characterization of this state, with its unique morphology, chromatin associated
condensins and Topo Il is a challenge for live-cell microscopy. Second, our models
suggest that Topo Il inhibition can keep chromosomes in a similar partially expanded
mitotic-like state even after condensin loops are gone. We predict how distance maps
accessible by high-resolution microscopy’ would appear, and how the scaling of the

spatial distance with genomic separation would be affected by Topo Il inhibition.

Limitations of the study

First, our study uses chemical inhibition of Topo Il activity. ICRF-193 leads to
immobilization of Topo Il on chromatin, and this may affect chromosome conformation
in unknown ways. Alternative methods include the use of degron-based removal of
Topo Il, but such methods lack the temporal control required for study of chromosome
folding dynamics during mitotic exit, when topoisomerases are also required to separate
sister chromatids. Second, our proposal that mitotic chromosomes are self-entangled is
based on the combined integration of polymer modelling and the analysis of

experimental effects of Topo Il inhibition (Hi-C, MC-3C data, imaging data). We do not
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have direct experimental data showing that mitotic loops are catenated. For instance,
while MC-3C data show high levels of intermingling of chromatin within condensed
prometaphase chromosomes, and a dependence on Topo Il activity for unmingling
during decondensation, the chromatin interaction data by itself is not providing direct
evidence for topological entanglements. Experimental evidence for catenation of mitotic
loops will await development of imaging-based methods with sufficient resolution and
scale to trace individual loops at nm resolution in 3D. Third, although the proposed two-
stage mechanism of mitotic exit seems to be a natural way to disentangle the
chromosomes via involvement of regulated topoisomerase activity, it is only tested by

polymer modeling.
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FIGURE LEGENDS:

Figure 1: Topo Il inhibition by ICRF-193 delays compartment re-establishment at
G1 entry

A. Schematic of HeLa S3 mitotic synchronization and release experiment with Topo |l
inhibition.

B. Cell cycle profiles by PI staining and flow cytometry of cells for Hi-C experiment
shown in in D-G (N = 2).

C. Hi-C interaction heatmap and Eigenvector 1 of unsorted HelLa S3 cells from
nocodazole arrest (t = 0, prometaphase), from a separate experiment as an example.

D. Hi-C interaction heatmaps and Eigenvector 1 of G1 sorted MR HelLa S3 cells treated
with DMSO or 30uM ICRF-193, two replicates combined.

E. Hi-C interaction log10 ratio heatmap comparing ICRF-193 treatment to DMSO control
for each timepoint.

F. P(s) scaling plot of G1 sorted HeLa S3 cells (Async, MR, and Prometaphase samples
from separate experiments).

G. First derivative (slope) of P(s) scaling plot shown in F.

H. Hi-C interaction heatmaps and Eigenvector 1 of G1 sorted MR HelLa S3 cells treated
with DMSO or 30uM ICRF-193 + 200uM Merbarone, N = 1.

|. Hi-C interaction log10 ratio heatmap comparing ICRF-193 + Merbarone treatment to

DMSO control for each timepoint, N = 1.
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J. AA compartment strength log2 ratio compared to control at each collection time by

distance, for G1 sorted HelLa S3 cells treated with ICRF-193. N = 2. (AS and MR from
separate experiments, as above).

K. BB compartment strength log2 ratio compared to control at each collection time by
distance, for G1 sorted HelLa S3 cells treated with ICRF-193, as in J.

L. AA compartment strength log2 ratio compared to control at each collection time by

distance, for G1 sorted HelLa S3 cells treated with ICRF-193 + Merbarone. N = 1.

M. BB compartment strength log2 ratio compared to control at each collection time by

distance, for G1 sorted HelLa S3 cells treated with ICRF-193 + Merbarone. N = 1.

Figure 2: ICRF-193 treatment during G1 entry disrupts nuclear organization and
chromosome morphology

A. Representative confocal microscopy images in Early (t = 4 hrs) and Late (f = 8 hrs)
G1 Hela S3 cells after mitotic release with either DMSO or 30uM ICRF-193 treatment
from t = 2 hrs post nocodazole washout. i. merge of all channels. li. merged image with
an overlay (white lines) of the H3K27ac segmented objects containing H3K9me3
objects, as used for quantification of overlap between the two types of chromatin in B.
iii. DAPI, iv. H3K27ac, v. H3K9me3.

B. Boxplot of the fraction of H3K27ac segmented regions that contain H3K9me3
segmented for each nucleus.

C. Boxplot of the mean fraction of H3K27ac signal in the outermost (peripheral) radial

bin, out of 10 total bins.
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D. Representative confocal microscopy images in a mitotic release timecourse with
DMSO or ICRF-193 treatment (30uM) starting at t = 2 hrs post mitotic release. i. Merged
images. ii. DAPI, iii. TOP2A-Venus, iv. Lamin A.

E. Boxplot of DAPI signal contrast in each nucleus, at a distance of 10 pixels.

Figure 3: Topo Il inhibition must occur during mitotic exit to delay compartment
establishment

A. Schematic of HeLa S3 mitotic synchronization and release Hi-C experiment with
ICRF-193 treatment starting at f = 2 hrs, collected at t = 4 hrs (early G1) or t = 8 hrs (late
G1), without sorting.

B. Schematic of HeLa S3 mitotic synchronization and release Hi-C experiment with
ICRF-193 treatment starting at t = 2 hrs, re-added at t =4 hrs and t = 6 hrs, collected at
t = 8 hrs (late G1), without sorting.

C. Cell cycle profiles by PI staining and flow cytometry of cells described in A before G1
sorting. (N = 2).

D. Cell cycle profiles by Pl staining and flow cytometry of cells described in B before G1
sorting. (N = 2).

E. Hi-C interaction heatmaps and Eigenvector 1 of unsorted HeLa S3 cells treated with
DMSO, ICRF-193 at t = 2 hrs and collected at t = 4 hrs or t = 8 hrs. Two replicates
combined.

F. Hi-C interaction heatmaps and Eigenvector 1 of unsorted HelLa S3 cells treated with
DMSO or ICRF-193 added at t = 2 hrs, and readded at = 4 hrs, and t = 6 hrs, and

collected at t = 8 hrs. Two replicates combined.
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G. Hi-C interaction log10 ratio heatmap comparing ICRF-193 treatment to DMSO
control for each treatment type in E.

H. Hi-C interaction log10 ratio heatmap comparing ICRF-193 treatment to DMSO
control for samples in F.

I. AA Hi-C compartment strength log2 ratio compared to DMSO by distance, separated
by compartment type, for HeLa S3 cells described in A and B. N=2. With and without re-
adding samples are from separate experiments.

J. BB Hi-C compartment strength log2 ratio compared to DMSO by distance, separated
by compartment type, for HeLa S3 cells described in A and B. N=2. With and without re-
adding samples are from separate experiments.

K. Schematic of HeLa S3 mitotic synchronization and release experiment with ICRF-193
treatment starting at t = 2 hrs, t = 3 hrs, or t = 4 hrs post mitotic release, collected after 5
hours of treatment, with sorting for G1 DNA content.

L. Flow cytometry profiles for DNA content (PI stain) of synchronized HelLa S3 cells as
in | released into G1 att=2 hrs, t = 3 hrs, or t = 4 hrs, at the time of ICRF-193 addition.
One representative replicate shown.

M. Cell cycle profiles by Pl staining and flow cytometry of cells described in K before G1
sorting. (N = 2).

N. Hi-C interaction heatmaps and Eigenvector 1 of G1 sorted MR HelLa S3 cells treated
with DMSO or 30uM ICRF-193 fromt=2 hrstot=7 hrs,t=3 hrstot=8 hrs, ort =4
hrs to t = 9 hrs after mitotic release. Two replicates combined.

O. Hi-C interaction log10 ratio heatmap comparing ICRF-193 treatment to DMSO

control for each treatment type. Two replicates combined.
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P. AA Hi-C compartment strength log2 ratio compared to DMSO by distance, separated
by compartment type, for HeLa S3 cells described in K. N=2.
Q. BB Hi-C compartment strength log2 ratio compared to DMSO by distance, separated

by compartment type, for HeLa S3 cells described in K. N = 2.

Figure 4: Topo Il resolves mitotic entanglements during G1 establishment of
interphase chromosome folding

A. Schematic of cell synchronization and MC-3C protocol. MC-3C was performed on
HelLa S3 cells during prometaphase arrest (f = 0) or after mitotic release at t = 2 hrs
(anaphasel/telophase), t = 4 hrs (early G1), or t = 8 hrs (late G1). The early and late G1
timepoints had DMSO or 30uM ICRF-193 added at t = 2 hrs post mitotic release, and
were G1 sorted after fixation.

B. Fraction of C-walks within one chromosome or between two chromosomes, and in A,
B, or both A and B compartments. Three biological replicates.

C. Density plot of the direct pairwise interaction distances from MC-3C C-walks, N = 3.
Bracket shows the region where ICRF-193 treatment results in retained mitotic
interactions in early G1 compared to DMSO treatment (Figure 1).

D. Density plot of pairwise interaction distance from sampled Hi-C libraries made from ¢
= 0 prometaphase and t = 2 hrs anaphase/telophase unsorted cells, and G1 sorted
early and late G1 cells with DMSO or 30uM ICRF-193 treatment. t =0 and t =2 hrs
samples are from a separate experiment from t =4 hrs and t = 8 hrs samples. Bracket
shows the region where ICRF-193 treatment results in retained mitotic interactions

compared in early G1 compared to DMSO treatment.
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E. Schematic of types of interfaces between different genomic regions on the same
chromosome. A smooth interface (top) will result in a C-walk (black dashed arrow) with
most steps within each region, and fewer steps between the two regions (indicated by
small black solid arrow). An entangled/intermingled interface (bottom) will result in a C-
walk (black dashed arrow) with more steps between the two regions (indicated by small
black solid arrows).

F. i. Formula of the IM calculation for determining how much intermingling/entanglement
occurs between two regions. The IM is calculated as the fraction of C-walks with >1
inter-region step.

F. ii. Schematic of the two possible types of two region C-walks considered for
calculation of the Intermingling Metric (IM). Regions are defined as either side of the
largest step (x) within each C-walk, with each side extending " of the size of the largest
step upstream and downstream of the midpoint of fragment at either end of the largest
step (so each region has a maximum size of %2 the largest step size (0.5x)).

G. Intermingling analysis of control cells during mitotic exit. Pairwise comparisons of the
IM at 12Mb window size. Mean (darker line) +/- 95% CI (lighter filled areas) of three
biological replicates is shown for the real C-walks. Permuted C-walks (100 permutations
per sample x 3 replicates each) are also plotted, with the mean of all 300 permutations
for each sample shown as dashed lines, and 95% CI| shown by the surrounding filled
areas. Arrows in i. indicate low intermingling (blue), medium-high intermingling (purple),
and highest intermingling (red). Bracket in iv. indicates the area of significant difference

between t =2 hrs and t = 4 hrs early G1 DMSO.
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H. Intermingling analysis of ICRF-193 treated cells, pairwise comparisons to DMSO or t
= 2hrs samples plotted as in G. Bracket indicates the area of significant difference

between t = 4 hrs early G1 DMSO and t = 4 hrs early G1 ICRF-193.

Figure 5. Polymer simulations reveal that hallmarks of mitotic exit with inhibited
Topo Il correspond to the entangled mitotic chromosome

A. Two topologies of mitotic state considered in polymer simulations. Contact maps and
matrices of the Gaussian linking numbers for the loop pairs are shown for each state.
The snapshots of the two states are demonstrated: condensin loops (gray) form a
dense bottlebrush array; condensins in the loop bases comprise the spiraled backbone
(red); two individual loops (non-catenated in the left and catenated in the right) are
shown by magenta and green.

B. The simulated contact matrices for unknotted (left) and knotted (right) initial states for
early (1-2 hour) and late (6-8 hours) interphase.

C. The compartmental saddle plots and the corresponding compartmental scores for the
contact matrices from panel B at scales 0.75-20Mb are demonstrated. See STAR
Methods for more details.

D. The contact probability curves and the log-derivatives for the two initial states at
different timepoints in G1 as indicated in the legend on the panel E. The gray dashed
curve corresponds to mitosis.

E. Interphase compartmental scores for the exits from the two mitotic states (top) and

the corresponding log2-ratios (bottom) computed for two timepoints in G1, see the
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legend. Each dot represents a value for the interphase contact map averaged over 16
mitotic replicates and the bars represent the mean value.

F. Kinetics of the chromosomal territoriality for the two initial states (knotted — red,
unknotted — cyan), measured as cis/trans ratio in simulations.

G. Distance maps for the early G1 timepoint out of the two mitotic states.

H. The plots of the mean squared end-to-end distances R?(s) for the interphase

segments of length s obtained from the two mitotic states.

Figure 6. The two-stage model of mitotic exit allows for directed Topo Il and
removal of most of the mitotic catenations

(A-C): one-stage exit. (D-J): two-stage exit.

A. Schematic for the one-stage exit.. Such an exit results in internal mixing of the
chains, as shown by the disordered organization of the colored interphase chain on the
right.

B. The log-derivative of the average contact probability P(s) computed after removal of
cohesin loops at the late G1 timepoint (bold gray curve; different replicates are shown
by thin gray lines). The experimental range of the P(s) slopes between -1.15 and -1,
corresponding to the fractal globule (FG) state, is shown by pink.

C. Snapshots of three overlapping chromosomes (PBC images) from one-stage
simulations (left). The cis/trans ratio as the function of the exit time (right).

D. Schematic for the two-stage exit. The matrices of the linking number for the

condensin loop pairs are shown in the knotted mitotic state and by the end of Stage |;

36


https://doi.org/10.1101/2022.10.15.511838
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.15.511838; this version posted January 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

magenta and blue dashed lines correspond to the two loops that are catenated in the
mitosis, but decatenate during Stage |.

E. Mean number of catenations per loop as a function of duration of the first stage (bold
black curve; 16 replicates are shown by thin gray lines). The red dashed line denotes
the steady-state number of residual catenations ~0.25. This steady-state is achieved in
T =~ 10 minutes, which is used in further analysis of the two-stage exit.

F. Snapshots of three weakly overlapping chromosomes (PBC images) from two-stage
simulations (left). The cis/trans ratio as the function of the exit time (right).

G. Interphase contact maps for early and late timepoints, obtained via the two-stage exit
(top). The corresponding compartmental saddle plots with the compartmental scores
are shown in the bottom.

H. The interphase P(s) and its log-derivative for the two-stage exit at two timepoints
(cyan) and for the exit with inhibited strand passage from the knotted initial state (red).
The dashed black curves correspond to the mitotic state.

|. The log-derivative of P(s) computed after removal of cohesin loops at the late G1
timepoint. The curves corresponding to the two-stage exit is shown by cyan, while the
curves for the exit with inhibited strand passage from knotted and unknotted states are
shown by red and dark cyan, correspondingly. The experimental range of the P(s)
slopes between -1.15 and -1, corresponding to the fractal globule (FG) state, is shown
by pink.

J. Distance map for the early G1 timepoint obtained via the two-stage process.
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Figure 7: Weak Topo Il is required for increased compartment strength due to
cohesin degradation

A. Schematic of RAD21 degradation and Topo Il inhibition by ICRF-193 in AS HCT116
+ RAD21-AlID-mClover (HCT116 + RAD21-mAC) cells for Hi-C. Cells were treated for 2
hours with IAA and/or ICRF-193 before fixation for Hi-C, and sorting for G1 DNA content
with (- IAA samples) or without (+ IAA samples) mClover.

B. P(s) scaling plot of G1 sorted HCT116 + RAD21-mAC cells described in A. N = 3.

C. First derivative (slope) of P(s) scaling plot shown in B. N = 3.

D. Aggregate loop pileup (APA) of experiment shown in A at dots called in published
high resolution Hi-C data from HCT116 + RAD21-mAC (Untreated) (4DNFIFLDVASC).
Average log2(observed/expected). N = 3.

E. Log2 fold change of APA for each treatment vs the control

F. The P(s) log-derivatives computed for simulations of four states: unperturbed
interphase obtained via the two-stage process with low activity of Topo Il (e, = 5kT),
interphase with further inhibited Topo Il (ATopo Il; e, = 10kT), interphase with further
depleted cohesin loops but remained low activity of Topo Il (ACohesin; e, = 5kT),
interphase with depleted cohesin loops and inhibited Topo Il (ATopo I, ACohesin; e, =
10kT).

G. Simulations of various levels of the strand passage activity during Stage Il of the two-
stage exit, as modelled by varying the excluded volume barrier. The graph shows the
log-derivatives of the contact probability P(s) in interphase after depletion of cohesin
loops (late G1). The red strip shows the range of experimental log-derivatives between

—1.15 and -1 (panel C).
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H. A model: Depletion of cohesin loops in the interphase state allows to assess the
topological state of chromosomes from the log-derivative of P(s). The slopes around -1
correspond to the fractal organization, which is only consistent with sufficiently weak
activity of Topo Il in the interphase.

|. Experimental Hi-C interaction heatmaps and Eigenvector 1 of HCT116 + RAD21-mAC
cells described in A, three replicates combined.

J. Hi-C interaction log2 ratio comparing each treatment to the Control or to the IAA
treatment, as indicated. Three replicates combined.

K. AA compartment strength log2 ratio compared to Control by distance for HCT116 +
RAD21-mAC cells, N=3.

L. BB compartment strength log2 ratio compared to Control by distance for HCT116 +
RAD21-mAC cells, N=3.

M. Contact maps and the corresponding compartmental saddle plots from simulations
for four states described in F.

N. The log2 ratios of the compartment score in perturbed and unperturbed interphase
simulations at short and large genomic scales. Each dot represents a ratio computed for
a pair of perturbed and unperturbed contact maps, both averaged over 16 replicates.

The bars represent the corresponding mean values.

STAR METHODS:

Resource availability

Lead contact
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Figure 1: Topo Il inhibition by ICRF-193 delays compartment re-establishment at G1 entry
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Figure 2: ICRF-193 treatment during G1 entry disrupts nuclear organization and chromosome morphology
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Figure 3: Topo Il inhibition must occur during mitotic exit to delay compartment establishment
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Figure 7: Weak Topo Il is required for increased compartment strength upon cohesin depletion
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