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SUMMARY 

The topological state of chromosomes determines their mechanical properties, 

dynamics, and function. Recent work indicated that interphase chromosomes are 

largely free of entanglements. Here, we use Hi-C, polymer simulations and multi-contact 

3C, and propose that, in contrast, mitotic chromosomes are self-entangled. We explore 

how a mitotic self-entangled state is converted into an unentangled interphase state 

during mitotic exit. Most mitotic entanglements are removed during 

anaphase/telophase, with remaining ones removed during early G1, in a 

Topoisomerase II-dependent process. Polymer models suggest a two-stage 

disentanglement pathway: first, decondensation of mitotic chromosomes with remaining 

condensin loops produces entropic forces that bias Topoisomerase II activity towards 

decatenation. At the second stage, the loops are released, and formation of new 

entanglements is prevented by lower Topoisomerase II activity, allowing the 

establishment of unentangled and territorial G1 chromosomes. When mitotic 

entanglements are not removed, in experiment and models, a normal interphase state 

cannot be acquired.  
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INTRODUCTION: 

Topoisomerase II (Topo II) controls the topological state of the genome 1 throughout the 

cell cycle by catalyzing controlled double strand breaks and allowing DNA duplexes to 

pass through one another 1. There are two forms of Topo II in the human genome, DNA 

Topoisomerase 2-alpha and DNA Topoisomerase 2-beta, encoded by the TOP2A and 

TOP2B genes, respectively 1-9. TOP2A has well studied roles in organizing mitotic 

chromosomes where it is both a structural component and is required for decatenation 

of sister chromatids at anaphase 4,5,10-20. TOP2B is expressed throughout the cell cycle 

and its activity has been detected at open chromatin sites and active chromatin 

including promoters and CTCF sites during interphase 1,21-25 

 

Whether and how the topological state of chromosomes changes during the cell cycle is 

not well understood. Hi-C has been widely used to characterize chromosome folding in 

mitosis and interphase 26. However, since Hi-C measures pairwise interactions, one 

aspect of chromosome folding that is not detected by this method is the entanglement 

or catenation state of the genome. For the purposes of this study, we define a 

chromosome entanglement to be a local interlink between two regions of the genome, 

on the same or different chromosomes. A special type of entanglement operating on 

rings (loops) is a catenation; catenations can turn a ring into a knotted state or can link 

two rings (e.g., two chromosome loops). A catenane can also knot a linear 

chromosome, or a pair of chromosomes, if its ends are sufficiently far away from each 

other as to behave like a polymer ring. Strand passage facilitated by Topo II can both 

remove and create entanglements, catenating or decatenating loops. Previous 
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simulations of model polymers showed that highly entangled chains can become highly 

“intermingled”. The level of intermingling can be detected using multi-contact 3C (MC-

3C) 27.  

 

MC-3C and super-resolution chromosome tracing data are consistent with interphase 

chromosomes being largely free of intra-chromosomal entanglements 27,28. Hi-C data 

also suggest folding of interphase chromosomes into an unentangled polymer state 

known as the crumpled (fractal) globule 26,29,30 A recent theoretical study by some of us 

has revealed a universal behavior of the Hi-C contact probability curve, which is only 

consistent with the crumpled polymer organization with loops 31,32. 

 

In contrast, the topological state of mitotic chromosomes is less understood. Self-

entanglement is supported by in vitro experiments, isolated chromosomes, and some 

polymer models, with others supporting an unentangled state 33-36. In their seminal 

paper A. Rosa and R. Everaers (2008) propose that the unentangled and territorial 

interphase state is formed by decompaction from an unentangled mitotic chromosome if 

Topo II is inactive during exit from mitosis 35. Although the assumed absence of Topo II 

activity during interphase has been challenged by experiments, the Rosa-Everaers 

model highlights the importance of topological constraints in establishing and 

maintaining unentangled and territorial chromosomes35. 

 

Here we characterized the topological states of mitotic chromosomes and how cells 

reorganize the topological state of chromosomes upon exit from mitosis. We found that 
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mitotic chromosomes are highly self-entangled. We propose that cells use a two-stage 

process where Topo II activity eliminates these entanglements upon mitotic exit and 

prevent the formation of new ones, creating territorial, compartmentalized, and 

unentangled interphase chromosomes. 

 

RESULTS: 

Topo II inhibition leads to incomplete compartmentalization at G1 entry 

Topo II has roles in formation and maintenance of mitotic chromosome structure, as 

well as in unlinking of sister chromatids 12,13,37. In contrast, the relevance of Topo II for 

decondensation of individual chromatids after their separation and upon G1 entry is less 

established38. Here we investigated the genome-wide effect of Topo II chemical 

inhibition on chromosome folding and topology as cells exit mitosis and enter G1 using 

Hi-C, imaging, and MC-3C. 

 

To determine whether Topo II activity is required for establishment of G1 chromosome 

folding, we performed Hi-C 2.0 (Hi-C) on G1 sorted cells from synchronized HeLa S3 

cultures during G1 entry (Figure 1A, Figure S1H-I) 39-41. Cells were first arrested in 

prometaphase using a single thymidine block + 12 hours nocodazole arrest (t = 0), and 

then synchronously released into G1 with either DMSO, 30uM ICRF-193, or 30uM 

ICRF-193 + 200uM Merbarone added at two hours post nocodazole wash-out (t = 2 

hrs), when at least 50% of cells have entered or passed anaphase (Figure 1B, S1A-F). 

30uM ICRF-93 is a sufficient dose to block Topo II activity as it completely prevents 

sister chromatid decatenation during anaphase and stabilizes Cyclin B when added 
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during release from a mitotic arrest (see methods,42-44) (Figure S1A-D). Aliquots were 

fixed for Hi-C using 1% formaldehyde in early G1 (t = 4 hrs) or late G1 (t = 8 hrs), and 

G1 cells were isolated using FACS (Figure S1A, B, E-G, I) 40,41.  

 

In a representative prometaphase Hi-C contact map, a typical mitotic structure is 

observed, without visible TAD or compartment patterns (Figure 1C). In Hi-C data 

obtained from control (DMSO treated) cells, the checkerboard pattern representing 

compartmentalization is first apparent in early G1, and then becomes stronger in late 

G1, as previously reported (Figure 1D, H) 40,45. In cells treated with ICRF-193 we 

observed two phenomena: First, at t = 4 hrs, we observe a very weak checkerboard and 

a broad diagonal of enriched interactions reminiscent of mitotic Hi-C maps (Figure 1D, 

Figure S2G, O) 40,44,46. Second, at t = 8 hrs a nearly normal compartmentalization 

pattern is observed, indicating that compartments can be established but with delayed 

kinetics (Figure 1D). Combined addition of ICRF-193 and Merbarone, a Topo II catalytic 

inhibitor that acts at a different step than ICRF-193, further reduces compartment 

strength at t = 8hrs compared to ICRF-193 alone, although compartments are still 

somewhat increased compared to the t = 4 hrs timepoint (Figure 1H, Figure S1T). 

Merbarone alone has no effect on compartment strength (Figure S1U). 

 

The log-ratio of Hi-C interactions detected with ICRF-193 vs. DMSO treated cells at t = 

4 hrs shows enriched interactions close to the diagonal between A and B domains 

(Figure 1E), similar to what is observed in mitosis (Figure 1C) 40,44,46. By t = 8 hrs, this 

difference is much smaller, but is retained in ICRF-193 + Merbarone treatment (Figure 
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1I). In addition, analysis of the relationship of interaction frequency (P) of pairs of loci as 

a function of the genomic distance (s) between them shows relatively frequent 

interactions in early G1 with ICRF-193 treatment for loci separated by 2-20Mb 

compared to interactions detected in untreated cells (Figure 1 F, Figure S1K, L). By late 

G1 (t = 8 hrs) P(s) curves are more similar, although ICRF-193 treatment still shows 

increased interactions in the 2-20Mb range, and this difference is more pronounced in 

the ICRF-193 + Merbarone condition (Figure S1V). These changes are readily 

detectable when the slope of P(s) is plotted as a function of genomic separation (s) 

(Figure 1G, Figure S1W). These data suggest that mitotic-enriched interactions are 

resolved only partially when cells exit mitosis in the presence of Topo II inhibitors. 

Finally, we quantified compartment strength at different distances. In ICRF-193 and 

ICRF-193 + Merbarone treated cells, A-A and B-B compartment strength is weaker in 

early G1 (t = 4 hrs) compared to DMSO treated cells, particularly for loci up to 20Mb 

apart (Figure 1H, I). Compartment strength partially recovers by late G1 in ICRF treated 

cells, but much less so when cells are treated with both inhibitors (t = 8 hrs). We 

observed no change in chromosome folding at the TAD or loop level upon Topo II 

inhibition by ICRF-193 (Figure S1M, N). In contrast to the mitotic exit results, Topo II 

inhibition does not affect steady state intra-chromosomal folding in an asynchronous 

(Async.) population of mainly interphase cells (Figure S1I-S). We conclude that the 

interphase conformation can be maintained in the presence of Topo II inhibition. In 

summary, Topo II activity is required during mitotic exit for complete dissolution of the 

mitotic state and full establishment of interphase compartments.   
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Disruption of compartmentalization with Topo II inhibition can be observed by 

confocal microscopy 

We next tested whether a delay in compartmentalization upon Topo II inhibition could 

be observed by microscopic analysis of two histone modifications: acetylation of histone 

H3 lysine 27 (H3K27ac), and trimethylation of H3 lysine 9 (H3K9me3) enriched in the A 

or B compartments, respectively 47,48. We fixed HeLa S3 cells to coverslips at t = 4 hrs 

and t = 8 hrs after mitotic release for confocal microscopy, followed by immunostaining 

to label H3K9me3 and H3K27ac. We also stained cells with DAPI to mark the DNA. In 

the DMSO treated cells, the H3K9me3 signal is highest at the periphery, as expected 

(Figure 2A, Figure S2A, B) 49-53. H3K27ac is found in puncta in the interior of the 

nucleus, as expected for active chromatin (Figure 2A, Figure S2C) 49,51-53. Compared to 

DMSO treated cells, we find that ICRF-193 treatment during G1 entry significantly 

increased co-localization of H3K9me3 with H3K27ac regions in early G1, corresponding 

to the lower compartment strength observed by Hi-C as compared to DMSO treated 

cells (Figure 2B). In addition, ICRF-193 treatment increases the fraction of H3K27ac 

signal at the nuclear periphery compared to DMSO treatment at both timepoints (Figure 

2C, Figure S2C).  

 

Topo II inhibition changes DNA morphology and Topo IIA localization in early G1 

Individualized mitotic chromosomes display relatively high contrast when stained with 

DAPI, which we quantified by calculating the contrast of DAPI signal at a 10-pixel 

distance in HeLa S3 cells with Topo IIA-Venus (Figure 2D, E) 54. As cells exit mitosis, 

this contrast reduces significantly as chromosomes become decondensed. In the 
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presence of ICRF-193 treatment we observe a significantly smaller decrease in DAPI 

contrast between mitotic exit (starting at t = 2 hrs) and early G1 (t = 4 hrs) as compared 

to control cells. Additionally, we find that endogenously tagged Topo IIA-Venus signal 

has the highest contrast at 2 hrs and decreases as cells enter G1 (Figure S2F). This 

decrease is not observed in ICRF-193 treated cells. Axial TOP2A staining was observed 

in some early G1 ICRF-193 treated cells (Figure 2D, see methods).  

 

Topo II inhibition must occur early during mitotic exit to delay compartment 

establishment 

We next tested whether the increase in compartment strength in late G1 was due to 

reduced ICRF-193 potency during the six-hour treatment (Figure 3A). To address this, 

we re-added DMSO or ICRF-193 every two hours throughout the time course and 

collected cells in late G1 (t = 8 hrs) (Figure 3B). These experiments were performed 

without G1 sorting, resulting in slightly larger number of cells with a G2 DNA content in 

populations with ICRF-193 treatment (Figure 3C, D). We observe the same phenotype 

in the late G1 (t = 8 hrs) timepoint with ICRF-193 added once or re-added every two 

hours (Figures 3E-J), therefore the recovery in compartment strength is not due to loss 

of potency of the inhibitor. Rather, ICRF-193 treatment does not inhibit all Topo II 

activity, and full inhibition requires use of multiple inhibitors (see above). 

 

To determine whether there is a specific transient state in early G1 that requires Topo II 

activity, we added ICRF-193 at different times post mitotic release (Figure 3K-M). 

Comparison of the compartment strength in both the A and B compartments between 
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ICRF-193 and DMSO treated cells shows the largest difference for the earliest sample 

where ICRF-193 was added at t = 2 hrs, while ICRF-193 addition at t = 3 hrs and t = 4 

hrs has a reduced effect on compartment establishment (Figure 3 N-Q, Figure S3J-O). 

Addition of ICRF-193 at t = 3hrs or t = 4hrs does not prevent further strengthening of 

compartments in late G1.  

 

ICRF-193 induced delay in compartment establishment is independent of 

transcription 

Next, we examined whether the structural defects that we observe with Topo II inhibition 

are related to transcription induced changes in folding, thereby interfering with 

reformation of G1 structure. We released HeLa S3 cells from mitosis in the presence of 

Triptolide (TRP) and 5,6-Dichloro-1-beta-Ribo-furanosyl Benzimidazole (DRB), which 

inhibit transcription initiation and elongation, respectively 55. (Figure S3K). By Hi-C, 

transcription inhibition alone did not result in changes in intra-chromosomal 

compartment strength at any distance, and transcription inhibition did not change the 

ICRF-193 phenotype of decreased compartment strength in early G1 (Figure S3 M-Q, 

Figure S3I-N).  

 

Mitotic chromosomes are highly intermingled, and become swiftly unmingled 

during mitotic exit  

Previously, we showed using Multi-contact 3C (MC-3C) data that in interphase 

interacting compartment domains are not extensively intermingled, which is consistent 

with the genome being decondensed and topologically not entangled, as also inferred 
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from the fractal globule scaling of Hi-C data27. We now performed MC-3C for cells in 

mitosis to determine the extent of intermingling of interacting domains along mitotic 

chromosomes, how intermingling changes as cells exit mitosis, and how any changes 

depend on Topo II.   

 

We collected synchronized cells for MC-3C at t = 0 (prometaphase arrest), t = 2 hrs 

after nocodazole wash-out (anaphase/telophase), and at t = 4 hrs/early G1 or t = 8 

hrs/late G1 with either DMSO or 30uM ICRF-193 added at t = 2 hrs (Figure 4A, Figure 

S4A; 3 replicates). MC-3C data recapitulate the Hi-C results in terms of differences in 

compartmentalization and cis/trans ratio between cell cycle states and with ICRF-193 

treatment (Figure 4B). Interaction distance distributions for direct pair-wise interactions 

derived from MC-3C data for t = 4 hrs and t = 8 hrs DMSO treated cells were similar to 

previously published MC-3C results in Async. cells, and Hi-C data (Figure 4C, D, Figure 

S4C-H) 27.  

 

MC-3C produces “C-walks”: strings of co-occurring interactions that can provide 

information on the extent of intermingling between chromosomal regions. Relatively 

high levels of intermingling can be caused by several factors, including chromatin 

density, chromosome geometry, but also the presence of topological entanglements27. 

Low levels of intermingling, as we found for interphase cells27, are consistent with the 

decondensed unentangled interphase state. We explored the subset of C-walks that 

detect interactions between two distal chromosomal domains (see Methods). C-walks at 

an intermingled surface will include more steps that go back and forth between the two 
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domains as compared to C-walks at non-intermingled surfaces (Figure 4E) 27. The order 

of steps for C-walks across highly intermingled domains approaches that expected for 

randomized C-walks27.  

 

We used MC-3C data to calculate the extent of intermingling by calculating an 

Intermingling Metric (IM), see Methods and Figure 4 F,G. IM is the fraction of C-walks 

that transit between two regions of a chromosome more than once. IM can be 

calculated as a function of genomic distance between the interacting domains 

(Methods, Figure 4F). We first measured the IM in control (DMSO treated) cells during 

mitotic exit. Comparing the t = 0 prometaphase sample to late G1, we find that 

prometaphase chromosomes have a higher IM, with ~60% of C-walks containing more 

than one step connecting the two regions for most distances between two regions 

(Figure Gi; fully intermingled domains would be predicted, based on permutation, to 

have IM=0.67). In late G1, the IM is significantly lower. The effect size observed here is 

in line with what was observed in simulations of interactions between model polymers 

with entangled and unentangled interaction surfaces 27. This result shows that 

chromosomes transition from a relatively intermingled to a relatively unmingled state 

during mitotic exit. 

 

The IM decreases quickly as cells exit mitosis (Figure 4G). At t = 2 hrs (consisting of 

mainly anaphase/telophase cells), the IM is already greatly reduced compared to 

prometaphase at all distances (Figure 4Gii). At the t = 4 hrs early G1 timepoint the IM 

further decreases compared to t = 2 hrs anaphase/telophase, particularly at distances of 
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12-22 Mb between interacting domains (Figure 4Giii, iv, see bracket). This is the same 

distance range that has the highest level of the IM in the prometaphase sample. By t = 8 

hrs (late G1), the IM was at the lowest level (Figure 4G)   

 

Topo II-dependent loss of intermingling during mitotic exit suggests that mitotic 

chromosomes are internally catenated 

We next investigated the effect of Topo II inhibition on the changes in the IM during 

mitotic exit. ICRF-193 treatment reduces the loss in the IM in the range of 15-20 Mb, 

observed from t = 2 hrs to t = 4 hrs in the DMSO treated samples (Figure 4Hi, ii). This is 

a similar distance range to the largest loss of compartment strength with ICRF-193 

treatment by Hi-C (Figure 1J, K). However, by late G1 the IM at all distances is similar 

to the DMSO treated sample (Figure 4Hiii, iv), reminiscent of the compartment strength 

recovery by t = 8 hrs observed by Hi-C with ICRF-193 alone. The later restoration of low 

intermingling is probably explained by residual Topo II activity not blocked by ICRF-193, 

as the compartment strength does not fully recover by t = 8 hrs in the ICRF-

193+Merbarone double inhibition Hi-C experiments (Fig. 1). Thus, mitotic chromosomes 

are internally intermingled, and during mitotic exit become decondensed and less 

intermingled. While high IM in mitosis can reflect, at least in part, the high level of 

condensation during prometaphase, the dependence of the process of unmingling 

during mitotic exit on Topo II suggests that decondensation involves resolution of 

topological entanglements.  
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Polymer models of G1 entry without Topo II activity support self-entangled 

mitotic chromatids  

We turned to polymer simulations to directly test the topological state of mitotic 

chromosomes based on the observed effects of Topo II inhibition by Hi-C and MC-3C. 

We started simulations with mitotic chromosomes with or without intra-chromosomal 

catenations, and simulated expansion of 90 Mb chromosomes without strand passage, 

as in Topo II inhibited cells (see Methods). Simulated interphase organization was then 

compared to Hi-C results, to determine which initial catenation state is consistent with 

experiments. 

 

The mitotic chromosome was modelled by a dense array of condensin loops with the 

average size of 400 kb, corresponding to the size of condensin II loops, that were 

further confined within a cylinder to reflect chromatin condensation in the mitotic 

environment 46. We considered different topologies of the mitotic chromosome: an 

“unknotted state”, with loops not catenated with each other, and a “knotted state”, where 

loops are catenated (see Methods for details).  As a global measure of catenations in a 

mitotic chromosome, we compute a matrix of pairwise catenations (Gaussian linking 

numbers) between all loop pairs (Figure 5A). While in the knotted state most loops 

(~70%, Figure 5A) are catenated with at least one other loop, in the unknotted state less 

than 3% are. Despite different topologies, the two mitotic states – knotted and unknotted 

– produce equivalent P(s) curves (see Figure S5A). 
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We simulated expansion of mitotic chromosomes by releasing the cylindrical constraints 

and condensin loops, followed by activation of compartmental interactions and cohesin-

mediated loop extrusion (see Methods). We observed very different final states when 

starting from knotted or unknotted mitotic states. When initiated from an unknotted 

state, TADs and compartments can form in G1, even without strand passage (Figure 

5B, left). In contrast, when started from the knotted state where condensin loops are 

catenated, mitotic exit without strand passage results in a retained mitotic band of 

interactions close to the diagonal (Figure 5B, right) and weaker compartmental 

interactions, while TADs formed similarly to those in the unknotted chromosomes 

(Figure 5B, C). The retained mitotic band, visible on the simulated interphase contact 

map formed upon exit from the knotted but not from the unknotted mitotic state, closely 

resembles Hi-C patterns seen in Topo II inhibition experiments (Figures 5B, S5A-B and 

Figure 1H). This mitotic band can be also seen as a broad shoulder on the 

corresponding P(s) curves (Figure 5D).  

 

Presence of this mitotic band visible during interphase, seen in experiments and in 

simulations from the knotted mitotic state, reflects retention of mitotic entanglements in 

the interphase chromosomes. The same is seen in simulations without compartments, 

indicating that the band is not caused by compartmental interactions (Figure S5B-D). 

Interestingly, interphase chromosomal conformation emerging from knotted and 

unknotted mitotic states also have drastically different distance maps (Figure 5G-H), 

with loci 0.8-2 Mb apart being about 1.5-times closer in space when exiting from the 

knotted mitotic space. More compact chromosomes are also observed in microscopy 
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when cells exit mitosis in the presence of ICRF-193 (Figure 2E). In the absence of Topo 

II activity, initial mitotic entanglements cannot be resolved and prevent full opening of 

chromosomes (Videos S1-S2). This further prevents establishment of long-range 

interactions between homotypic compartments both at short and large distances (Figure 

5С,E), consistent with experiments. Thus, simulations suggest that retention of mitotic-

like morphology and weaker compartmentalization upon Topo II inhibition during mitotic 

exit indicate a highly self-entangled mitotic state. 

 

Further evidence of entanglement in the mitotic state comes from comparison of 

territoriality of interphase chromosomes between experiments and simulations, 

quantified by the cis/trans ratio in simulations and MC-3C data (see Methods). 

Simulations that start from knotted and unknotted mitotic chromosomes, with inhibited 

strand passage, yield very different cis/trans ratios in the subsequent G1 phase. We 

calculated cis/trans ratios as a function of time, for the two initial states (Figure 5F). 

After several hours, the cis/trans ratios of chromosomes expanded from an unknotted 

mitotic state fall below the range observed experimentally upon ICRF-193 treatment 

(cis/trans ratio inferred from MC-3C data), see Fig. S6I. At the same time, territoriality of 

chromosomes expanded from a knotted mitotic state quickly saturates at values close to 

those observed in the Topo II inhibition experiments. This agreement between 

experiments and simulations additionally indicates that mitotic chromosomes are 

knotted.  
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Two-stage exit allows chromosomes to transition from an entangled mitotic to an 

unentangled interphase state 

How can chromosomes transition from an entangled mitotic state into a largely 

unentangled G1 state, while establishing proper interphase organization? Our goal is to 

reproduce two global features of interphase chromosome organization, starting from 

entangled mitotic chromosomes: (i) the fractal (crumpled) globule intra-chromosomal 

organization measured on the P(s) curve; and (ii) chromosome territoriality (measured 

by the cis/trans ratio). The fractal globule, a compact and unknotted polymer state, is 

evident from the -1… -1.2 slope of the P(s) curve26,56-60, and is best seen when cohesin-

mediated loops do not obscure this scaling, e.g., upon cohesin depletion61,62. 

 

First, we explored a model where entangled mitotic chromosomes simply expand in the 

presence of high Topo II activity (modeled by having a low barrier to strand passage). In 

this “one-stage model”, condensin loops are released, which occurs by late 

telophase40,63, with simultaneous release of cylindrical confinement of the chromosome 

(Figure 6A-C). Simulations show that while the knotted mitotic state rapidly expands, 

chromosomes extensively mix both in cis and in trans. Specifically, the fractal globule 

organization cannot be established as evident from the slope of the P(s) curve (Figure 

6B). To better check for the fractal scaling, we remove cohesin-mediated loops in the 

late G1 timepoint 31,32. We observe that the slope of the P(s) curve approaching -1.5, far 

below the expected -1...-1.2 for the fractal globule. This behavior is expected as high 

Topo II activity turns the chain into a topologically unconstrained and highly entangled 

nearly ideal chain (Figure 6B) 64. Furthermore, we see that chromosomal territoriality 
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falls below the levels observed in MC-3C for WT interphase cells (Figure 6C and Figure 

S6I). Together, these results indicate that while Topo II activity allows entangled mitotic 

chromosomes to expand, it precludes establishment of chromosome territories and 

formation of the fractal globule state, as generally expected for topologically 

unconstrained polymers35,64. 

 

One-stage exit from a knotted mitotic state with Topo II activity does not reproduce the 

features of an unentangled interphase. In fact, while Topo II activity can allow expansion 

of knotted chains, its continued activity leads to mixing and does not lead to formation of 

the unentangled interphase. Thus, we seek a mechanism that can efficiently 

disentangle the mitotic state and then maintain this unentangled state later through 

interphase. Our key idea is that keeping mitotic loops while allowing chromosomes to 

decondense could entropically bias Topo II towards decatenation of the loops.  

This could lead to formation of the sought unentangled state, that then needs to be 

maintained through the rest of expansion.   

 

On the basis of this idea, we developed a two-stage expansion process (Figure 6D). 

During Stage I, Topo II is active and the cylindrical constraints on the mitotic 

chromosome are released, while mitotic loops are still present, i.e., the nuclear 

environment/chromatin changes to their interphase state, but condensin loops remain.   

Simulations show that the first stage results in directed decatenation of condensin loops 

(Figure 6D-E); this is quantified using the matrices of linking numbers between the 

loops. A simulated chromosome is reminiscent of a swollen bottlebrush, which gradually 
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lengthens, as more and more loops become decatenated from each other. In 2 minutes 

of the first stage around 50% of mitotic catenations are removed, while at T=10 minutes 

after mitosis the average amount of catenations per one loop reduces almost 3-fold and 

reaches the topological steady-state, in which the number of newly formed catenations 

matches the number of removed catenations (Figure 6E). Temporal activation of Topo II 

activity (or delayed inhibition) for 10-20% of duration of Stage I results in rapid 

relaxation of catenations, with associated increase of G1 compartmental strength and 

decrease of territoriality (Figure S5H-J). Importantly, inducing active Topo II inside the 

mitotic chromosome before it starts expanding (i.e., while in the cylinder) is not able to 

decatenate the loops, indicating that disentanglement requires Topo II activity during 

expansion with intact loops (Figure S6A). Thus, directed expansion of the chains during 

the first stage drives repulsion between the loops, and Topo II activity mediates loop-

loop decatenation. 

 

At Stage II, the mitotic loops are released, and Topo II activity is significantly decreased. 

It starts with already unentangled chromosomes and maintains this state during their 

further expansion. Active cohesin-mediated loop extrusion and compartmentalization 

are also introduced at Stage II (Figure 6D). Simulations show that the remaining level of 

catenations from Stage I is negligible, and chromosomes form the fractal globule with a 

characteristic slope of P(s), clearly seen upon depletion of cohesin (Figure 6I, 7F) 

32,56,57,59-62,65. The fractal globule is also evident from the visual comparison of snapshots 

of chromosomes colored along the chain (Figure 6D and 6A). The fractal globule is 

known to produce clear “intra-chromosomal territoriality” of genomic segments within a 
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chromosome, as seen for the two-stage exit, in contrast to mixing of segments in the 

case of the one-stage exit 26. Simulations also show the fractal globule state can be 

formed even in the presence of some low-level of Topo II activity in Stage II (occasional 

strand passage) (Figure 7F). Furthermore, we find that the territoriality of simulated 

chromosomes after the two-stage exit agrees with that of experimental interphase MC-

3C values, i.e., overlaps with the cis/trans range for chromosomes in DMSO treated 

cells (Figure 6F). We note that territoriality is difficult to achieve in the one stage model 

unless the Topo II timing is precisely fine-tuned (Figure S6G). 

 

In the course of the second stage of our model the chromosomes become more 

compartmentalized, reaching the values of compartmental scores observed in DMSO 

experiments (Figure 6G). Similar to experiments, we also see dissolution of the mitotic 

band as chromosomes decompact, which is evident both in the contact maps and P(s) 

curves (Figure 6G,H). Consistently, the mitotic band dissolves in the distance map of a 

chromosome (Figure 6J), in sharp contrast with the distance map obtained as a result of 

expansion without strand passage (Figure 5G, right). 

 

We note that the two-stage expansion out of the hypothetical unknotted mitotic 

configuration would produce a qualitatively different change of compartmental strength 

than observed in Topo II inhibition experiments (Figure S5E-F). Indeed, the Topo II 

activity in Stage I would increase the number of loop-loop catenations from negligible to 

the level of the two-stage expansion from the knotted mitotic state (Figure S5G), 

yielding a less compartmentalized state than in the situation of inhibited strand passage 
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without catenations. This result highlights that the unknotted mitotic state is inconsistent 

with experimental findings on Topo II inhibition. 

 

Taken together, the proposed two-stage mechanism of mitotic exit and decondensation 

facilitates large-scale chromosome disentanglement, and then maintains this 

unentangled state allowing the establishment of interphase organization with these 

hallmarks: the fractal globule, chromosome territoriality, and strong 

compartmentalization. 

 

Topo II activity is required for increased compartment strength upon loss of 

cohesin 

To test whether Topo II activity is also required for other forms of chromosome 

reorganization, we used the previously described HCT116 cell line carrying an auxin 

inducible degron (AID) and mClover fusion of RAD21, a subunit of the cohesin complex 

(HCT116 + RAD21-mAC cell line) 61,66-68. In this system, depletion of cohesin results in 

weaker TADs and CTCF-CTCF loops, and stronger compartmentalization 61,68. Using 

this system, we measured how chromosome folding is affected by the combined loss of 

Topo II activity and cohesin by Hi-C. We treated Async. HCT116 + RAD21-mAC cells, 

which are mainly in the G1 phase of the cell cycle, with 30uM of ICRF-193 to inhibit 

Topo II or with DMSO, and/or 500uM Auxin (Indole-3-acetic acid, IAA) to degrade 

RAD21 for two hours (Figure 7A, Figure S7A). Following fixation, the cell populations 

were sorted for G1 DNA content, and +/- mClover expression (Figure S7B,C).  
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As previously observed, short-range Hi-C interactions are decreased, while long-range 

compartment-specific interactions are increased with RAD21 degradation (Figure 7B, C) 

61. The loss of cohesin-mediated loop extrusion can be observed by a loss of the peak 

in the derivative of P(s) at ~100 kb, and loss of TADs on 50kb binned heatmaps (Figure 

7B, C, Figure S7D-F,H) 32,69,70. RAD21 depletion + ICRF-193 did not significantly 

changes the P(s) curves compared to RAD21 depletion alone. RAD21 depletion alone 

reduces loop strength, as previously published 61, while ICRF-193 treatment alone has 

no effect on looping interactions, nor on the effect of cohesin depletion [IAA + ICRF-193] 

(Figure 7D).  

 

Simulations of cohesin depletion in late interphase, obtained through the two-stage 

process with some weak Topo II activity in Stage II (see Methods), recapitulate the 

subtle effects of Topo II inhibition observed in P(s) curves (Figure 7F); importantly, the 

model suggests that some Topo II activity in Stage II can still reproduce the fractal 

scaling of P(s) observed experimentally (Figure 7G,H), as long as this activity is 

sufficiently weak. 

 

Compartment strength is increased with RAD21 degradation (Figure 7I-L, FigureS7G) 

61,69,70. However, the compartment strength increase observed with IAA treatment is 

partially blocked by the addition of ICRF-193, particularly in the B compartment (Figure 

7L). Treatment with ICRF-193 alone has only minimal effects on compartment strength, 

as also observed in the Async HeLa S3 cell line (see Figure S1K,L). We observe similar 

results in the simulations: while complete inhibition of strand passage alone marginally 
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affects compartmentalization of the interphase chains, in combination with cohesin 

depletion it yields lower compartmental scores than in the situation of cohesin depletion 

only (Figure 7M,N). Therefore, weak Topo II activity contributes to the transition in 

chromosome folding at the compartment scale upon the loss of cohesin.  

 

Importantly, these results reveal two features of the interphase genome: first, loss of 

cohesin-mediated loops reveal a crumpled chromatin state consistent with an 

unentangled conformation. Second, the fact that the increase in compartmentalization 

upon loss of cohesin is partly dependent on Topo II activity suggests Topo II activity 

during interphase. The two features are consistent with each other as long as the 

interphase Topo II activity is sufficiently weak, see Figure 7H.  

 

DISCUSSION 

The mitotic chromosome is internally entangled 

Whether intra-chromosomal entanglements occur in mitotic chromosomes has long 

been an open question in the field, due to an inability to directly measure entanglements 

in endogenous chromosomes. An unentangled mitotic state has long been the dominant 

view, as it would naturally expand into an unentangled interphase, which is observed 

experimentally, assuming strand passage is not active 34,35. However, our results 

demonstrate that artificial inhibition of Topo II during mitotic exit results in dramatic 

changes in the subsequent interphase structure. Our polymer simulations show that 

these experimentally observed changes can be reconciled with an entangled mitotic 

chromosome that requires Topo II activity to expand into interphase. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2022.10.15.511838doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.15.511838
http://creativecommons.org/licenses/by/4.0/


 24 

 

Entangled mitotic chromosomes have been previously predicted to form a stiffer 

structure than unentangled chromosomes, which may be important for ensuring proper 

chromosome segregation33. A recent study using in vitro mitotic chromosome 

reconstitution in Xenopus egg extracts showed that Topo II activity is required to 

increase chromosome thickness when condensin is present but results in inter-

chromosome entanglements when condensin is depleted71. This model of mitotic intra-

chromosomal entanglements mediated by Topo II directed by condensin to form mitotic 

chromosomes is consistent with our entanglement measurements during mitosis71. 

 

Two-stage exit from mitosis   

Formation of an unentangled interphase organization from an entangled mitotic 

chromosome poses a serious challenge: While Topo II activity is required for expansion 

and compartmentalization, at the same time it prevents the establishment of hallmarks 

of interphase organization such as chromosome territories and the unentangled fractal 

globule state. Polymer simulations show that this paradox can be resolved by a two-

stage mitotic exit where chromosomes first become unentangled and then are 

maintained at this state.   

 

In the first stage, decompaction of mitotic chromosomes with mitotic (condensin) loops 

still present produces a swollen bottlebrush conformation. Loops in this state 

entropically repel each other, biasing Topo II towards decatenation. As we find in time-

calibrated simulations, Topo II needs to be active for ~10-20 min to largely 
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disentangle condensin loops; this time is close to the condensin residence time 72,73. In 

the second stage, the disentangled chromosomes expand upon the loss of condensin 

loops, yet with reduced Topo II activity, allowing to maintain the unentangled state, and 

thus enabling formation of territorial and fractal globule chromosomes. In accord with 

our cohesin depletion experiments in G1, polymer simulations further demonstrate that 

some weak Topo II activity in the second stage is consistent with a largely unentangled 

interphase organization (Figure 7G). 

 

In a recent synchronized Hi-C study on mitotic exit, the existence of a loop-free, and 

possibly unentangled state was demonstrated during telophase, when most of the 

condensins have dissociated and cohesin has not re-associated with chromatin 40. This 

importantly suggests that the disentanglement of mitotic chromosomes takes place 

during the stage after the metaphase-to-anaphase transition and before the condensins 

are released from chromosomes. Our current experiments further highlight an important 

role of Topo II in these early stages of mitotic exit, as its early inhibition results in 

retention of mitotic-like organization in the following interphase (Figures 1-3). Consistent 

with these experimental observations, the two-stage model of mitotic exit demonstrates 

that most of the mitotic entanglements can be removed via decompaction of mitotic 

chromosomes with condensin loops under high Topo II activity (Stage I). Thus, a 

swollen bottlebrush state is likely present until telophase onset and linked to 

decatenation of mitotic loops. 
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Taken together, our work shows that cells control the entanglement state of the genome 

during mitotic exit, with important roles for chromosome loops, chromatin 

decondensation, and regulation of Topo II activity levels. 

 

Our study makes several predictions that future experiments can test. First, the two-

stage mechanism suggests the presence of a transient state with associated 

condensins, expanded mitotic-like state, and high Topo II activity. Detection and 

characterization of this state, with its unique morphology, chromatin associated 

condensins and Topo II is a challenge for live-cell microscopy. Second, our models 

suggest that Topo II inhibition can keep chromosomes in a similar partially expanded 

mitotic-like state even after condensin loops are gone. We predict how distance maps 

accessible by high-resolution microscopy74 would appear, and how the scaling of the 

spatial distance with genomic separation would be affected by Topo II inhibition. 

 

Limitations of the study 

First, our study uses chemical inhibition of Topo II activity. ICRF-193 leads to 

immobilization of Topo II on chromatin, and this may affect chromosome conformation 

in unknown ways. Alternative methods include the use of degron-based removal of 

Topo II, but such methods lack the temporal control required for study of chromosome 

folding dynamics during mitotic exit, when topoisomerases are also required to separate 

sister chromatids. Second, our proposal that mitotic chromosomes are self-entangled is 

based on the combined integration of polymer modelling and the analysis of 

experimental effects of Topo II inhibition (Hi-C, MC-3C data, imaging data). We do not 
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have direct experimental data showing that mitotic loops are catenated. For instance, 

while MC-3C data show high levels of intermingling of chromatin within condensed 

prometaphase chromosomes, and a dependence on Topo II activity for unmingling 

during decondensation, the chromatin interaction data by itself is not providing direct 

evidence for topological entanglements. Experimental evidence for catenation of mitotic 

loops will await development of imaging-based methods with sufficient resolution and 

scale to trace individual loops at nm resolution in 3D. Third, although the proposed two-

stage mechanism of mitotic exit seems to be a natural way to disentangle the 

chromosomes via involvement of regulated topoisomerase activity, it is only tested by 

polymer modeling. 
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FIGURE LEGENDS: 

Figure 1: Topo II inhibition by ICRF-193 delays compartment re-establishment at 

G1 entry 

A. Schematic of HeLa S3 mitotic synchronization and release experiment with Topo II 

inhibition.  

B. Cell cycle profiles by PI staining and flow cytometry of cells for Hi-C experiment 

shown in in D-G (N = 2).  

C. Hi-C interaction heatmap and Eigenvector 1 of unsorted HeLa S3 cells from 

nocodazole arrest (t = 0, prometaphase), from a separate experiment as an example.  

D. Hi-C interaction heatmaps and Eigenvector 1 of G1 sorted MR HeLa S3 cells treated 

with DMSO or 30uM ICRF-193, two replicates combined. 

E. Hi-C interaction log10 ratio heatmap comparing ICRF-193 treatment to DMSO control 

for each timepoint.  

F. P(s) scaling plot of G1 sorted HeLa S3 cells (Async, MR, and Prometaphase samples 

from separate experiments).  

G. First derivative (slope) of P(s) scaling plot shown in F.  

H. Hi-C interaction heatmaps and Eigenvector 1 of G1 sorted MR HeLa S3 cells treated 

with DMSO or 30uM ICRF-193 + 200uM Merbarone, N = 1. 

I. Hi-C interaction log10 ratio heatmap comparing ICRF-193 + Merbarone treatment to 

DMSO control for each timepoint, N = 1.  
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J. AA compartment strength log2 ratio compared to control at each collection time by 

distance, for G1 sorted HeLa S3 cells treated with ICRF-193. N = 2. (AS and MR from 

separate experiments, as above). 

K. BB compartment strength log2 ratio compared to control at each collection time by 

distance, for G1 sorted HeLa S3 cells treated with ICRF-193, as in J.  

L. AA compartment strength log2 ratio compared to control at each collection time by 

distance, for G1 sorted HeLa S3 cells treated with ICRF-193 + Merbarone. N = 1.  

M. BB compartment strength log2 ratio compared to control at each collection time by 

distance, for G1 sorted HeLa S3 cells treated with ICRF-193 + Merbarone. N = 1.  

 

Figure 2: ICRF-193 treatment during G1 entry disrupts nuclear organization and 

chromosome morphology 

A. Representative confocal microscopy images in Early (t = 4 hrs) and Late (t = 8 hrs) 

G1 HeLa S3 cells after mitotic release with either DMSO or 30uM ICRF-193 treatment 

from t = 2 hrs post nocodazole washout. i. merge of all channels. Ii. merged image with 

an overlay (white lines) of the H3K27ac segmented objects containing H3K9me3 

objects, as used for quantification of overlap between the two types of chromatin in B. 

iii. DAPI, iv. H3K27ac, v. H3K9me3.  

B. Boxplot of the fraction of H3K27ac segmented regions that contain H3K9me3 

segmented for each nucleus.  

C. Boxplot of the mean fraction of H3K27ac signal in the outermost (peripheral) radial 

bin, out of 10 total bins.  
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D. Representative confocal microscopy images in a mitotic release timecourse with 

DMSO or ICRF-193 treatment (30uM) starting at t = 2 hrs post mitotic release. i. Merged 

images. ii. DAPI, iii. TOP2A-Venus, iv. Lamin A. 

E. Boxplot of DAPI signal contrast in each nucleus, at a distance of 10 pixels.  

 

Figure 3: Topo II inhibition must occur during mitotic exit to delay compartment 

establishment 

A. Schematic of HeLa S3 mitotic synchronization and release Hi-C experiment with 

ICRF-193 treatment starting at t = 2 hrs, collected at t = 4 hrs (early G1) or t = 8 hrs (late 

G1), without sorting.  

B. Schematic of HeLa S3 mitotic synchronization and release Hi-C experiment with 

ICRF-193 treatment starting at t = 2 hrs, re-added at t = 4 hrs and t = 6 hrs, collected at 

t = 8 hrs (late G1), without sorting.  

C. Cell cycle profiles by PI staining and flow cytometry of cells described in A before G1 

sorting. (N = 2). 

D. Cell cycle profiles by PI staining and flow cytometry of cells described in B before G1 

sorting. (N = 2).  

E. Hi-C interaction heatmaps and Eigenvector 1 of unsorted HeLa S3 cells treated with 

DMSO, ICRF-193 at t = 2 hrs and collected at t = 4 hrs or t = 8 hrs. Two replicates 

combined.  

F. Hi-C interaction heatmaps and Eigenvector 1 of unsorted HeLa S3 cells treated with 

DMSO or ICRF-193 added at t = 2 hrs, and readded at t = 4 hrs, and t = 6 hrs, and 

collected at t = 8 hrs. Two replicates combined.  
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G. Hi-C interaction log10 ratio heatmap comparing ICRF-193 treatment to DMSO 

control for each treatment type in E.  

H. Hi-C interaction log10 ratio heatmap comparing ICRF-193 treatment to DMSO 

control for samples in F.   

I. AA Hi-C compartment strength log2 ratio compared to DMSO by distance, separated 

by compartment type, for HeLa S3 cells described in A and B. N=2. With and without re-

adding samples are from separate experiments. 

J. BB Hi-C compartment strength log2 ratio compared to DMSO by distance, separated 

by compartment type, for HeLa S3 cells described in A and B. N=2. With and without re-

adding samples are from separate experiments. 

K. Schematic of HeLa S3 mitotic synchronization and release experiment with ICRF-193 

treatment starting at t = 2 hrs, t = 3 hrs, or t = 4 hrs post mitotic release, collected after 5 

hours of treatment, with sorting for G1 DNA content.  

L. Flow cytometry profiles for DNA content (PI stain) of synchronized HeLa S3 cells as 

in I released into G1 at t = 2 hrs, t = 3 hrs, or t = 4 hrs, at the time of ICRF-193 addition. 

One representative replicate shown. 

M. Cell cycle profiles by PI staining and flow cytometry of cells described in K before G1 

sorting. (N = 2). 

N. Hi-C interaction heatmaps and Eigenvector 1 of G1 sorted MR HeLa S3 cells treated 

with DMSO or 30uM ICRF-193 from t = 2 hrs to t = 7 hrs, t = 3 hrs to t = 8 hrs, or t = 4 

hrs to t = 9 hrs after mitotic release. Two replicates combined.  

O. Hi-C interaction log10 ratio heatmap comparing ICRF-193 treatment to DMSO 

control for each treatment type. Two replicates combined.  
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P. AA Hi-C compartment strength log2 ratio compared to DMSO by distance, separated 

by compartment type, for HeLa S3 cells described in K. N=2.  

Q. BB Hi-C compartment strength log2 ratio compared to DMSO by distance, separated 

by compartment type, for HeLa S3 cells described in K. N = 2.  

 

Figure 4: Topo II resolves mitotic entanglements during G1 establishment of 

interphase chromosome folding 

A. Schematic of cell synchronization and MC-3C protocol. MC-3C was performed on 

HeLa S3 cells during prometaphase arrest (t = 0) or after mitotic release at t = 2 hrs 

(anaphase/telophase), t = 4 hrs (early G1), or t = 8 hrs (late G1). The early and late G1 

timepoints had DMSO or 30uM ICRF-193 added at t = 2 hrs post mitotic release, and 

were G1 sorted after fixation.   

B. Fraction of C-walks within one chromosome or between two chromosomes, and in A, 

B, or both A and B compartments. Three biological replicates.  

C. Density plot of the direct pairwise interaction distances from MC-3C C-walks, N = 3. 

Bracket shows the region where ICRF-193 treatment results in retained mitotic 

interactions in early G1 compared to DMSO treatment (Figure 1).  

D. Density plot of pairwise interaction distance from sampled Hi-C libraries made from t 

= 0 prometaphase and t = 2 hrs anaphase/telophase unsorted cells, and G1 sorted 

early and late G1 cells with DMSO or 30uM ICRF-193 treatment. t = 0 and t = 2 hrs 

samples are from a separate experiment from t = 4 hrs and t = 8 hrs samples. Bracket 

shows the region where ICRF-193 treatment results in retained mitotic interactions 

compared in early G1 compared to DMSO treatment.  
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E. Schematic of types of interfaces between different genomic regions on the same 

chromosome. A smooth interface (top) will result in a C-walk (black dashed arrow) with 

most steps within each region, and fewer steps between the two regions (indicated by 

small black solid arrow). An entangled/intermingled interface (bottom) will result in a C-

walk (black dashed arrow) with more steps between the two regions (indicated by small 

black solid arrows).  

F. i. Formula of the IM calculation for determining how much intermingling/entanglement 

occurs between two regions. The IM is calculated as the fraction of C-walks with >1 

inter-region step.  

F. ii. Schematic of the two possible types of two region C-walks considered for 

calculation of the Intermingling Metric (IM). Regions are defined as either side of the 

largest step (x) within each C-walk, with each side extending ¼ of the size of the largest 

step upstream and downstream of the midpoint of fragment at either end of the largest 

step (so each region has a maximum size of ½ the largest step size (0.5x)). 

G. Intermingling analysis of control cells during mitotic exit. Pairwise comparisons of the 

IM at 12Mb window size. Mean (darker line) +/- 95% CI (lighter filled areas) of three 

biological replicates is shown for the real C-walks. Permuted C-walks (100 permutations 

per sample x 3 replicates each) are also plotted, with the mean of all 300 permutations 

for each sample shown as dashed lines, and 95% CI shown by the surrounding filled 

areas. Arrows in i. indicate low intermingling (blue), medium-high intermingling (purple), 

and highest intermingling (red). Bracket in iv. indicates the area of significant difference 

between t = 2 hrs and t = 4 hrs early G1 DMSO.  
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H. Intermingling analysis of ICRF-193 treated cells, pairwise comparisons to DMSO or t 

= 2hrs samples plotted as in G. Bracket indicates the area of significant difference 

between t = 4 hrs early G1 DMSO and t = 4 hrs early G1 ICRF-193.  

 

Figure 5. Polymer simulations reveal that hallmarks of mitotic exit with inhibited 

Topo II correspond to the entangled mitotic chromosome 

A. Two topologies of mitotic state considered in polymer simulations. Contact maps and 

matrices of the Gaussian linking numbers for the loop pairs are shown for each state. 

The snapshots of the two states are demonstrated: condensin loops (gray) form a 

dense bottlebrush array; condensins in the loop bases comprise the spiraled backbone 

(red); two individual loops (non-catenated in the left and catenated in the right) are 

shown by magenta and green.  

B. The simulated contact matrices for unknotted (left) and knotted (right) initial states for 

early (1-2 hour) and late (6-8 hours) interphase. 

C. The compartmental saddle plots and the corresponding compartmental scores for the 

contact matrices from panel B at scales 0.75-20Mb are demonstrated. See STAR 

Methods for more details.  

D. The contact probability curves and the log-derivatives for the two initial states at 

different timepoints in G1 as indicated in the legend on the panel E. The gray dashed 

curve corresponds to mitosis. 

E. Interphase compartmental scores for the exits from the two mitotic states (top) and 

the corresponding log2-ratios (bottom) computed for two timepoints in G1, see the 
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legend. Each dot represents a value for the interphase contact map averaged over 16 

mitotic replicates and the bars represent the mean value. 

F. Kinetics of the chromosomal territoriality for the two initial states (knotted – red, 

unknotted – cyan), measured as cis/trans ratio in simulations.  

G. Distance maps for the early G1 timepoint out of the two mitotic states.   

H. The plots of the mean squared end-to-end distances !!(#) for the interphase 

segments of length #	obtained from the two mitotic states. 

 

Figure 6. The two-stage model of mitotic exit allows for directed Topo II and 

removal of most of the mitotic catenations 

(A-C): one-stage exit. (D-J): two-stage exit. 

A. Schematic for the one-stage exit.. Such an exit results in internal mixing of the 

chains, as shown by the disordered organization of the colored interphase chain on the 

right. 

B. The log-derivative of the average contact probability &(#) computed after removal of 

cohesin loops at the late G1 timepoint (bold gray curve; different replicates are shown 

by thin gray lines). The experimental range of the &(#) slopes between -1.15 and -1, 

corresponding to the fractal globule (FG) state, is shown by pink. 

C. Snapshots of three overlapping chromosomes (PBC images) from one-stage 

simulations (left). The cis/trans ratio as the function of the exit time (right).  

D. Schematic for the two-stage exit. The matrices of the linking number for the 

condensin loop pairs are shown in the knotted mitotic state and by the end of Stage I; 
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magenta and blue dashed lines correspond to the two loops that are catenated in the 

mitosis, but decatenate during Stage I. 

E. Mean number of catenations per loop as a function of duration of the first stage (bold 

black curve; 16 replicates are shown by thin gray lines). The red dashed line denotes 

the steady-state number of residual catenations ~0.25. This steady-state is achieved in 

' ≈ 10	minutes, which is used in further analysis of the two-stage exit. 

F. Snapshots of three weakly overlapping chromosomes (PBC images) from two-stage 

simulations (left). The cis/trans ratio as the function of the exit time (right).  

G. Interphase contact maps for early and late timepoints, obtained via the two-stage exit 

(top). The corresponding compartmental saddle plots with the compartmental scores 

are shown in the bottom.  

H. The interphase &(#) and its log-derivative for the two-stage exit at two timepoints 

(cyan) and for the exit with inhibited strand passage from the knotted initial state (red). 

The dashed black curves correspond to the mitotic state. 

I. The log-derivative of &(#) computed after removal of cohesin loops at the late G1 

timepoint. The curves corresponding to the two-stage exit is shown by cyan, while the 

curves for the exit with inhibited strand passage from knotted and unknotted states are 

shown by red and dark cyan, correspondingly. The experimental range of the &(#) 

slopes between -1.15 and -1, corresponding to the fractal globule (FG) state, is shown 

by pink. 

J. Distance map for the early G1 timepoint obtained via the two-stage process.  
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Figure 7: Weak Topo II is required for increased compartment strength due to 

cohesin degradation 

A. Schematic of RAD21 degradation and Topo II inhibition by ICRF-193 in AS HCT116 

+ RAD21-AID-mClover (HCT116 + RAD21-mAC) cells for Hi-C. Cells were treated for 2 

hours with IAA and/or ICRF-193 before fixation for Hi-C, and sorting for G1 DNA content 

with (- IAA samples) or without (+ IAA samples) mClover.  

B. P(s) scaling plot of G1 sorted HCT116 + RAD21-mAC cells described in A. N = 3. 

C. First derivative (slope) of P(s) scaling plot shown in B. N = 3.  

D. Aggregate loop pileup (APA) of experiment shown in A at dots called in published 

high resolution Hi-C data from HCT116 + RAD21-mAC (Untreated) (4DNFIFLDVASC). 

Average log2(observed/expected). N = 3. 

E.  Log2 fold change of APA for each treatment vs the control  

F. The &(#) log-derivatives computed for simulations of four states: unperturbed 

interphase obtained via the two-stage process with low activity of Topo II (+"# = 5.'), 

interphase with further inhibited Topo II (ΔTopo II; +"# = 10.'), interphase with further 

depleted cohesin loops but remained low activity of Topo II (ΔCohesin; +"# = 5.'), 

interphase with depleted cohesin loops and inhibited Topo II (ΔTopo II, ΔCohesin; +"# =

10.'). 

G. Simulations of various levels of the strand passage activity during Stage II of the two-

stage exit, as modelled by varying the excluded volume barrier. The graph shows the 

log-derivatives of the contact probability P(s) in interphase after depletion of cohesin 

loops (late G1). The red strip shows the range of experimental log-derivatives between 

–1.15 and –1 (panel C). 
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H. A model: Depletion of cohesin loops in the interphase state allows to assess the 

topological state of chromosomes from the log-derivative of P(s). The slopes around -1 

correspond to the fractal organization, which is only consistent with sufficiently weak 

activity of Topo II in the interphase. 

I. Experimental Hi-C interaction heatmaps and Eigenvector 1 of HCT116 + RAD21-mAC 

cells described in A, three replicates combined.  

J. Hi-C interaction log2 ratio comparing each treatment to the Control or to the IAA 

treatment, as indicated. Three replicates combined. 

K. AA compartment strength log2 ratio compared to Control by distance for HCT116 + 

RAD21-mAC cells, N=3.  

L. BB compartment strength log2 ratio compared to Control by distance for HCT116 + 

RAD21-mAC cells, N=3.  

M. Contact maps and the corresponding compartmental saddle plots from simulations 

for four states described in F.  

N. The log2 ratios of the compartment score in perturbed and unperturbed interphase 

simulations at short and large genomic scales. Each dot represents a ratio computed for 

a pair of perturbed and unperturbed contact maps, both averaged over 16 replicates. 

The bars represent the corresponding mean values. 

 

STAR METHODS: 

Resource availability 

Lead contact 
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Figure 1: Topo II inhibition by ICRF-193 delays compartment re-establishment at G1 entry
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Figure 2: ICRF-193 treatment during G1 entry disrupts nuclear organization and chromosome morphology
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A B

Figure 3: Topo II inhibition must occur during mitotic exit to delay compartment establishment

C E

G

I

J

MR 2hrs MR 3hrs MR 4hrs

DNA Content DNA Content

K

L N

O

P

Q

C
h
r1
4

2
5
0
kb
 b
in
s

IC
R
F
-1
9
3

D
M
S
O

Early G1 (4 hrs)

C
h
r1
4

2
5
0
kb
 b
in
s

C
h
r1
4

2
5
0
kb
 b
in
s

Late G1 (8hrs)
Late G1 (8hrs)

Readded at 4 + 6hrs

lo
g
1
0
(I
C
R
F
-1
9
3
/

D
M
S
O
)

Early G1 (4 hrs) Late G1 (8 hrs)
Late G1 (8hrs)

Readded at 4 and 6hrs

C
h
r1
4

2
5
0
kb
 b
in
s

IC
R
F
-1
9
3

D
M
S
O

MR 2hrs-7hrs

C
h
r1
4

2
5
0
kb
 b
in
s

C
h
r1
4
2
5
0
kb
 b
in
s

MR 3hrs-8hrs MR 4hrs-9hrs

MR 2hrs-7hrs MR 3hrs-8hrs MR 4hrs-9hrs

lo
g
1
0
(I
C
R
F
-1
9
3
/

D
M
S
O
)

N.D.

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

DNA Content

A Compartment Strength
vs. Control

lo
g
2
(T
re
a
tm
e
n
t/
C
o
n
tr
o
l)
 S
tr
e
n
g
th

B Compartment Strength
vs. Control

lo
g
2
(T
re
a
tm
e
n
t/
C
o
n
tr
o
l)
 S
tr
e
n
g
th

Distance (Mb)

Distance (Mb)

MR 4hrs ICRF-193/MR 4hrs DMSO

MR 8hrs ICRF-193/MR 8hrs DMSO

MR 8hrs ICRF-193 Readded/
MR 8hrs DMSO Readded

MR 4hrs ICRF-193/MR 4hrs DMSO

MR 8hrs ICRF-193/MR 8hrs DMSO

MR 8hrs ICRF-193 Readded/
MR 8hrs DMSO Readded

A Compartment Strength
vs. Control

lo
g
2
(T
re
a
tm
e
n
t/
C
o
n
tr
o
l)
 S
tr
e
n
g
th

B Compartment Strength
vs. Control

lo
g
2
(T
re
a
tm
e
n
t/
C
o
n
tr
o
l)
 S
tr
e
n
g
th

Distance (Mb)

Distance (Mb)

MR 2-7hrs ICRF-193/
MR 2-7hrs DMSO
MR 3-8hrs ICRF-193/
MR 3-8hrs DMSO
MR 4-9hrs ICRF-193/
MR 4-9hrs DMSO

MR 2-7hrs ICRF-193/
MR 2-7hrs DMSO
MR 3-8hrs ICRF-193/
MR 3-8hrs DMSO
MR 4-9hrs ICRF-193/
MR 4-9hrs DMSO

N.D.

D

G1 S G2/M

0

20

40

60

80

100

Cell Cycle Stage

%
 o
f c
e
lls

t0 (Prometa.)

MR 2 hrs

MR 4 hrs DMSO

MR 4 hrs ICRF-193

MR 8 hrs DMSO

MR 8 hrs ICRF-193

F

H

Unsorted

Unsorted

Before Sorting

G1 S G2_M

0

20

40

60

80

100

Cell Cycle Stage

%
 o
f c
e
lls

t0 (Prometa.)

MR 7hrs 
DMSO at 2 hrs

MR 8hrs 
DMSO at 3 hrs

MR 9hrs 
DMSO at 4 hrs

MR 7hrs 
ICRF-193 at 2 hrs

MR 8hrs 
ICRF-193 at 3 hrs

MR 9hrs 
ICRF-193 at 4 hrs

M

G1 S G2_M

0

20

40

60

80

100

Cell Cycle Stage

%
 o
f c
e
lls

t0 (Prometa.)

MR 8 hrs 
DMSO Readd

MR 8 hrs 
ICRF-193 Readd

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2022.10.15.511838doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.15.511838
http://creativecommons.org/licenses/by/4.0/


Figure 4: Topo II resolves mitotic entanglements during G1 establishment of interphase 
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